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Abstract: We discuss network models as a general and suitable framework for describing the
spreading of an infectious disease within a population. We discuss two types of finite random
structures as building blocks of the network, one based on percolation concepts and the second
one on random tree structures. We study, as is done for the SIR model, the time evolution of the
number of susceptible (S), infected (I) and recovered (R) individuals, in the presence of a spreading
infectious disease, by incorporating a healing mechanism for infecteds. In addition, we discuss in
detail the implementation of lockdowns and how to simulate them. For percolation clusters, we
present numerical results based on site percolation on a square lattice, while for random trees we
derive new analytical results, which are illustrated in detail with a few examples. It is argued that
such hierarchical networks can complement the well-known SIR model in most circumstances. We
illustrate these ideas by revisiting USA COVID-19 data.

Keywords: spreading of infections; finite percolation clusters; random trees; lockdown effects

1. Introduction

The interest in understanding and modeling epidemics spreading in humans has
surged conspicuously since the outbreak of the COVID-19 phenomenon (see e.g., [1–9]).
It is generally accepted that the mathematical framework for epidemics relies on the
seminal work by Kermack and McKendrick (1927) who introduced the SIR model [10], now
regarded as the ‘benchmark’ for describing the time evolution of infectious diseases over
a wealth of different situations. For reviews see e.g., the classical work by Hethcote [11],
including several analytical results, and also a more recent compendium [12]. Spreading
phenomena has a long history both on the mathematical aspects (see e.g., [13]), as well
as on the modeling of epidemics outbreak and control of their evolution [14–16]. It has
been studied extensively also in the realm of statistical physics of disordered systems
(e.g., [17–19]). More recently, a great deal of interest has been devoted to the study and
development of new scenarios to describe COVID-19 spreading [20–35]. In addition, we
can mention that a lot of attention has been drawn to population structures displaying
complex and heterogeneous connectivity patterns, as well as to the associated dynamics of
epidemic and infection spreading processes in the so-called metapopulation models [36,37].

Recently, a network model based on lattice site percolation concepts has been intro-
duced to describe the spreading of a virus within a population aimed at complementing
the widely used SIR model, especially within the context of COVID-19 outbreak [9]. In
the model, the sites of a square lattice are occupied with probability p and are defined as
susceptibles (individuals who can become infected by the infectious disease), while the
remaining unoccupied sites are considered to be inactive or immune individuals, denoted
as dormants. In the case p = 1, the whole lattice represents a simple connectivity graph
among a fixed number N of individuals within a population, where N = L2 and L is the
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linear size of the square lattice. An example of the percolation model, before the breakout
of the disease, in the case of interest here, i.e., p = 1/2, is illustrated in Figure 1. The latter
must be understood as a ‘correlation matrix’, or probability of contact between individuals,
rather than actual locations in coordinate space.

Figure 1. Illustration of the lattice percolation model for the spreading of an infectious disease in
a population [9], for the case of nearest neighbor (NN) site percolation at concentration p = 1/2.
For the latter, initially half of the sites represent susceptible individuals (green squares), and the other
half dormant (inactive) ones (black squares). Susceptibles do not interact with dormants, i.e., the
disease can only be transmitted to a susceptible. NN sites of similar category (either green or black
squares) form a cluster. As an example, the stars indicate the largest cluster of susceptibles within
this portion of the lattice, while the open circles the ‘isolated’ clusters of single susceptibles. For this
value of p, all clusters are finite in the sense that they do not ‘percolate’ the lattice. In the model, new
connections among susceptibles can develop dynamically (in the absence of lockdowns), allowing
for the spreading of the disease among different clusters. The transmission of infection is the fastest
among NN sites, while becoming less likely among different clusters, leading to different time scales
for spreading. As we will see, another choice such as site percolation in 3d is not so convenient.
Therefore, we stick at 2d site percolation.

Essentially, the network model represents an extension of the widely used SIR model,
valid for a spatially uniform distribution of individuals in different categories, to the
more realistic situation in which they are organized in clusters of individuals with strong
connectivity correlations. In a sense, the network model can be also seen as a type of
generalized ‘mean-field’ approach in which a spreading dynamics is solved ‘exactly’ within
each cluster, followed by an average over different clusters.

In this work, we generalize the percolation model studied in [9], based on the idea
that infection spreading can occur among appropriately defined clusters, representing
otherwise well isolated communities, which become interconnected dynamically as in-
fection spreads within the network. The clusters are constructed or designed in such a
way that their internal spreading dynamics can be solved ‘exactly’, either numerically or
analytically, and their contributions to the total infections in the network can be added
sequentially say, such that one can mimic the time evolution of the infectious disease in a
real situation. We discuss how the number of clusters participating in the network can be
adjusted to reproduce the speeding up of the number of infecteds at the initial stages of
the breakout, and how lockdowns can be simulated in a simple fashion. We discuss two
different approaches to this problem which can be used for describing real spreading data.
The method allows in a very simple and rapid way to create and study different possible
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scenarios once the internal cluster spreading dynamics has been solved. This approach has
thus the advantage of requiring limited computational resources.

The paper is organized as follows. In Section 2, we define the network model, first in
terms of a generic hierarchical structure, both in the transmission times as well as in the
internal structure of the constituent clusters to motivate the present approach, followed by
a detail discussion of the specific modeling used here. In Section 3, we deal with a specific
type of clusters, which we call minor clusters, represented by finite percolation clusters
of the type considered in [9]. We solve the spreading dynamics on these minor clusters
in Section 3.1, in order to introduce the SIR categories in the problem and discuss how to
implement the healing times for infected individuals. Then, in Section 3.2 we show how to
create a network from the minor clusters and discuss the implementation of lockdowns in
the network. In Section 4, we discuss an exactly solvable model for minor clusters based
on random trees. We consider first the effects of healing in Section 4.1, followed by a
treatment of lockdowns without healings in Section 4.2. The combination of both healings
and lockdowns in a tree is discussed in Section 4.3. These results, although interesting in
their own right, can be used also as building blocks of a more general network of random
trees. In Section 5, we apply the random trees results to the analysis of USA COVID-19
data. Technical details are relegated to an Appendix A. Finally, in Section 6 we present
our conclusions.

2. Network Model: A Hierarchical Structure of Transmission Times

Let us discuss the assumptions behind the present network model. The basic idea is
that the population is organized in well separated (disjoint) clusters, each one constituted
by well connected (susceptible) individuals. This is more a working hypothesis than a
proved statement. However, keeping this in mind, we may argue that it may well reflect
reality, at least within a finite period of time, eventually shorter than the time scale of the
disease outbreak. In order to substantiate the concept, we need to determine the network
structure, which is schematically illustrated in Figure 2. In general, each ‘major cluster’
(such as those indicated in blue color in the figure), maybe built upon several minor (white)
clusters (say, 3 in the case of cluster 1; 2 in cluster 2, etc.). The difference between clusters
resides in the different time scales, τx,y, for infection transmission. Within minor clusters,
the person-to-person contact frequency is the highest (τa,a is the shortest); between minor
clusters the frequency is lower (τa,b > τa,a ∼= τb,b); while between major clusters (say
between 1 and 2) the contact frequency is the lowest (i.e., τ1,2 � τa,b). This may correspond
to a kind of hierarchical distribution of transmission times, which is determined by the
connectivity structure of the network.

In Figure 2, the red arrows depict a possible path for infection spreading. We would
like to note that this transmission path is not determined a priori, but it occurs at random as
the process evolves in time. Note also the possibility of a direct transmission between minor
clusters belonging to different major clusters, such as for instance the red line connecting
minor cluster b (from major cluster 2) to minor cluster c (within major cluster 3). These
links will play a crucial role in our work here. We also note that the effect of lockdowns
can be implemented by assuming much larger inter-major-cluster transmission times (for
example, τ3,6 � τ3,4), or by completely hindering transmission between major clusters,
so that infection can go on only inside already infected clusters. In addition to these
transmission time scales, there are a few more features to consider, i.e., incubation and
latent periods, and healing and contagious periods. If the latent period is shorter than the
incubation one, infectiousness can propagate undetected for a while. If incubation time
is much shorter than latency, then symptoms manifest before infectiousness occurs. We
will not discuss the former cases in this work, but they can be implemented in specific
applications. Rather, more important to us are the latter, that is the possibility of healing
(or end of the contagious condition) after a time say, τH > τi,j, where (i, j) are major
cluster indices.
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Figure 2. Scheme of a cluster network model for spreading disease. A population of susceptible
individuals is organized into ‘major’ clusters (blue circles, labelled with numbers), which in turn are
composed of smaller ‘minor’ clusters (white circles, labelled with letters). The largest major cluster
in this example is No. 3, composed of 5 minor clusters. The infection starts at the top minor cluster
(red circle) within cluster No. 1. Infection spreads the fastest inside minor clusters, on time scales
denoted as say, τa,a, and proceed to neighbor minor clusters on longer times scales, τa,b > τa,a ∼= τb,b
(see e.g., cluster No. 2). At even longer time scales, infection can extend among major clusters, such
as τ1,2 � τa,b. The dashed lines indicate transmission paths which have been blocked by lockdowns,
thus avoiding further spreading of infections among the remaining, here No. (6–11), major clusters.
On larger population scales, the above set of 11 major clusters can be seen as a ‘super-cluster’,
representing just a minor part of a larger agglomeration, such as a city or a country.

The implementation of a realistic distribution of clusters requires a thoroughly analysis
of the population structure, accompanied by a sophisticated acquisition of real data. It is
interesting to note that the concept highlighted in Figure 2 has implicitly been applied to
the problem of tracing actual trajectories followed by infected individuals (see e.g., [38,39]).
Thus, the idea of a hierarchy of transmission times is of course not new. However, for the
clarity of presentation, and to avoid any misunderstanding, it is convenient to delineate
the strategy of our work for dealing with the construction of a network.

To this end, let us formally write the total number of infected individuals, I(t), at time
t in a population network in general as,

I(t) =
Nc

∑
i=1

Ii(t− ti)Θ(t− ti), (1)

where Ii(t− ti) represents the number of infecteds within the ith cluster, ti the time at which
the first individual from cluster i becomes infected, and Nc is the total number of clusters
considered. The Θ-function, defined as Θ(x) = 1 for x ≥ 1 and Θ(x) = 0 otherwise,
ensures that only infected clusters contribute to I(t). The distribution of transmission times,
τi,j, between clusters i and j is encoded in the activation times ti, in the sense that cluster i
becomes ‘activated’ by an infected from a previously infected cluster j. It is important to
realize that the transmission process is dynamical in nature, when an infected from cluster
j meets one susceptible from cluster i. This will be denoted as a non-local transmission (for
instance the minor-minor b→ c transmission in Figure 2), as opposed to a local one taking
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place inside a single minor cluster. The place where this happens can be anywhere, and the
newly infected individual can spread the virus within the community of origin (the ith
minor cluster) once back there. One can expect these non-local transmissions to occur at
random and being hard to trace or predict due to the complexity of the system [38,39].

To proceed further, we then concentrate on the dynamics of spreading, Ii(t), on minor
clusters only, while the intrinsically time-dependent behavior of non-local transmissions is
taken implicitly into account through a suitable choice of the activation times ti, the latter
estimated from the empirical data as we discuss below. This model does not rely on
any specific structure of a population, and its aim is to describe the temporal evolution
of infection in an average sense. The advantages of this approach over standard SIR
calculations are: The possibility of fitting huge empirical data very efficiently using exact
analytical expressions, providing an alternative information on the effective infection rate
in a population as a function of time, and open up the possibility of estimating the effective
size distribution of communities involved in the infection spreading phenomenon.

As models for minor clusters, we study finite percolation clusters in two dimensions
below the percolation transition, and random expanding trees. Although Ii(t) for per-
colation clusters can be solved only numerically, random trees admit simple analytical
solutions, making them more attractive for describing spreading phenomena in complex sit-
uations. We review percolation clusters first, also for the purpose of discussing our previous
percolation model [9] from a more general perspective.

3. A Percolation Model for Minor Clusters: Cluster Sizes

The minor clusters referred to in Figure 2 constitute the smallest social structures
considered in the model. They are at the core of the dynamical behavior of spreading,
and therefore require a detailed and specific description. Eventually, the dynamical ‘solu-
tion’ of a ‘typical’ minor cluster can be used to describe, in a first approximation, the be-
havior of the network on longer time scales, as we will discuss below. To this end, we
follow the network approach discussed in [9], and represent our core structures as finite
percolation clusters, below the nearest-neighbor (NN) site percolation threshold, on the
square lattice, pc ∼= 0.593 (Figure 3).

Figure 3. Minor clusters of susceptibles (green full circles) of different size N. The black full circles
represent blocked sites, or dormants individuals [9]. These clusters have been generated at the
site percolation concentration p = 1/2, using standard growth algorithms (see e.g., [40]). Notice
that the N = 240 cluster encloses five smaller clusters disconnected from it. Two of them are single
sites clusters.

The dimensionality two, as well as the choice of just NN connectivity, is done for
convenience of visual representation and simplicity. Of course, other models can be used if
required in particular cases. Now, let us look at how the cluster sizes are distributed in our
case. The results are shown in Figure 4 for a sample of 105 clusters.
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Figure 4. Distribution of finite percolation clusters, P(N), vs cluster size N, for NN site percolation
on the square lattice at p = 1/2, for N ≥ 2. We have generated 105 single cluster configurations
on a lattice of size (200 × 200). Each cluster was grown from the center of the lattice and none
touched the boundaries. The line is a fit using a power-law-stretched-exponential scaling form,
y(x) = 0.0103 x−α exp(−xβ), where x = N/77, with α ∼= 0.35, and β = 0.85 (see also [19]). The mean
cluster size is 〈N〉 = 64 and the standard deviation (SD) σ = 77.

As one can see from Figure 4, finite cluster sizes can be quite large for p = 1/2,
with N . 1000. However, the mean cluster linear extension, LN , scales with cluster size
only as LN ∼ N1/df , where df = 91/48 ∼= 1.895 is the fractal dimension of percolation
clusters in two dimensions [18,19], yielding say, L ≈ 29 for N = 600. We have found that
a lattice of size (200 × 200) was enough to avoid finite size effects for the sample of 105

cluster configurations. In three dimensions, pc ∼= 0.3116 and df
∼= 2.523, and spreading

becomes even slower [41].

3.1. The Spreading Dynamics on a Minor Cluster

The rules for infection spreading on a minor cluster, modeled by a finite percolation
cluster, are very simple. Initially, all available sites in the cluster are taken as susceptibles,
while the blocked ones surrounding the cluster cannot be infected. The infection starts (for
convenience) at the first created site of the cluster, k = 1, and it is modeled as a discrete
time process of unit time t0 (say t0 = 1 day); the process starts at time step t = 1. Then,
at time step t = 2, each one of the available NN sites of k can be infected with a probability
β = t0/τβ, where τβ is the time taken for the disease to be transmitted among NN sites,
corresponding to the time scale τa,a in Figure 2. In the case τβ = t0 then all available NN
sites of k become infected. The infection proceeds from each one of the newly infected sites.
We use the terms ‘Infecteds’ and ‘Recovereds’ as abbreviations of ‘Infected individuals’
and ‘Recovered individuals’ (see Figure 5).

Each susceptible site carries a clock which starts ticking when it becomes infected,
at say time tk, thus becoming the kth infected site to which we associate the healing time
τh(k), taken from the distribution function described in Figure 6. The clock stops ticking at
time t = tk + τh(k) when the site gets healed, becoming a blue site (see e.g., Figure 5).

We illustrate the dynamical behavior of spreading on clusters of size N = 64, i.e.,
the mean cluster size in our problem, by averaging the functions S(t), I(t) and R(t) over
103 configurations. The results are shown in Figure 7 for the cases β = (1, 1/2, 1/4),
corresponding to times τβ = (1, 2, 4) t0. Clearly, all N sites become infected when τβ = t0
and, in addition, all susceptibles can be found to be infected simultaneously at some time.
This happens when the shortest path, or minimum number of steps connecting any two
cluster sites (the so-called ‘topological’ or ‘chemical’ distance [17]), of the farthest site to the
first infected site is smaller than the actual minimum healing time in the cluster. In other
words, spreading reaches the last susceptible before any of the infecteds are healed.
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Figure 5. An example of a percolation cluster of 113 available sites. The colours represent one
of the four categories: Susceptibles (green circles), infecteds (red circles), recovereds (blue circles)
and blocked (black circles). The example shows the spreading of a disease, at time step t = 16,
from the first infected site (red star), t = 1, for the case β = 1. The number of infecteds is I(16) = 50,
R(16) = 25 are recovereds, and S(16) = 38 susceptibles. The initially infected site (red star) actually
belongs to the recovereds at t = 16. For the healing mechanism see the text below.

Figure 6. Probability distribution function of healing times, P(τh) vs. τh, defined according to
P(τh) = Ah exp[−(τh − τH)2/σ2

H], where τH = 60 t0 is the mean value of τh, σH = 10 t0, and Ah
is the normalization factor. We select 41 values in the range 40 ≤ τh/t0 ≤ 80 and choose one at
random with probability P(τh) (red dots). This simple algorithm works well for most applications of
interest. Here, we have chosen a normal distribution for P(τh), but other distributions can be used if
suggested by the available empirical data.

For larger transmission times τβ, the process not only slows down but also some
susceptibles can remain uninfected. In particular, this can happen if τβ & τH. To be noted
is that for some clusters, there occurs a sort of ‘bottle neck’, i.e., when different parts of
the cluster are connected by a single link. In those cases, spreading becomes so slow (for
large enough τβ) that infection stops spreading due to healings. As we can see, one can
describe multiple scenarios with this simple percolation model. For instance, one can argue
that a recovered site can still ‘transmit’ the infection, as those individuals with antibodies



Mathematics 2021, 9, 3054 8 of 22

who may still be able to carry and spread the virus. Such scenarios can be implemented
by adding further parameters to the model, but their study goes beyond the scope of the
present work.

Figure 7. Spreading dynamics on clusters of size N = 64, showing the mean normalized functions,
s(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N, for three selected values of τβ = (1, 2, 4) t0, (contin-
uous lines with circles, dotted-dashed lines and dashed lines, respectively). The healing times are
assigned as described in Figure 6. Averages over 103 configurations have been performed. The shapes
of these functions are different than those obtained with the standard SIR model.

Each newly infected has, on average, κ = pz neighboring susceptibles to infect, where
p is the probability that a neighbor is a susceptible (i.e., it is occupied in the language
of percolation). For the present infection model, z = 3 since the coordination number
of the square lattice is 4 and, except for the first infected, the newly infecteds can infect
at most three neighboring susceptibles. We refer to z with the special name of infection
degree. From a given infected then, the infection can be transmitted with a probability
β = t0/τβ to one susceptible, which remains infectious during the following τh/t0 time
steps; then it heals. Thus, the mean number of new infecteds from a single infected is
R0 = κ min(βτH/t0, 1) = pz min(τH/τβ, 1). In our case, p = 1/2, and if τH > τβ, then
R0 = 3/2. On the contrary, when τH < τβ, then R0 = (3/2)(τH/τβ). Sometimes, R0 is
referred to as the basic reproduction number, yielding infection spreading if R0 > 1. Thus,
in our model, infection stops if τH < (2/3)τβ. This means that for τH = 60 t0, i.e., our case,
the threshold for spreading corresponds to τβ = 90 t0.

We have calculated the mean coordination number, from each susceptible site, for the
simulation results shown in Figure 7. We find 〈κ〉 = 2.33 ± 0.86, consistent with the
theoretical value κ = pz = 2. The resulting SD, σκ

∼= 0.86, represents the intrinsic
variability of κ within a cluster, suggesting that 1.47 . κ . 3.19. We have also determined
the number of newly infecteds from each infected site, yielding 〈R0〉 = 1.40± 0.58, here
σR0
∼= 0.58, suggesting 0.82 . R0 . 2, consistent with the estimated value R0 = 3/2.

The smaller value found numerically for 〈R0〉 is due to the ‘screening’ effects of previously
infected NN sites that reduce the effective infection degree of newly infecteds. We have
excluded from the average infecteds which are located at dead ends, with effectively zero
infection degree.

In Table 1, we report a summary of results for 〈R0〉, with the associated σR0 , and
the mean numbers of infecting sites per cluster (excluding dead end sites), 〈Ieff〉, in the
two cases: N = 64 and all cluster sizes N ≥ 3, for selected values of τβ. As one can see,
for values say τβ . 10 t0, the mean reproduction number reaches a plateau, consistent
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with R0 = 3/2. It starts decaying slowly as τβ increases, and for τβ = 90 t0 one enters the
non-spreading regime with 〈R0〉 . 1, as expected [10], i.e., when τβ & (3/2) τH.

Table 1. The mean reproduction numbers, 〈R0〉, for selected values of the parameter τβ, in the cases:
N = 64 sites (103 configurations), and ‘All’ clusters sizes, N ≥ 3 (105 configurations). The last row
reports values at the threshold τβ = 90 t0, for which one expects 〈R0〉 . 1. Here, 〈Ieff〉 is the mean
number of infecting sites per cluster.

N τβ/t0 〈R0〉 (σR0 ) 〈Ieff〉 N τβ/t0 〈R0〉 (σR0 ) 〈Ieff〉
64 1 1.40 (0.58) 44.9 All 1 1.42 (0.55) 46.6
64 4 1.40 (0.58) 44.9 All 4 1.42 (0.55) 46.6
64 10 1.40 (0.57) 44.5 All 10 1.41 (0.54) 45.6
64 30 1.35 (0.52) 19.9 All 30 1.34 (0.47) 16.1
64 40 1.30 (0.46) 11.7 All 40 1.27 (0.41) 9.42
64 50 1.23 (0.39) 7.64 All 50 1.20 (0.35) 6.16
64 60 1.15 (0.34) 5.31 All 60 1.12 (0.29) 4.41

64 90 0.97 (0.21) 2.66 All 90 0.92 (0.17) 2.23

3.2. The Spreading Dynamics on a Network: Effects of Lockdowns

In the following, we illustrate the concept of a network discussed qualitatively in
Section 2, with two examples: Without lockdowns, and with lockdowns.

In the case without lockdowns, we consider a network composed of Nc minor (per-
colation) clusters. We assume that the internal dynamics of each minor cluster has been
solved and denote the corresponding solutions as Ii(t) and Ri(t), where 1 ≤ i ≤ Nc is the
minor cluster index. Denoting by ti the time at which the infection starts at the ith cluster,
the total number of infecteds and recovereds at time t in the network can be written in the
form (cf. Equation (1)),

I(t) =
Nc

∑
i=1

Ii(t− ti)Θ(t− ti), (2)

R(t) =
Nc

∑
i=1

Ri(t− ti)Θ(t− ti), (3)

where Θ(x) = 1 for x ≥ 1 and Θ(x) = 0 otherwise. Each minor cluster has an initial
number of susceptibles Ni, from which one can obtain the total susceptibles, S(t) =

N − I(t)− R(t), where N = ∑Nc
i=1 Ni is the initial number of susceptibles in the network.

An example for Nc = 3 is shown in Figure 8.
In the case with lockdowns, the latter can be described using a hard cutoff τ0, so that

clusters with ti > τ0 do not become infected, hence do not contribute to the summation in
Equations (2) and (3), i.e.,

ILock(t) =
Nc

∑
i=1

Ii(t− ti)Θ(t− ti) (1−Θ(ti − τ0)), (4)

and similarly for RLock(t). Then, one can calculate SLock(t) = NLock − ILock(t)− RLock(t),
where NLock = ∑Nc

i=1 Ni (1−Θ(ti − τ0)). An example is shown in Figure 9, with Nc = 249.
To create the network in Figure 9 we use, ∆Nc(tc) = int[a], with a = τ−1

c exp(tc/τc),
τc = 9, and tc = 1, 2, ..., 50. For each tc, we generate 1 ≤ j ≤ ∆Nc(tc) times tj, with tj =
2(tc− 10) + 10ηj, where 0 < ηj < 1 is a uniformly distributed random number. Afterwards,
the times are sorted in ascending order yielding the cluster time lags ti, 20 t0 . ti . 90 t0
(vertical lines), which are used in Equations (2) and (4). Values for 〈R0〉 can be read from
Table 1.
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Figure 8. Infection spreading on a network of percolation clusters for Nc = 3, without lockdowns.
The cluster functions ii(t) and ri(t) (for slightly different values of Ni), correspond to the normalized
mean values averaged over all clusters (see Figure 4). We take a transmission time between minor
clusters to be τa,b = 10 t0 (cf. Figure 2), yielding the following starting times for infection on each
minor cluster (shown with different colors), ti = (25, 35, 45) t0. The initial time t = 25 t0 has been
chosen as the beginning of the infection outbreak after day zero. The remaining model parameters
are τβ = t0 and τH = 60 t0. The turning on of each minor cluster is clearly seen in i(t).

Figure 9. Effects of lockdowns in a Network. Same as in Figure 8 for the cases: (Left panel) Nc = 249 clusters in the network
(continuous lines), and Nc = 48 (only minor clusters with ti ≤ τ0) (dashed lines), where lockdowns start at τ0 = 60 t0.
(Right panel) Number of susceptibles in the network, without (black line) and with lockdowns (red line), where N = 15,963
and NLock = 3072 ≈ (48/249) N, respectively.

4. Minor Clusters Modeled as Random Trees

Minor percolation clusters discussed in Section 3 do not admit an analytical solution
for the spreading of infections. For complex and large population networks, it is clearly
most convenient to have analytical solutions for the SIR functions. Following the ideas
from the previous section, we discuss a model of a minor cluster which admits an analytical
solution. It is based on a directed tree with infection degree z (coordination number or
node degree z + 1), in which the nodes represent susceptibles and the links (edges) effective
contacts among them. We consider that initially (time t = 1) the node at the top of the tree
is infected and it can infect a susceptible with a probability p (Figure 10). This means that
at most z susceptibles can be infected at time t = 2, since it has no connections with other
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members in the cluster. Nodes which are not infected at a given time remain susceptibles
forever (see Figure 10). For such a loopless graph, the clustering coefficient of any node
vanishes (see e.g., [42]). One can view the tree-like model as a sort of mean-field solution
for single percolation clusters, which should yield comparable values of R0.

Figure 10. A tree-like graph with infection degree z = 2 (coordination number z + 1 = 3), shown up
to the fourth generation. We consider a discrete time process for infection spreading, t = n∆t, n ≥ 1,
assuming ∆t = 1 (say a day). Each circle represents a susceptible individual (green circle), an infected
one (red circle), or a recovered one (blue circle) if healing is allowed. Infecteds can transmit the
infection to any of its z neighbors with probability p, in a single attempt. Thus, susceptibles which
have not been infected remain so forever. This would correspond to a contagious period of one day,
meaning that the so-called reproduction number would be R0 = pz (see text below). At t = 1, there
is only one infected person, I0(1) = 1 (the red circle at the top of the tree). Each newly infected
individual becomes the center of a new infection yielding an exponential growth of infecteds if pz > 1.
It can be shown that there are, on average, ∆I0(t) = Rt−1

0 new infections at time t, and the mean
total infecteds is given by I0(t) = (Rt

0 − 1)/(R0 − 1). If R0 = 1, then I0(t) = t. Let us notice that the
subindex 0 for infecteds is used here for the case in which no healing processes are considered.

4.1. Effect of Healings Inside a Random Tree

The model described in Figure 10 is incomplete since we need to consider the missing
case of recovereds. This means we need to implement a healing process, which is closely
related to the issue of contagious period, as we discussed in Section 2. In the case p = 1,
all susceptibles within the tree will be infected, and since we are dealing with a finite
population, N, of individuals, we can determine the maximum time T required to infect
them all according to the relation,

N =
zT − 1
z− 1

. (5)

It is useful to consider a numerical example to elucidate the meaning of the parameter
p. If we take say, z = 4 and N = 2× 105, then T = log(3N + 1)/ log(4) ∼= 10 days. Now, let
us take say, p = 0.8. In this case the total infecteds would be I0(T) = [(4p)T− 1]/(4p− 1) ∼=
5× 104 ≈ 0.25N, which is about one quarter of the total population inside the cluster.
The total number of infecteds depends sensitively on the actual value of p, and it appears to
play a structural role rather than being directly related to a contagious period. We therefore
regard p as a structural parameter, similar to the role played by dormants in the lattice
model of infection spreading [9], or the blocked sites in the case of percolation.

To implement a healing mechanism, we assume that an infected can be healed after
some amount of time. To make the model a bit more realistic, we do not assume a single
healing time, τH, rather a distribution of them. If we take healing into account, the number
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of infecteds, I(t), will decrease in time after reaching its maximum, according to the
relation,

I(t) = I0(t)− R(t), (6)

where

I0(t) =
Rt

0 − 1
R0 − 1

, for t ≤ T, and (7)

I0(t) = I0(T) , for t > T, (8)

with R0 = pz, and R(t) is total number of recovereds at time t, which can be calculated as,

R(t) =
t

∑
t′=1

∆I0(t′) F(t− t′), (9)

where ∆I0(t′) = Rt′−1
0 , for t′ ≤ T, and ∆I0(t′) = 0, for t′ > T, while F(x) is a smooth

increasing function of x = t− t′, such as

F(x) = 1− exp
[
−(x− 1)4/σ4

H

]
, for x ≥ 1, (10)

F(x) = 0, otherwise. (11)

An example is displayed in Figure 11. Using this form for F(x) into Equation (9), one
obtains a smoothly growing recovereds curve.

Figure 11. The healing function of infecteds, F(t), as a function of time t [Equation (10)]. The pa-
rameter σH can be determined by requiring F(τH) = 1/2, where we have taken τH = 30. A simple
calculation yields, σH = (τH − 1)/(log 2)1/4 ∼= 32. The dashed line corresponds to the derivative
dF/dt, showing a maximum close to t = τH, as one would expect.

Finally, the total number of susceptibles can be obtained from the (conservation
number) sum rule, S(t) + I(t) + R(t) = N, yielding,

S(t) = N − I0(t), for t ≤ T, (12)

with S(t) = N − I0(T), for t > T. An example of how Equations (6), (9) and (12) actually
work is shown in Figure 12.
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Figure 12. SIR type of solutions for a random tree with infection degree z = 4, p = 0.93 and τH = 30
(yielding σH ∼= 32) based on Equations (6), (9) and (12), and R0 = pz = 3.72. The three functions
have been normalized to the total population number N = (4T − 1)/3 = 5.6 × 106, with T = 12.
For times t > T one can see the effect of healing, Equation (6).

4.2. Effect of Lockdowns Inside a Random Tree without Healings

In some cases, in particular for large clusters, one would like to describe the effects of
lockdowns, or distancing, inside a minor cluster. To model the effects of lockdowns, we
assume that the reproduction number R0 (Figure 10) decreases with time t. In other words,
the effect of ‘distancing’ can be interpreted as effectively reducing R0. In order to assess the
effects of lockdowns in a way that can be treated analytically, and thus being useful for the
applications, we consider a specific model in which R0 depends on time according to (see
also [8]),

R0 = pz, for t ≤ τ − 1, (13)

R0(t) = R0 e−(t−τ)/τq , for t ≥ τ, (14)

where τ is the time lag after which the lockdowns effectively start, and τq > 0 is the
quarantine reaction time parameter. Clearly, one must have τ < T for the quarantine to
have an effect. Please note that when τq → ∞, we recover the exponential growth model
described in Figure 10. Actually, τq . 1 to be efficient, since its inverse, 1/τq represents the
reaction speed of the lockdowns to new transmissions.

According to Equation (13), the number of new infections at times t ≤ τ − 1, is given
by ∆I0(t) = Rt−1

0 , and the total number of infections will simply be,

I0(t) =
Rt

0 − 1
R0 − 1

, for t ≤ τ − 1, (15)

as in Equation (7), while for t ≥ τ, we have

I0(t) = I0(τ − 1) +
t−τ

∑
t′=0

∆Iq(t′), for t ≥ τ. (16)
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Let us calculate ∆Iq(t′) recursively, and for simplicity of notation we define b =
exp(−1/τq), where 0 < b ≤ 1. We find,

∆Iq(0) = Rτ−1
0 ,

∆Iq(1) = ∆Iq(0)R0 b = Rτ−1
0 R0 b,

∆Iq(2) = ∆Iq(1)R2
0 b2 = Rτ−1

0 R2
0 b b2,

∆Iq(3) = ∆Iq(2)R3
0 b3 = Rτ−1

0 R3
0 b b2 b3,

. . .

∆Iq(t′) = ∆Iq(t′ − 1)Rt′
0 bt′ = Rτ−1

0 Rt′
0 bt′(t′+1)/2.

To be noted is that ∆Iq(t′) ≤ RT−1
0 for τ ≤ T, so that the upper time T does not play a

role in this case. We can now rewrite Equation (16) in the more convenient form, valid for
t ≥ τ,

I0(t) = I0(τ − 1) + Rτ−1
0

t−τ

∑
t′=0

Rt′
0 bt′/2 bt′2/2. (17)

Using the relation ∑m
j=0 Rj

0 = (Rm+1
0 − 1)/(R0 − 1), it can be easily verified that

Equation (17) reduces to the standard case when b = 1 (Figure 10). To be noted is that in
the hypothetical limit b→ 0 (i.e., τq → 0), the total infections stop at,

I0(τ) = (Rτ
0 − 1)/(R0 − 1) ≤ I0(T). (18)

In the general case, 0 < b < 1, the total number of infecteds can be estimated
analytically. To this end, we transform the sum over t′ in Equation (17), into an integral
over a continuous variable t, using the exact relation,

Rt
0 bt/2 bt2/2 = exp(A), A = t log R0 +

t
2

log b +
t2

2
log b. (19)

Completing the square in the expression for A, we find,

A = − 1
2τq

(t− γ)2 +
γ2

2τq
, (20)

where γ = τq log R0 − 1/2. We can now evaluate the integral,

G(R0, τq) =
∫ ∞

0
dt eA = a e(γ/a)2

∫ ∞

0
dx e−(x−γ/a)2

=
(πτq

2

)1/2
e(γ/a)2

[erf(γ/a) + 1], (21)

where a =
√

2τq. We can use the value 2τ0 = 1/ log R0, for which γ = 0, to write,

γ/a =
1√
8τq

(τq − τ0)

τ0
. (22)

Let us consider the behavior of G(R0, τq) in the limits τq → ∞ and τq → 0.

1. τq → ∞: In this case, x = γ/a ∼=
√

τq/2 log R0, and using the asymptotic expansion,

erf(x) ∼= 1− (
√

πx2)−1 exp(−x2), for x � 1, yields G(R0, τq) ∼= (2πτq)1/2R
(τq/2) log R0
0

→ ∞, consistent with I0(∞)→ ∞ when R0 > 1 and T → ∞.
2. τq → 0: In this case, x = −1/

√
8τq → −∞ and erf(x) ∼= −1 + (

√
πx2)−1 exp(−x2),

yielding G(R0, τq) ∼= 2τq → 0, consistent with the stop of infection spreading at time
τ.
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We can now evaluate the total number of infecteds, I0(t), from Equation (17) when
t→ ∞, which we denote as I∞(R0, τ, τq), using Equation (21), yielding

I∞(R0, τ, τq) =
Rτ−1

0 − 1
R0 − 1

+ Rτ−1
0 G(R0, τq). (23)

Let us consider first the case R0 = 1 (yielding τ0 → ∞). We find, I∞(1, τ, τq) =
τ − 1 + G(1, τq), where

G(1, τq) =
(πτq

2

)1/2
e1/8τq

(
erf
(
−1/

√
8τq

)
+ 1
)

. (24)

As an example, let us take τq = 10. Then, G(1, 10) ∼= 3.5, and using this into
Equation (23), yields, I∞(1, τ, 10) = τ − 1 + G(1, 10) ∼= τ + 2.5. In the case τq � 1,
we then find, G(1, τq) = 2τq, thus, I∞(1, τ, τq) = τ − 1 + 2τq ∼= τ − 1.

Another special case is the one corresponding to γ = 0, where erf(0) = 0. In this case
we have τq = τ0, with

τq =
1

log R2
0

, and G(R0, τ0) =

(
π

4 log R0

)1/2
. (25)

If for this case, we take R0 = 1 + ε, with 0 < ε� 1, then τ0 ∼= (1/2)(R0 − 1)−1 � 1,
and, as a result, G(R0, τ0) ∼=

√
π/4 (R0 − 1)−1/2 � 1. To be efficient, quarantines should

act on times scales τq < τ0. This can be the case also in the presence of sufficiently slow
healing processes (see Section 4.3). According to Equation (25), we can estimate the upper
bounds τ0 for efficient lockdowns. We find, for example for R0 = 1.1, that τq < 5 days;
while for R0 = 4, τq < 0.17 days ∼ 4 h, suggesting that lockdowns should be ‘faster’
enough to prevent new infections taking place at a rate of one every 4 h.

4.3. Effect of Lockdowns Inside a Random Tree with Healings

Next, we consider both lockdown and healing effects together. For the former, we
assume τ < T, meaning that lockdowns start acting before the whole population has
been infected. In this case, T does not play a role in the process (cf. Section 4.2). The
corresponding relations for I(t), R(t) and S(t), now become,

I(t) = I0(t)− R(t), (26)

where

I0(t) =
Rt

0 − 1
R0 − 1

, for t ≤ τ − 1, and (27)

I0(t) = I0(τ − 1) +
t−τ

∑
t′=0

∆Iq(t′), for t ≥ τ, (28)

where ∆Iq(t′) = Rτ−1
0 Rt′

0 e−t′(t′+1)/2τq , and

R(t) =
t

∑
t′=1

∆Iq(t′) F(t− t′), (29)

with

∆Iq(t′) = Rt′−1
0 , for t′ ≤ τ − 1,

∆Iq(t′) = Rt′−1
0 e−(t

′−τ)(t′−τ+1)/2τq , for t′ ≥ τ.
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Finally, the total number of susceptibles, S(t), is given by,

S(t) = N − I(t)− R(t) = N − I0(t), (30)

where I0(t) can be obtained from Equations (27) and (28). An illustrative example is shown
in Figure 13.

Figure 13. Same as in Figure 12 with the addition of lockdowns, with τ = 10 and τq = 2. Please note
that in this case τ0 = (log R2

0)
−1 ∼= 0.38, so that quarantine reaction time appears to be slow. Despite

this, lockdowns lead to a reduction of about a 40% of maximum infecteds with respect to the case
without lockdowns shown in Figure 12. Of course, in absolute value, assuming N = 5.6 × 106 (z = 4
and T = 12), we obtain the still-large value I(T) ∼= 1.6 × 106. Therefore, in order to keep infecteds
at a much lower number one does need a faster lockdown reaction time, i.e., τq . τ0. The dashed
lines are the results without lockdowns.

As we can see from Figure 13, the combined effects of both lockdowns and healing
result in smoother time dependences of susceptibles and infecteds curves, thus making
the model more realistic. A summary of the parameters entering the random tree model is
displayed in Table 2.

Table 2. The set of parameters and main quantities entering the random tree model of minor clusters.
The unit of time is t0 = 1 day.

z Infection degree z ≥ 1

p Transmission probability 0 < p ≤ 1

R0 Reproduction number R0 = pz

N Total population in cluster N = (zT − 1)/(z− 1)

T Cluster infection time T > t0

τH Characteristic healing time τH > t0

σH Width of F(τH) σH = (τH − 1)/(log 2)1/4

τ Lockdown starting time τ > t0

τq Quarantine reaction time τq > 0

R0(t) Effective R0 (lockdowns) R0(t) = R0 e−(t−τ)/τq

τ0 Reference reaction time τ0 = 1/(2 log R0)

More important, however, is the possibility of considering these random trees as the
building blocks of networks on larger scales. Clearly, the fact that one has an analytical so-
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lution for achieving the latter goal makes this random tree model amenable for applications.
We apply these results to the USA COVID-19 data in the following section.

5. USA COVID-19 Data Revisited

As an application of the network ideas discussed above, we consider COVID-19 data
from the USA, https://www.worldometers.info/coronavirus/country/us/ (accessed on
26 October 2020), within the period (21 January–26 October 2020). The total cases are
plotted in Figure 14 as a function of days. We implemented a fitting procedure using the
results from Section 4.3, as described in detail in the Appendix A. The result of the fit is
represented by the continuous line in the figure, being almost indistinguishable from the
empirical data. These results illustrate the potential usefulness of the cluster method in
complex territorial environments spanning both large space and temporal scales.

We then calculated the daily cases, as successive variations of the total cases, which are
shown by the green circles (real data) and continuous blue line (fit). The weekly oscillations
observed in the real data are reproduced to some extent. To be noted is that the total
number of data points is 280, while for the fit we used 40 tree-like clusters with 4 free
parameters each, yielding a total of 160 unknown values (see Appendix A for details).
The obtained parameters show a remarkable constancy within a period of about six months
starting at the end of March 2020. The reproduction number, R0 ' 1.38, is quite large
indeed, and the lockdown parameters, τ and τq, span a time scale of about a month.

In Figure 14, we have distinguished three periods within the data which were sug-
gested by the following analysis. To show this, it is interesting to look at the ratios between
deaths and cases, both for the total ones and for the daily variations, as illustrated in
Figure 15. A close inspection of the data suggests the identification of three different pe-
riods during the infection spreading. The first one ends around 24 March, the second
one ends around 13 June, and the last one extends until the end of the data. To make
the difference clearer, we have depicted the corresponding values with different colors,
as shown in the lower panel of Figure 15.

Figure 14. USA COVID-19 data. Total cases (red circles) and daily cases (green circles) vs days,
from 21 January 2020 to 26 October 2020, corresponding to 280 days. The continuous line for the total
cases is the result of a fit using tree structures as models of minor clusters (see the Appendix A for
details). Three periods, denoted as I, II, and III, are identified by the indicated dates, 24 March and 13
June (vertical lines). The daily results are obtained as differences of cases between two successive
days, both for the real data and for the fit.

https://www.worldometers.info/coronavirus/country/us/
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Figure 15. (Upper panel) Ratios between deaths and total cases as a function of days. Shown are
ratios between total deaths and cases (black circles), and daily deaths and cases (red circles). (Lower
panel) Daily deaths vs daily cases separated into three periods, I, II, and III, as indicated in the
legends. Notice the distinct clustering of points within each period. The corresponding dates at
which they occur are represented by the vertical lines in the upper panel.

6. Conclusions

We have presented a general network model of a population built upon random
finite clusters, representing highly correlated individuals belonging to a social group
or community. We study the spreading dynamics of an infectious disease within such
a network, characterized by the existence of different times scales for its transmission.
The shortest time scales are those within a cluster, while they may be longer within different
clusters or communities, reflecting the transmission of infection between two individuals,
one infected and one susceptible, belonging to different communities who meet somewhere
and stay close enough for some time. We presented results on clusters constructed using
percolation concepts, in particular on square lattices below the critical concentration, and on
random trees which are amenable of analytical solutions. The SIR variables are obtained
as a function of time and both healing and lockdown mechanisms are implemented. We
argue that such network models can become very useful to study the spreading of a disease
in a population, complementing the widely used SIR system of differential equations,
by incorporating the effect of correlations within a cluster or community of susceptible
individuals. We applied a simple fitting scheme, based on random trees, to study the
temporal evolution of COVID-19 cases in the USA. The results suggest that infections in
the country developed with a seemingly constant reproduction number, R0 ' 1.38, over a
period of about six months starting around the end of March 2020. The lockdowns appear to
have taken long times (about a month) to have some effect. In future work, one can consider
the possibility of incorporating additional parameters into the model, such as community
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size distributions, contact correlations between communities for infection spreading, etc.,
in order to extract important and otherwise unknown information regarding the internal
structure of a population.

Author Contributions: H.E.R.: developed the model, performed the simulations, discussed the
results and wrote the paper. F.C.: discussed the results and wrote the paper. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was carried under the framework of the E2S UPPA Hub Newpores and
Industrial Chair CO2ES supported by the ‘Investissements d’Avenir’ French programme managed
by ANR (ANR–16–IDEX–0002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://www.worldometers.info/coronavirus/country/us/.

Acknowledgments: The authors acknowledge stimulating discussions with Andrea Afify.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

NN Nearest Neighbors.
SD Standard Deviation.
SIR Susceptibles, Infected, Recovered individuals.
Infecteds Infected individuals (idiom).
Recovereds Recovered individuals (idiom).

Appendix A. Fitting Procedure

The total cases at time t are obtained from the network sum, Equation (2), according to

I(t) =
Nc

∑
i=1

N0(i) Ii(t− ti)Θ(t− ti),

where Ii(t) are single tree-cluster solutions, Equations (27) and (28), and ti are the times
for the starting of infections in each cluster i. The latter is described by the parameters R0,
τ, and τq. The extra factors, N0 ' 1, are included to implement in a more efficient way a
blind search of a total number of 4× Nc parameters. According to Figure 14, one can notice
a weekly periodicity in daily cases (green circles) suggesting a way to choosing the starting
times, ti = 7i + w, where 1 ≤ i ≤ Nc, and Nc = 280/7 = 40. The additional parameter w
provides a rigid shift of all times, expected to fall within the range −6 ≤ w ≤ 6.

We perform a Monte Carlo search, for a given w, by randomly varying each one of the
160 parameters by a small relative amount (typically 0.1%) and accepting a new value if
the total error, E,

E2 =
1

280

280

∑
t=1

[log Cases(t)− log I(t)]2,

decreases as a result. The use of the logarithm is due to the large range of values covered by
the total cases. After a few trials, we find that the best choice for w corresponds to w = −3,
and suitable input values to start the minimization of E2 are: R0 = 1.3, τ = 30, τq = 25,
and N0 = 1, the same for all trees. At the end of a search, the error was typically E . 4 %.

The contributions, Ii(t), from each cluster in the network are shown in (a) on the figure
below. We have colored each period, I, II, and III, to facilitate the comparison with the fit
results in Figure 14. As one can see, results for t < 250 are most reliable since the single
functions have already reached their plateaus.

https://www.worldometers.info/coronavirus/country/us/.
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Figure A1. (a) The 40 tree-model components to the network (open circles). The total network prediction is indicated by
the continuous line. The three periods discussed in Figure 14 are indicated with different colors. (b) Parameters of the tree
model, from top to bottom, τ, τq, R0, N0, as a function of tree index. (c) Values of the reproduction number R0 for each
cluster. The line indicates the value

〈
R0
〉
= 1.38.

The values of the parameters obtained after the search are reported in (b) on the same
figure. To be noted is the rather constancy of the values within a broad time interval,
70 days< t < 245 days. After the rather volatile initial weeks (w ≤ 10), the reproduction
number is close to the value R0 = 1.38 until week w = 36, as shown in (c) on the figure.
These results suggest that the ‘representation’ of the total cases in terms of tree-like cluster
solutions is possible and the fit quite accurate. It may be used as an additional tool to study
and visualize the time evolution of COVID-19 infections in a complex environment.
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