Supplementary material

Toward thermal autarky for large-scale biogas plants: Dynamic energy modeling for energy efficiency in anaerobic digesters with enhanced multimembrane gasholders

M. Avila-Lopeza ${ }^{\text {a }}$, C. Robles-Rodriguez ${ }^{\text {a }}$, L. Tiruta-Barna ${ }^{\text {a }}$, A. Ahmadi ${ }^{\text {a,* }}$

${ }^{\text {a }}$ TBI, Université de Toulouse, CNRS, INRAE, INSA 135 Avenue de Rangueil, 31077, France

1. Radiative heat exchange in confined spaces

1.1 Formulation of the infrared radiative network

The net rate at which radiation leaves a surface i can be expressed as

$$
\begin{equation*}
q_{i}=A_{i}\left(J_{i}-G_{i}\right) \tag{1}
\end{equation*}
$$

Using the following definition of the radiosity,

$$
\begin{equation*}
J_{i}=E_{i}+\left(1-\alpha_{i}\right) G_{i} \tag{2}
\end{equation*}
$$

and knowing that, for a gray surface, $E_{i}=\varepsilon_{i} \sigma T_{i}^{4}, G_{i}$ can be solved for using Eq. (2) and substituted into Eq. (1), resulting in

$$
\begin{equation*}
q_{i}=\frac{\varepsilon_{i} \sigma T_{i}^{4}-\alpha_{i} J_{i}}{\left(1-\alpha_{i}\right) / A_{i}} . \tag{3}
\end{equation*}
$$

[^0]To use Eq. (3), the surface radiosity J_{i} must be known. To determine this quantity, it is necessary to consider the radiation exchange between the surfaces of the enclosure.

The irradiation of surface i can be evaluated from the radiosities of all the surfaces in the enclosure. The total rate at which radiation reaches the surface i from all surfaces, including i, can be expressed as

$$
\begin{equation*}
A_{i} G_{i}=\sum_{j=1}^{n} F_{j i} A_{j} J_{j} \tag{4}
\end{equation*}
$$

where $F_{j i}$ is the view factor from surface j to surface i. Applying the reciprocity relation $\left(A_{i} F_{i j}=A_{j} F_{j i}\right)$,

$$
\begin{equation*}
A_{i} G_{i}=\sum_{j=1}^{n} A_{i} F_{i j} J_{j} \tag{5}
\end{equation*}
$$

Canceling A_{i} and substituting Eq. (5) into Eq. (1) for G_{i}, we find

$$
\begin{equation*}
q_{i}=A_{i}\left(J_{j}-\sum_{j=1}^{n} F_{i j} J_{j}\right) \tag{6}
\end{equation*}
$$

From the summation rule $\left(\sum_{j=i}^{N} F_{i j}=1\right)$, which follows the conservation requirement that all radiation leaving surface i must be intercepted by the enclosure surfaces, we find

$$
\begin{equation*}
q_{i}=A_{i}\left(\sum_{j=1}^{n} F_{i j} J_{i}-\sum_{j=1}^{n} F_{i j} J_{j}\right) . \tag{7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
q_{i}=\sum_{j=1}^{n} \frac{J_{i}-J_{j}}{\left(A_{i} F_{i j}\right)^{-1}} . \tag{8}
\end{equation*}
$$

Combining Eqs. (3) and (8), the net radiative flow leaving any surface in a confined space can be obtained:

$$
\begin{equation*}
q_{i}=\frac{\varepsilon_{i} \sigma T_{i}^{4}-\alpha_{i} J_{i}}{\left(1-\alpha_{i}\right) / A_{i}}=\sum_{j=1}^{n} \frac{J_{i}-J_{j}}{\left(A_{i} F_{i j}\right)^{-1}} \tag{9}
\end{equation*}
$$

1.2 Geometric considerations and determination of the view factors

The view factor between the digestate and the inner membrane, $F_{d, i m, i n f}$, is determined by assuming two parallel coaxial disks, as entailed in Eqs. (10)-(13).

$$
\begin{align*}
& R_{i}=\frac{r_{i}}{L} \tag{10}\\
& R_{j}=\frac{r_{j}}{L} \tag{11}\\
& S=1+\frac{1+R_{i}^{2}}{R_{j}^{2}} \tag{12}\\
& F_{i j}=\frac{1}{2}\left\{S-\left[S^{2}-4\left(r_{j} / r_{i}\right)^{2}\right]^{1 / 2}\right\} \tag{13}
\end{align*}
$$

Applying the summation rule $\left(\sum_{j=i}^{N} F_{i j}=1\right)$, with $F_{i, i}=0$ for a plane or convex surface, the view factor between the digestate and the inner walls $\left(F_{d, w}\right)$ equals $1-F_{d, i m, i n f}$. The space created between the inner membrane and the cover can be treated as a two-surface enclosure, and the view factor between the inner membrane and the cover $\left(F_{\text {im,sup,c }}\right)$ is set to 1 because the total net radiation heat from the inner membrane goes to the cover. The rest of the view factors are obtained using the reciprocity relation $\left(A_{i} F_{i j}=A_{j} F_{j i}\right)$, which can be used to determine one view factor from another.

1.3 Instantaneous global solar irradiation on the ground

The method for calculating the solar heat flux gain from the solar radiation is presented in the following section [46]. Solar time is the time used in all of the Sun-angle relationships and is obtained such that

$$
\begin{array}{ll}
S T=S L T+\frac{E}{60}+\frac{l_{s t}-l_{l o c}}{15}-1 & \text { for daylight saving time } \\
S T=S L T+\frac{E}{60}+\frac{l_{s t}-l_{l o c}}{15} & \text { for non-daylight saving time } \tag{15}
\end{array}
$$

$$
\begin{align*}
& S L T_{s r}=12-\frac{\omega_{s}}{15} \tag{20}\\
& S L T_{S S}=12+\frac{\omega_{s}}{15} \tag{21}
\end{align*}
$$

where $S T$ is the solar time expressed in hours, $S L T$ is the standard local time in hours, $l_{s t}$ is the standard meridian for the local time zone (15° in France), $l_{l o c}$ is the local longitude of the location, and E is a correction term in minutes:

$$
\begin{align*}
& E=229.2(0.000075+0.001868 \cos B-0.032077 \sin B-0.014615 \cos 2 B \\
& \qquad-0.04089 \sin B) \tag{16}\\
& B=(n-1) \frac{2 \pi}{365}
\end{align*}
$$

where n is the day of the year.
The declination angle of the sun, δ (in ${ }^{\circ}$), is given by

$$
\begin{align*}
\delta=0.006918 & -0.399912 \cos B+0.070257 \sin B-0.006758 \cos 2 B \\
& +0.000907 \sin 2 B-0.002697 \cos 3 B+0.00148 \sin 3 B \tag{18}
\end{align*}
$$

The sunset hour angle, $\omega_{s}\left(\right.$ in $\left.^{\circ}\right)$, is given by

$$
\begin{equation*}
\omega_{s}=\cos ^{-1}(-\tan \Phi+\tan \delta) \tag{19}
\end{equation*}
$$

where Φ is the local latitude in degrees.
The sunrise and sunset standard local times (denoted with subscripts $s r$ and $s s$, respectively) are calculated as follows:

The sunrise and sunset solar times ($S T_{s r}$ and $S T_{s s}$, respectively) are obtained by substituting Eqs. (20) and (21) into Eqs. (14) and (15).

The daily extraterrestrial radiation on a horizontal surface at the upper limit of the Earth's atmosphere, H_{0}, is calculated as follows:

$$
\begin{align*}
& H_{0}=\frac{24 \times 3600}{\pi} G_{0}, \tag{22}\\
& G_{0}=G_{o n} \cos \theta_{z}, \tag{23}\\
& G_{\text {on }}=G_{s c}(1.000110+0.034221 \cos B+0.001280 \sin B+0.00719 \cos 2 B \\
& +0.000077 \sin 2 B) \text {, } \tag{24}\\
& \cos \theta_{z}=\cos \Phi \cos \delta \sin \omega_{s}+\omega_{s} \sin \Phi \sin \delta,
\end{align*}
$$

where G_{0} is the extraterrestrial irradiance on the horizontal plane, $G_{o n}$ is the extraterrestrial radiation incident on the plane normal to the radiation on the nth day of the year, θ_{z} is the zenith angle, and $G_{s c}$ is the solar constant, equal to $1367 \mathrm{~W} \mathrm{~m}^{-2}$.

To estimate the daily global solar irradiation on a horizontal surface at the Earth's surface, the following equation is used:

$$
\begin{equation*}
G_{H}=K_{T} H_{0}, \tag{26}
\end{equation*}
$$

where K_{T} is the daily insolation clearness index. An empirical correlation for the calculation of K_{T} was established. Monthly K_{T} data were obtained from the Nasa Data Access Viewer [39] and correlated with the monthly sunshine fraction (equal to the difference between the sunset and sunrise solar times) of the location. The following equation was obtained for the specific location of this study:

$$
\begin{equation*}
K_{T}=0.6163 s s+0.2025, \tag{27}
\end{equation*}
$$

where $s s$ is the monthly sunshine fraction for the nth day:

$$
\begin{equation*}
s s=\frac{S T_{s s}-S T_{s r}}{24} . \tag{28}
\end{equation*}
$$

Depending on the value of K_{T}, the daily diffuse solar irradiation on a horizontal surface at the Earth's surface, D_{H}, is given by Eqs. (29)-(32).

$$
\begin{array}{ll}
D_{H}=0.99 G_{H} & K_{T} \leq 0.17 \\
D_{H}=\left(1.188-2.272 K_{T}+9.473 K_{T}^{2}-21.865 K_{T}^{3}+14.648 K_{T}^{4}\right) G_{H} & 0.17<K_{T} \leq 0.75 \\
D_{H}=\left(-0.54 K_{T}+0.632\right) G_{H} & 0.75<K_{T} \leq 0.85 \\
D_{H}=0.2 G_{H} & K_{T}>0.85
\end{array}
$$

The daily beam irradiation on a horizontal surface at the Earth's surface (in $\mathrm{J} \mathrm{m}^{-2} \mathrm{~d}^{-1}$) is

$$
\begin{equation*}
B_{H}=G_{H}-D_{H} \tag{33}
\end{equation*}
$$ calculated such that

$$
\begin{align*}
& D_{H}^{i}=\frac{\pi}{24 \times 3600}(a+b \cos \omega) \frac{\cos \omega-\cos \omega_{s}}{\sin \omega_{s}-\omega_{s} \cos \omega_{s}} D_{H}, \tag{34}\\
& B_{H}^{i}=\frac{\pi}{24 \times 3600}(a+b \cos \omega) \frac{\cos \omega-\cos \omega_{s}}{\sin \omega_{s}-\omega_{s} \cos \omega_{s}} B_{H}, \tag{35}\\
& \omega=(15 S T-180), \tag{36}\\
& a=0.409+0.5016 \sin \left(\omega_{s}-60\right), \tag{37}\\
& b=0.6609-0.4767 \sin \left(\omega_{s}-60\right), \tag{38}
\end{align*}
$$

where ω is the solar hour angle at the time in question. The instantaneous global solar irradiation on a horizontal surface at the Earth's surface under cloudy sky conditions (in $\mathrm{W} \mathrm{m}^{-2}$) is given by $G_{H}^{i}=B_{H}^{i}+D_{H}^{i}$.

[^0]: * Corresponding author at: Toulouse Biotechnology Institute, Bio \& Chemical Engineering. 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France.
 E-mail address: ahmadi@insa-toulouse.fr (A. Ahmadi).

