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Abstract. Diabetic Retinopathy (DR) is the leading cause of visual impairment among 
working-aged adults. Screening and early diagnosis of DR is essential to avoid visual 
acuity reduction and blindness. However, a worldwide limited access to ophthalmologists 
may prevent an early diagnosis of this blinding condition. In this paper, we propose a 
novel method for screening DR from smartphone-captured fundus images. The main 
challenges are to perform higher accurate detection even with reduced quality of 
handheld captured fundus images and to provide the result into the smartphone used for 
acquisition. For such a need, we apply transfer learning to the lightweight deep neural 
network “NasnetMobile” which is used as a feature descriptor, while configuring a multi-
layer perceptron classifier to deduce the DR disease, in order to take benefit from their 
lower complexity. A dataset composed of 440 fundus images is structured, where the 
acquisition and statement are performed by expert ophthalmologists. A cross-validation 
process is conducted where 95.91% accuracy, 94.44% sensitivity, 96.92% specificity and 
95.71% precision in average are achieved. In addition, the whole processing flowchart is 
implemented into a mobile device, where the execution time is under one second what-
ever the fundus image is. Those performances allow deploying the proposed system in a 
clinical context. 

Keywords: Diabetic retinopathy, Deep learning, Transfer Learning, Mobile-
health. 

1. Introduction 

Diabetic Retinopathy (DR) is an ocular disease registered for 30% of diabetes-affected 
patients (Sabanayagam, 2019). Based on the world health organization report, 146 mil-
lion suffer from DR (Pan, 2018). Advanced stages of DR may lead to severe visual 
acuity impairment and blindness (Ting, 2016; Chalakkal, 2020), with 37 million blind 
persons worldwide. Therefore, DR screening is mandatory for the early diagnosis and 
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initiation of appropriate treatment to improve the visual outcome and to prevent blind-
ness.  Fundus examination is the main clinical approach to screen DR.  

Actually, a heavy workload is requested from ophthalmologists, where a ratio of 50 
per million persons worldwide is required to ensure early screening and timely man-
agement of DR. However, only 21 countries have verified the targeted ratio, where the 
actual global ratio is about 29 ophthalmologists per million persons (Resnikoff, 2020; 
Singh, 2018). Consequently, in many countries, there is a lack of periodical DR screen-
ing, hence an important delay of DR diagnosis. 

Recently, several optical lens-based devices have been proposed, which can be 
snapped into smartphones to capture fundus images. Those devices are distinguished 
by their low-cost and mobility, which are associated to the smartphone availability in 
terms of connectivity, data storage and processing (Panwar, 2016; Bolster, 2014; Russo, 
2016). The mobile devices ensure capturing fundus images with sufficient quality com-
pared to those captured by conventional fundus cameras. However, blurs and noise are 
always deduced caused by the handheld aspect of the mobile capturing. Several clinical 
studies have been performed and have shown similar DR detection accuracy from 
smartphone-captured fundus images and conventional fundus cameras-captured images 
(Akil, 2019; Prassana, 2013; Monjur, 2019).  

Previous studies have aimed to automatically screen DR from smartphone-captured 
fundus images (Hacisoftaoglu, 2020; Kashyap, 2017; Kalpiyapan, 2018). Some work 
has addressed the problem of limited quality of fundus images, where the different lim-
itations were highlighted in (Hacisoftaoglu, 2020). To outperform those problems, the 
methods have been based on intensive computational processing. In (Mueller, 2020), 
DR detection was provided though a multiple instance for the AlexNet Deep Convolu-
tional Neural Network (DCNN) architecture, while the method suggested in (Hacisof-
taoglu, 2020) used the ResNet50 neural network as a feature descriptor. Such pro-
cessing could not be run into embedded or smartphone devices, due to the limited ma-
terial resources. 

Other methods have aimed to run DR screening into smartphones where the main 
contribution was based on suggesting low complexity processing. In (Boukadida, 2021; 
Elloumi, 2020), features were extracted though linear computational complexity, where 
the DR stages were detected using the SVM classifier. Elsewhere, lightweight DCNNs 
were employed such as mobilenet-V2 and inception-V3, respectively used in (Suriyal, 
2018; Hagos, 2019; Majumder, 2020). However, these methods did not consider the 
decreased quality of smartphone-captured fundus images, where they were validated 
using database images acquired by classical conventional fundus cameras. Little work 
has addressed both challenges, hence failing to achieve higher performance, such as the 
one described in (Kashyap, 2017) where 62% precision was registered.  

The originality of our work is to describe an automated method that (1) ensures 
higher performant DR screening from smartphone-based fundus photography and 
which (2) has a low complexity to be implemented into a smartphone associated with a 
mobile device. The whole hardware and software tool presents an end-to-end mobile 
system from fundus image acquisition to DR screening. For such a need, a prepro-
cessing is performed to enhance the image quality. Then, the DCNN “Nasnet-Mobile” 
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is used as a feature descriptor, which is characterized by its higher performance, light-
weight processing and fast convergence even with a reduced database size. Then, the 
extracted features are provided to a Multi-Layer Perceptron (MLP) classifier with a 
single hidden layer, to deduce the DR disease. This work is a part of project leading to 
mobile computer-screening system for DR which we already developed in (Akil, 2019, 
Elloumi, 2020; Boukadida, 2021). 

The suggested method is introduced in the rest of the paper. Section 2 describes the 
automated method for DR screening. The experimental evaluation of the detection per-
formance and the execution time is presented in section 3. The conclusion and some 
future work are detailed in section 4. 

2. Novel Method for DR Screening  

2.1. Pre-processing and Data processing 

Basically, the dataset images must be resized to (224×224×3) to be provided to the 
NasNet-Mobile. Preprocessing aims to enhance the fundus image quality in order to 
promote DR screening. In fact, the handheld capture of fundus images leads to a blurred 
illustration of retinal components, especially the DR lesions characterized by a small 
size such as micro-aneurysms or hard exudates. Thus, the point spread function is ap-
plied to clearly model the retina (Boukadida, 2021), as shown in fig.1(b). The variabil-
ity on the light source causes a non-balanced contrast of the smartphone-captured fun-
dus images. To resolve this problem, the Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) approach (Chalakkal, 2017) is applied, as illustrated in fig.1(c).  

Thereafter, a data augmentation is applied in order to increase the dataset size and 
enhance the DL model robustness.  For this purpose, all images are flipped and shifted 
horizontally and vertically, rotated with angle 30°, zoomed and contrast-adjusted with 
respect to the varied contrast of the smartphone-captured fundus images (Blaiech, 2019, 
Elloumi, 2021).   

 

 
 

 

(a) (b) (c) 

Figure 1: Fundus images: (a) captured with Volk-inView, (b) after deblurring, (c) after contrast enhancement 
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2.2. Nasnet-Mobile Architecture 

The Nas Network (NasNet) is a CNN architecture provided by the neural architecture 
search (Nas) framework (Gupta, 2021, Cogan, 2019)). It a research algorithm that de-
signs an optimal convolutional architecture is for a given dataset, through a scalable 
method.  The framework is based on a controller recurrent neural network (RNN) where 
networks are iteratively generated and trained using the provided dataset. Then , their 
accuracies are returned to the controller to enhance the next versions of architectures 
(Cogan, 2019; Bahri, 2020). The research leads to compose the network by convolu-
tional layers called “normal cell” and “reduction cell” having identical structure with 
different weights. The first cell type generates a feature map preserving the same reso-
lution than the input. the second one reduces the feature map size through a stride =2. 
Using the "ImageNet" dataset that contains 1,000 categories (Li, 2019), the Nas frame-
work was provided an architecture where the selected cells are as modelled in Fig.2. 
We note that Nas framework may provide a lightweight architecture  called “NasNet-
Mobile” made up of only four million parameters (Bahri, 2020), which is able to per-
form an accurate classification (Winoto, 2020). 
 
2.3. Transfer Learning of Nasnet-Mobile Architecture 

The available dataset is composed of few hundreds of smartphone-captured fundus im-
ages. To ensure reliable performance, the transfer learning method is endorsed 
(Bouden, 2021), where the NasNet-Mobile model, initially trained with the "ImageNet" 
dataset that contains 1,000 categories (Li, 2019), is retrieved. The classification layer 
is interchanged by the four ones, as described in fig.2. The first layer consists of an 
Average Pooling where the input feature map is spatially partitioned into a grid of 
square blocks with side 2, and average over each blocks are stored in the output feature 
map. Then, a flatten is performed to align all features into a single row.  The third layer 
applies a dropout function to prevent overfitting, with a threshold equal to 0.7. The last 
one is a dense layer with a ReLU function where the feature vector size is reduced to 
32, while decreasing the error through back-propagation. 

The model is finetuned in order to update the weights of neurons during training, 
where the chosen learning rate is 0.000005 (Li, 2019; Mateen, 2020). The optimal 
weight is stored after each epoch, to guarantee converging the model. Training is per-
formed into 150 epochs, and the weights are updated following the "Adam" optimizer 
(Boudegga, 2021). The "categorical-cross entropy" loss function is adopted, where the 
loss is based on the sum of all computed ratios. The main hyper parameters used for 
training are summarized in Table 1.  

Table 1: Hyper parameters of training NasNet-Mobile model 
Parameter  Value 
Optimizer 
Learning rate 
Regularization 
Mini-batch size 
Epoch 
Loss function 

Adam optimizer 
0.000005 
Dropout (0.7) 
2 
200 
Binary cross-entropy 
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2.4. MLP Configuration 

The classifier must retrieve a feature map from the NasNet-Mobile deep learning model 
in order to ensure a performant classification, through low-complexity processing. 
Based on those constraints, the MLP classifier is chosen to ensure the classification of 
DR-affected fundus images. It is considered as a neural network where the weights are 
randomly predefined. Indeed, it is widely employed in medical classification problems. 
The MLP can be configured in terms of number of hidden layers and number of neurons 
inside. We choose a single hidden layer to reduce the computational complexity. After 
that, we perform an experimental study where the neuron number is varied. Then, train-
ing and testing processes are iteratively performed to evaluate the current MLP, as de-
tailed in Table 2. Based on the experiment results, we deduce that a hidden layer with 
10 neurons will allow achieving the best classification result. 

 

Flatten

Dense ReLU

Healthy DR affected

Pre-processing 
& 

Data augmentation

Avg. Pooling

Dropout

3*3 conv, stride 2

Reduction Cell

Normal Cell

Reduction Cell

Normal Cell

Reduction Cell

Normal Cell

 
Figure 2: Processing flowchart of the proposed DR screening method 
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Table 2: performance classification in terms of neuron number of hidden layer 
neuron number of hidden layer 8 10 12 

Sens 88.57 94.44 94.29 
Spec 91.67 96.15 85.42 
Acc 89.83 95.4.45 90.68 
Prec 93.94 94.44 90.41 

3. Experimental Results 

3.1. dataset 

Patients’ data were collected in the department of ophthalmology belonging to Fat-
touma Bourguiba University Hospital (Tunisia), between 2019-2020. Image acquisition 
was performed after preliminary eye examination and dilating pupil of patient eyes us-
ing mydriatic substance. Fundus images were captured using a Volk-InView disposi-
tive, as shown in Fig.3, allowing a field of view of 50°. Several clinical studies have 
attested the higher quality of fundus images captured by Volk-InView, compared to 
other optical lenses such as D-Eye, Retina Peek and Welch Allyn (Karakaya, 2020). 
All anonymized captured images were evaluated by two independent masked retina 
specialists (NA and IK). Screening the DR lesions of retinal photographs using the “In-
ternational Clinical Diabetic Retinopathy Classification Severity Score” was per-
formed, where images were graded as non DR and DR. 
The dispositive was snapped into an “Ipod Touch” device where the camera resolution 
was about 8 Mp. The dataset was composed of 440 images, where 260 were classified 
as healthy and 180 contained DR lesions. The image resolution was 892*892 pixels 
with 96 dpi, where some healthy and DR affected captured retina are shown in Table 
3. It is easy to distinguish retinal components, such as the optic disk, the macula and 
DR lesions, even those having small sizes. 
The evaluation is performed through a five-fold cross validation approach to guarantee 
a reliable evaluation, where the dataset is partitioned into 5 subsets. To overcome the 
problem of the reduced dataset size, four subsets representing 80% of fundus images 
are dedicated for training. The fifth subset is partitioned equitably between validation 
and testing sub-sets, as illustrated in Fig.3. 

 
Val. Test Training Training Training Training 

Training Val. Test Training Training Training 

Training Training Val. Test Training Training 

Training Training Training Val. Test Training 

Training Training Training Training Val. Test 

Figure 3: Dispatching of subsets for 5-fold cross validation 
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3.2. ML Implementation 

The method is coded using the Python language. Preprocessing is performed using the 
OpenCV library, while NasNet-Mobile and MLP are implemented using the "Keras" 
API. The training and testing steps are executed on the cloud service "google Colab". 
The curve slopes of accuracy and loss for both training and validation are retrieved as 
depicted in Fig.4. It is deduced that both accuracy (resp. loss) curves increase (resp. 
decrease) progressively to become almost constant. 

 
(a)                                                                 (b) 

Figure 4: Evaluation of training performance in terms of epochs: (a) Training and vali-
dation accuracy values; (b) Training and validation loss values 

 
3.3. Evaluation Metrics 

The performance of our method is evaluated through the Accuracy (Acc), Sensitivity 
(Sens), Specificity (Spec) and Precision (Prec) metrics, which are computed as indi-
cated in equations 3, 4, 5 and 6.  

Sensitivity =
TP

TP + FN
(3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

Accuracy =
TP + TN

TP + FP + TN + FN
 (5) 

𝑃𝑟𝑒𝑐 =
୘୔

୘୔ା୊୔
 (6) 

where TP (True Positive) is the number of images classified correctly as DR-affected, 
TN (True Negative) is the number of images classified correctly as healthy, FP (False 
Positive) is the number of healthy images identified as DR, and FN (False Negative) is 
the number of DR-affected images classified as healthy. 

3.4. Performance Evaluation of Proposed Method 

This method is evaluated using all cross-datasets, where the performance metrics of 
each one are shown in Table 4. We deduce that our method carries out higher accuracy, 
which achieves 97.73%. Even with an equitable partition between healthy and DR-
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affected images, sensitivity and specificity have higher values whatever the cross da-
taset is. 

Table 4: DR screening performances in terms of cross-datasets 
 Acc (%) Sens (%) Spec (%) Prec (%) 
First cross-database 97.73 94.44 100.00 100.00 

Second cross-database 93.18 88.89 96.15 94.12 
Third cross-database 95.45 94.44 96.15 94.44 
Fourth cross-database 97.73 94.44 100.00 100.00 
Fifth cross-database 95.45 100.00 92.31 90.00 

 
The performances of cross-validation sets are illustrated through the box plots repre-
sented in Fig.5. The reduced plot sizes justify the sustainability of the DR screening 
whatever the image set, either used for testing or for training. Consequently, it reflects 
the method robustness and confirms its capacity to be used as a mobile aided screening 
system for DR. 

 
Figure 5: Performance visualization using box plots 

3.5. Execution Time Evaluation of the Mobile-Aided Screening System 

The trained Nasnet-Mobile model associated to the MLP classifier must be updated to 
be suitable for smartphone uses. Therefore, the method is implemented as an android 
app through an Android Studio 4.2 and JAVA Development Kit (JDK) 15.0.2. There-
fore, the “TFLiteConverter” class of the public “tf.lite” API is used to convert the 
trained “TensorFlow” model into a “TensorFlowLite” model. The NasNet-Mobile is 
converted into a FlatBuffer file (.tflite) and stored into a ”TensorFlowLite” model to be 
called through the “TensorFlow Lite Android Support” library. The MLP classifier and 
the image enhancement processing are implemented using the predefined function of 
the "Open Source Computer Vision (OpenCV)" multiplatform library which is com-
piled by an Android Native Development Kit (NDK). 
Thereafter, we evaluate the computational performance of DR screening when run in a 
mobile device as an app. For such a need, 10 images (partitioned equitably on healthy 
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and DR-affected fundus images) are randomly selected from the dataset and tested 
through the app executed into a “Samsung Galaxy A31” smartphone having an octa-
core processor (2 x 2GHz & 6 x 1.95GHz) and 4 Go RAM. We deduce that all execution 
time is above one second, as depicted in Fig. 6. In addition, close values are registered 
where the average value is equal to 0.894 second. Accordingly, we deduce that the 
computational performance is adequate to promote using our system in clinical con-
texts. 

 

Figure. 6: Execution time of DR screening application in terms of fundus images 

4. Conclusion 

DR is a major cause of blindness worldwide. Our challenge consists in screening DR 
using a mobile CAD system, while ensuring all tasks from the fundus image acquisition 
to the decision generation. For such a requirement, we have proposed a preprocessing 
to enhance the image quality. Then, we have employed a lightweight DL architecture 
and a low complexity classifier to carry out higher performant DR screening. The ex-
perimentation has been proved respecting the clinical constraints in terms of screening 
performance and execution time. 

In our future work, we aim to extend the dataset size by continuous collaboration 
with the expert ophthalmologist team. Afterwards, the provided system will be ex-
tended to ensure fundus image grading into DR severity. Otherwise, the system will be 
oriented to other ocular pathologies such as glaucoma, aged macular degeneration or 
hypertensive retinopathy. Furthermore, the lightweight processing principle can be car-
ried out into other mobile-health domains (Khessiba, 2021). 
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