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The glaucoma is an eye disease that causes blindness when it progresses in an advanced stage. Early 
glaucoma diagnosis is essential to prevent the vision loss. However, early detection is not covered due to 
the lack of ophthalmologists and the limited accessibility to retinal image capture devices. 

In this paper, we present an automated method for glaucoma screening dedicated for Smartphone Captured 
Fundus Images (SCFIs). The implementation of the method into a smartphone associated to an optical lens 
for retina capturing leads to a mobile aided screening system for glaucoma. The challenge consists in 
insuring higher performance detection despite the moderate quality of SCFIs, with a reduced execution time 
to be adequate for the clinical use. 

The main idea consists in deducing glaucoma based on the vessel displacement inside the Optic Disk (OD), 
where the vessel tree remains sufficiently modeled on SCFIs. Within this objective, our major contribution 
consists in: (1) segmenting retinal vessels inside the OD, (2) locating centroid points that adequately model 
the vessel distribution, (3) identifying features that relevantly reflect the vessel displacement, and (4) 
providing the feature set to a classifier in order to deduce the glaucoma disease. Furthermore, all processing 
steps are carefully chosen based on lower complexity, to be suitable for fast clinical screening.  

A first evaluation of our method is performed using the two public DRISHTI-DB and DRIONS-DB 
databases, where 99% and 95% accuracy, 96.77% and 95.12% sensitivity and 100% and 94.73% specificity 
are respectively achieved. Thereafter, the method is evaluated using two fundus image databases 
respectively captured through a smartphone and retinograph for the same persons. We achieve 100% 
accuracy using both databases which assesses the robustness of our method. In addition, the detection is 
performed on 0.155±0.035 second when executed on a smartphone device. Our proposed smartphone app 
provides a cost-effective and widely accessible mobile platform for early screening of glaucoma in remote 
clinics or areas with limited access to fundus cameras and ophthalmologists. 

This work was supported by the PHC-UTIQUE 19G1408 Research program. 
 



1. Introduction 

Glaucoma damages the Optic Nerve Head (ONH) due to 
elevated or inappropriate intraocular pressure in the eye. It is 
estimated that patients suffering from glaucoma will have 
reached 76 million by the end of 2020 and 111.8 million by 2040 
[1]. Glaucoma gradually and asymptomatically causes the loss 
of the visual field [2]. It is often referred as a “silent thief of 
sight” which is noticed only when the disease progresses to a 
significant loss of peripheral vision. Therefore, the early 
diagnosis of glaucoma is essential to stop or slow the progression 
of the disease and to prevent blindness. Indeed, a delay is 
recorded in the glaucoma diagnosis due to several causes which 
are: (1) the lower ratio of ophthalmologists per population; (2) 
the high cost of glaucoma therapies which achieve 2,511$ and 
803 € for advanced disease, respectively in United States and 
Europe [3]; and (3) the higher cost of the available clinical 
devices for retinal image capturing.  

To facilitate access to early diagnosis, several studies have 
proposed automatic methods for glaucoma screening, which 
differ with respect to the glaucoma properties addressed for 
detection. Several methods such as the ones suggested in [4, 5, 
6, 7, 8, 9, 10, 39, 28, 29, 33, 23] segmented the Optic Disk (OD) 
and the Optic Cup (OC) in order to deduce the Cup-to-Disc Ratio 
(CDR). Moreover, the segmented OD and OC were allowed to 
extract the Neuro-Retinal Rim (NRR) shape where glaucoma 
could be identified based on the ISNT rule [41]. Other methods 
have extracted the parapapillary atrophy which had an elliptical 
shape with the OD boundary having an intermediate intensity 
between the retina and the OD [42,43]. The related work of ONH 
location and OD/OC extraction were explicitly detailed in the 
review proposed by [31]. The blood vessels have been addressed 
in some work to screen glaucoma [11,12]. A strong correlation 
has been deduced between shape, location and density of vessels 
and the deterioration of the glaucomatous ONH, as studied in the 
survey put forward by Serhan et al. [41]. Indeed, some other 
methods have been based on detecting the Retinal Nerve Fiber 
Layer (RNFL) deterioration [13,14] which has been always 
deduced through vessel tree displacement outside the OD.   

Those methods were dedicated for conventional 
retinography fundus images, which were characterized by a 
sharpness quality, as shown Fig.1(a). Accordingly, a high 
accurate segmentation of retinal components was ensured, and 
hence achieving efficient glaucoma screening. However, the 
capturing process required the presence of an ophthalmologist 
and the use of expensive conventional retinography devices. 

Furthermore, these detection methods used standard equipment 
that required the mobility of patients. As a result, these proposed 
methods did not address the problems leading to the delayed 
diagnosis of glaucoma. Moreover, few methods were addressed 
to reduce the execution time [35, 41], which presented a clinical 
constraint for employing the proposed methods. 

Actually, several mobile devices for fundus image capturing 
have been suggested such as D-eye and iExaminer, which allow 
using smartphones in eye disease screening, taking advantage 
from their mobility, low-cost and high capabilities in terms of 
processing and storage [15, 16, 17]. It has been deduced that 
Smartphone Captured Fundus Images (SCFIs) have an 
acceptable quality compared to the images captured by 
ophthalmoscopes, where both fundus images, in Fig.1, are 
captured from the same eye using respectively a retinograph and 
an optical lens-associated smartphone. In [18], the D-eye 
showed considerable accuracy of CDR measurements compared 
to direct ophthalmoscopy. In addition, the D-eye gadget offered 
high performance for manually detecting fundus abnormalities 
compared to indirect ophthalmoscopy, with specificity of 0.97 
and 0.98 for detecting the eye abnormalities and measuring the 
optic nerve size. Therefore, our main objective is to provide a 
Mobile Aided Screening (MAS) system for glaucoma. The 
challenges consist in ensuring higher accuracy detection and 
robustness with respect to the moderate quality of SCFIs, 
through a reduced execution time. 

Indeed, the moderate quality of SCFIs involves a blurred and 
noised illustration of retinal components, as illustrated in 
Fig.1(b). Thus, the existing methods have fail to achieve 
accurate retinal component segmentation, and so an efficient 
glaucoma detection. Moreover, limited processing capacities of 
smartphones bring to expand the screening execution time, 
which is inadequate with respect to the clinical context. To avoid 
those problems, some work has been interested into proposing a 
mobile MAS system for glaucoma to achieve higher 
performance detection with lower processing complexity. The 
work proposed by [20] was indicated that the tele-glaucoma 
technology demonstrated moderate agreement on its ability to 
diagnose glaucoma and achieved 79% of specificity and 83% of 
sensitivity. The work described in [21] suggested a mobile 
application for glaucoma screening. The glaucoma detection 
was based on the CDR and the NRR thinning. Detection was 
ensured with accuracy of 0.7625 in 9.16 seconds, which was 
surpassed by several existing methods whether for efficiency or 
execution time. Recently, Martins and al [22] has propounded a 
method for diagnosing glaucoma dedicated for smartphone 
devices. Accuracy of 0.87, sensitivity of 0.85 and AUC of 0.93 
were achieved under two seconds for retinograph-captured 
fundus images. However, the detection principle of all methods 
put forward in [20, 21, 22] was fully based on extracting the OD 
and the OC, where the segmentation performance might degrade 
in case of SCFIs. Indeed, no evaluation was performed using 
SCFIs or even with classical fundus images after data 
augmentation. 

For this purpose, the objective of this work is to propose a 
novel method for glaucoma detection dedicated for SCFIs. The 
rest of the paper is expended to present the suggested method. 
The second section describes the automated method for 
glaucoma detection. The experimental evaluation of the 
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Fig. 1.fundus images: (a) captured with retinograph; (b) captured with optical lens-
associated smartphone 



detection performance and the execution time is presented in 
section 3. The conclusion and some future work are detailed in 
section 4. 

2. Fast and accurate method for glaucoma 
screening 

2.1. Principle 

Our challenges consist in proposing an accurate and robust 
method even with a moderate image quality. Furthermore, all 
processing steps are carefully chosen based on lower 
complexity, to be suitable for mobile implementation. At first, 
glaucoma damages the optic nerve where the main 
morphological changes occur inside the ONH. Indeed, glaucoma 
screening from the ONH brings to higher performance detection 
and low complexity processing [4, 5, 6, 7] in contrast to the 
methods exploring the whole retina, as synthetized in the 
comparative study performed in [41]. Moreover, SCFIs are 
characterized by a reduced filed of view against the classical 
fundus images, hence avoiding presenting the papillary atrophy 
located outside the ONH. Therefore, the first step of our method 
consists in locating the OD, as detailed in section 2.2. 

Thereafter, we study the impact of glaucoma on the retinal 
components in order to identify the adequate ones for screening, 
taking into account the moderate quality of SCFIs. A healthy 
optic nerve corresponds to a tiny excavation. However, 
glaucoma damages the optic nerve fibers, thus expanding the 
excavation, as it can be deduced when comparing Fig.2(a) and 
Fig.2(c). Similarly, the OC appears with a reduced size in a 
healthy fundus image. For a glaucoma-affected one, the 
excavation growth leads to increase the OC size, while the OD 
size remains stationary, as respectively distinguished from the 
fundus images in Fig.2(b) and Fig.2(d). Elsewhere, the 
excavation growth does not occur similarly in all directions 
where the glaucoma leads to destroy the ISNT rule. With respect 
to this indication, several methods have segmented the OD and 
the OC to deduce whether the CDR or shape of the NRR to 
detect glaucoma. 

In a healthy retina, vessels spread from the middle of the 
excavation, as shown in Fig.2(a). The vessels propagate beyond 
the large NRR, which appear with an equitable distribution in 
the OD, as modeled in Fig.2(b). Otherwise, the rise in the optic 
nerve fiber damage leads to join the vessel to the internal border 
of the excavation, as we can see in Fig.2(c). The perpendicular 
visual field to the retina leads to model vessels as shifted to the 
OD border, as depicted in Fig.2(d). Accordingly, the optic nerve 
fiber damage similarly affects the OC size and the vessel 
distribution, where both are able to reflect glaucoma severity. In 

the same vein, several methods have identified the glaucoma 
through segmenting and locating retinal vessels. 

SCFIs are always blurred and noised due to the handheld 
aspect, which have a moderate quality with respect to classical 
images. Degradation principally affects the contrast of retinal 
components with respect to their neighborhood. However, the 
OD and the OC have close intensity and blurred borders, which 
leads to alter at once the OD and OC segmentation. By applying 
their ratio, such drop in performance considerably fakes 
glaucoma screening. In contrast, the vessel tree remains 
sufficiently represented in the OD. The vessel distribution is 
obviously distinguishable, despite the moderate quality. 

For this purpose, the main idea of our method consists in 
screening glaucoma from SCFIs based on blood vessels. To 
guarantee the method robustness, our approach will be based on 
evaluating the distribution of the whole vessel tree rather than 
based on each vessel separately. Therefore, the vessel tree is 
segmented and partitioned into quadrants with respect to the 
ISNT notion, as described respectively in sections 2.3 and 2.4. 
Then, a position marker of vessel distribution on each quadrant 
is located, which called centroid. After that, a feature set is 

 
Fig. 2. (a) Optic nerve head excavation of healthy retina; (b) Fundus image of 

healthy retina; (c) Optic nerve head excavation of glaucomatous retina; (b) 
Fundus image of glaucomatous retina 

 

Fig. 3. Flowchart of proposed method for glaucoma screening 



extracted and provided to a classifier to deduce glaucoma, as 
summarized in the method flowchart in Fig.3.  

2.2. OD extraction and enhancement  

The method proposed in [44] ensured locating the ONH 
based on circularity and intensity through applying the radon 
transform. The method achieved higher accurate performance 
among the existing methods [31, 34], where 100% accuracy was 
performed to locate the ONH in the public DRIVE database. We 
note that this method can be configured to locate a sub-image 
having the same OD size. Afterwards, this method was extended 
to provide a mobile computer aided system for ONH detection 
[24]. Processing was optimized to reduce complexity, where the 
same detection accuracy was performed a in reduced time when 
executed in a smartphone device. Therefore, the method 
suggested in [24] would be implemented, which extracted the 
OD sub-images. 

In addition, glaucoma screening requires detecting 
overlapped retinal components. However, SCFIs are 
characterized by a non-balanced contrast, which result in failed 
detection. Consequently, the second step leads to enhance the 
sub-image contrast with respect to the blood vessels. We proceed 
to extract the green channel which reveals a better contrast 
between the retinal structures. Next, the CLAHE algorithm is 
applied to ensure a better contrast equalization into the ONH 
region, where the results of each step are illustrated in Fig.4. 

2.3. Vessel segmentation and splitting 

we proceed to segment the vessel tree into the located OD. 
The first step consists in inversing the OD brightness in order to 
model the blood vessel with higher intensity. Within this 
objective, the “black-hat” morphological operator is applied 
where the result is depicted in Fig.5(b). Then, the Otsu technique 
is applied to distinguish vessel from the OD background [30]. 
Finally, the “Medianblur” filter is used to reduce noise, which 
can be caused by small blood lesions [27], as shown in Fig.5(c).  

The vessel tree displacement caused by glaucoma is 
developed mainly in superior, inferior and nasal quadrants, 
where the temporal quadrant contains less vessels than the other 
ones [11,46]. Thereby, vessels should be partitioned on their 
quadrants to deduce the glaucoma displacement. Within this 
objective, we proceed to split the segmented vessels into four 
quadrants through superimposing four different masks, 
illustrated in Fig.6(a)-Fig.6(d), to the OD where the results are 
respectively depicted in Fig.6(e)-Fig.6(h). 

2.4. Centroid location  

It is essential to define a parameter that can reflect vessel 
displacement into quadrants. Our main idea consists in 
computing a centroid reference point for vessels belonging to the 
same quadrant. Then, glaucoma is deduced based on the centroid 
remoteness. We note that the vessel centroid is figured out in 
terms of all positions of vessel pixels. Hence, a blurred vessel 
tree has a marginal impact when extracting centroid position. 

The method put forward by [11] first identified elementary 
centroid of each pixel cluster. Then, clusters are fused and their 
centroids are updated until grouping all clusters having a single 
centroid. In order to reduce processing complexity, we propose 
a novel approach to locate the centroids. First, for the vessel 
pixels of each quadrant, the sum of their horizontal coordinate 
𝑄  and vertical coordinate 𝑄  are computed, as indicated 
respectively in equations  2 and 3. The centroid horizontal 
coordinate 𝐶  (resp. vertical coordinate 𝐶 ) corresponds to the 
ratio between 𝑄  (resp. 𝑄 ) and the number of vessel pixels 
𝑁 , as indicated in equations 4 (resp. in equation 5). 

𝑁 = ∑ ∑ 𝐼 (𝑥 , 𝑦 ) (1)  

  𝑄 = ∑ 𝑥  (2)  

 𝑄 = ∑ 𝑥  (3)  

𝐶 =  (4)  

  𝐶 =  (5) 

where 𝐼 (𝑥 , 𝑦 ) = (255, 255, 255) . For example, 
Fig.7(a) and Fig.7(b) illustrate the centroid locations in 
respectively healthy and glaucoma ODs, respectively. 

     
(a)                                     (b)                              (c) 

Fig. 5. Blood vessel Segmentation :(a) Green channel, (b) Black-Hat inversion, 
(c) Otsu segmentation 

 

 
   

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 6. (a-d): Masks used for quadrant partition; (e-h): blood vessels of each 
quadrant 

 

(a) (b) (c) 

Fig. 4. (a) Healthy OD; (b) Green channel, (c) OD after applying CLAHE 
algorithm 



2.5. Feature extraction  

2.5.1. Neuro-retinal rim thinning 

In a healthy fundus image, the rim has a large board through 
the OD. The glaucoma involves increasing the OC and hence 
reducing the NRR. This criterion remains very helpful for 
clinical staff to diagnose glaucoma [31]. Within this context, the 
method described in [49] computed the rim-to-disc ratio in order 
to deduce glaucoma. In [46], the rim area of each quadrant is 
figured out in order to compute a ratio that reflects glaucoma.  

In fact, a significant correlation is distinguished between the 
blood vessel distribution into quadrants and the NRR lost [45]. 
In a healthy fundus image, the reduced size of excavation leads 
to merging blood vessels to the OD center. Consequently, 
centroids appear as clustered in the OD middle region. The 
excavation growth caused by glaucoma shifts blood vessels 
away from the OD center until getting closer to the OD borders 
[11,12], such as the difference between fundus images in 
Fig.2(b) and Fig.2(d). With respect to the excavation growth, the 
centroid positions become spaced. 

Subsequently, we aim to provide features that reflect the 
centroid remoteness. Since the four zones are affected on both 
extremities of the perpendicular axis, we quantify the centroid 
remoteness through Euclidian distances between each neighbor 
centroid. The temporal centroid escapes to a similar shifting 
since it contains less vessels. Therefore, we choose to overpass 
the temporal quadrant in order to guarantee higher accuracy 
detection. Accordingly, we consider two features which 
correspond to the distances between superior-nasal and inferior-
nasal centroids, as illustrated with red arrows in Fig.7, where the 
distances in the healthy OD in Fig.7(a) appear clearly smaller 
than the ones in the glaucoma-affected OD in Fig.7(b). 

2.5.2. Vessel displacement in relation to the ISNT rule  

In a healthy OD, the inferior quadrant contains the thickest 
rim, followed by the superior, nasal and temporal quadrants, as 
known as the ISNT rule [47]. Similarly, inferior and superior 
quadrants include the wide portion of the vessel tree [46]. For a 
glaucoma-affected fundus image, the optic nerve excavation 
growth leads to expand the OC. The rim thinning does not occur 
similarly in all directions where rim thicknesses into quadrants 
changes differently. The glaucoma involves violating the ISNT 
rule where the excavation expands principally in the inferior and 
superior quadrants. As a result, the thinning leads to shift the 
blood vessels from inferior and superior regions towards the 
nasal region [46]. Consequently, the centroids of inferior and 
superior quadrants remain closed to the OD border.  

In contrast, the added vessels to the nasal quadrant arise from 
inferior, superior and temporal neighborhood quadrants. The 
shifted vessels significantly affect the distribution of vessel 
density, and so the nasal centroid location. Hence, even with a 
thinned rim, the nasal centroid is not always relocated to be near 
of OD border. Similarly, the reduced vessel density in a temporal 
quadrant and the vessel displacement in the direction of the OD 
center do not allow modeling the temporal centroid 
displacement in terms of glaucoma. Accordingly, we extract two 
features that reflect the ISNT, which correspond to two 
Euclidian distances between inferior and superior centroids and 

their corresponding borders, as indicated with blue arrows in 
both images of Fig.7.  

2.6. Classifier 

The Support Vector Machine (SVM) classifier is a 
supervised learning method, used in classification and 
regression problems. It attempts to fit a hyperplane through the 
feature space in order to discriminate between classes provided 
as growntruth data on the training process. The SVM classifier 
is frequently employed for the pathology detection method, 
especially for binary classification, which achieves higher 
performance detection. This higher accuracy is ensured even 
with a reduced training dataset. Moreover, the SVM classifier is 
characterized by lower complexity whatever the dataset size is. 
For this purpose, we choose the SVM as a classifier on our 
proposed method.  

The kernel function is used to map the feature points to a 
higher dimension [36]. Since features are not linearly separable, 
the RBF kernel is employed, which is chosen based on the 
accuracy and the execution time. Elsewhere, the SVM is used 
with a gamma value equal to 0.1 and a C value equal to 1, where 
the values are experimentally chosen based on detection 
performance. 

3. Experimental results 

3.1. Evaluation of glaucoma screening method 

3.1.1. Dataset and evaluation metrics 
To test and evaluate the proposed method, two publically 

available datasets are selected which are frequently used in 
serval methods for glaucoma assessment. The first one is the 
DRISHTI-DB dataset which contains a total of 101 images 
provided by the Medical Image Processing (MIP) group, IIIT 
Hyderabad. All images were taken with dilated eyes, centered 
on the OD with a field of view of 30 degrees and a dimension of 
2896×1944 pixels. The second dataset is the DRIONS-DB [53-
55] which contains 110 digital retinal images including 50 
normal images and 60 glaucoma images with a dimension of 600 
× 400 pixels. The fundus images were acquired from patients 
approximately 53 years of age, approximately centered on the 
ONH [54]. We note that DRIONS-DB contains suspect fundus 
images which are avoided in our experimentation. The overall 
healthy and glaucoma-affected images are mentioned in Table1. 

𝑪𝑰𝑵𝑭 

𝑪𝑺𝑼𝑷 

𝑪𝑵𝑨𝑺 

 

𝑪𝑵𝑨𝑺 

𝑪𝑺𝑼𝑷 

𝑪𝑰𝑵𝑭 

 
(a) (b) 

Fig. 7. Centroids of blood vessels located in different zones of OD: 
(a) Healthy OD, (b) Glaucoma affected OD 



Table 1. Databases used in proposed method 
Database Number of fundus images  

 Healthy Glaucoma images 
DRIONS-DB 40 20 
DRISHTI-GS 31 70 

The performance of our method is evaluated through the 
accuracy, sensitivity and specificity metrics [56, 57], which are 
computed as indicated in equations 6, 7 and 8.  

Sensitivity =
TP

TP + FN
(6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 

Accuracy =
TP + TN

TP + FP + TN + FN
 (8) 

where TP (True Positive) is the number of images classified 
correctly as glaucoma-affected, TN (True Negative) is the 
number of images classified correctly as healthy, FP (False 
Positive) is the number of healthy images identified as 
glaucomatous and FN (False Negative) is the number of 
glaucoma-affected images classified as healthy. To correctly 
evaluate our contribution, those metrics are computed after 
locating the OD using the method detailed in [24]. 

3.1.2.  Performance evaluation of glaucoma screening 
method 

This method is evaluated using each dataset separately, 
where all fundus images are used for training and testing steps. 
The experimentation shows that our method achieves 98.01% 
accuracy, 93.54% sensitivity and 100% specificity when the 
evaluation is performed using the DRISHTI-DB database. 
Furthermore, when the evaluation is performed using DRIONS-
DB database, our proposed method provides 95% of accuracy, 
95.12 % of sensitivity and 94.73% of specificity, as shown in 

Table 2. Accordingly, the higher detection performance on both 
datasets confirms the accuracy of our suggested method for 
glaucoma screening. 

Table 2. Performance of the proposed method 
DB Accuracy Sensitivity Specificity 

DRISHTI-DB 99% 96.77% 100% 

DRIONS-DB 95% 95.12% 94.73% 

As the DRISHTI-DB is widely used for evaluating several 
automated methods of glaucoma screening, we compare our 
method with recent ones where accuracy, sensitivity and 
specificity are depicted in Table 3. It is obviously distinguished 
that our method outperforms several existing state-of-the-art 
glaucoma detection methods, and is tabled among the most 
highly performant ones.  

Table 3. Performance comparison with state-of-the-art methods 
Method Accuracy Sensitivity Specificity 

[58] 82.20% -- -- 

[59] -- 95,52% -- 
[60] 76.77% -- -- 
[61] 95% 100% 90% 
[57] 98% 100% 94.4% 

Proposed method 99% 96.77% 100% 

3.2. Performance evaluation with respect to SCFIs 

3.2.1. Dataset  

The second experimentation consists in evaluating the 
suggested method using SCFIs. Within this objective, we 
evaluate our method using the RIAMP dataset proposed in [62], 
which contains healthy and glaucoma-affected fundus images 
acquired from 16 people. For each person, a first fundus image 
was captured with Topcon retinal camera and three others with 
the optical lens "iExaminer" snapped to a smartphone iPhone 4S. 
For instance, fundus images captured form healthy and 
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Fig. 8. Fundus images: (a) captured with Topcon retinal camera; (b) captured with iExaminer  



glaucomatous retinas are shown respectively in first and second 
lines of Fig.8. This dataset allows demonstrating that images 
acquired by mobile phones are applicable for the automatic 
detection of the OD and the OC.  

The classical fundus images are provided to an 
ophthalmologist to generate the groundtruth. Some retinas are 
considered as suspect, whether for classical or smartphone 
captured fundus images, which requires additional diagnosis to 
deduce if the patient is glaucoma-affected. Therefore, suspect 
images are avoided to keep only healthy and glaucoma-affected 
ones, which correspond respectively to two and nine people, for 
both classical and SCFI databases.  

We notice that three smartphone captured fundus images are 
acquired for each person. Therefore, to have a stability between 
classes and achieve a sufficient dataset size for training, two 
images for each glaucoma-affected person are identified and 
added, based on their better quality. The structure of both 
datasets are detailed in Table 4. 

Table 4. Selected images from RIAMP database 
 Healthy images Glaucoma images 

Standard images 9 2 
   Mobile images  9                 4 

3.2.2. Performance evaluation 

To evaluate the robustness of our method, the 
experimentation consists in evaluating our method using each 
dataset separately and then comparing the achieved detection 
performance. For each dataset, the training and testing processes 
are performed using the same image set. Thereafter, the metrics 
of accuracy, sensitivity and specificity are computed to evaluate 
the method for each dataset, which are depicted in Table 5. 

Table 5. Detection performances of our method in terms of datasets 

 Accuracy Sensitivity Specificity 

Standard images 100% 100% 100% 
Mobile images 100% 100% 100% 

 
Based on the experimental results, we distinguish that our 

proposed method correctly detects all fundus images. 
Furthermore, the same detection performance is ensured even 
with smartphone captured fundus images. Accordingly, this 
experiment proves the robustness of the suggested method with 
respect to the moderate quality caused by the mobile device 
capturing. Hence, we can deduce that our method is adequate to 
be implemented it on a MAS system for glaucoma. 

3.3. MAS system for glaucoma as smartphone app 

The whole method is implemented as an app on an android 
operating system through the android SDK. This latter is a 
software development kit which provides several functions to 
fully use the system architecture and components. All image 
processing and machine learning steps are implemented using 
the "Open Source Computer Vision (OpenCV)" library [37, 67]. 
This library has more than 2,500 optimized algorithms, which 
includes a comprehensive set of both classic and state-of-the-art 
computer vision and machine learning algorithms. It is 
developed using C++ and can be supported by several operating 
systems and interfaced through many languages such as Python, 
JAVA and MATLAB. The OpenCV functions are implemented 

on an Android app using the Android Native Development Kit 
(NDK) [38], which allows compiling native application codes 
such as C/C ++ for Android applications to run on the Dalvik 
virtual machine. With this method, native codes can be used 
repeatedly and the execution speed can be faster. The Android 
NDK provides the native API compiler system and packages the 
native codes into APKs by integrating JAVA Native Interface 
(JNI) [68]. A graphical use interface is developed where the first 
step consists at uploading a fundus images from the gallery 
through the button entitled "Fundus image selection". 
Thereafter, the whole method is run through a button called 
"glaucoma detection". The detection result is displayed below 
the button indicating the provided class, as shown in Fig.9.  

3.4. Computational performance of MAS system 

3.4.1. Computational performance analysis 

The CLAHE algorithm spreads all pixels to adjust pixel 
values, where the processing complexity is about (𝑛 × 𝑛) [69], 
where (𝑛 × 𝑛) is the OD sub-image size. The Black-hat filter 
inverses pixel values. Therefore, each processing requires (𝑛 ×
𝑛) and the Otsu thresholding tests each value is order to assign 
0 or 255, where each processing requires (𝑛 × 𝑛) to be done [70, 
71]. Next, the Median Blur is processed for each pixel to remove 
noise, which is performed in (𝑛 × 𝑛) instructions. Four masks 
are applied to the provided image, where each one requires  (𝑛 ×
𝑛). After that, the processing of locating each centroid leads to 
adding all pixel coordinates, and so is performed in (𝑛 × 𝑛). 
Finally, the classification ensured by the SVM classifier is equal 
to max((𝑓 × 𝑑), 𝑑²) [72], where 𝑓 is the number of features and 
𝑑  is the image number used for training, hence requiring 
constant computational complexity. As a consequence, the 
whole method requires the complexity of O(𝑛 × 𝑛) to be done. 

        
Fig. 9. Graphical Use Interfaces of the application 

 



3.4.2. Execution time evaluation 

In this section, we evaluate the execution time of our method 
when implemented in the smartphone as an app. For this 
purpose, we quantify the execution times of glaucoma screening 
for SCFIs indicated in Table 7, where their values are depicted 
in Fig.10. We note that the architectural characteristics 
mentioned in the last line of Table 8. It is deduced that the 
average execution time is equal to 0.155±0.035 second, where 
the difference is registered whether for healthy or glaucoma 
affected images. The achieved execution times are perfectly 
adequate with the clinical context for ensuring glaucoma 
screening. 

Thereafter, we compare our method to the state-of-the art 
ones where the execution times and hardware and software tools 
are respectively mentioned in the second, third and fourth 
columns of Table 8. As mentioned in the introduction, several 
methods do not focus on computational performance with 
execution times above 10 seconds in several methods. 
Furthermore, our smartphone-based method ensures the faster 
glaucoma screening, jointly with the method proposed in [66] 
which is performed in a desktop architecture having a processor 
with a 3Ghz of frequency. Among methods aiming for mobile 
glaucoma screening, our app outperforms the work proposed 
[22] in terms of detection performance and execution time where 
glaucoma is deduced under tow seconds with 0.87 accuracy and 
0.85 sensitivity.  

4. Conclusion 

In this paper, we have put forward a method for glaucoma 
screening dedicated to SCFIs. The method principle consists in 
identifying the main glaucoma proprieties that rely in the OD, 
reflecting proprieties through carefully selected features and 
providing them to a supervised classifier. Our method achieves 
detection with 99% accuracy, 96.77% sensitivity, and 100% 
specificity when evaluated using the DRISHTI-DB. The method 
implementation through an app leads to a mobile computer-
aided system for glaucoma detection. The experimentation 
confirms that our method ensures performant detection even 
when using SCFI. Besides, the glaucoma screening is performed 
on 0.155 second which is adequate for clinical issues.  

In future work, we aim to extend our method in order to 
provide the severity stage of glaucoma screening. In addition, 
other ocular pathologies can be detected such as diabetic 

retinopathy and age macular degeneration. Moreover, the 
smartphone app can ensure uploading the fundus images to be 
transferred to ophthalmologists to anticipate medical care and 
therapy.  
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