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Experimental Validation of Nonsmooth Dynamics Simulations for
Robotic Tossing involving Friction and Impacts

M. J. Jongeneel�, L. Poort�, N. van de Wouw�, and A. Saccon�

Abstract—In this paper, we evaluate the prediction perfor-
mance of two nonsmooth rigid-body dynamics simulators on real-
world data with spatial impacts in the context of robotic tossing
and visual tracking. We perform a parameter identification
procedure to find the coefficient of friction and restitution of
different objects via a velocity-based and trajectory-based cost
function. Our results show that these two identification criteria
lead to different parameter values, and these criteria should be
chosen in consideration of the application at hand. We compare
the simulated predicted rest-pose with measurement data and
perform a sensitivity analysis to assess how uncertainty on
the identified parameters affects the rest-pose prediction of the
object. For the robotic tossing application at hand, we show
that the rest-pose prediction is insensitive to the coefficient of
restitution, and accurate predictions are obtained via simulations
using only ballistic motion and friction.

Index Terms—Motion prediction, Impact, Friction, Contact
Modeling, Nonsmooth Mechanics, Parameter Identification.

I. INTRODUCTION

IMPACT-aware robotics is an emerging field of research
focusing on the development of robots exploiting physical

impacts with objects and environments. In this context,
picking and tossing objects using robotic manipulators can be
an alternative to traditional pick-and-place solutions. Not only
can robotic tossing result in faster object handling, but it also
allows robots to place objects outside their kinematic reach
[1]. Accurate and fast predictions of the tossing outcome are
paramount to proper planning and control of the robot. In this
work, we focus on robot tossing in logistics related to the
recently funded EU project on Impact-Aware Manipulation1,
see also Figure 1 for an example of a toss. We are interested
in the prediction capabilities of rigid-body simulators in the
context of visual tracking [2] and robot tossing [3]. Although
we focus specifically on logistics, we stress that the problem
is general, and our results are relevant for other applications,
e.g., robot soccer [4] or robot batting [5].

Multibody dynamics simulators can be used to predict the
trajectory of the tossed object. Various simulators exist, and
Brogliato et al. [6] discuss that, in general, there are three
classes of numerical methods for mechanical systems with
contact, friction and impact: Event-driven methods, Penalty
methods, and Time-stepping methods.

Event-driven methods numerically integrate the smooth mo-
tion in between impacts or contact transitions and re-initialize

The authors are with the Department of Mechanical Engineering, Eindhoven
University of Technology (TU/e), The Netherlands {m.j.jongeneel,
l.poort, n.v.d.wouw, a.saccon}@tue.nl (Corresponding au-
thor: M. J. Jongeneel)

1This work was partially supported by the Research Project I.AM. through
the European Union H2020 program under GA 871899.

Fig. 1: Example of a tossing experiment. In a typical experiment, the box
travels about 1.2 meters, impacts, and slides over the conveyor before it comes
to rest. A motion capture system records the poses of the box and the conveyor
at 360FPS.

the state if an impact is detected. These methods require
knowledge of the exact impact time, which can be hard to
predict. Their main drawback is that they cannot handle an
accumulation of impacts, which is typically what occurs in
the systems we consider.

Penalty methods, also called pseudo-rigid methods, are
based on compliant contact models that allow the interpene-
tration of objects and apply contact forces proportional to the
magnitude of penetration. These methods represent impacts as
smooth phenomena, which makes it challenging to combine
them with nearly rigid contact and discontinuous friction
models [7], [8]. Some examples of commercial software based
on penalty methods are MuJoCo [9], Drake [10], and PyBullet
[11]. In [12], the authors evaluate the prediction performance
of these three simulators on real-world datasets for a cube
tossed on a plane and a Cassie robot jumping. In [13], the
authors propose a method to learn frictional contact behaviors
from data, and they test the proposed method on 3D frictional
contact scenarios of cube tosses.

Time-stepping methods rely on rigid-body dynamics and
ideal contact/impact laws and use a fixed time-step integration
scheme. Time-stepping methods are computationally more
efficient than event-driven methods and penalty methods
and are well-equipped to deal with the accumulation of
impacts. However, rigid-body models are known to have
various limitations. Especially in the case of hyperstatic
systems, the contact forces cannot be computed uniquely
[14], [6]. Nevertheless, these methods generally provide
good predictions for long-range motion simulation. This is
especially the case if one is not interested in details of local
collision (or contact) behavior but rather in the effect of
the collision on a global motion [6], which applies to our
application of robotic tossing. Furthermore, estimating contact
parameters for compliant models (stiffness, damping, etc.) can
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be challenging in practice [6]. For these reasons, we choose
to use time-stepping methods relying on rigid-body dynamics
in our simulation environment. Specifically, we will describe
the model in Section II and perform simulations using both
a MATLAB implementation and commercial software, for
which we use Algoryx Dynamics [15], a European company
specialized in multibody dynamics with friction and impacts.

Although multibody dynamics simulators are extensively
used in robotic applications, only a few works show an
empirical evaluation of the impact prediction performance of
these simulators. In [16], [17], [18], [19], [12], the authors
show an empirical evaluation of commonly used contact
models on 2D datasets. Related to our work, Fazeli et al.
[7] propose a parameter identification approach for commonly
used rigid-body contact models on an experimental dataset in
a two-dimensional setting. More recently, in [16], the authors
empirically evaluate their proposed framework by predicting
planar dice rolls in a two-dimensional environment. In [20],
the authors take a different approach by showing how generic
Graph Network Simulators can accurately capture rigid-body
dynamics. However, to the best of the author’s knowledge,
no literature exists describing an empirical evaluation of
rigid-body dynamics on 3D data with impacts and friction.
Therefore, the main focus of this paper is to empirically
evaluate the long-range prediction performance of commonly
used rigid-body models on 3D impact data with friction. The
main contributions of this work are:

• An identification approach to estimate the contact param-
eters from 3D impact data with friction;

• Empirical evaluation of the long-range prediction perfor-
mance of rigid-body simulators based on the identified
parameters, using real-world data for box tosses on a
conveyor;

• Sensitivity analysis to asses how uncertainty on the
identified parameters is reflected in the estimation of the
rest-pose ;

• Publicly available source code for parameter identifica-
tion and evaluation of experimental data2 and datasets
containing hundreds of impact events of multiple box
tosses [21].

The remainder of this paper has the following structure.
In Section II, we discuss the mathematical preliminaries.
Section III describes the experimental setup and data collection
procedure. In Section IV, we describe the parameter identifi-
cation procedure and optimization criteria to find the optimum
parameter values of the rigid-body contact models. Section V
describes how these identified parameters and their uncertainty
are used in simulations for the long-range prediction of box
tosses. Section VI describes a sensitivity analysis of the param-
eters by sweeping each parameter individually and evaluating
the rest-pose. The paper finishes with a conclusion in Section
VII.

2The source code is publicly available through https://gitlab.tue.nl/
robotics-lab-public/parameter-identification-and-validation.

II. MATHEMATICAL PRELIMINARIES

In this section, we first introduce the notation used in this
paper. Then, in Section II-B, we cover the main equations
of the nonsmooth dynamical model used. In Section II-C,
we cover the Algoryx Dynamics physics simulator used as
simulation software.

A. Notation and definitions

In this work, we use right-handed coordinate frames, which
are indicated with capital letters (A, B, . . . ) and further spec-
ified by indicating their origin (oA, oB , . . . ) and orthogonal
unit vectors (xA, yA, and zA for frame A, xB , yB , and zB for
frame B, . . . ). A point is indicated with a bold letter such as
p (or o when corresponding to a coordinate frame’s origin).
A coordinate vector with respect to a frame of reference is
indicated with a left superscript so that, e.g., Ap are the
coordinates of p expressed in A and Bp are the coordinates
of the same point p but now expressed in B. We write the
state of the object as x = {H,v} ∈ SE(3)× R6, where

H =

[
R o

01×3 1

]
∈ SE(3) (1)

is a transformation matrix with R ∈ SO(3) a rotation matrix
and o ∈ R3 the frame origin of a frame fixed to the object.
Furthermore, we write

v∧ =

[
v
ω

]∧
:=

[
ω∧ v

01×3 0

]
∈ se(3) (2)

as a twist, where we use ∧ (hat) to indicate the classical
mapping from R3 to the corresponding 3× 3 skew-symmetric
matrix in so(3). Similarly, we use ∨ (vee) as the inverse
mapping [22, Chapter 3.2]. Note that both H and v in (1) and
(2), respectively, are written as matrices in R4×4. For further
information regarding the notation, we refer the reader to [23].

B. Nonsmooth dynamics model

As a dynamics model, we use the model derived in [2]
and employ the freely available MATLAB implementation
developed by the first author [24] as our first simulator. For a
full derivation of this model, we refer to [25], but briefly restate
some of the main equations here for the sake of readability.
We write the equations of motion on the level of momenta, to
allow for the inclusion of impulsive forces and discontinuities
in the friction force, such that

Mdv + v×̄∗Mvdt = fdt+ WNdPN + WT dPT , (3)

Ḣ = Hv∧, (4)

where we omitted the dependencies on time for the sake of
brevity. In (3), M denotes the inertia tensor, ×̄∗ the dual-cross
product on R6 as in [23], and f(t) the generalized wrench con-
taining the generalized forces and torques applied to the center
of mass of the body (except for the contact forces), which here
involve the gravitational forces. Furthermore, dPN and dPT

are the differential measures of the momenta associated to the
contact/impact in normal direction and tangential direction,
given as dPN = λNdt + ΛNdη and dPT = λT dt + ΛT dη,

https://gitlab.tue.nl/robotics-lab-public/parameter-identification-and-validation
https://gitlab.tue.nl/robotics-lab-public/parameter-identification-and-validation
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respectively, and WN and WT are the matrices containing the
generalized force directions [26]. Note that λNdt and λT dt
correspond to non-impulsive part of the contact/friction mo-
mentum while ΛNdη and ΛT dη correspond to the impulsive
part of the contact/friction momentum.

To understand how the impulsive contact/friction forces and
the matrices of generalized force directions are related to the
state of the object, we consider Figure 2, where frame C
defines the location and orientation of the contact surface and
this frame is oriented such that the unit vector zC defines the
normal to the plane. We consider the eight vertices of the box
to be the only potential contact points and denote them by
pi, i ∈ {1, . . . , 8}. The contact point velocities can now be
written as

C ṗi =
[
CRB −CRB

Bp∧i
]
BvM,B , (5)

for i ∈ {1, . . . , 8}. In 5, CRB is the rotation matrix from
frame B to frame C, and BvM,B is the twist expressing the
velocity of frame B with respect to frame M , written in terms
of frame B. From 5 we can derive the normal contact point
velocity as

γNi
=
[
CzTC

CRB −CzTCCRB
Bp∧i

]
BvM,B , (6)

where CzTC =
[
0 0 1

]
and Bpi are the vertices of the box

expressed in the body-fixed frame B. We will use Newton’s
impact law, given as

γ+Ni = −eNγ−Ni, (7)

to relate the pre-impact normal velocity γ−Ni to the post-
impact normal velocity γ+Ni through the normal coefficient of
restitution eN [26]. We can rewrite (6) as γNi = wT

Niv ∈ R,
where wT

Ni is the row-vector containing the force directions
of the contact impulses of pi, as in (3). We introduce the
variable ξNi = γ+Ni + eNiγ

−
Ni to formulate an impact law that

relates the impulsive force ΛNi to γ+Ni via a complementarity
condition. Using the proximal point formulation as in [27],
this results in

ΛNi = proxCN
(ΛNi − rξNi) ∀i ∈ Ic, (8)

where Ic is the set of closed contacts, CN = R+, and r > 0.
To model dry friction, we will use a set-valued Coulomb

friction model as in [26]. We will define the tangential velocity
γTi as the velocity of pi with respect to C in x- and y-
direction of the contact surface such that γTi = wT

Tiv ∈ R2,
where wT

Ti ∈ R2×n is the matrix containing the force
directions of the friction forces acting on pi.

To account for impulsive friction forces associated with a
certain amount of restitution, we write the set-valued force
laws for Coulomb friction in terms of momenta. Therefore,
similar to [28, Section 5.3.5], we introduce the variable

ξTi = γ+
Ti + eTγ

−
Ti ∈ R2, (9)

where eT denotes the tangential coefficient of restitution. The
tangential coefficient of restitution plays a role in frictional
contact impulses and restitution in tangential direction occurs
for instance in the motion of the Super Ball [28, Section 5.3.5].
As a result, the set-valued force law for ξTi and ΛTi becomes

ΛTi = proxCTi
(ΛTi − rξTi) (10)

yCxC

zC

C

yM

xM

zM

M

p1

p5p5 p2p2

p6p6

p8p8

p4p4

p7p7

p3p3

yByB
xBxB

zBzB

BB

Fig. 2: Definition of frames and points. The Motive frame M , the Conveyor
frame C, and the Box frame B are indicated. The contact points of the box
are indicated by pi.

with
CTi = {ΛTi | ‖ΛTi‖ ≤ µΛNi} ∀i ∈ Ic (11)

and r > 0. Note that the coefficient of tangential restitution
eT , the coefficient of normal restitution eN , and the coefficient
of friction µ appearing in (9), (7), and (11), respectively,
depend on both the object and the environment with which
it is in contact. These parameters will have to be identified
from experimental data, which we will cover in Section IV.
In simulations, we set the time step equal to the recording
time step of the measurements. Furthermore, we use fixed-
point iteration to solve the nonlinear algebraic equations in
time-stepping simulation, as in [27]. For further information
of modeling rigid-body dynamics with unilateral constraints,
the reader is referred to [28], [27], [29], [30], [31], [32].

C. Algoryx dynamics simulator

Next to the physics simulator described in the previous
section, we will use Algoryx Dynamics [15] as our sim-
ulation environment. Algoryx Dynamics is one of the few
software packages that are available for simulating nonsmooth
mechanics (in contrast to commonly used software packages
such as PyBullet, MuJoCo, Drake which treat impacts as
smooth phenomena). Although alternatives are possible, such
as Siconos [33], we choose to use Algoryx Dynamics as
we have a special relation with the developers of Algoryx
Dynamics to build a software framework for impact-aware
robotics that allows us to integrate our models into their
software. In short, Algoryx Dynamics is a software package
for modeling and simulating mechanical systems with contact
and friction. In our simulations, we use the Iterative Projected
Cone Friction model [34, Section 12.15.3.3] where the normal
and tangential equations are split. In this model, the normal
forces are first solved via a direct solver, and then the normal
and tangential equations are solved iteratively. To be able to
compare simulations with measurements, we set the simula-
tions time step equal to the recording time step. More details
about the time integration methods of Algoryx Dynamics can
be found in [35] and further details about the nonsmooth
dynamics models of Algoryx Dynamics can be found in [29,
Chapter 10].
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Vacuum 
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Motion capture 
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UR10 manipulator

Carton Box
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(a)
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Motion capture camera
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markers

(b)

Fig. 3: Experimental Setup. Full setup with the different components indicated (a) and a detailed picture showing, in particular, the suction cup and conveyor
markers, the carton box, and the OptiTrack camera (b).

III. EXPERIMENTAL SETUP & DATA COLLECTION

Figure 3 shows a picture of the experimental setup, which
represents an industrial setup used for testing various logistic
applications. The setup contains a 6-axis UR10 collaborative
robot arm by Universal Robots equipped with an industrial
vacuum gripper designed by SmartRobotics3. This vacuum
gripper has a piGRIP suction cup attached, produced by Piab4,
and can create both an under-pressure and an over-pressure
inside the suction cup. The under-pressure allows the robot
to pick and hold objects, and the over-pressure speeds up the
object release. Furthermore, the setup contains an industrial
conveyor belt, and we have conducted experiments with both
a moving and stationary conveyor.

Surrounding the setup, an OptiTrack motion capture system
(hereafter referred to as mocap) is placed, containing four
Prime 17W and two Prime x22 cameras. This system tracks
the pose of various objects in the scene at 360 frames per
second (fps) using passive reflective markers placed in unique
patterns on the objects. Examples of tracked objects are the
conveyor belt surface, and multiple boxes. See also Figure
3b. The mocap system assigns a rigid-body frame to each of
these objects and expresses the poses of these frames with
respect to a reference frame, the origin of the mocap system.
Figure 2 shows a schematic where capital letters indicate the
frames assigned to the tracked rigid bodies. We refer to the
frames as the Conveyor frame (C) positioned at the conveyor
belt surface, the Box frame (B) located at the geometric
center of the box, and the Mocap frame (M) as the world
origin defined by the mocap system.

Figure 4 shows the different boxes used in the experiments
and Table I shows their properties, respectively, from left to
right. All boxes are uniformly filled with Sculpture Block
Foam material (density of 100 kg/m3), except for Box007,
which is uniformly filled with Pinewood (density of 470
kg/m3). By filling the boxes uniformly, we have a reliable
estimate of the boxes’ inertia and mass properties and we
ensure that the geometric center of the box coincides with

3See https://smart-robotics.io/en/
4See https://www.piab.com/

the center of mass. The different filling materials allow us
to vary in weight, while ensuring all boxes have a mass and
dimensions representative for the parcel industry5. Note that
in Table I, we give the inertia properties with respect to the
center of mass, which coincides with the geometric center at
which frame B is located. The collected data is made publicly
available through the Impact-Aware Robotics Database [36]
and all datasets can also be found under the collection in [21].

The experiments involve tosses with a focus on single corner
impacts (relevant for parameter identification in Section IV-A)
and long-range tosses (relevant for parameter identification and
rest-pose prediction in Sections IV-B and V, respectively).
The long-range experiments include a phase where the box
is released (either by hand or by the robotic arm), a phase
with ballistic motion, and a phase where the box impacts the
conveyor, before coming to rest after a trajectory of around 1.2
meters. Figure 1 shows an example of a long-range toss where
this behavior is also visible. Many long-range tosses have
varying initial conditions (release position, orientation, and ve-
locity), which occasionally leads to tumbling of the box upon
impact. Generally, tumbling results in unpredictable behavior
(think about the toss of a die), which makes predicting the rest-
pose of these tosses an unrealistic task. Therefore, experiments
where the box tumbles are excluded from the datasets and not
considered in this work. Although experiments are executed
for multiple boxes, we will only show the results of Box005
and Box006 due to space limitations.

A. Computing body velocities

From our mocap measurements, we obtain the rigid trans-
formation matrices MHB(k) and MHC(k) in R4×4 at the
discrete-time indices k ∈ {0, . . . ,K}, where K denotes the
total number of discrete time indices of a specific recording.
From this data, we compute the velocity using central Euler
differencing, which gives, for k ∈ {1, . . . ,K − 1},

M ȯB(k) =
1

2∆τ

(
MoB(k + 1)−MoB(k − 1)

)
, (12)

5This follows from a discussion with Vanderlande (https://www.
vanderlande.com/), one of our project partners, providing us with confidential
information that cannot be cited here.

https://smart-robotics.io/en/
https://www.piab.com/
https://www.vanderlande.com/
https://www.vanderlande.com/
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(a) (b) (c) (d)

Fig. 4: Four boxes that are considered to be representative of the parcel industry. Box004 (a), Box005 (b), Box006 (c), and Box007 (d). The names correspond
to the objects in the Impact-Aware Robotics Database [36] and the box properties are shown in Table I.

TABLE I: Properties of the different boxes of Figure 4. The size is given as {l, w, h} and the inertia is given as {Ixx, Iyy , Izz}.

Property Unit Box004 Box005 Box006 Box007

Size mm {192,85,108} {230,129,103} {205,155,100} {207,158,99}
Mass kg 0.297 0.566 0.365 1.431
Inertia kg mm2 {468,1201,1091} {1285,2995,3280} {1040,1590,2020} {4130,6300,8090}

Bω∧M,B(k) =
1

2∆τ

(
log
(
MR−1B (k)MRB(k + 1)

)
−

log
(
MR−1B (k)MRB(k − 1)

))
, (13)

where ∆τ = 1/360 s is the timestep of the recording. By
using

MωM,B(k) = MRB(k)BωM,B(k), (14)

and combining (12) and (14), we obtain

B[M ]vM,B(k) =

[
M ȯB(k)

MωM,B(k)

]
, (15)

which is the hybrid body velocity at time k, and represents
the twist expressing the velocity of frame B with respect to
frame A, written in a frame B[M ] whose origin coincides with
the origin of frame B and whose orientation coincides with
the orientation of frame M . Note that the rotation matrices
MRB(k) and positions MoB(k) follow directly from the
transformation matrices MHB(k) via (1). In (13), log denotes
the matrix logarithm, which can be effectively computed using
the inverse of Rodriques formula as in [37, Section 3.2.3.3].
Using the central Euler differencing method to compute the
velocities means we effectively use a low-pass filter on our
position data, which can be questionable in case of impacts.
However, this choice is justified due to our high measurement
frequency of 360 frames per second.

IV. PARAMETER IDENTIFICATION

In this section, we describe the parameter identification
procedure. The nonsmooth dynamics model described in
Section II-B shows how the coefficient of friction µ, the
coefficient of normal restitution eN and the coefficient of
tangential restitution eT appear in the equations of motion. In
previous work (e.g., Fazeli et al. [7]), eT is not considered,
and in our experience [8], eT has a negligible influence
on the prediction accuracy. Therefore, we focus only on
identifying µ and eN and set eT = 0 in all further simulations.

There are different approaches to identifying the coefficient
of restitution eN and the coefficient of friction µ appearing in
(7) and (11), respectively. Here, we will consider parameter
estimation via a velocity-based metric (small time scale) and
a trajectory-based method (long time scale). Both methods
have their pros and cons. The impact law (7) relates the post-
impact velocity to the pre-impact velocity via the coefficient of
restitution eN , suggesting that defining a velocity-based metric
on a small time window around the impact would make the
most sense from an identification criterion point of view. On
the other hand, if one is interested in accurately predicting
the trajectory or rest-pose of the object (e.g., in our specific
case), one might consider defining a trajectory-based metric
that minimized the error between the simulated and measured
trajectory for a given set of parameters {µ, eN}, where along
such a long-range trajectory a multitude of impact/sliding
events may take place.

In both cases, we establish a cost function based on the
difference between the experimental data and the prediction
using a certain parameter set µ, eN . The parameter values
minimizing this cost function therefore result in a prediction
that is closest to the experimental data, which we consider
ground-truth. Therefore, we define the optimization problem
as

(µ∗, e∗N ) = arg min
µ,eN

1

M

M∑
i=1

L(i;µ, eN ), (16)

as in [12], subject to 0 ≤ µ and 0 ≤ eN ≤ 1, where
L(i;µ, eN ) is the loss function of experiment i depending
on the parameter set {µ, eN}, and M is the size of the
dataset. Hence, M is the total number of impact events for
the velocity-based metric and the total number of trajectories
for the trajectory-based metric, which my vary per dataset.

Velocity-based metric: In the velocity-based approach, we
consider the pre-impact state of the object as obtained from
measurement data, denoted as x− = {H−,v−}. A trajectory
of the box is then simulated with a varying set of contact
parameters {µ, eN} from the initial condition x−. The loss
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Fig. 5: Normal distance from the eight vertices of a box to the conveyor
surface over time for a specific measurement. The blue circle ( ) indicates
the impact event (at k = 275) resulting from the selection scheme of Section
IV-A1 and the corresponding trajectory (Cp1(k))z is highlighted in blue
( ). The trajectories of the other vertices (Cpi(k))z , i ∈ {2, . . . , 8}) are
indicted in gray ( ).

function computes the error between the post-impact velocity
as a result of the simulations (denoted as ṽ+(µ, eN )) with
the post-impact velocity as obtained from experimental data
(denoted as v+) for that specific measurement i. Hence, we
write the velocity-based loss function as

Lvel(i;µ, eN ) =

∥∥∥∥W (
v+ − ṽ+(eN , µ)

) ∥∥∥∥
2

. (17)

To take into account a scaling between the linear and
angular velocity components, we use a diagonal weighting
matrix W = diag(

[
1 1 1 0.1 0.1 0.1

]
), chosen

based on previous experience [8]. The exact definitions of
the pre-and post-impact velocity are detailed in Section IV-A2.

Trajectory-based metric: In the trajectory-based approach,
we initialize the dynamical model with the state at release
x(krel) and simulate until the box has reached its rest-pose at
x(krest). The moment of release krel is defined at the moment
when the box is released from the robotic arm and is in free
flight and the moment of rest krest is when the relative velocity
between the box and the conveyor is zero, see also Section
IV-B. Considering (12) - (15), this means that 0 < krel <
krest < K. The loss function is based on the approach of
[12], where for the varying set of parameter values {µ, eN},
it quantifies the difference between the simulated trajectory
H̃(k) and the measured trajectory H(k) at each discrete time
index krel < k < krest. Given the relation between H and R
and o in (1), we define the trajectory-based loss function as

Ltraj(i, µ, eN ) =

1

Ni

krest∑
k=krel

(1

l
‖oi(k)− õi(k)‖2 + ‖ log

(
R−1i (k)R̃i(k)

)
‖2
)
,

(18)

where Ni = krest − krel + 1 indicates the total number
of discrete time indices considered in experiment i. In (18),
the simulated trajectory õi(k), R̃i(k)k ∈ {krel, . . . , krest},
corresponding to measurement i depends on the parameter set
{µ, eN}, where the position error is scaled by the length of
the box l as in [12].

Fig. 6: Linear (top) and angular (bottom) hybrid velocities as result from
central Euler differencing of the pose measurements. The x- ( ), y- ( ),
and z- ( ) components of the hybrid velocity are indicated by solid lines,
while the fitted hybrid velocities are indicated by the black dashed lines
( ). The pre- and post-impact time are indicated by kim−b and kim+c,
respectively. The data corresponds to the impact event indicated in Figure 5
at the time index kim = 275.

In the following subsections, we will further detail the
velocity- and trajectory-based parameter identification pro-
cedures. For illustration purposes, all data shown in these
sections comes from a dataset containing experiments with
Box006, see [38]. However, the procedures are performed for
all four boxes of Figure 4 and we will present their results by
means of error tables.

A. Velocity-based Parameter Identification

The velocity-based approach uses the data about individual
impacts to form a cost-function for parameter identification.
To this end, experiments are executed where each box is
dropped vertically on the conveyor with a single corner
impacting the surface. After data is collected, an impact
selection procedure selects suitable impact events for
parameter identification, from which the pre- and post-impact
velocities are computed to subsequently identify the impact
parameters.

1) Impact selection procedure: Figure 5 shows the normal
distance from the eight corners of a box to the conveyor
surface over time for a single. In other words, we have plotted
(Cpi(k))z where i ∈ {1, . . . , 8}. An impact event induces an
inversion of normal velocity, which corresponds to a local
minimum in the normal position. As Figure 5 shows, this
means that each experiment contains multiple impact events.
However, not all impact events are suitable for parameter
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Fig. 7: Linear (top) and angular (bottom) hybrid velocities as result from
measurements and simulations with Algoryx Dynamics. We have plotted the
x- ( ), y- ( ), and z- ( ) components of the hybrid velocity from
measurements and the x- ( ), y- ( ), and z- ( ) components of
of the hybrid velocity from simulations with Algoryx Dynamics. The fitted
hybrid velocities are indicated by the black dashed lines ( ).

identification. More specifically, around each impact event
(which has a certain time index kim), we consider a window[
kim − 5, kim + 5

]
where the following conditions should

hold:

• The impact event cannot be at the beginning or end of the
measured data, i.e., (kim−5) ≥ 2 and (kim+5) ≤ K−1;

• There can only be one corner of the box making an
impact in the time window;

• The normal impact velocity is large enough such that
the impact forces dominate other influences such as
gyroscopic effects and drag. This minimal impact velocity
is set to 0.3 m/s, as this proved to give us the best results.

We subject each impact event to these conditions and remove
the ones for which the conditions are not met. For the specific
case of Figure 5, this means we find one impact event at
kim = 275 (indicated by ), corresponding to the first corner
of the box.

2) Computing the pre- and post-impact velocity: Figure 6
shows the hybrid body velocities of the box (as described
by (15)) for the discrete time window

[
kim − 5, kim + 5

]
around the impact event of Figure 5. Given the time resolution
provided by the mocap system, the impact appears as non
instantaneous. To be able to make a fair comparison between
the velocity profiles of the measured data and the nonsmooth
model (where the impact is instantaneous), we need a clear
definition of the pre- and post-impact time index.

Considering Figure 6, we indicate the pre- and post-impact

Fig. 8: Linear (top) and angular (bottom) hybrid velocities as result from
measurements and simulations with MATLAB. We have plotted the x- ( ),
y- ( ), and z- ( ) components of the hybrid velocity from measurements
and the x- ( ), y- ( ), and z- ( ) components of of the hybrid
velocity from simulations with MATLAB. The fitted hybrid velocities are
indicated by the black dashed lines ( ).

time indices with kim − b and kim + c (see top part of the
figure), which in this case correspond to kim − b = kim − 2
and kim + c = kim + 2. We identify these time indices by
observing that the object is in free flight before kim − b and
after kim+c. During fee flight, all body velocities are constant,
except for the linear velocity in the z-direction (normal to the
plane and in the direction of gravity), which is increasing with
a constant acceleration, equal to the gravitational acceleration.
In the interval

[
kim − b, kim + c

]
, we observe a change in

velocity as result of the impact, indicating that the impact
event takes 4 discrete time steps for the specific impact event
shown in Figure 6. However, as each impact event is different,
the indices −b and c are carefully selected manually.

With the pre- and post-impact time indices at hand, a
straightforward choice would be to take the hybrid body
velocities at these time indices as the pre- and post-impact
hybrid velocities. However, the body velocities are noisy due
to the differentiation of (noisy) position data. Therefore, we
use a linear fit over the velocity data in the time windows
[kim − 5, kim − b] and [kim + c, kim + 5] and evaluate these
fitted lines at kim − b and kim + c to obtain the hybrid pre-
and post-impact velocities, respectively. Note that a linear fit
is valid due to the linear influence of the graviational force
on the velocity. In the latter, we will refer to the fitted pre-
and post-impact hybrid velocities by B[C]vf−C,B(kim − b) and
B[C]vf−C,B(kim + c), respectively, with the short hand notation
v− and v+.
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(a) (b)

Fig. 9: Computed costs for the velocity-based metric as result of simulations
with different parameters. Results of Algoryx Dynamics (a) and MATLAB
(b) for impact experiments of Box006.

3) Obtaining the velocity-based impact parameters: To
compute the optimal impact parameters, we initialize the
nonsmooth model of Section II-B and Algoryx dynamics with
the fitted hybrid velocity and the pose of the box with respect
to the conveyor at kim − 5 (beginning of time window). The
simulations are then run for the duration of the time-window
[kim − 5, kim + 5] (11 timesteps) for different parameter
values of the parameter set {µ, eN}. More specifically, we vary
values for both µ and eN between 0 and 1 with steps of 0.05.
Using smaller steps increases computation time drastically, but
does not obtain significantly different results. As a result, we
obtain the simulated post-impact velocity at time kim + c,
denoted as ṽ+ and compute the loss using (17) for each
considered value of µ and eN . We then sum up all the loss
functions for all impact events according to (16). For the
specific dataset [38], we have plotted the resulting costs for
simulations in Algoryx Dynamics and MATLAB in Figures
9a and 9b, respectively. The costs clearly show an optimum.
Furthermore, for µ > 0.6, µ no longer influences the cost.
This suggests that for µ > 0.6 the contact is sticking instead
of sliding, such that the simulation result is independent of µ.
The optimal parameters are selected as those that minimize
the cost on the selected grid, which results in µ = 0.3 and
eN = 0.45 for MATLAB, and µ = 0.25 and eN = 0.4
for Algoryx Dynamics, for this specific box. In Figures 7
and 8, we show the simulated trajectories for the optimal
values using Algoryx Dynamics and MATLAB, respectively,
for the same impact event of Figures 5 and 6. We observe
that the velocities resulting from simulations closely match the
measured velocities, with the results from MATLAB slightly
outperforming those of Algoryx Dynamics (considering the
y-component of the angular velocity). From Figures 7 and 8,
we conclude that, given the optimal contact parameters, the
nonsmooth model is able to accurately predict the velocity
profiles of a rigid body around the impact time. This can be of
particular interest in applications that use a first-step prediction
model, such as in visual tracking [2].

B. Trajectory-based Parameter Identification

The trajectory-based parameter identification approach com-
pares simulated and measured trajectories of multiple (differ-
ent) long-range tosses to find the contact parameters µ and
eN . In a typical experiment, the box travels a total distance
of around 1.2 meters, see also Figure 11 for an example

Fig. 10: Indication of the moment of release krel ( ) and the moment of rest
krest ( ). The moment of release is the first time index where the box is
released and in free flight. The moment of rest is the first time index where the
relative velocity between the box and the conveyor is zero. We have plotted
(MoB)z , the z-coordinate of the origin of the box frame B in terms of the
inertial frame M ( ). Data taken from a dataset with Box006 [39].

Fig. 11: Measured trajectory of the box of a long-range toss from the moment
of release krel ( ) to the moment of rest krest ( ), corresponding to
Figure 10. The total travel distance of the box is around 1.2 meters. Data
taken from a dataset with Box006 [39].

trajectory of a long range toss with Box006. Figure 1 also
shows snapshots of a video of a long range toss. After its
release, the box has a ballistic motion, impacts the conveyor,
and slides over the conveyor until it comes to rest. Experiments
where the box tumbles to another side are excluded from the
dataset.

To be able to compare measurements and simulations, we
have to define the moment of release and the moment of rest of
the box. For illustration purposes, consider Figure 10, where
we have plotted (MoB)z , the z-coordinate of the origin of the
box frame B in terms of the inertial frame M , for one specific
tossing experiment. In this sequence, we define krel as the
moment of release (indicated by ( ) in Figure 10), which is
the first time index where the box is in free flight after it is
released, and krest as the moment of rest (indicated by ( )
in Figure 10), which is the first time index where the relative
velocity between the box and the conveyor is zero. As a result,
the total number of discrete time indices N = krest−krel+1
is typically different for each experiment. Figure 11 shows the
box trajectory of the same experiment in 3D, where it becomes
clear that the box slightly bounces upon impact.

For each long-range toss experiment, we initiate a set of
simulations with varying parameter values of µ and eN . We
vary these parameters between 0 and 1 with steps of 0.05,
as in the velocity-based approach. Furthermore, the measured
hybrid velocities B[C]vC,B(krel) and the pose of the box with
respect to the conveyor CHB(krel) at the time index krel for
that specific experiment are input to the simulations. Each
simulation runs from krel to krest with a timestep equal to
the recording timestep to ensure that measured and simulated
trajectories contain the same amount of data points. For each
simulated rest-pose (as result of a different value of µ and eN )
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(a) (b)

Fig. 12: Computed costs for the trajectory-based metric as result of simulations
with different parameters. Results of Algoryx Dynamics (a) and MATLAB (b)
for impact experiments of Box006.

TABLE II: Resulting parameters found for velocity-based and trajectory-based
parameter identification

Velocity-based Trajectory-based

MATLAB Algoryx MATLAB Algoryx

µ eN µ eN µ eN µ eN

Box004 0.60 0.40 0.65 0.35 0.45 0.05 0.45 0.10
Box005 0.45 0.35 0.40 0.30 0.45 0.10 0.40 0.00
Box006 0.25 0.40 0.25 0.40 0.40 0.25 0.40 0.25
Box007 0.40 0.60 0.35 0.55 0.35 0.45 0.35 0.40

we compute the loss according to (18). We average over all
the loss functions over all trajectories according to (16), and
we have plotted the resulting costs for simulations in Algoryx
Dynamics and MATLAB in Figures 12a and 12b, respectively,
for the specific dataset using Box006 [39].

For this specific box, the optimum values are µ = 0.4 and
eN = 0.25 for both Algoryx Dynamics and MATLAB, as
also shown in Table II. Although not shown here, the costs
obtained from simulations with the other boxes have similar
shapes. For all boxes, we observe that the cost for Algoryx
Dynamics and MATLAB are very similar, both in shape and
values. Furthermore, the costs show an apparent insensitivity
to eN for eN < 0.6 It is important to note that, in the tosses
we consider, the trajectory of the box is dominated by ballistic
motion and sliding, and the box does not tumble. As a result,
variations in eN do not significantly change the trajectory of
the simulated toss and therefore do not significantly change
the cost. It is likely that the costs will have different shapes
if one were to consider tosses where bouncing or tumbling of
the box occurs.

V. REST-POSE PREDICTION PERFORMANCE

We will now use the identified parameters of Table II to test
the model predictions on test datasets of long-range tosses
where we consider, as a measure of performance, an error
that compares the simulated rest-pose with the measured rest-
pose of the box on the conveyor. From a logistics application
perspective, this is of particular interest as packages often need
to be oriented in a certain way on the conveyor in order to
be handled by other systems in the warehouse. In the test
datasets, the boxes are tossed manually, which naturally creates
variation in the tossing trajectories. For each box of Figure 4, a
test dataset is created which can be downloaded via [21]. The
results presented in this section are from experiments with a

stationary conveyor. Experiments with a moving conveyor are
also executed and the datasets can be viewed at [21].

As simulation inputs, we use both the hybrid velocity of the
box at krel (as in Section IV-B) and the optimal parameters µ
and eN as listed in Table II. From these simulations, we obtain
the trajectory of the box, of which the rest-pose is of particular
interest. As tosses where the box tumbles are excluded from
the datasets, the surface normal zC is aligned with the z-
axis of the box frame zB at all experimental rest-poses. The
planar rotation of the box on the surface can therefore be
determined quite easily from the box’s orientation. We use
erot to indicate the orientation error, which is defined as the
relative angle around the normal between the measured and
the simulated rest orientation. Because the z-axis of the box
and conveyor surface are always aligned, we can extract erot
from the relative orientation by using the 4-quadrant arctangent
function obtaining

BRB̃ = (CR−1B )CRB̃ , (19)

BRB̃ =

cos(erot) sin(erot) 0
sin(erot) cos(erot) 0

0 0 1

 , (20)

where CRB indicates the measured rest-orientation and CRB̃

indicates the simulated rest-orientation. Furthermore, we de-
fine the position error at the time of rest as

epos :=

∥∥∥∥{∣∣∣∣ [1 0 0
0 1 0

] (
CoB − CoB̃

) ∣∣∣∣}∥∥∥∥
2

, (21)

which is the norm of the absolute position error in x- and
y-direction (in the plane of contact). For all experiments in
all datasets related to the boxes of Figure 4, we simulate
the different tosses in MATLAB and Algoryx Dynamics and
compute the orientation and position errors according to (20)
and (21), respectively. Table III shows the average position
and orientation error (including the standard deviations) for
all experiments with all four boxes, where for each box the
test dataset contains fifty tosses. For three randomly selected
experiments with Box005 and Box006, Figure 13 shows the
rest-pose as result of the velocity-based parameters on Box005
(Figure (a), (b), (c)), results of trajectory-based parameters
on Box005 (d),(e),(f), results of velocity-based parameters on
Box006 (g),(h),(i), and results of trajectory-based parameters
on Box006 (j),(k),(l). The measured rest-pose is shown in
gray ( ), and the simulation results of Algoryx Dynamics
and MATLAB are shown in blue ( ) and orange ( ),
respectively. The simulation results related to the experiments
with a moving conveyor (not shown here) show errors in the
same order of magnitude as those presented in Table III.

Figure 13 clearly shows how the parameters from the
velocity-based cost function of Box006 result in poor predic-
tions, while the parameters obtained from the trajectory-based
cost function give significantly better results, both for simula-
tions in MATLAB and Algoryx Dynamics. Interestingly, the
errors of the resulting predictions for Box005 are of the same
order of magnitude for both sets of parameters, as can also be
seen in Table III. In general, the velocity-based cost function
may result in parameters that locally around the impact can
describe the dynamics quite accurately. This can be concluded
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 13: Resulting rest-poses of three random selected experiments with Box005 and Box006. Results of velocity-based parameters on Box005 (a),(b),(c),
results of velocity-based parameters on Box006 (d),(e),(f), results of trajectory-based parameters on Box005 (g),(h),(i), results of trajectory-based parameters
on Box006 (j),(k),(l). The measured rest-pose is shown in gray ( ), and the simulation results of Algoryx Dynamics and MATLAB are shown in blue ( )
and orange ( ), respectively. Results shown in (j) correspond to the trajectory of Figure 10 and 11.

TABLE III: Errors in the rest-pose prediction from simulations in MATLAB and Algoryx Dynamics, using the parameters for µ and eN as listed in Table II.

Box004 Box005 Box006 Box007

pos. [cm] rot. [deg] pos. [cm] rot. [deg] pos. [cm] rot. [deg] pos. [cm] rot. [deg]

vel. based params. MATLAB 19.7± 3.5 10.6± 8.8 9.9± 3.9 12.7± 11.3 33.8± 8.0 13.2± 11.5 6.6± 4.3 15.7± 17.5
vel. based params. Algoryx 23.4± 6.2 11.3± 8.3 4.6± 2.2 13.6± 10.8 49.8± 9.2 15.6± 14.0 5.0± 3.4 16.2± 19.6
traj. based params. MATLAB 4.3± 2.5 8.2± 6.9 10.1± 3.7 10.9± 8.9 6.7± 3.9 16.0± 12.3 5.2± 3.2 14.1± 17.8
traj. based params. Algoryx 6.3± 2.9 12.0± 8.4 4.6± 2.2 10.9± 9.3 7.1± 3.8 14.5± 11.7 4.7± 3.2 14.8± 18.6

since we observe that the costs of Figures 9a and 9b are
close to zero for the optimal parameters. However, if one
is interested in the prediction of the rest-pose of the object,
the trajectory-based cost function appears to be the better
choice. On average, the latter approach results in position
errors around five to ten centimeters (which is around 20% to
40% of the maximum box dimension), and orientation errors
between ten and sixteen degrees, significantly smaller than the
errors obtained using the velocity-based parameters.

VI. SENSITIVITY ANALYSIS

In this section, we perform a sensitivity analysis in order
to understand how uncertainty in the identified parameters
reflects on the rest-pose prediction. Therefore, we vary the
contact parameters around their optimal values to evaluate the
predicted rest-pose sensitivity. Given that the parameters found
via the trajectory-based cost function give better long-range
prediction accuracy, we will continue using those parameters
for the sensitivity analysis. Therefore, in this section we will
only consider the parameters listed in the last two columns of
Table II.

We perform a sensitivity analysis by changing the value
of one of the parameters µ or eN while keeping the other
constant. If we vary a parameter, we consider a range of

[−0.05, 0.05] with steps of 0.01 around the optimal parameters
listed in Table II. In cases where the optimal value is equal
to zero, we consider a range of [0.00, 0.10]. Figure 14 shows
the results of this sensitivity study for three randomly selected
experiments with Box005 and Box006, where the median of
the simulation results are shown in full color, and the results
of the varied parameters are shown with lower opacity.

Considering these results, we observe that on average, a
variation in the coefficient of friction (µ) with ±0.05 around
the mean value, which corresponds to a variation of about
±10%, leads to a variation in the rest-pose position of about
±100mm, which corresponds to a variation of about ±50%
of the maximum dimension of the box. At the same time, the
variation in the coefficient of friction with ±0.05 around the
mean value leads to a variation in the rest-pose orientation
of about ±3deg. This shows the rest-pose position is rather
sensitive the coefficient of friction, while the rest-pose orien-
tation is not. This is also clearly visible in when we consider
the corresponding results, shown in the first and third row of
Figure 14.

A variation in the coefficient of restitution (eN ) with ±0.05
around the mean value, corresponding to a variation of about
±10%, leads to a variation in the rest-pose position of about
±4mm, which corresponds to a variation of about ±2% of the
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Fig. 14: Resulting rest-poses for varying parameters. First row: result for varying µ for Box005. Second row: results for varying eN for Box005. Third row:
results for varying µ for Box006. Fourth row: results for varying eN for Box006. The simulation results of Algoryx Dynamics and MATLAB are shown in
blue ( ) and orange ( ), respectively, and the measured rest-pose is in gray ( ).

TABLE IV: Errors in the rest-pose prediction from simulations in MATLAB and Algoryx Dynamics. In simulation, we used the trajectory-based parameters
of Table II, but setting all values of eN to zero.

Box004 Box005 Box006 Box007

pos. [cm] rot. [deg] pos. [cm] rot. [deg] pos. [cm] rot. [deg] pos. [cm] rot. [deg]

traj. based params. MATLAB 4.3± 2.5 8.2± 7.0 10.1± 3.7 10.9± 8.5 6.4± 3.9 17.6± 14.6 4.8± 3.1 23.0± 19.4
traj. based params. Algoryx 6.2± 2.8 10.8± 8.6 4.6± 2.2 10.9± 9.3 7.2± 3.7 15.1± 11.9 4.5± 3.2 21.5± 19.2

maximum box dimension. At the same time, the variation in
the coefficient of restitution with ±0.05 around the mean value
leads to a variation in the rest-pose orientation of about ±3deg.
This means the rest-pose position and orientation are rather
insensitive to a variation in the coefficient of restitution. This is

clearly represented by the second and fourth row of Figure 14.
These results make sense when considering Figure 12, where
both costs (for Algoryx Dynamics and MATLAB) show the
insensitivity to a variation in eN for values of eN < 0.6.

The insensitivity of the rest-pose to a variation in eN
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suggests that if the rest-pose is the main interest, then one
can set eN to zero, simplifying the parameter identification
procedure significantly. To test this, we simulate the same set
of experiments used in Section V, using the trajectory-based
parameters of Table II, but now putting all values of eN to
zero. The resulting errors are shown in Table IV. As expected,
the resulting errors are very similar to the ones reported in
Table III.

VII. DISCUSSION & CONCLUSION

This study has empirically evaluated the predictability
performance of nonsmooth rigid-body dynamics simulators
on experimental test data of box-tosses. We have formu-
lated a parameter identification approach (velocity-based and
trajectory-based) to identify the friction and normal-restitution
coefficients of different boxes impacting a conveyor surface.
These parameters are then used in a predictability performance
analysis of rigid-body dynamics simulators, using test data
containing 3D impacts with friction. In simulations, we use Al-
goryx Dynamics and a dedicated dynamics simulator of which
the MATLAB implementation is made publicly available.

Considering the parameter identification, we observe that
the velocity-based approach leads to a good prediction of
the dynamics around the impact event but can lead to poor
predictions of long-range tosses. Therefore, we suggest using
the velocity-based approach only if one is interested in the
local dynamics around the impact event, which can be useful
for first-step prediction in applications such as visual tracking.
The parameters found via the trajectory-based approach lead
to better predictions of the rest-pose, and this approach has
our preference, considering the robotic tossing application.

The predictability performance of the simulators is mea-
sured in terms of the rest-pose error. These errors show,
considering the parameters obtained via the trajectory-based
cost function, a position error in the order of 5-10 cm, and a
orientation error in the order of 8-16 degrees over a tossing
trajectory of about 1.2 meters, with boxes whose maximum
dimension is about 20cm. These errors are, considering the
application at hand, rather small, and suggest that nonsmooth
dynamics models can indeed be used to predict the rest-pose
of box-tosses in logistics with sufficient accuracy. The results
show that sticking impacts in the experiments lead to larger
prediction errors in simulation. Therefore, a more detailed
model for the dynamics of sticking impacts is needed to get
better simulation predictions.

The sensitivity analysis reveals that the rest-pose prediction
is sensitive to the coefficient of friction. On the other hand, the
rest-pose prediction is insensitive to eN as long as its value
is below a threshold value (which may vary per box). We
show that putting eN = 0 leads to rest-pose prediction errors
similar to cases where eN 6= 0. In cases where one is only
interested in the rest-pose, as is the case in robotic tossing
in logistics, this can simplify the parameter identification pro-
cedure. Comparing the prediction performance of nonsmooth
dynamics simulators with penalty methods such as PyBullet,
MuJoCo, Drake, is left for future work.
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