Identify the speech code through statistics: a data-driven approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Identify the speech code through statistics: a data-driven approach

Résumé

Language is what makes humans a unique species of «symbolic animals» by providing them a way to convey meaning through sounds, and it is undoubtedly one of the pillars of our lives, yet we learn it so spontaneously and effortlessly that it is impossible to remember how we came up in its mastery or to give any account on any stage of its acquisition. Thanks to recent advances in data storage, information visualization and automated processing (e.g. data mining), there is a growing interest in cutting-edges researches between statistics and linguistics aimed at unfolding the "linguistic genius" of babies by testing hypotheses mining large spoken longitudinal datasets in order to understand - by means of an inductive procedure - the way each of us learnt his language without being aware of it.
Fichier principal
Vignette du fichier
Briglia_Pearson-SIS-2020-atti-convegno-1503-1508.pdf (233.67 Ko) Télécharger le fichier
Briglia-SIS-2020-atti-convegno-1503-1508 (1).pdf (233.67 Ko) Télécharger le fichier
Briglia-SIS-2020-atti-convegno-1503-1508.pdf (233.67 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03974075 , version 1 (16-03-2023)

Licence

Identifiants

  • HAL Id : hal-03974075 , version 1

Citer

Andrea Briglia, Massimo Mucciardi, Jérémi Sauvage. Identify the speech code through statistics: a data-driven approach. 50th Scientific Meeting of the Italian Statistical Society, ISTAT, Jun 2020, Pisa, Italy. ⟨hal-03974075⟩
22 Consultations
37 Téléchargements

Partager

More