
HAL Id: hal-03974553
https://hal.science/hal-03974553

Submitted on 6 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cataract grading method based on deep convolutional
neural networks and stacking ensemble learning

Yaroub Elloumi

To cite this version:
Yaroub Elloumi. Cataract grading method based on deep convolutional neural networks and stacking
ensemble learning. International Journal of Imaging Systems and Technology, 2022, 32 (3), pp.798-814.
�10.1002/ima.22722�. �hal-03974553�

https://hal.science/hal-03974553
https://hal.archives-ouvertes.fr


Cataract Grading Method Based on Deep Convolutional Neural Networks 
and Stacking Ensemble Learning 

 
Yaroub Elloumi 
Mail : yaroub.elloumi@esiee.fr 
ORCID : https://orcid.org/0000-0001-8878-7562 
 
LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France 

Medical Technology and Image Processing Laboratory, Faculty of medicine, University of Monastir, Tunisia 
ISITCom Hammam-Sousse, University of Sousse, Tunisia 

 

Abstract 
Purpose The cataract is the most common cause of severe vision impairment or blindness worldwide. It is 
essential to periodically diagnose the retina in order to prevent cataract severity, and so to enhance the life 
quality of cataract-affected patients. Cataract grading through a fundus image is feasible with higher accuracy. 
However, a delay of early cataract screening is registered caused by deficiency of ophthalmologists and imaging 
devices. The challenge is to propose a CAD system to grade the cataract from retinal images. 

Method In this paper, an ensemble learning framework for cataract grading is put forward, where three 
convolutional deep neural networks are stacked in order to provide higher performance grading. The main 
contributions of this work are given as follows: (1) Preprocessing and data augmentation of fundus images are 
performed to ensure the robustness of the cataract grading; (2) The well-known DL architectures (Inception-
V3, MobileNet-V2 and NasNet-Mobile) are fine-tuned and learned as base classifiers; (3) A stacking method 
is propounded to combine the features of base classifiers. 

Results The evaluation is conducted using a dataset of 590 fundus images selected from two public databases. 
The suggested framework achieves 93.97% accuracy, 95.59% sensitivity, 91.67% specificity, 94.20% precision 
and 94.89% F-measure for cataract grading.  

Conclusion The proposed framework successfully grades fundus images into cataract severity. Moreover, 
stacking ensemble learning allows achieving a performance that significantly surpasses the ones realized by 
each DL architecture, applied separately. 
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1. Introduction 

The eye lens is a circular and transparent component, 
located beyond the iris, which allows refracting the visual 
information into the retina [1]. The cataract is an ocular 
disease that affects the eye lens, hence becoming cloudy. 
As reported by the world health organization in 2020, the 
cataract caused 65.2 million people suffering from 
moderate or severe vision impairment or blindness, which 
exceeds widely the persons having the same severity 
caused by glaucoma, diabetic retinopathy, corneal opacities 
and trachoma all together. More than 50% of worldwide 
blindness cases are caused by the cataract where the 
number of blind people will exceed 40 million in 2025 [2, 
3]. The cataract is involved due to smoking, genetics, 
alcohol, nutritional or metabolism disorders, medications 
or a long exposure to sunlight [5, 4, 6]. In addition, it is 
correlated with several other pathologies [1, 5]. 

The cataract can be diagnosed through the slit-lamp 
photography, which consists in reflecting light inside the 
lens structure and deducing the cataract disease from the 
non-uniform illumination of the refracted intensity. The 
Lens Opacities Classification System III, the American 
Cooperative Cataract Research Group protocol and the 
Oxford Clinical Cataract Classification are the well-
known protocols for classifying the cataract disease, 
which are based on convoluted procedures and require 
well-experienced ophthalmologists [2, 3]. The ultrasound 
backscattering signal, the optical coherence tomography 
and the ultrasound biomicroscope are also used for 
cataract screening. However, their diagnosis processes 
are costly and based on complex operations. The cataract 
is easily diagnosed through the ophthalmoscopy where 
the blurriness of the retina components is similar to the 
quality of the visual acuity. Cataract screening and 
grading through a retinal fundus image is feasible with 



higher accuracy, even with inexperienced graders [2, 3], 
which promotes accessing to eye diagnosis.  

While the cataract develops slowly, it is hard to 
recognize it since its symptoms are similar to a poor visual 
acuity [3, 5]. Indeed, it is always diagnosed through a visual 
acuity test. This pathology imposes limiting activities and 
affects the life quality [1, 5]. Therefore, it is recommended 
to make a periodical diagnosis in order to enhance the life 
quality of cataract-affected patients[3]. However, the 
process of cataract diagnosis is time-consuming and leads 
to an important workload, especially with the higher rate of 
requested diagnosis. In addition, an alarming worldwide 
deficiency of ophthalmologists is registered [7]. The lack 
of ophthalmologists will be aggravated in future years and 
associated to an augmentation of elderly people. 
Consequently, a delay is registered to ensures early cataract 
diagnosis, and will persist in the years ahead. 

Therefore, several studies have focused on proposing a 
Computer-Aided-Diagnosis (CAD) system for cataract 
detection and grading. The common challenge is to succeed 
in detecting and grading the cataract in terms of opacities. 
For this purpose, several methods have been suggested 
which have realized optimal performances of cataract 
detection. However, they have failed to achieve a higher 
performance of cataract grading, even resorting to 
Ensemble Learning (EL). Elsewhere, those methods have 
been always evaluated using private datasets where a lack 
a public database containing cataract-affected fundus 
images has been noticed, in contrast to the other ocular 
pathologies such as diabetic retinopathy and glaucoma. The 
evaluation processes have been always performed using 
few hundreds of fundus images, inadequately partitioned in 
terms of grading, which might not guarantee a reliable 
evaluation. 

Therefore, our main objective is to provide a CAD 
system for cataract grading. The first challenge consists in 
ensuring higher accuracy when classifying images into 
cataract stages. In fact, several Deep Learning (DL) 
architectures are dedicated for the classification problem, 
which are varied in terms of processing principles, and so 
in terms of classification results. Our main idea consists in 
stacking features of DL architectures in order to provide 
higher performance grading. The second challenge is to 
ensure such grading even using a small dataset. To address 
this problem, we firstly select three DL architectures 
composed by lightweight convolutional blocks that allow 
converging the trained model without resorting to a large 
number of images. Secondly, we fine-tune those DL 
architectures initially trained using the ImageNet dataset. 
In addition, we perform a well-off data augmentation to 
diversify retina modelling.  

The remainder of this paper is organized as follows. 
Section 2 presents a literature review about the cataract-
affected retinal images and the existing methods for 
grading. Section 3 details the learning framework of 
cataract grading. Section 4 describes the experimentation 
and the discussion of the provided results. Section 5 
presents the conclusion and some future work.  

2. Literature review 

The cataract occurs when proteins are accumulated in 
different locations of the lens [2, 6] which becomes cloudy. 
In terms of severity, vision becomes blurred with distressed 
colors and troubled with bright light [5, 6], which 
corresponds to vision impairment. If the lens is totally 
clouded, the light is disrupted when projected on the retina, 
which avoids reflecting real images, and hence leading to 
blindness [9, 5]. Respectively, fundus images are graded 
into non-cataract, mild, moderate or severe cataract, as 
shown in Fig.1. Before the cataract disease, all retinal 
components, even the micro-vascular structures, are 
explicitly illustrated. In the mild stage, only choroid and 
capillary vessels cannot be distinguished among the other 
components. The moderate stage is deduced when only the 
optic disk and the main vessels are visible. It becomes 
difficult to observe any retinal structures in the severe 
stage. Some work has been focused on proposing a CAD 
system for cataract detection and grading. Recently, the 
proposed methods have been based on machine learning, 
while varied in terms of types and principles. 

Some methods have employed single-machine learning 
for grading. In the work suggested in [9], features were 
extracted, whose processing was based on the sketch 
method with discrete cosine transforms and discrete 
wavelet transforms. After that, a multiclass discriminant 
analysis algorithm was used for cataract classification. The 
dataset was composed by 445 fundus images where 199 are 
non-cataract and 148, 71 and 27 are in mild, moderate and 
severe cataract stages. The classification performance of 
cataract detection and grading was 90.9% and 77.1%, 
respectively. In [11], the suggested method consisted in 
performing a DL architecture to provide a feature map that 
was input to an SVM classifier so as to grade images. The 
DL architecture was composed successively by a 
convolution layer with a filter kernel size of 11, an 
activation layer with a ReLU function, a pooling layer, and 
a normalization layer. A dataset of 7,851 fundus images 
was used for training, where an accuracy rate of 90.82% 
was achieved. The method put forward in [12] extracted 
features reflecting visible structures, local standard 
deviation and contrast of vessels against background. The 
extracted features allowed to train a decision tree that 
ensured a four-class grading with 83.8% of accuracy. The 

Figure 1. Retinal images of all cataract grades. (a) Non-cataract. (b) Mild cataract. (c) Moderate cataract. (d) Severe cataract 

 



method suggested in [2] figured out the cataract grading 
using a deep neural network. Firstly, improved Haar 
wavelet features and retinal structure features were 
extracted from the retinal image. Then, the feature vector 
was input to a Multi-Layer Perceptron (MLP) classifier 
with an exponential discrete state transition. The accuracy 
of cataract detection and grading is respectively 92.85% 
and 89.23% using a dataset of 1,355 retinal images. In [13], 
green channels of retinal images were preprocessed by 
applying the histogram equalization and the top-bottom hat 
transformation. Then, the wavelet and texture features were 
extracted. The classification was done using Self 
Organizing Maps (SOM) and a Radial Basis Function 
(RBF) neural network to process clustering, where 91.7% 
of accuracy for cataract grading was achieved. 

Several methods have exploited multiple machine 
learning algorithms to perform a higher performance of 
cataract detection and grading. In [4], The eigenvalues were 
calculated from the gray-level and gray-gradiant co-
occurrence matrices to be used as texture features. In 
addition, the discrete wavelet transform and the discrete 
cosine transform were performed to provide wavelet and 
sketch features. Thereafter, The Support Vector Machine 
(SVM) and the Logistic Regression (LR) were used for 
classification. Each machine learning algorithm was 
performed several times as a binary classifier following the 
one-Vs-rest principle. Then, binary classifiers of each 
machine learning algorithm were combined to perform the 
four types of grading classification. A dataset of 2,000 
retinal images was used, which was split equitably between 
training and testing steps. The ensemble classifier based on 
the SVM outperformed the LR one where the accuracy of 
the four-stage cataract grading was about 88.60%. The 
work described in [14] consisted in extracting independent 
wavelet, sketch and texture based features from 
preprocessed retinal images. The SVM and Back 
Propagation Neural Network (BPNN) were used as based 
classifiers, where their results were provided to EL to 
perform the final classification. The method was evaluated 
using 1,239 fundus images, where their numbers in terms 
of increased severity were 767, 246, 128, and 98. The 
experimentation showed that EL achieved a better 
performance than each single learning model, where the 
realized accuracy was 93.2% and 84.5 % for cataract 
detection and grading, respectively. In [3], the Haar wavelet 
decomposition was used to extract features that reflected 
how the retinal components were modelled in the fundus 
image. The optimal features were selected through a BPNN 
classifier. Thereafter, three types of adjacent two-class 
classification based on majority voting were performed to 

ensure the four-class classification problem of the cataract. 
The experimentation was performed using 1,355 retinal 
images, where the accuracy of the two-class and four-class 
classification was respectively 94.83% and 85.98%. The 
method exposed in [15] was dedicated to cataract detection. 
It started by extracting texture and sketch features from pre-
processed images. Then, an EL experimentation was 
carried out utilizing the decision tree, BPNN and sequential 
minimal optimization classifiers and using a dataset of 374 
fundus images. Each classifier was trained first by texture 
features, second by sketch features, and third by combining 
both of them. It was deduced that merging features would 
allow realizing better accuracy than using each kind of 
features separately. Thereafter, the classifiers trained using 
the same feature set were stacked. It was synthetized that 
the stacked learning method achieved the detection 
accuracy of 95.47%, which exceeded the one provided by 
each single classifier. 

3. Ensemble learning framework for 
cataract severity grading 

3.1. Preprocessing & data augmentation 

The fundus images are captured through varied devices 
with different technologies, hence provided with multiple 
resolutions. For this purpose, all fundus images are resized 
in order to be normalized. The new sizes are determined 
with respect to the input of each employed DL architecture. 
In addition, the fundus images have varied and unbalanced 
contrasts caused either by the lamp used in the capture task 
or by the retina morphology, as presented in the first and 
second images in Fig.2. To avoid this limitation, the 
histogram equalization is applied to enhance the whole 
contrast ratio per images and to normalize the contrast of 
all images of the dataset [16], as shown in the third and 
fourth images in Fig.2.  

The retinas are illustrated through different Field-Of-
Views (FOVs) that depend on the capture devices. 
Moreover, the FOV gap leads to a similar difference of 
masks used to encompass the retinas. For this purpose, a 
data augmentation process is suggested, which consists in 
creating new images by modifying the initial ones. This 
step allows raising the dataset size to augment the method 
robustness. As regards the FOV and mask differences, each 
fundus image is zoomed, sheared to a random corner, and 
shifted and flipped in the horizontal and vertical directions, 
as respectively depicted in the fundus images in Fig.3. 
Furthermore, the fundus image is flipped respectively in 
horizontal, vertical and both horizontal and vertical 
directions.  

Figure 2. (a), (b): Original fundus images; (c), (d): Fundus images after histogram equalization. 



3.2. DL model for cataract grading 
3.2.1. Inception-V3 

Inception-V3 is used for image classification, which is 
extended from the GoogLeNet network suggested by 
Google in 2014 [17].  Inception-V3 consists in performing 
several small convolutions on the same level instead of 
using large convolutions [18]. The first level of the 
Inception module is composed of three convolutions and 
one max-pooling. In the last level, the provided channels 
are non-linearly merged [19]. Therefore, the network 
parameters are reduced, which implies accelerating either 
the training or test steps. In addition, the features are 
efficiently extracted, which increases the classification 
accuracy [20]. Inception-V3 contains dense layers to 
increase the network depth, which decreases again the 
computational complexity. It is trained on the ImageNet 
dataset, to identify 1,000 classes [16]. Inception-V3 proves 
higher accuracy than the original GoogLeNet, Resnet-50 
and AlexNet [20]. Due to its flexibility and accuracy, 
Inception-V3 achieves a higher performance when doing 
Transfer Learning (TL) even with small datasets [19].  

3.2.2. MobileNet-V2  

The MobileNet-V2 architecture contains convolutional 
layers, where each one is followed by a batch normalization 
and a ReLU6 nonlinear activation function, except the 
output layer [20, 21]. In MobileNet-V2, expensive 
convolutional layers are factorized into lightweight 
separable convolution blocks. In each block, the input is 
filtered through a (3x3) depthwise convolutional layer [23]. 
The provided output channels are projected via a (1x1) 
pointwise convolutional layer. The MobileNet-V2 blocks 
are built with residual connections that assist converging 
the network weights [24]. The use of (3x3) depthwise 
separable convolutions and the resolution modification 
through layers imply decreasing the computational 
complexity with respect to the standard convolutions 
despite a slight accuracy reduction [23,  25]. 

3.2.3. NasNet-Mobile  

The Neural architecture search (Nas) framework is a 
research algorithm based on a neural architecture [27]. The 
objective is to provide an optimal Convolutional Neural 
Network (CNN) architecture for a given dataset, called Nas 

Network (NasNet). It automatically proposes a sequence of 
blocks that present a whole architecture. Thereupon, the 
provided NasNet architecture is unkown before the training 
process [28]. The NasNet research algorithm is based on a 
controller recurrent neural network that samples 
convolutional neural blocks and arranges them into 
different architectures. The controller uses reinforcement 
learning where the proposed architectures are trained and 
their accuracy is utilized to enhance the following ones [28, 
29]. To classify whatever image size, the generated 
architectures are built using two types of convolutional 
cells [30]: (1) normal cells that provide a feature map 
having the same resolution than the input, and (2) reduction 
cells that provide a feature map where the height and the 
width are reduced by half. Following the same architecture 
building, the NasNet framework might provide two 
different architectures [29]. The first one is called NasNet-
Large, which is composed of 84 million parameters. The 
second one is NASNet-Mobile made up of only four 
million parameters. This architecture is trained on 
ImageNet and performs acceptable classification. Despite 
the lower size, the TL of the NasNet-Mobile architecture 
maintains similar accuracy even with a smaller dataset [31].  

3.3. Transfer learning and fine-tuning 

TL and Fine-Tuning (FT) are well-known machine 
learning methods where the knowledge obtained through a 
trained model dedicated to a problem is used to resolve 
another one [32].  Generally, a great dataset is required to 
train a CNN, which is not guaranteed in several problems. 
For this purpose, both methods are used to avoid the 
problem of the dataset size, to enhance the performance, to 
reduce the redundancy and to accelerate the training [24]. 
The TL consists in training the model in order to adjust the 
objective of the related dataset to the target of the current 
one [32]. In the FT, the weight values are retrieved from the 
trained model and used as the initialization to be updated 
through the training process[24]. Due to the size of the 
dataset used in this study, our framework leads to extract 
the features of the pre-trained CNN model of Inception-V3, 
MobileNet-V2 and Nasnet-Mobile to be used for TL and 
FT. The selected CNN models are initially trained with the 
publicly "ImageNet" dataset that contains 1,000 categories 
[16]. 

Figure 3. Different data augmentation processing. 



The main goal of the targeted models is to classify the 
fundus image into: healthy, cataract mild stage, cataract 
moderate stage or cataract severe stage. Therefore, the last 
three layers are substituted to adapt the result into the aimed 
four classes. After the last global average pooling, a flatten 
layer is processed to merge the channel of the provided 
feature map. Thereafter, a first fully connected dense layer 
is applied with the ReLU activation function in order to 
reduce the feature map resolution.  The last softmax fully 
connected dense layer is altered which is composed of four 
neurons to generate four probability distributions that 
correspond to the four output categories [32]. Furthermore, 
FT is preformed where the layer weights are unfreezing 
during training. Hence, their values are able to be updated 
based on the back propagation principle with a learning rate 
of 0.00001 [16]. A callback is activated to save the better 
weight after each epoch to improve the performance and 
accelerate model training. For the three DL architectures, 
the train process is performed using the "Adam" optimizer 
and the " categorical_crossentropy " loss function through 
150 epochs. 

3.4. Ensemble learning framework for cataract 
grading 

An EL system is a learning model that clusters several 
classifiers, called base classifiers, to merge their decisions 
into a single one, called a meta classifier [33]. The main 
purpose is to provide a higher accurate decision than the 
ones separately given by each base classifier [33, 34]. 
These base classifiers are called homogeneous if they 
belong to the same algorithm trained to various datasets. 
In contrast, heterogeneous base classifiers are different 
methods learned from the same dataset. Two categories 
of EL systems are extensively used in the work appeared 
in the past few years [36]. The first one was the data level 
EL, where single classifiers were resampled to select the 
base classifier ones, such as the bagging method. The 
combination level was a second category of EL where 
individual classifiers were combined, including voting, 

ensemble selection and stacking.  In the voting method, 
each base classifier would generate a label for each 
dataset instance, which were retrieved by the meta model 
that decided a unique label through a voting principle. 
Knowing that some base classifiers on an EL system 
might decrease the performance, the ensemble selection 
was a heuristic algorithm that allowed selecting an 
optimal subset of base classifiers that would guarantee a 
better performance. The base classifiers in the stacking 
technique provided their result as an input of the meta 
model. For the stacking EL, the training principles of 
classifiers were considerably different, which led to 
varied expertise. Stacking consists in combining the 
predictions of all base classifiers into another learning 
model [31, 36, 37].  

Our main objective is to ensure cataract grading with 
a higher performance. The MobileNet-V2, Inception-V3 
and Nasnet-Mobile models are selected as heterogeneous 
classifiers since they have different architectures and 
hence multiple prediction principles. Those models are 
known by their higher performance, even though their 
lightweight criteria prevent them from achieving optimal 
classification. Consequently, we design a stacked 
ensemble classifier where the three CNN models are 
considered as base-classifiers in order to combine the 
predictions. The classification capability and the greater 
difference of the base classifier leads to a better 
classification performance of the whole EL. The meta-
classifier rectifies the prediction errors, reduces the bias 
carried out by the base classifiers and prevents the over-
fitting effect[32, 35].Moreover, their difference allows 
benefiting from the advantages of each model to provide 
a complementary prediction. As a result, the meta-
classifier ensures achieving high prediction accuracy. The 
choice of the meta-classifier is a critical issue in a way 
that the performance of the whole framework must be 
better than each base classifier, tested separately. For this 
purpose, several classifiers are experimentally evaluated, 
as detailed in section 4.2, where the SVM with the RBF 
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Figure 4. Processing pipeline of ensemble learning framework for cataract grading 



kernel provides the optimal grading accuracy. The main 
steps of the EL framework, illustrated in Fig. 4, are as 
follows:  

1) Extract the feature from each base classifier 
separately into a vector having a size of (1*4); 
2) Concatenate the feature probability provided into 
three vectors provided from the base classifiers into a 
single meta-feature vector with a size of (1*12);  
3) Provide the meta-feature vector to the meta classifier 
to classify the input image into cataract stages. 

4. Experimental results  
4.1. Dataset 

Based on the literature review detailed in section 2, 
the evaluation of the cataract detection and grading 
methods is always conducted using private datasets. In our 
case, we construct a dataset of retinal images selected 
from two public databases recently published in the 
Kaggle platform. The "Cataract Dataset" [42] is 
composed of 600 fundus images having a size of 
2592*1728, where 100 are affected by the cataract 
disease. The second database is called "Ocular Disease 
Recognition (ODiR)" [43] containing 8,000 fundus 
images with different image sizes, where 293 are reached 
by the cataract. The cataract-affected images of both 
databases are labeled through the intervention of two 
ophthalmologists belonging to different hospital centers. 

The used dataset contains 590 fundus images, 
where 220 are confirmed as non-cataract, while 65, 145 
and 160 images are diagnosed as mild, moderate and 
severe cataracts, respectively. Thereafter, each grading 
set is randomly partitioned into five subsets. three 
subsets, representing 60% of the whole dataset, are 
dedicated for training; each of the last two subsets are 
respectively used for validation and testing. To ensure 
a reliable evaluation, we conduct the evaluation 
through a 5-fold cross validation approach, where the 
five subsets are affected differently to the training, 
validation and testing process, as depicted in Fig.5.  

4.2. Software environment and evaluation 
metrics  

The framework is coded with python language and 
using the "Keras" API dedicated for Deep learning 
processing. The training and testing phase are run on 
the "google Colab" cloud service. To evaluate the 

performance of our method, five metrics are computed, 
which are Sensitivity (Sens), Specificity (Spec), Accuracy 
(Acc), Precision (Prec) and F-Measure (F-M) given in 
equations (1) – (5), respectively.  

Sens =
୘୔

୘୔
 (1) 

Spec =
୘୒

୘୒
 (2) 

Acc =
୘୔ା୘୒

୘୔ା୘୒ା୊୔ା୊୒
 (3) 

Prec =
୘୔

୘୔ା୊୔
 (4) 

F-M =
ଶ×୘୔

ଶ×୘୔ା୊୔ା୊୒
 (5) 

where TP, TN, FP and FN are respectively True Positive, 
True Negative, False Positive and False Negative detected 
images.  

4.3. Meta classifier algorithm choice 

The aim of this sub-section is to identify the machine 
learning algorithm and its configuration, to be used as a 
meta classifier that allows achieving the highest 
performance of cataract grading. Within this objective, 
different machine learning algorithms are used having as 
an input the extracted features of all the three base 
classifiers. For instance, the Multi-Layer Perceptron 
(MLP) is employed, where the hidden layer size is varied 
among 8, 10 and 12, and where their results are shown in 
the second column of Table 1. For the Random Forest 
(RF), the tree number is fixed to 200, while the tree depth 
is varied following the above values {8, 10, 12}, where 
the performance metrics are illustrated in the third 
column. The SVMs are trained with the linear, RBF and 

Table 1. Performance comparison between SVM and RF classifiers 

Classifier  MLP   RF   SVM 
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Sensitivity  88.57 94.29 94.29   94.29 92.86 94.29   94.29 94.37 95.59 

Specificity  91.67 87.50 85.42   85.42 87.50 87.50   85.42 89.36 91.67 

Accuracy  89.83 91.53 90.68   90.68 90.68 91.53   90.68 92.37 93.97 

Precision  93.94 91.67 90.41   90.41 91.55 91.67   90.41 93.06 94.20 

F-Measure  91.18 92.96 92.31   92.31 92.20 92.96   92.31 93.71 94.89 

 
 

 
Figure 5. Dispatching of subsets for 5-fold cross validation 

 



polynomial kernels separately, where the achieved 
performance metrics are depicted in the fourth column. 
We deduce that using the SVM classifier with the RBF 
kernel allows achieving the higher performance of 
cataract grading, thus chosen as a meta classifier of the 
proposed framework. 

4.4. Ensemble learning framework evaluation  

4.4.1.  Five-cross validation of the proposed 
framework  

In this sub-section, we evaluate the cataract grading 
using the 5-fold cross validation approach based on the 
five metrics as shown in Table 2. For a better analysis of 
the achieved results, the box plots illustration is 

propounded in Fig.6 to present the performance of these 
validations.  

We deduce that all validations achieved high 
performances in terms of the five metrics. The accuracy, 
sensitivity and F-measure values are very close to their 
average. Moreover, reduced gaps are deduced between 

values for specificity and precision with variation values 
of ±1.04% and ±0.72%, respectively. Accordingly, a 
higher performance is guaranteed whatever the fundus 
image dataset used for testing or training. This result 
approves of the robustness for the suggested framework 
when used in clinical context with new fundus images. 

4.4.2.  Ensemble learning evaluation with 
respect to base classifiers 

The four-grading performance of the suggested EL 
framework is evaluated and compared to the ones realized 
by each base classifier, separately. For this purpose, the 
experimentation consists in extracting features from each 
base classifier and given to an algorithm classifier to label 
images. To ensure a credible evaluation, the same SVM 
classifier with the RBF kernel is associated in the output 
of each DL architecture. In addition, the same subset of 
fundus images is used either for base classifiers or a meta-
classifier, where their cataract-grading results is detailed 
in the confusion matrices of Fig.7. 

The EL framework succeeds in properly classifying a 
larger number of fundus images, as deduced when adding 
and comparing blue cells for each matrix. Moreover, we 
deduce that it registers less numbers either of over-
estimated or under-estimated fundus images, as noticed 
by half-matrices limited by the diagonal lines. The 
performance metrics are illustrated in Fig.8, where the EL 
framework significantly surpasses the base classifiers in 
all the five metrics.  

Subsequently, we analyse the achieved result for each 
grade separately. For the non-cataract grade, the 
Inception-V3 architecture falls into four fundus images, in 
contrast to the two other DL architectures. Thereby, the 
EL framework settles for the features extracted by the 
Mobilenet-V2 and Nasnet-Mobile architectures. For the 
mild grade, all single classifiers fall into more than 33% 
of images. The proposed framework takes benefit from 
the diversity of all extracted features to enhance the final 
classification. In addition, the EL classification ensures 
the maximal labelling of moderate cataract affected 
images, like the Mobilenet-V2 architecture even with the 
lower accuracy achieved by Inception-V3 and Nasnet-
Mobile. Finally, the framework takes the average results 
of the three base classifiers for the severe grade images, 
where it is overpassed by only one wrong image grading 
with respect to two base classifiers.  Figure 6. Performance visualization of cataract grading using box plots
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Figure 7. Confusion matrices of : (a) Inception-V3, (b) MobileNet-V2, (c) NasNet-Mobile, and (d) Ensemble learning 

 

Table 2. Cataract grading performance for 5-flod cross validation 

Validations  Metrics 
Sens Spec Acc Prec F-M 

1 90,00% 91,67% 90,68% 94,03% 91,97% 
2 94,29% 89,58% 92,37% 92,96% 93,62% 
3 94,20% 89,80% 92,37% 92,86% 93,53% 
4 94,12% 89,80% 92,31% 92,75% 93,43% 
5 95,59% 91,67% 93,97% 94,20% 94,89% 



 

Figure 8. Performance metrics in terms of base classifiers and 
meta classifier 

4.4.3. Cataract grading evaluation with 
respect to existing methods 

We compare the grading performance of our method to 
the existing ones. The study is performed in terms of overall 
accuracy, where values are represented in the last column 
of Table 3. We deduce that our framework outperforms the 
methods based on a single CNN architecture [2, 11, 13]. By 
the way, those methods achieve accuracies similar the ones 
realized by any base-classifier, separately. Moreover, our 
framework surpasses the methods that employed an EL 
principles [3, 14]. The better grading result is due to the 
adequate choice of base classifiers. In addition, it is caused 
by the ensemble learning principle with consists at take 
benefit from all base classifiers rather than chosen the best 
ones.  

Table 3. Performance comparison between existing methods of 
cataract grading 

Methods of cataract 
grading 

Classification algorithm Acc (%) 

Guo et al. [9] (2015)   
Discriminant analysis 

algorithm 
77.1 

Xiong et al.   [40]  (2017) Decision tree 83.84 

Yang et al. [14] (2016) 
Stacking EL of SVM and 

BPNN 
84.5 

Cao et al.  [3]  (2020) 
Voting EL of two-class 

BPNN 
85.98 

Song et al. [4] (2019) 
Eigenvalue computing + 

SVM 
88.6 

Zhou et al. [2]  (2019) CNN 89.23 

Dong et al. [11]  (2017) CNN + SVM 90.82 
Imran et al. [13]  (2019) SOM-RBF NN 91.7 
Our method Stacking EL of 3 CNN  93.97 

5. Conclusion 

The cataract is the first worldwide cause of vision 
impairment and blindness. The challenge is to propose a 
CAD system to grade the cataract from retinal images. For 
such a need, we have put forward in this paper an ensemble 
learning framework of stacking three DL architectures, 
where higher-performance cataract grading has been 
achieved. The realized performance has outperformed the 
ones realized by each single DL architecture. Accordingly, 

this framework will promote accessing to eye diagnosis, 
hence avoiding an advanced cataract state. 

In our future work, we aim to extend our framework to 
consider other ocular pathologies, such as diabetic 
retinopathy, glaucoma or aged macular degeneration. 
Moreover, the employed lightweight learning machines, 
either as base-classifiers or as meta-classifiers, have low 
computational complexity. Consequently, the framework 
may be implemented in smartphone devices to be provided 
as a mobile-aided screening system for cataract grading, 
which will widely increase the accessibility to eye 
diagnosis. 
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