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ABSTRACT

During each cell division, tens of thousands of DNA
replication origins are co-ordinately activated to en-
sure the complete duplication of the human genome.
However, replication fork progression can be chal-
lenged by many factors, including co-directional and
head-on transcription-replication conflicts (TRC).
Head-on TRCs are more dangerous for genome in-
tegrity. To study the direction of replication fork
movement and TRCs, we developed a bioinformat-
ics toolkit called OKseqHMM (https://github.com/CL-
CHEN-Lab/OK-Seq, https://doi.org/10.5281/zenodo.
7428883). Then, we used OKseqHMM to analyse a
large number of datasets obtained by Okazaki frag-
ment sequencing to directly measure the genome-
wide replication fork directionality (RFD) and to ac-
curately predict replication initiation and termination
at a fine resolution in organisms including yeast,
mouse and human. We also successfully applied
our analysis to other genome-wide sequencing tech-
niques that also contain RFD information (e.g. eS-
PAN, TrAEL-seq). Our toolkit can be used to predict
replication initiation and fork progression direction
genome-wide in a wide range of cell models and
growth conditions. Comparing the replication and
transcription directions allows identifying loci at risk
of TRCs, particularly head-on TRCs, and investigat-
ing their role in genome instability by checking DNA
damage data, which is of prime importance for hu-
man health.

INTRODUCTION

The faithful transmission of genetic information to daugh-
ter cells is crucial for maintaining genome stability. In hu-
mans, at each cell division, tens of thousands of replication
origins need to be co-ordinately activated to ensure the com-
plete duplication of the >6 billion base pairs (bp) of the hu-

man genome. However, cells are routinely exposed to en-
dogenous and exogenous stresses that might alter the DNA
replication program, increasing the risk of some diseases.
For instance, replication stress-induced genome alterations
can represent an important early cause of cancer (1).

The progression of replication forks can be challenged
by many factors, including transcription-replication con-
flicts (TRC) due to the fact that the replication and tran-
scription machineries share the same DNA template. TRCs
can be co-directional or head-on, and the latter has been
shown to be more dangerous for genome integrity (2). Pre-
vious bioinformatic analyses revealed that in many differ-
ent species, from bacteria (3) to humans (4,5), the tran-
scription of most genes is co-directional with the replication
forks to avoid head-on TRCs. In 2016, Petryk et al. showed
that replication fork directionality (RFD) can be directly
measured genome-wide by sequencing Okazaki fragments
(OK-seq) (6), which are present only on the lagging repli-
cating strand. This method allows the quantitative analy-
sis and the accurate detection of replication initiation and
termination zones. The analysis of OK-seq data from hu-
man cells showed a significant co-directionality of repli-
cation fork progression and transcription of active genes
(6).

Other techniques also provide genome-wide RFD infor-
mation, such as polymerase (Pol) usage sequencing (Pu-
seq) (7), enrichment and Sequencing Protein-Associated
Nascent DNA (eSPAN) (8), Sister Chromatids After Repli-
cation by DNA sequencing (SCAR-seq) (9), Genome-
wide Ligation of 3′- hydrOxy Ends sequencing (GLOE-
seq) (10), and Transferase-Activated End Ligation sequenc-
ing (TrAEL-seq) (11). Pu-seq identifies embedded ribonu-
cleotides in Schizosaccharomyces pombe polymerase mu-
tants to determine the distribution of Pol ε (that replicates
the leading strand) and Pol � (that replicates the lagging
strand), thus measuring the proportion of fork movement
in the genome (7). The eSPAN (8) and SCAR-seq (9) meth-
ods map strand-specific proteins and/or histone modifica-
tion deposition on replicating DNA strands. Therefore, the
obtained genome-wide data on the association of proteins
(or histone modifications) specifically with the leading (or
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lagging) strand can be used also to determine the replica-
tion fork directionality. GLOE-seq (10) and TrAEL-seq (11)
were originally developed to map 3′ ends of single-strand
DNA and/or resected double-strand DNA, while they can
also indirectly reveal the fork directionality based on these
structures associated with canonical and/or reversed repli-
cation forks.

Moreover, in recent years, strong evidence has shown
that replication- and transcription-related mutational
strand asymmetries are common in cancer (12). For
instance, APOBEC-associated mutations (also called
APOBEC mutation signatures) have been detected in
up to 15% of all sequenced human tumour samples and
contribute to 50% of all mutations in many tumours.
APOBEC-associated mutations preferentially occur on
the lagging-strand template during DNA replication,
and are strongly associated with mismatch repair and
transcription-coupled damage repair in cancer (13–17).
Furthermore, N6-methyladenosine modifications are
among the most prevalent internal modifications in
mammalian mRNAs and are implicated in both physio-
logical and pathological processes. Importantly, aberrant
regulation/expression of N6-methyladenosine and of its
modulators (e.g. methyltransferase-like 3) is a common
feature in various tumour types (18–20). It has been shown
that methyltransferase-like 3 and N6-methyladenosine
could promote homologous recombination-mediated
repair of double-strand breaks by modulating DNA-RNA
hybrid (R-loop) accumulation (21). Importantly, we and
others have recently demonstrated that R-loops frequently
accumulate at transcription termination sites of actively
transcribed genes with a high frequency of head-on
TRCs (22,23). Therefore, systematically unveiling DNA
replication features genome-wide is essential for human
health.

However, to date, no bioinformatic tool has been de-
veloped to analyse RFD data and to determine the repli-
cation initiation and termination positions genome-wide,
although several methods have been previously described
for OK-seq data analysis, for instance, the Hidden Markov
Model (HMM) to analyse human OK-seq data (6) and ori-
gin efficiency metric (OEM) for yeast OK-seq data (24,25).
Therefore, to set up a uniform framework for OK-seq data
(and related data) analysis, we developed an integrative
bioinformatics toolkit, called OKseqHMM, to directly ob-
tain RFD profiles genome-wide and at high resolution.
In addition to the fork progression direction, this toolkit
also gives information on replication initiation/termination
zones and on long-travelling unidirectional forks using an
algorithm based on HMM, and calculates the OEM to vi-
sualize the transition of RFD profile at multiple scales. It
then generates the average metagene profiles and heatmaps
to visualize the RFD/OEM distribution along the regions
of interest (Figure 1). Using OKseqHMM and a large num-
ber of publicly available OK-seq datasets (13 in total) from
S. cerevisiae, mouse and human cells, we successfully ob-
tained high-resolution (∼1 kb for mouse and human cells
and ∼50 bp for yeast) RFD profiles and accurate calling
of the corresponding replication initiation and termination
zones genome-wide.

MATERIALS AND METHODS

The OKseqHMM toolkit is an R package for profiling OK-
seq data to study the genome-wide replication program.
This multi-function toolkit accepts OK-seq data from the
original mapping bam file(s) for matrix counting, RFD cal-
culation, initiation/termination zone calling, and average
metagene profile/heatmap creation.

The OKseqHMM function measures RFD and predicts repli-
cation initiation/termination zones

OKseqHMM is the main function of this toolkit and in-
volves several important OK-seq data analysis steps (Figure
1). The function transforms OK-seq data into RFD pro-
files for a first visualization (e.g. with genomic visualiza-
tion browsers, such as IGV). Then, it can accurately iden-
tify replication initiation zones (IZs, upward transitions in
the RFD profile), termination zones (TZs, downward tran-
sitions in the RFD profile), and intermediate states (flat
RFD profile) along the genome using an HMM. The OKse-
qHMM function checks the input (i.e. aligned bam files) to
determine whether they are single- or paired-end sequenc-
ing data, then automatically splits reads into Watson and
Crick strands and calculates the RFD. For paired-end se-
quencing data, users can select one of the three following
modes: (i) using all unique mapped reads, (ii) using only
paired-mapped reads, or (iii) using only properly paired-
mapped reads.

For each window, RFD was computed as follows:

RF D = C − W
C + W

where C and W are the number of reads mapped to the
Crick and Watson strands, respectively. They reveal the pro-
portion of rightward- and leftward- moving forks, respec-
tively, within each window (e.g. 1 kb window was used for
OK-seq data of human cells). As the total amount of repli-
cation events on both strands should be constant across the
genome, the difference between strands was normalized to
the total read count to account for variations in read depth
due to, for instance, copy number variations, sequence bias.
RFD ranges from –1 (100% leftward-moving forks) to +1
(100% rightward-moving forks), and 0 means equal propor-
tions of leftward- and rightward-moving forks. Data ob-
tained from biological replicates produced RFD profiles
that strongly correlated with each other: Pearson R = 0.92,
P < 10−15 (t-test) for HeLa cells and R = 0.93, P < 10−15 for
GM06990 cells. Similar correlations were observed between
RFD profiles obtained following EdU or EdC labelling
(6).

A four-state HMM is used in OKseqHMM to detect,
within the RFD profiles, the ascending, descending and flat
segments that represent regions of predominant initiation
(‘Up’ state), predominant termination (‘Down’ state), and
constant RFD (‘Flat1’ and ‘Flat2’ states), respectively (6)
(Figure 2A). In the HMM segmentation process, the RFD
values were computed within 15 kb (for human OK-seq
data) sliding windows (by default, stepped by 1 kb across
the autosomes). The HMM used the �RF D values between
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Figure 1. Schematic presentation of the data analysis pipeline in the OKseqHMM toolkit. Raw sequencing data are pre-processed into aligned files with the
bioinformatics tools indicated in blue (Pre-processing panel). The middle panel shows the major functions of the OKseqHMM toolkit. The first function
(OKseqHMM) checks the input aligned bam files to determine whether they are single- or paired-end sequencing data, and then automatically splits the
reads into Watson and Crick strands and computes the replication fork directionality (RFD) (OKseqHMM panel). By default, the calculation is performed
within 1 kb adjacent windows (recommended for human cells) and then smoothed into 15 kb sliding windows with 1 kb step. These parameters can be
easily adjusted based on the nature of the data. Different replication features, i.e. initiation zones (IZ), two intermediate states and termination zones (TZ),
are predicted using an HMM algorithm (see the graphic presentation of the four HMM states and their dynamic transition scheme). The second function
(OKseqOEM) uses the reads on Watson and Crick strands to generate origin efficiency metrics (OEM) at multiple scales to visualize the RFD transition.
The last function allows users to generate an average metagene profile and heatmap to analyse the RFD and OEM distributions around the genes/regions
of interest. Results can be visualized in genomic visualization browsers (such as IGV), as shown in the right panel.

adjacent windows, in which � RF Dn = RF Dn+1−RF Dn
2 for the

window n. By default, windows with < 30 reads on both
strands were masked. The �RF D values (between –1 and
1) were divided into five quantiles. Then, the HMM package
of R (http://www.r-project.org/) was used to perform the
HMM prediction with probabilities of transition and emis-
sion that are manually defined using the training dataset
(Figure 2B). The same transition and emission probabili-
ties used in our previous study (6) were set as default values
and used in all OK-seq data analyses in the current study.
Two representative examples of human RFD profiles with
the segments of IZs, TZs and two Flat states obtained by
OKseqHMM are shown in Figure 2C, D. The choice of a
15 kb sliding window was based on a compromise between
spatial resolution and reproducibility of ascending segment
detection among biological replicates. Lastly, the efficiency
of the detected ascending segments (i.e. IZs) was estimated
as follows:

� RF Dsegment = RF Dend − RF Dstar t

2
where RFDstart and RFDend correspond to the RFD values
computed in 5 kb windows around the left and right extrem-
ities of each segment, respectively.

The OKseqOEM function generates the multi-scale RFD
transition profiles

To investigate origin efficiency (i.e. �RF D), OkseqHMM
toolkit includes a second function (OKseqOEM) to visu-
alize this directly at multiple scales (Figure 1). As defined

in the previous publication on yeast OK-seq data analysis
(24), the densities of Okazaki fragments on the Watson and
Crick strands were compared within four fixed-size sliding
bins, which are strand-specific 10 kb quadrant values, to
calculate the OEM as follows: OEM = WL

WL+CL
− WR

WR+CR
.

WL and WR measure the read density in the left and right
quadrants on the Watson strand, respectively, while CL and
CR measure these densities on the Crick strand. Their values
range from –1 to 1 for each base in the genome. The highest
OEM scores represent replication origins, whereas the low-
est scores represent regions of replication termination. In
addition, the different amplitudes of positive OEM values
(from 0 to 1) describe the origin firing efficiency. Similarly,
the degree of termination at each position can be measured
from 0 to –1.

Here, OEM calculation was extended within a fixed win-
dow size to multiple scales to better fit OK-seq data analysis
to other organisms, such as human cells:

OE Mi f or l i st[n] =
(
Wi+l i st[n] − Wi

)

(
Wi+l i st[n] − Wi

) + (
Ci+l i st[n] − Ci

)

where list[n] can be defined by users as a list of windows
(e.g. [1, 10, 20, 50, 100]), and i ranges from 1 to the total
length of the data – list[n]; C and W correspond to the
number of reads mapped on the Crick and Watson strands,
respectively, within the corresponding windows.

Using the two bam files of reads within the Watson and
Crick strands generated by the OKseqHMM function and
the annotation coordinates, the OKseqOEM function can
automatically calculate the OEM profiles at different de-
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Figure 2. Schematic presentation of the HMM algorithm for initiation and termination zone detection. (A) The 4-state HMM model used in the segmen-
tation process: Up, regions of predominant initiation (IZ); Down, regions of predominant termination (TZ); Flat1 and Flat2, two intermediate transition
states. (B) Default state transition probability (between states) and emission probabilities (probabilities of each state within five quantiles of the �RF D
values) used in OKseqHMM (see Materials and Methods for detail). The probability matrixes were colour-coded based on their values (higher probability
values are closer to red). (C and D) Examples of RFD profiles in chromosome 1 of human HeLa cells with the corresponding IZs, TZs and two Flat states
identified by OKseqHMM. Each point on the RFD profile gives the RFD value calculated within each 1 kb adjacent window, and the windows with
positive and negative RFD values are shown in red and blue, respectively.

fined scales (e.g. from 1 kb to 1 Mb for human cells). This
allows directly visualizing the replication transition states
and also validating the IZs identified by OKseqHMM and
then double-checking the IZ size and boundary.

The average metagene profile/heatmap visualizes the RFD
distribution in specific genomic regions

To analyse RFD distributions around and/or among ge-
nomic regions of interest (e.g. the identified IZs or an-
notated genes), an additional module was developed for
metadata analysis. Using the gene coordinates (or IZs)
and the RFD and/or OEM big wiggle files generated
with the OKseqHMM and/or OKseqOEM functions,
the corresponding profiles/heatmaps can be easily gener-
ated with the computeMatrix and plotProfile/plotHeatmap
functions of deepTools (https://deeptools.readthedocs.io/
en/develop/index.html) (26) by defining the genomic dis-

tances of interest for the upstream and downstream borders
(Figure 1).

HeLa S3 cell OK-seq data generation

HeLa S3 cells were cultured in DMEM high-glucose
medium (ThermoFisher) with 10% fetal calf serum (Eu-
robio Scientific) OK-seq libraries were generated starting
from exponentially growing cells as previously described
(6,27). Libraries were sequenced on an Illumina NextSeq
500 sequencing system using Paired-end (75 cycles).

RESULTS

Genome-wide replication fork directionality and origin detec-
tion in yeast

To evaluate the toolkit performance, first, the available yeast
OK-seq data were used (28). OKseqHMM generated the
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RFD profile at a fine resolution (50 bp), the OEM pro-
files at different scales (from 50 bp to 25 kb), and a pre-
cise IZ/origin calling (Figure 3A). The RFD profiles ob-
tained from the two biological replicates were highly corre-
lated (Pearson R = 0.99, P < 10−15) (Supplementary Figure
S1A). About 350 IZs robustly identified by OKseqHMM
in both replicates were retained. Their length ranged from
0.5 to 5.5 kb (mean length: 1.5 kb) (Figure 3B, Table 1).
To check the accuracy of the IZ calling results, the OK-seq
IZs were compared with the known yeast origins [i.e. au-
tonomously replicating sequence (ARS) from OriDB 2.1.0
(29)]. Up to 70% of the detected IZs were at ≤ 2 kb distance
(between centres) from a known ARS (Supplementary Fig-
ure S1B). As expected, OK-seq IZs correlated better with
confirmed ARSs: 185, 36, and 22 IZs overlapped (i.e. dis-
tance between centres ≤2 kb) with confirmed (median dis-
tance 0.27 kb), likely (median distance 0.48 kb), and dubi-
ous (median distance 0.69 kb) origins, respectively (Figure
3C). When all OriDB origins were considered, instead of
only the overlapping ones, the distances between OK-seq
IZ centres and the closest OriDB origins of each class were
still significantly smaller (median distance: 0.41, 1.13 and
1.77 kb for confirmed, likely, and dubious origins, respec-
tively) than when using randomly simulated genomic posi-
tions (Figure 3D).

Next, the RFD profiles and identified IZs were precisely
compared in the two biological replicates to evaluate the
performance and reproducibility of the results obtained
with OKseqHMM. Although the RFD profiles were very
close to each other, the IZs identified in each replicate were
not identical (Supplementary Figures S1A and C) due to
the local variation in RFD profiles. Amongst the IZs iden-
tified in both replicates, ∼60% overlapped with the OriDB
confirmed origins (Supplementary Figure S1C), suggesting
that they were bona fide origins. Conversely, only a small
percentage of IZs detected only in one replicate (called here
specific IZs) overlapped with OriDB origins (29% and 40%
for replicate 1 and 2, respectively) indicating that they might
contain a significant amount of false positives. As expected,
IZs that overlapped with OriDB origins displayed a nice
RFD transition around their centres, particularly those ro-
bustly detected in both replicates (Supplementary Figure
S2A). IZs identified in both replicates, but not overlapping
with OriDB origins, also presented a strong RFD transition
(Supplementary Figure S2B), with negative RFD on the
left and positive RFD on the right side, respectively. Con-
versely, replicate-specific IZs not overlapping with OriDB
origins showed a modest level of local RFD transition and
a flat RFD profile nearby, again suggesting that they might
not be bona fide origins. Lastly, OriDB origins that did
not overlap with OK-seq IZs showed almost flat RFD pro-
files (Supplementary Figure S2C). This suggests that they
might not have been active in the yeast cells that were used
to generate the OK-seq data because some origins can be
growth-condition specific (28). To determine whether an ad-
ditional parameter could be found to discriminate between
good and noisy IZs, firing efficiency (i.e. �RF D), size, and
probability of confidence of each IZ (obtained from the
HMM estimation) were compared (Supplementary Figure
S2D–F). As expected, firing efficiency was higher, IZ size
was larger, and confidence of detection was higher for IZs T
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Figure 3. Analysis of yeast OK-seq data by OKseqHMM. (A) RFD profile calculated at the 50 bp resolution with the corresponding IZs identified by
OKseqHMM that are highly correlated with the confirmed yeast ARS from OriDB (29). The RFD profile is like in Figure 2C, but with a 50 bp resolution
(instead of 1 kb). The lower part of the panel shows the OEM profiles calculated from the 50 bp to the 25 kb scale. The windows with positive and negative
OEM values are shown in red and blue, respectively. (B) Length distribution of the detected OK-seq IZs. (C) Venn diagram showing the overlap of OK-seq
IZs with all the known yeast origins (ARS) from OriDB clustered in three classes (confirmed, likely, and dubious). Overlap means that the closest distance
between the centres of the IZ and ARS is <2 kb. Note that not all confirmed OriDB origins overlapped with OK-seq IZs because all origins might not be
active in the culture condition and/or yeast strain used for the OK-seq experiment. Further comparison with origins identified in datasets obtained with
other techniques can be found in Figure 7B. (D) Boxplot showing the distribution (in red) of distances between the centre of an IZ detected by OKseqHMM
and the centre of the closest origin from OriDB (grouped in three classes). Such distances are much smaller than the distances between OriDB origins and
the random simulation control (in black), as indicated by the Wilcoxon rank sum test; **P < 10−2, ***P < 10−3, ****P < 10−4.
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that overlapped with confirmed origins and that were iden-
tified in both replicates than for replicate-specific IZs non-
overlapping with confirmed origins. However, as the distri-
butions of all these three parameters for the IZs associated
with confirmed ARSs and the replicate-specific ones not as-
sociated with confirmed ARSs overlapped, it was not pos-
sible to identify a cut-off to select only good IZs. In con-
clusion, selecting the IZs that are reproducibly identified in
biological replicates will help to improve the specificity, al-
though this will lead to a slight loss of sensitivity.

Genome-wide detection of replication fork directionality and
initiation zones using OK-seq data from different human cell
lines

Then, the OKseqHMM function was used to analyse pre-
viously published OK-seq data from HeLa MRL2 cells (6)
and new OK-seq data from HeLa S3 cells, a widely used
Encode Tier 2 cell line. The RFD profiles of the two HeLa
cell lines were very similar (R = 0.86, P < 10−15), suggest-
ing similar replication programs and IZ positions (Figure
4A). The correlation between HeLa cell lines was slightly
lower than the correlation between the HeLa MRL2 cell
biological replicates (R = 0.92, P < 10−15) (6), suggesting
that the differences between HeLa cell lines were true bi-
ological differences and not only technical variations. In
each HeLa cell line, ∼10 000 IZs were identified (Table
1), 67% of which were common between cell lines (Figure
4B). IZ conservation was even higher in early-replicating
regions: 80% of early IZs were shared between HeLa cell
lines (Figure 4B). As expected, these shared IZs showed
higher firing efficiency and larger size than IZs specific for
each dataset (Supplementary Figure S3A–D). It should be
noted that for cell-line specific IZs, the RFD transitions
were much stronger in the mean RFD profile of the cell
line in which such IZs were detected than in the other
cell line. However, the RFD profiles in the other cell line
were not completely flat, suggesting that some IZs with
low firing efficiency were not detected with our current pa-
rameter setting. Interestingly, both shared and cell-specific
IZs displayed a high probability of confidence, suggesting
a low false positive detection rate (Supplementary Figure
S3E).

A very striking difference between human and yeast RFD
data was that the size of upward transitions of RFD, there-
fore the IZ length, ranged between 10 and 50 kb in human
cells (∼30 kb on average, which is ∼20-fold larger than the
IZ length in yeast), unlike the sharp 1 kb upward transi-
tion of RFD at fixed yeast origins (Figure 4A, Table 1). The
OEM profile heatmaps, computed around IZs at different
scales, showed the strongest positive signals at the corre-
sponding scale: 10 kb scale for small IZs (<10 kb), 20 kb
scale for medium IZs (20–50 kb) and 50 or 100 kb for large
IZs (>50 kb) (Figure 4C). This confirmed that RFD tran-
sitions are associated with the detected IZ length, and also
supports the difference between yeast and human OK-seq
patterns and the accuracy of IZ detection by OKseqHMM.

It has been shown that replication initiation regions are
enriched in intergenic regions between active genes (6). To
describe how our toolkit can contribute to the analysis of
the correlation between DNA replication and gene tran-

scription, the average expression profiles and the corre-
sponding heatmaps (RNA-seq and GRO-seq) were anal-
ysed for all detected IZs sorted by length. This confirmed
that gene transcription activity was higher in the area im-
mediately surrounding the IZs, and much lower within IZs
(Figure 5A). To further compare RFD distribution and
gene transcription, the average RFD profiles were calcu-
lated as well as the corresponding heatmaps around tran-
scription start sites (TSS) and transcription termination
sites (TTS) of 16 336 active genes (RPKM > 1) in HeLa
cells with an extension ±50 kb upstream or downstream
(Figure 5B). This clearly highlighted frequent replication
initiation (upward transition of RFD) in the regions up-
stream of TSS and downstream of TTS. This leads to a co-
directionality between replication and transcription at TSS
and a higher risk of head-on TRC at TTS, in agreement with
previous publications (6,22). As illustrated also in the study
by Promonet et al, combining RFD profiles obtained from
OK-seq data with other genomic data (e.g. gene transcrip-
tion, R-loops, replication fork stalling and DNA damage)
allowed us to show that fork pausing at TTS of highly ex-
pressed genes containing R-loops prevents head-on TRCs
and maintains genome integrity (22).

In addition to the OK-seq data of HeLa cell lines, the
OKseqHMM function was used to reanalyse publicly avail-
able OK-seq data from different human cell lines (6,27),
such as fibroblasts (IMR90), lymphoblastoid (GM06990)
and lymphoma cells (Raji, BL79, IARC385), leiomyosar-
coma cells (IB118, TLSE19), leukaemia cells (K562) and
erythroblasts (TF1) (Table 1, Figure 6). OKseqHMM gen-
erated high-quality cell type-specific RFD profiles and ro-
bust IZ calling for all datasets analysed. The average IZ
sizes in the different cell types were within the same range
(between 26 and 36 kb), demonstrating that it is a com-
mon feature of human cells. Conversely, the RFD profiles
were cell-type specific, although they were quite conserved
among cell lines in some origin-rich regions. The data ob-
tained for similar cell types or for cell lines with a similar
origin showed similar RFD profiles (Figure 6B). For in-
stance, the Pearson correlation R was 0.87 between the Raji
and BL79 cell lines (both derived from lymphoma samples)
and 0.79 between these cell lines and GM06990 human lym-
phoblastoid cells. Similar results were obtained when com-
paring the RFD transitions (i.e. OEM profiles) and the IZs
identified in the different cell types (Supplementary Figure
S4A and B). Approximately two-thirds of IZs were shared
between close cell types. This percentage decreased to 40–
50% for cell types of different origin (Supplementary Figure
S4B, bottom left). Comparison for the IZs located within
the constant early replicated regions defined in the study
by Marchal et al. (30) showed that ∼65% of early IZs were
common amongst different cell types, and frequently up to
80% between close cell types (Supplementary Figure S4B,
top right).

OKseqHMM to analyse the RFD profiles from other se-
quencing data

Besides OK-seq data, the OKseqHMM toolkit can be used
to compute the RFD profiles from sequencing data ob-
tained with other techniques. As a demonstration, our
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Figure 4. Analysis of HeLa cell OK-seq data by OKseqHMM. (A) Replication timing profile obtained by Repli-seq, RFD profiles and the corresponding
IZs detected in a publicly available HeLa MRL2 OK-seq dataset (6) and in OK-seq data of HeLa S3 cells generated in the current study, OEM profiles of
HeLa S3 cells at the 1 kb to 1 Mb scales, and transcription data provided by GRO-seq and RNA-seq along a ∼4 Mb region on chromosome 1. (B) Venn
diagrams showing that 67% of OK-seq IZs were shared by the two HeLa cell lines and up to 80% when only the early IZs were considered (i.e. replication
timing S50 <0.4). (C) Mean OEM profiles and OEM heatmaps (the colour scale is indicated on the right) around the HeLa S3 IZ centres at the indicated
scales (10, 20, 50 and 100 kb) sorted by the length of the detected IZs.
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Figure 5. OKseqHMM reveals the coordination between DNA replication and gene transcription. (A) Mean profiles and heatmaps of transcription activity
(RNA-seq and GRO-seq data) around the HeLa S3 OK-seq IZ centres. (B) Mean profile and heatmap of HeLa S3 RFD between the TSS and the TTS of
active genes with an extension of ±50 kb. The heatmap colour scales are indicated in each panel.

toolkit was tested using previously published eSPAN (8)
and TrAEL-seq (11) datasets. The RFD data computed
from the yeast TrAEL-seq data were very similar to
those obtained using OK-seq data (Figure 7A, R = 0.93,
P < 10−15). The RFD profile obtained using TrAEL-seq
data was of higher quality with less local noise compared
with the OK-seq-based RFD profile. This difference does
not seem to be explained by the higher coverage of the
TrAEL-seq data (∼2-fold more reads) compared with the
available OK-seq data. Indeed, TrAEL-seq data displayed
a lower local noise profile also after down-sampling to the
same coverage as OK-seq data (Figure 7A). The better RFD
profile obtained with TrAEL-seq data facilitated the detec-
tion of replication initiation regions in some cases. For ex-
ample, an IZ was identified in the TrAEL-seq RFD profile
at chrIV:1486452–1486950, but not in the OK-seq data due
to the higher local noise (Figure 7A). To further evaluate
the IZs detected with different techniques, the IZs identi-
fied with FORK-seq data (28) also were integrated. FORK-
seq is a nanopore sequencing method that allows mapping
replication initiation within single DNA molecules. Com-
parison of the TrAEL-seq IZs, OK-seq IZs, FORK-seq
IZs and yeast ARSs showed that 77% (271/348) of OK-

seq IZs and up to 89% (339/380) of TrAEL-seq IZs were
found within 2 kb from a known ARS. Moreover, 75%
(203/271) of OK-seq IZs associated with ARSs were de-
tected by TrAEL-seq, and ∼69% (186/271) of them were
found in FORK-seq data (Figure 7B). Notably, a small
percentage of initiation sites that were not associated with
OriDB origins were robustly detected by analysing OK-seq,
TrAEL-seq and FORK-seq data with our toolkit (Figure
7B, Supplementary Figure S5A-C). This supports the previ-
ous observation that replication initiation in yeast can also
occur at loci barely enriched in ARS consensus sequence
motifs, although with low frequency (28). Again, the IZs
identified in both OK-seq and TrAEL-seq datasets showed
higher firing efficiency and larger size than those identified
in only one dataset (Supplementary Figure S5D, E). Fi-
nally, OKseqHMM was used to compare OK-seq and eS-
PAN data (8) of mouse embryonic stem cells (mESC). How-
ever, due to the lower amount of reads in the eSPAN dataset,
the obtained RFD profiles were too noisy to perform a ro-
bust IZ calling, despite using a larger window size (e.g. 10
kb smoothing window instead of 1 kb window). This is ex-
plained by the fact that our detection method is read depth-
dependent. Nevertheless, the mean RFD profile obtained
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Figure 6. Comparison of the genome-wide RFD profiles of different human cell lines shows the cell type-specific replication program. (A) Cell type-specific
RFD profiles and the corresponding IZs detected in the indicated human cell lines. (B) Pairwise Pearson correlations between OK-seq RFD data (1 kb)
for the indicated human cell lines.
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Figure 7. Genome-wide RFD profiles obtained using TrAEL-seq and eSPAN datasets. (A) RFD profiles and the corresponding IZs (50 bp bin size) from
yeast OK-seq and TrAEL-seq datasets (11). The known yeast origins (ARS) were downloaded from OriDB. Arrows indicate two IZs (chrIV:1447102–
1448300, chrIV:1486452–1486950) identified in the TrAEL-seq dataset but not in the OK-seq dataset. (B) Venn diagram showing the overlap between
OK-seq IZs (n = 348), TrAEL-seq IZs (n = 380), FORK-seq initiation events (n = 4964), and known origins (ARS) from OriDB (n = 829); overlap means
that the closest distance between the centre of an IZ and of an ARS is <2 kb. When origins in one dataset overlapped with several origins in the other
datasets, only one number was provided with the following priority order: OK-seq > TrAEL-seq > OriDB > FORK-seq. It should be noted that there
are more origins unique to FORK-seq because this is a single-molecule technique that allows identifying also initiation events with very low frequency.
(C) Metagene average RFD profiles computed using the OK-seq and eSPAN datasets from mouse embryonic stem cells (8). The mean and standard error
bands are shown only for the eSPAN dataset because the standard error bands for the OK-seq dataset were too narrow to be seen.

with the eSPAN dataset was similar to the RFD profile ob-
tained with OK-seq mESC data around the IZs identified
in the OK-seq dataset (Figure 7C).

DISCUSSION

Genome-wide replication fork directionality data help to
understand many biological processes, such as TRCs,
replication-associated mutagenesis, replication couple epi-
genetic maintenance. Here, we presented OKseqHMM, a
comprehensive R package that analyses OK-seq data from
various cell types and species to generate and visualize
RFD and OEM profiles at high resolution and genome-
wide, as well as to generate the average profiles/heatmaps

of the regions/genes of interest. The toolkit also allows ac-
curately detecting replication initiation/termination zones
with an HMM algorithm. To our knowledge, this is the
first bioinformatics tool to handle and analyse RFD data
obtained from sequencing datasets generated using various
techniques. The toolkit is based on R, and should be easy to
use by bioinformaticians and also biologists (e.g. via Rstu-
dio).

We successfully used OKseqHMM to analyse available
OK-seq datasets from different species (yeast and mouse)
and also normal and cancer human cell lines (Table 1).
This toolkit is an important resource for many research
communities with different interests (e.g. DNA replication
programs, TRCs, replication-associated chromatin organi-
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zation, replication-associated mutations, genome instability
and cancer genomics). Importantly, besides OK-seq, many
new techniques have been developed to study DNA replica-
tion and to provide replication fork direction data. These in-
clude eSPAN and SCAR-seq to perform stranded sequenc-
ing of BrdU- or EdU-labelled nascent replicated DNA
associated with specific histone modifications, and also
TrAEL-seq and GLOE-seq based on the single-stranded
end present on specific replicative templates. Here, we
demonstrated that OKseqHMM can be used to analyse also
data obtained with these techniques with high-quality re-
sults (Figure 7). Notably, label-free techniques (e.g. TrAEL-
seq) that require fewer cells to generate high-quality RFD
profiles, compared with OK-seq, will provide a good alter-
native to study DNA replication and genomic instability in
different cell types exposed to different stress conditions.

Importantly, a multi-scale method is needed to extract the
replication initiation/termination information from human
RFD profiles because replication initiation zones have vari-
ous sizes, from 10 to 100 kb (Figures 4–6, Supplementary
Figure S3). Sizes are even larger for replication termina-
tion zones, from 120 to 500 kb. In previous studies, with-
out an adapted bioinformatics tool for OK-seq data analy-
sis, scientists often used peak calling methods to the OEM
profile at a fixed scale in order to identify replication IZs
and/or TZs (8,11,25). However, this method identifies only
the IZ/TZ centres, but not the precise boundaries of indi-
vidual IZ/TZ. We previously described an HMM method to
identify the precise location of IZs/TZs from OK-seq data
at multiple scales (6); however, the lack of an easy-to-use
bioinformatic tool limited its application by other groups.
Therefore, we developed the current tool to fill this gap. We
combined all necessary analysis steps in two main R-based
functions that include (i) calculating RFD profiles genome-
wide from sequencing data; (ii) generating OEM profiles at
multiple scales to visualize RFD transitions; (iii) replication
initiation and termination zone calling based on a 4-stage
HMM algorithm; and (iv) analysing RFD/OEM profiles
around regions of interest (Figure 1). The obtained genome-
wide profiles and segmentation results are outputted as big-
wig and bed files, respectively, that can be easily visual-
ized using genomic browsers (e.g. IGV or UCSC genome
browser). It should be noted that the initiation parameters,
such as the transition and emission probabilities of HMM,
are defined based on the OK-seq datasets of human cells.
Here, we showed that these parameters are quite robust and
can be also applied to OK-seq datasets from yeast (Figure
3) and mouse cells (Figure 7, Table 1) with satisfactory re-
sults. To further improve IZ/TZ calling, the transition and
emission probability matrix and the threshold of minimum
read count per bin, which are the main parameters of the
functions, could be easily adjusted by users based on the se-
quencing depth and data quality of their datasets. As high-
lighted by the comparison of the results obtained from the
two biological replicates of yeast OK-seq data, the RFD
profiles are very reproducible; however, we strongly recom-
mend to use biological replicates to reduce the potential
false detection of IZ calling due to the local variation in the
RFD profiles (Supplementary Figures S1 and S2).

One advantage of our OKseqHMM method is that in ad-
dition to the replication initiation and termination states, we

also included two flat states that allow identifying large do-
mains with high fork polarity, call high-RFD regions (i.e.
regions replicated by long-travelling unidirectional replica-
tion forks poor in replication initiation zones), an impor-
tant information, for example, to study common fragile sites
(31). In the future, besides HMM, we may include other
methods and algorithms in our toolkit, such as (i) a com-
bination of peak calling, for instance MACS2 (32), and
multiple-scale OEM profiling; (ii) identification of struc-
tural changes in linear regression models from a generalized
fluctuation test framework (e.g. the ‘strucchange’ R pack-
age) (33) using the RFD profiles; or (iii) a multi-scale analy-
sis of RFD profiles using a wavelet-based signal-processing
algorithm (34). Moreover, a comparison between biological
replicates and/or between OK-seq datasets obtained with
different techniques showed that we missed some bona fide
IZs, especially those with lower firing efficiency because we
used a strict strategy to reduce false positive detection of IZs
(Supplementary Figures S2, S3 and S5). It would be inter-
esting to improve the capacity to discriminate between IZs
with low firing efficiency and background noise to reduce
false negative results.

In the future, with technical improvements, we might be
able to extend the OKseqHMM toolkit to study the ex-
trinsic (cell-to-cell) or intrinsic (homolog-to-homolog) vari-
ability of DNA replication, if we can obtain data at the
single-cell level and/or in an allele-specific manner, as re-
cently achieved for replication timing (35,36). Moreover, al-
though conflicts between DNA replication and transcrip-
tion (TRC) under replicative stress can affect genomic sta-
bility and promote cancer development (1), the direct study
of TRCs at the genome-wide scale is still challenging. Inter-
estingly, transcription-replication immunoprecipitation on
nascent DNA sequencing (TRIPn-seq) has been recently
developed to try to fill this gap (37), although its current
labelling length (30 min of BrdU labelling, therefore, ∼50
kb nascent DNA considering that the replication fork speed
is 1–3 kb/min) is still too long to directly measure TRCs.
TRCs could be investigated by combining TRIPn-seq with
our toolkit that provides precise RFD profiles and accurate
genomic coordinates of replication origin prediction and
TRC locations.

CODE AVAILABILITY

The bioinformatics tool and all processing data under-
lying this article are available in the GitHub repository
(https://github.com/CL-CHEN-Lab/OK-Seq) and on Zen-
odo (https://doi.org/10.5281/zenodo.7428883).

DATA AVAILABILITY

The genome assemblies sacCer3 (yeast), mm10 (mouse)
and hg19 (human) were used in the analysis. The raw
sequencing data of OK-seq are available with the cor-
responding accession numbers indicated in Table 1. The
OK-seq data of HeLa S3 cells have been deposited at
Gene Expression Omnibus (GEO) under accession number
GSE193547. The known yeast origins (ARSs) were down-
loaded from the OriDB website (http://cerevisiae.oridb.
org/) (29). The initiation events identified by FORK-seq
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were obtained from (https://www.biologie.ens.fr/~hennion/
forkseq.html) (28). The replication timing data of HeLa S3
cells generated by Repli-seq (38), i.e. the S50 values (the
fraction of S phase at which 50% of the DNA is replicated
in a defined genome region) were obtained from (39). The
RNA-seq and GRO-seq data of HeLa cells are from (22)
and (40), respectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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