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For a graph G = (V, E) with a vertex set V and an edge set E, a function f : V → {0, 1, 2, ..., diam(G)} is called a broadcast on G.

The minimum cost of a dominating broadcast is the broadcast domination number of G, denoted by γ b (G). A multipacking is a set S ⊆ V in a graph G = (V, E) such that for every vertex v ∈ V and for every integer r ≥ 1, the ball of radius r around v contains at most r vertices of S, that is, there are at most r vertices in S at a distance at most r from v in G. The multipacking number of G is the maximum cardinality of a multipacking of G and is denoted by mp(G). It is known that mp(G) ≤ γ b (G) and that γ b (G) ≤ 2 mp(G) + 3 for any graph G, and it was shown that γ b (G) -mp(G) can be arbitrarily large for connected graphs (as there exist infinitely many connected graphs G where γ b (G)/ mp(G) = 4/3 with mp(G) arbitrarily large). For strongly chordal graphs, it is known that mp(G) = γ b (G) always holds. We show that, for any connected chordal graph G, γ b (G) ≤ 3 2 mp(G) . We also show that γ b (G) -mp(G) can be arbitrarily large for connected chordal graphs by constructing an infinite family of connected chordal graphs such that the ratio γ b (G)/ mp(G) = 10/9, with mp(G) arbitrarily large. This result shows that, for chordal graphs, we cannot improve the bound γ b (G) ≤ 3 2 mp(G) to a bound in the form γ b (G) ≤ c1•mp(G)+c2, for any constant c1 < 10/9 and c2.

Introduction

Covering and packing problems are fundamental in graph theory and algorithms [START_REF] Cornuéjols | Combinatorial optimization: Packing and covering[END_REF]. In this paper, we study two dual covering and packing problems called broadcast domination and multipacking. The broadcast domination problem has a natural motivation in telecommunication networks: imagine a network with radio emission towers, where each tower can broadcast information at any radius r for a cost of r. The goal is to cover the whole network by minimizing the total cost. The multipacking problem is its natural packing counterpart and generalizes various other standard packing problems. Unlike many standard packing and covering problems, these two problems involve arbitrary distances in graphs, which makes them challenging. The goal of this paper is to study the relation between these two parameters in the class of chordal graphs, which are those graphs that do not contain any induced cycle of a length at least 4.

For a graph G = (V, E) with a vertex set V , an edge set E and the diameter diam(G), a function f : V → {0, 1, 2, ..., diam(G)} is called a broadcast on G. Suppose G be a graph with a broadcast f . Let d(u, v) = the length of a shortest path joining the vertices u and v in G. We say v ∈ V is a tower of G if f (v) > 0. Suppose u, v ∈ V (possibly, u = v) such that f (v) > 0 and d(u, v) ≤ f (v), then we say v broadcasts (or dominates) u and u hears the broadcast from v.

For each vertex u ∈ V , if there exists a vertex v in G (possibly, u = v) such that f (v) > 0 and d(u, v) ≤ f (v), then f is called a dominating broadcast on G. The cost of the broadcast f is the quantity σ(f ), which is the sum of the weights of the broadcasts over all vertices in G. So, σ(f ) = v∈V f (v). The minimum cost of a dominating broadcast in G (taken over all dominating broadcasts) is the broadcast domination number of G, denoted by γ b (G). So,

γ b (G) = min f ∈D(G) σ(f ) = min f ∈D(G) v∈V f (v), where D(G) = set of all dominating broadcasts on G. Suppose f is a dominating broadcast with f (v) ∈ {0, 1} ∀v ∈ V (G), then {v ∈ V (G) : f (v) = 1} is a dominating set on G.
The minimum cardinality of a dominating set is the domination number which is denoted by γ(G).

An optimal broadcast or optimal dominating broadcast on a graph G is a dominating broadcast with a cost equal to γ b (G). A dominating broadcast is efficient if no vertex hears a broadcast from two different vertices. So, no tower can hear a broadcast from another tower in an efficient broadcast. There is a theorem that says, for every graph there is an optimal efficient dominating broadcast [START_REF] Dunbar | Broadcasts in graphs[END_REF]. Define a ball of radius r around v by

N r [v] = {u ∈ V (G) : d(v, u) ≤ r}. Suppose V (G) = {v 1 , v 2 , v 3 , . . . , v n }. Let c and x be the vectors indexed by (i, k) where v i ∈ V (G) and 1 ≤ k ≤ diam(G), with the entries c i,k = k and x i,k = 1 when f (v i ) = k and x i,k = 0 when f (v i ) ̸ = k. Let A = [a j,(i,k) ] be a matrix with the entries a j,(i,k) = 1 if v j ∈ N k [v i ] 0 otherwise.
Hence, the broadcast domination number can be expressed as an integer linear program:

γ b (G) = min{c.x : Ax ≥ 1, x i,k ∈ {0, 1}}.
The maximum multipacking problem is the dual integer program of the above problem. Moreover, multipacking is a generalization of packing problems. A mul-

tipacking is a set M ⊆ V in a graph G = (V, E) such that |N r [v] ∩ M | ≤ r for each vertex v ∈ V (G)
and for every integer r ≥ 1. The multipacking number of G is the maximum cardinality of a multipacking of G and it is denoted by mp(G). A maximum multipacking is a multipacking M of a graph G such that |M | = mp(G). If M is a multipacking, we define a vector y with the entries y j = 1 when v j ∈ M and y j = 0 when v j / ∈ M . So,

mp(G) = max{y.1 : yA ≤ c, y j ∈ {0, 1}}.
Broadcast domination is a generalization of domination problems and multipacking is a generalization of packing problems. Erwin [START_REF] Erwin | Dominating broadcasts in graphs[END_REF][START_REF] Erwin | Cost domination in graphs[END_REF] introduced broadcast domination in his doctoral thesis in 2001. Multipacking was introduced in Teshima's Master's Thesis [START_REF] Teshima | Broadcasts and multipackings in graphs[END_REF] in 2012 (also see [START_REF] Brewster | On the multipacking number of grid graphs[END_REF][START_REF] Cornuéjols | Combinatorial optimization: Packing and covering[END_REF][START_REF] Dunbar | Broadcasts in graphs[END_REF][START_REF] Meir | Relations between packing and covering numbers of a tree[END_REF]). For general graphs, an optimal dominating broadcast can be found in polynomial-time O(n 6 ) [START_REF] Heggernes | Optimal broadcast domination in polynomial time[END_REF]. The same problem can be solved in linear time for trees [START_REF] Brewster | Broadcast domination and multipacking in strongly chordal graphs[END_REF]. However, until now, there is no known polynomial-time algorithm to find a maximum multipacking of general graphs (the problem is also not known to be NP-hard). However, polynomial-time algorithms are known for trees and more generally, strongly chordal graphs [START_REF] Brewster | Broadcast domination and multipacking in strongly chordal graphs[END_REF]. See [START_REF] Foucaud | On the complexity of broadcast domination and multipacking in digraphs[END_REF] for other references concerning algorithmic results on the two problems.

It is known that mp(G) ≤ γ b (G), since broadcast domination and multipacking are dual problems [START_REF] Brewster | New bounds for the broadcast domination number of a graph[END_REF]. It is known that γ b (G) ≤ 2 mp(G) + 3 [START_REF] Beaudou | Broadcast domination and multipacking: bounds and the integrality gap[END_REF] and it is a conjecture that γ b (G) ≤ 2 mp(G) for every graph G [START_REF] Beaudou | Broadcast domination and multipacking: bounds and the integrality gap[END_REF]. Hartnell and Mynhardt [START_REF] Hartnell | On the difference between broadcast and multipacking numbers of graphs[END_REF] constructed a family of connected graphs such that the difference γ b (G) -mp(G) can be arbitrarily large and in fact, for which the ratio γ b (G)/ mp(G) = 4/3. Therefore, for general connected graphs,

4 3 ≤ lim mp(G)→∞ sup γ b (G) mp(G) ≤ 2.
A natural question comes to mind: What is the optimal bound on this ratio for other graph classes? It is known that γ b (G) = mp(G) holds for strongly chordal graphs [START_REF] Brewster | Broadcast domination and multipacking in strongly chordal graphs[END_REF]. Thus, a natural class to study is the class of chordal graphs.

In this paper, we establish an improved relation between γ b (G) and mp(G) for connected chordal graphs by showing that γ b (G) ≤ 3 2 mp(G) . We then construct a family of connected chordal graphs such that the difference γ b (G)mp(G) can be arbitrarily large and the ratio γ b (G)/ mp(G) = 10/9 for every member G of that family. Thus, for chordal connected graphs G, we have:

10 9 ≤ lim mp(G)→∞ sup γ b (G) mp(G) ≤ 3 2 .
We also make a connection with the fractional versions of the two concepts, as introduced in [START_REF] Brewster | Broadcast domination and fractional multipackings[END_REF].

In Section 2, we show that for any connected chordal graph G, γ b (G) ≤

. In Section 3, we prove our main result which says that the difference γ b (G) -mp(G) can be arbitrarily large for connected chordal graphs, and we conclude in Section 4.

An inequality linking Broadcast domination and Multipacking numbers of Chordal Graphs

In this section, we use results from the literature to show that the general bound connecting multipacking number and broadcast domination number can be improved for chordal graphs.

Theorem 1 ([11]

). If G is a connected graph of order at least 2 having diameter d and multipacking number mp(G), where 

P = v 0 , . . . , v d is a diametral path of G, then the set M = {v i : i ≡ 0 (mod 3), i = 0, 1, . . . , d} is a multipacking of G of size d+1
(G) ≤ r ≤ d+2 2 ≤ (3 mp(G)-1)+2 2 = 3 2 mp(G) + 1 2 . Therefore, γ b (G) ≤ 3 2 mp(G) + 1 2 = 3 2 mp(G) . □
The proof of Proposition 1 has the following algorithmic application.

Proposition 2. If G is a connected chordal graph, there is a polynomial-time algorithm to construct a multipacking of G of size at least2 mp(G)-1

3

.

Proof.

If P = v 0 , . . . , v d is a diametrical path of G, then the set M = {v i : i ≡ 0 (mod 3), i = 0, 1, . . . , d} is a multipacking of G of size d+1 3
by Theorem 1. We can construct M in polynomial-time since we can find a diametral path of a graph G in polynomial-time. Moreover, from Theorem 1, Theorem 2 and Theorem 3,

2 mp(G)-1 3 ≤ 2r-1 3 ≤ d+1 3 ≤ mp(G). □ Example 1
The connected chordal graph S 3 (Fig. 1) has mp(S 3 ) = 1 and γ b (S 3 ) = 2. So, here γ b (S 3 ) = 3 2 mp(S 3 ) . We could not find an example of connected chordal graph with mp(G) = 3 and γ b (G) = 3 2 mp(G) = 5.

Unboundedness of the gap between Broadcast domination and Multipacking numbers of Chordal graphs

Here we prove that the difference between broadcast domination number and multipacking number of connected chordal graphs can be arbitrarily large. We state the theorem formally below. 5 and6). We denote this new graph by G 2 (Fig. 5). In this way, we form G k by joining k isomorphic copies of 6). Here B i is joined with B i+1 by joining b i,21 and b i+1,1 . 

G 1 : B 1 , B 2 , • • • , B k (Fig.
M 1 = {m i : 1 ≤ i ≤ 5} is a multipacking of size 5.
We say that

B i is the i-th block of G k . B i is an induced subgraph of G k as given by B i = G k [{b i,j : 1 ≤ j ≤ 21}]. Similarly, for 1 ≤ i ≤ 2k-1, we define B i ∪B i+1 , induced subgraph of G 2k , as B i ∪ B i+1 = G 2k [{b i,j , b i+1,j : 1 ≤ j ≤ 21}].
We prove Theorem 4 by establishing that γ b (G 2k ) = 10k and mp(G 2k ) = 9k. Then we can say, for all natural numbers k, γ b (G 2k ) -mp(G 2k ) = k, so the difference can be arbitrarily large.

Proof of Theorem 4

Our proof of Theorem 4 is accomplished through a set of lemmas which are stated and proved below. We begin by observing a basic fact about multipacking in a graph. We formally state it in Lemma 1 for ease of future reference. Proof. Consider the set 6) of size 9k. We want to show that M 2k is a multipacking of G 2k . So, we have to prove that,

Lemma 1. Suppose M is a multipacking in a graph G. If u, v ∈ M and u ̸ = v, then d(u, v) ≥ 3. Proof. If d(u, v) = 1, then u, v ∈ N 1 [v] ∩ M , then M cannot be a multipacking. So, d(u, v) ̸ = 1. If d(u, v) = 2,
M 2k = {b 2i-1,1 , b 2i-1,7 , b 2i-1,13 , b 2i-1,18 , b 2i-1,21 , b 2i,4 , b 2i,8 , b 2i,14 , b 2i,18 : 1 ≤ i ≤ k} (Fig.
|N r [v] ∩ M 2k | ≤ r for each vertex v ∈ V (G 2k
) and for every integer r ≥ 1. We prove this statement using induction on r. It can be checked that |N r [v]∩M 2k | ≤ r for each vertex v ∈ V (G 2k ) and for each r ∈ {1, 2, 3, 4}. Now assume that the statement is true for r = s, we want to prove that, it is true for r = s + 4. Observe that,

|(N s+4 [v] \ N s [v]) ∩ M 2k | ≤ 4 for every vertex v ∈ V (G 2k ). Therefore, |N s+4 [v] ∩ M 2k | ≤ |N s [v] ∩ M 2k | + 4 ≤ s + 4. So, the statement is true. Therefore, M 2k is a multipacking of G 2k . So, mp(G 2k ) ≥ |M 2k | = 9k. □ Lemma 3. mp(G 1 ) = 5. Proof. V (G 1 ) = N 3 [b 1,7 ] ∪ N 2 [b 1,17 ]. Suppose M is a multipacking on G 1 such that |M | = mp(G 1 ). So, |M ∩ N 3 [b 1,7 ]| ≤ 3 and |M ∩ N 2 [b 1,17 ]| ≤ 2. Therefore, |M ∩ (N 3 [b 1,7 ] ∪ N 2 [b 1,17 ])| ≤ 5. So, |M ∩ V (G)| ≤ 5, that implies |M | ≤ 5. Let M 1 = {b 1,1 , b 1,7 , b 1,13 , b 1,18 , b 1,21 }. Since |N r [v] ∩ M | ≤ r for each vertex v ∈ V (G 1
) and for every integer r ≥ 1, so M 1 is a multipacking of size 5. Then Proof. As mentioned before, 

B i = G k [{b i,j : 1 ≤ j ≤ 21}], 1 ≤ i ≤ 2. So, B 1 and B 2 are two blocks in G 2 which are isomorphic to G 1 . Let M be a multipacking B i B i-1 B i+1 G k b i,2 b i,1 b i,3 b i,4 b i,5 b i,6 b i,7 b i,8 b i,9 b i,
V (B 1 ) ∪ V (B 2 ) = V (G 2 ) and V (B 1 ) ∩ V (B 2 ) = ϕ, so M 1 ∩ M 2 = ϕ and |M | = |M 1 | + |M 2 |. Therefore, 9 ≤ |M | = |M 1 | + |M 2 | ≤ 10. So, 9 ≤ |M | ≤ 10.
We establish this lemma by using contradiction on |M |. In the first step, we prove that if |M 1 | = 5, then the particular vertex b 1,21 ∈ M 1 . Using this, we can show that |M 2 | ≤ 4. In this way we show that |M | ≤ 9.

For the purpose of contradiction, we assume that |M | = 10. So, |M 1 |+|M 2 | = 10, and also

|M 1 | ≤ 5, |M 2 | ≤ 5. Therefore, |M 1 | = |M 2 | = 5. Claim 4.1. If |M 1 | = 5, then b 1,21 ∈ M 1 . Proof of claim. Suppose b 1,21 / ∈ M . Let S = {b 1,7 , b 1,14 }, S 1 = {b 1,r : 1 ≤ r ≤ 6}, S 2 = {b 1,r : 8 ≤ r ≤ 13}, S 3 = {b 1,r : 15 ≤ r ≤ 20}. If u, v ∈ S t , then d(u, v) ≤ 2,
this holds for each t ∈ {1, 2, 3}. So, by Lemma 1, u, v together cannot be in a multipacking. Therefore

|S t ∩ M 1 | ≤ 1 for t = 1, 2, 3 and |S ∩ M 1 | ≤ |S| = 2. Now, 5 = |M 1 | = |M 1 ∩ [V (G 1 ) \ {b 1,21 }| = |M 1 ∩ (S ∪ S 1 ∪ S 2 ∪ S 3 )| = |(M 1 ∩ S) ∪ (M 1 ∩ S 1 ) ∪ (M 1 ∩ S 2 ) ∪ (M 1 ∩ S 3 )| ≤ |M 1 ∩ S| + |M 1 ∩ S 1 | + |M 1 ∩ S 2 | + |M 1 ∩ S 3 | ≤ 2 + 1 + 1 + 1 = 5. Therefore, |S t ∩ M 1 | = 1 for t = 1, 2, 3 and |S ∩ M 1 | = 2, so b 1,7 , b 1,14 ∈ M 1 . Since |S 2 ∩ M 1 | = 1, there exists w ∈ S 2 ∩ M 1 . Then N 2 [b 1,10 ] contains three vertices b 1,7 , b 1,14 , w of M 1 , which is not possible. So, this is a contradiction. Therefore, b 1,21 ∈ M 1 . ◁ Claim 4.2. If |M 1 | = 5, then |M 2 | ≤ 4. Proof of claim. Let S ′ = {b 2,14 , b 2,21 }, S 4 = {b 2,r : 1 ≤ r ≤ 6}, S 5 = {b 2,r : 8 ≤ r ≤ 13}, S 6 = {b 2,r : 15 ≤ r ≤ 20}. By Lemma 1, |S t ∩ M 2 | ≤ 1 for t = 4, 5, 6
and also p ̸ = q and p, q ∈ {1, 2, 3, . . . , k}. Since | M | > 9k, so by the Pigeonhole principle there exists a number j ∈ {1, 2, 3, . . . , k} such that | M ∩ Bj | > 9. Since M ∩ Bj is a multipacking of Bj , so mp( Bj ) > 9. But Bj ∼ = G 2 and mp(G 2 ) = 9 by Lemma 4, so mp( Bj ) = 9, which is a contradiction. Therefore, mp(G 2k ) = 9k. □ R. C. Brewster and L. Duchesne [START_REF] Brewster | Broadcast domination and fractional multipackings[END_REF] introduced fractional multipacking in 2013 (also see [START_REF] Teshima | Multipackings in graphs[END_REF]). Suppose G is a graph with V (G) = {v 1 , v 2 , v 3 , . . . , v n } and w : V (G) → [0, ∞) is a function. So, w(v) is a weight on a vertex v ∈ V (G). Let w(S) = u∈S w(u) where S ⊆ V (G). We say w is a fractional multipacking of G, if w(N r [v]) ≤ r for each vertex v ∈ V (G) and for every integer r ≥ 1.

|S ′ ∩ M 2 | ≤ |S ′ | = 2. Observe that, if S 4 ∩M 2 ̸ = ϕ, then b 2,7 / ∈ M 2 (i.e. if b 2,7 ∈ M 2 , then S 4 ∩M 2 = ϕ). [Suppose not, then S 4 ∩ M 2 ̸ = ϕ and b 2,7 ∈ M 2 , so, there exists u ∈ S 4 ∩ M 2 . Then N 2 [b 2,3 ] contains three vertices b 1,21 , b 2,7 , u of M , which is not possible. This is a contradiction]. Suppose S 4 ∩ M 2 ̸ = ϕ, then b 2,7 / ∈ M 2 . Now, 5 = |M 2 | = |M 2 ∩ [V (B 2 ) \ {b 2,7 }]| = |M 2 ∩(S ′ ∪S 4 ∪S 5 ∪S 6 )| = |(M 2 ∩S ′ )∪(M 2 ∩S 4 )∪(M 2 ∩S 5 )∪(M 2 ∩S 6 )| ≤ |M 2 ∩ S ′ | + |M 2 ∩ S 4 | + |M 2 ∩ S 5 | + |M 2 ∩ S 6 | ≤ 2 + 1 + 1 + 1 = 5. Therefore |S t ∩ M 2 | = 1 for t = 4, 5, 6 and |S ′ ∩ M 2 | = 2. Since |M 2 ∩ S 6 | = 1, so there exists u 1 ∈ M 2 ∩ S 6 . Then N 2 [b 2,17 ] contains three vertices b 2,14 , b 2,21 , u 1 of M 2 , which is not possible. So, this is a contradiction. Suppose S 4 ∩ M 2 = ϕ, then either b 2,7 ∈ M 2 or b 2,7 / ∈ M 2 . First consider b 2,7 / ∈ M 2 , then 5 = |M 2 | = |M 2 ∩ (S ′ ∪ S 5 ∪ S 6 )| = |(M 2 ∩ S ′ ) ∪ (M 2 ∩ S 5 ) ∪ (M 2 ∩ S 6 )| ≤ |M 2 ∩ S ′ | + |M 2 ∩ S 5 | + |M 2 ∩ S 6 | ≤ 2 + 1 + 1 = 4. So, this is a contradiction. And if b 2,7 ∈ M 2 , then 5 = |M 2 | = |M 2 ∩ (S ′ ∪ S 5 ∪ S 6 ∪ {b 2,7 })| = |(M 2 ∩ S ′ ) ∪ (M 2 ∩ S 5 ) ∪ (M 2 ∩ S 6 ) ∪ (M 2 ∩ {b 2,7 })| ≤ |M 2 ∩ S ′ | + |M 2 ∩ S 5 | + |M 2 ∩ S 6 | + |M 2 ∩ {b 2,7 }| ≤ 2 + 1 + 1 + 1 = 5. Therefore |S t ∩ M 2 | = 1 for t = 5, 6 and |S ′ ∩ M 2 | = 2. Since |M 2 ∩ S 6 | = 1,
The fractional multipacking number of G is the value max w w(V (G)) where w is any fractional multipacking and it is denoted by mp f (G). A maximum fractional multipacking is a fractional multipacking w of a graph G such that w(V (G)) = mp f (G). If w is a fractional multipacking, we define a vector y with the entries

y j = w(v j ). So, mp f (G) = max{y.1 : yA ≤ c, y j ≥ 0}.
So, this is a linear program which is the dual of the linear program min{c.x :

Ax ≥ 1, x i,k ≥ 0}. Let, γ b,f (G) = min{c.x : Ax ≥ 1, x i,k ≥ 0}.
Using the strong duality theorem for linear programming, we can say that

mp(G) ≤ mp f (G) = γ b,f (G) ≤ γ b (G). Lemma 6. If k is a positive integer, then mp f (G k ) ≥ 5k.
Proof. We define a function w : for each i ∈ {1, 2, 3, . . . , k} (Fig. 7). So, w(G k ) = 5k. We want to show that w is a fractional multipacking of G k . So, we have to prove that w(N r [v]) ≤ r for each vertex v ∈ V (G k ) and for every integer r ≥ 1. We prove this statement using induction on r. It can be checked that w(N r [v]) ≤ r for each vertex v ∈ V (G k ) and for each r ∈ {1, 2, 3, 4}. Now assume that the statement is true for r = s, we want to prove that it is true for r 

V (G k ) → [0, ∞)
= s + 4. Observe that, w(N s+4 [v] \ N s [v]) ≤ 4, ∀v ∈ V (G k ). Therefore, w(N s+4 [v]) ≤ w(N s [v])+4 ≤ s+4. So, the statement is true. So, w is a fractional multipacking of G k . Therefore, mp f (G k ) ≥ 5k. □ Lemma 7. If k is a positive integer, then mp f (G k ) = γ b (G k ) = 5k. Proof. Define a broadcast f on G k as f (b i,j ) =      2 if 1 ≤ i ≤ k and j = 6, 17 1 if 1 ≤ i ≤ k

3 and d+1 3 ≤ 2 . 1 . 3 ≤

 33213 mp(G).Theorem 2 ([START_REF] Erwin | Cost domination in graphs[END_REF][START_REF] Teshima | Broadcasts and multipackings in graphs[END_REF]). If G is a connected graph of order at least 2 having radius r, diameter d, multipacking number mp(G), broadcast domination number γ b (G) and domination number γ(G), then mp(G) ≤ γ b (G) ≤ min{γ(G), r}. Theorem 3 ([13]). If G is a connected chordal graph with radius r and diameter d, then 2r ≤ d + Proposition If G is a connected chordal graph, then γ b (G) ≤ 3 2 mp(G) . Proof. From Theorem 1, d+1 mp(G) which implies that d ≤ 3 mp(G) -1. Moreover, from Theorem 2 and Theorem 3, γ b

m 1 S 3 2Fig. 1 : 1 F m 1 m 2 3 Fig. 2 : 2 Example 2 Example 3

 131132223 Fig. 1: S 3 is a connected chordal graph with γ b (S 3 ) = 2 and mp(S 3 ) = 1

Theorem 4 .

 4 The difference γ b (G)-mp(G) can be arbitrarily large for connected chordal graphs. Consider the graph G 1 as in Fig 4. Let B 1 and B 2 be two isomorphic copies of G 1 . Join b 1,21 of B 1 and b 2,1 of B 2 by an edge (Fig.

Fig. 3 : 5 Fig. 4 :

 354 Fig. 3: H is a connected chordal graph with γ b (H) = 6 and mp(H) = 4

9 Fig. 5 :

 95 Fig. 5: Graph G 2 with γ b (G 2 ) = 10 and mp(G 2 ) = 9. M = {m i : 1 ≤ i ≤ 9} is a multipacking of size 9.

5 = 2 ) = 9 .

 529 |M 1 | ≤ |M |. So, |M | = 5. Therefore, mp(G 1 ) = 5. □ So, now we have mp(G 1 ) = 5. Using this fact we prove that mp(G Lemma 4. mp(G 2 ) = 9.

10 b i, 11 b i, 12 b i,13 b i,14 b i, 15 b i, 16 b 1 Fig. 6 of G 2

 1011121516162 Fig.6

9 .

 9 so there exists u 2 ∈ M 2 ∩ S 6 . Then N 2 [b 2,17 ] contains three vertices b 2,14 , b 2,21 , u 2 of M 2 , which is not possible. So, this is a contradiction. So, |M 1 | = 5 =⇒ |M 2 | ≤ 4. ◁ Recall that for contradiction, we assume |M | = 10, which implies |M 2 | = 5. In the proof of the above claim, we established |M 2 | ≤ 4, which in turn contradicts our assumption. So, |M | ̸ = 10. Therefore, |M | = 9. □ Notice that graph G 2k has k copies of G 2 . Moreover, we have mp(G 2 ) = If mp(G 2k ) > 9k, then we will use the Pigeonhole principle to show that mp(G 2k ) = 9k. Lemma 5. mp(G 2k ) = 9k, for each positive integer k. Proof. For k = 1 it is true by Lemma 4. Moreover, we know mp(G 2k ) ≥ 9k by Lemma 2. Suppose k > 1 and assume mp(G 2k ) > 9k. Let M be a multipacking of G 2k such that | M | > 9k. Let Bj be a subgraph of G 2k defined as Bj = B 2j-1 ∪B 2j where 1 ≤ j ≤ k. So, V (G 2k ) = k j=1 V ( Bj ) and V ( Bp ) ∩ V ( Bq ) = ϕ for all

1 3

 1 where w(b i,1 ) = w(b i,6 ) = w(b i,7 ) = w(b i,8 ) = w(b i,13 ) = w(b i,14 ) = w(b i,15 ) = w(b i,20 ) = w(b i,21 ) = and w(b i,4 ) = w(b i,11 ) = w(b i,18 ) = 2 3

and j = 12 0 otherwise .Fig. 7 SoCorollary 2 . 9 . 3 .

 otherwise7293 Fig. 7

mp(G) and there is a polynomial-time algorithm to construct a multipacking of G of size at least 2 mp(G)-1
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