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Abstract

The study takes place in the context of magneto-elastic coupling. A new

magnetoelastic energy formulation is proposed at the magnetic domain scale

in order to account for the non-linear and non-monotonous effect of stress

on magnetization and magnetostriction. The model uses 1st order cubic

invariants and a vanishing 2nd order cubic invariants.

Keywords: magnetostriction, second-order effect, invariants

1. Introduction

The main physical mechanisms involved in the magneto-mechanical cou-

pling are on the one hand the influence of mechanical loading on the magnetic

behavior and the deformation of the medium when subjected to a magnetic

field on the other hand [1, 2]. They correspond to inverse magnetostriction

and magnetostriction respectively. As a coupled phenomenon, their model-

ing generally uses a thermodynamic approach allowing for the derivation of

the mechanical behavior and the magnetic behavior using a single coupled

energy term. Its formulation can be done at the macroscopic scale [3]. An

energy formulation at the microscopic scale is however more relevant since
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stress and magnetization can be considered as homogeneous at the magnetic

domains scale for example. This approach requires however homogenization

rules and higher computation time. At this scale, the constitutive laws link-

ing stress σσσ to strain εεε, and the magnetization mmm to magnetic field hhh are

obtained from the formulation of a Gibbs free energy density:

Ψ = Ψµ(mmm) + Ψσ(σσσ) + Ψµσ(mmm,σσσ)− µ0hhhmmm (1)

Ψµ(mmm), Ψσ(σσσ), Ψµσ(mmm,σσσ) and µ0hhhmmm indicate respectively magnetic, elastic,

magneto-mechanical and Zeemann energy densities (µ0: vacuum permeabil-

ity = 4π×10−7 Henry/m). The magneto-mechanical energy density is usually

considered as linear in stress and quadratic in magnetization [1, 2], writing:

Ψµσ = −σσσ : EEE : (mmm⊗mmm). (2)

EEE is a fourth order constitutive tensor. Magnetostriction εεεµ is obtained by

deriving the magneto-mechanical energy density with respect to stress:

εεεµ = −∂Ψµσ

∂σσσ
= EEE : (mmm⊗mmm),

Such a definition implies that magnetostriction is a stress independent free

strain which can be expressed as a function of so-called magnetostriction

constants λ100 and λ111 following :

εεεµ =
3

2


λ100(γ2

1 − 1
3) λ111γ1γ2 λ111γ1γ3

λ111γ1γ2 λ100(γ2
2 − 1

3) λ111γ2γ3

λ111γ1γ3 λ111γ2γ3 λ100(γ2
3 − 1

3)

 .

where γi are the direction cosines of magnetization verifying mmm = Msγγγ =

Msγiei (Ms: saturation magnetization; ei: canonical basis). The magne-
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tostriction then respects the assumption of volume conservation during the

magnetization [1, 2, 4]. However, such formulation of magneto-mechanical

term is unable to describe the morphic effect [2, 4] occurring in materials

such as iron-silicon alloys. The morphic effect results in a non-monotony of

the magnetization variation with stress and a corresponding non-monotony

of magnetostriction variation with magnetic field.
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Figure 1: Anhysteretic experimental behavior of Fe-3%Si alloy: (a) magnetic behavior;

(b) magnetostriction behavior; (c) initial susceptibility [5].

This point is illustrated in figure 1 plotting various anhysteretic quanti-

ties: the initial anhysteretic susceptibility increases from 0 to 20 MPa then
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decreases. Conversely magnetostriction is positive for applied stress remain-

ing below 20MPa and is negative for higher stress values. This phenomenon

can not be explained by magnetization rotation. As recently proposed in

[5], a higher order development of the magneto-elastic energy density allows

for the modeling of these phenomena. This formulation however fails to

model i) the progressive decreasing of magnetic susceptibility stress sensitiv-

ity ii) a progressive saturation of the magnetostriction as clearly observable

at high stress. In this paper, a new formulation of the Gibbs free energy

density is proposed allowing for the modeling of both non-monotony and

saturation phenomena. Some simulations (analytical and multiscale model)

of homogenized magnetization and magnetostriction are also presented using

the different formulations.

2. Former formulations and drawbacks

To account for the stress dependency of the magnetostriction, a quadratic

stress term involving a 6th order tensor E has been initially proposed in [2]

and more recently used in [5] :

Ψµσ = −σσσ : EEE : (mmm⊗mmm)− 1

2
σσσ : (σσσ : E : (mmm⊗mmm)) (3)

The magnetostriction is simply given by:

εεεµ = EEE : (mmm⊗mmm) + σσσ : E : (mmm⊗mmm). (4)

While this formulation reflects non-monotony, it does not allow for sat-

uration of the magnetostriction (due to linear dependency with stress) nor

decreasing of magnetic susceptibility sensitivity to stress (see section 4 for
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illustrations). A better formulation is required. But the search for a more

appropriate energy form is made very complicated by the use of tensorial

operators. A rewriting of (2) and (3) in the form of invariant polynomials

has been proposed in [6]. It is based on the cubic decomposition proposed

by [7], where the stress is written as

σσσ = σσσd + σσσd +
1

3
(tr(σσσ))1, (5)

with

σσσd := Pd
O : σσσ and σσσd := Pd

O : σσσ.

where projectors Pd
O and Pd

O are given by [8, 9]:

Pd
O :=

1

2

∑
i<j

eij ⊗ eij, with eij := eeei ⊗ eeej + eeej ⊗ eeei (i 6= j), (6)

and

Pd
O := J−Pd

O, with J = I− 1

3
1⊗ 1. (7)

In the cubic canonical basis (eee1, eee2, eee3), stress deviators are:

σσσd =


0 σ12 σ13

σ12 0 σ23

σ13 σ23 0


eeei

, σσσd =


σ′11 0 0

0 σ′22 0

0 0 σ′33


eeei

.

where σσσ′ = σσσ − 1
3
(tr(σσσ))1 is the deviatoric stress tensor. The projectors Pd

O

and Pd
O being applicable to any 2nd order tensor, a basis of cubic invariants

can be constructed by decomposing the tensors into diagonal (•)d, out-of-

diagonal (•)d̄ and hydrostatic parts. Thus, a basis of invariants linear in

stress and quadratic in magnetization (depending on the orientation) can be

obtained [6]:
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σσσd : (mmm⊗mmm)d, σσσd̄ : (mmm⊗mmm)d̄. (8)

By associating a material constant to each invariant, respectively c210 and

c201, equation (2) can be reformulated in:

Ψµσ = −σσσ : EEE : (mmm⊗mmm)

= c210σσσ
d : (mmm⊗mmm)d + c201σσσ

d̄ : (mmm⊗mmm)d̄
(9)

c210 and c201 can be expressed as functions of the usual magnetostriction

constants (values for Fe-3%Si NO are given in Table 1) following:

c210 = −3

2

λ100

M2
s

, c201 = −3

2

λ111

M2
s

.

Now, some higher order invariants can be used. 2nd order stress terms

are [6]:

(σσσd̄)2 : (mmm⊗mmm)d, (σσσd̄)2 : (mmm⊗mmm)d̄, (σσσd̄σσσd) : (mmm⊗mmm)d̄

(σσσd)2 : (mmm⊗mmm)d.
(10)

Equation 3 can consequently be rewritten as:

Ψµσ = −σσσ : EEE : (mmm⊗mmm)− 1

2
σσσ : (σσσ : E : (mmm⊗mmm))

= c210σσσ
d : (mmm⊗mmm)d + c201σσσ

d̄ : (mmm⊗mmm)d̄

+ ca202(σσσd̄)2 : (mmm⊗mmm)d + cb202(σσσd̄)2 : (mmm⊗mmm)d̄

+ c211(σσσd̄σσσd) : (mmm⊗mmm)d̄ + c220(σσσd)2 : (mmm⊗mmm)d

+ c210,010tr(σσσ)σσσd : (mmm⊗mmm)d + c201,010σσσ
d̄ : (mmm⊗mmm)d̄.

(11)

where ca202, cb202, c211, c220, c210,010 and c201,010 are material constants. The

assumption of incompressibility of the magnetostriction results in c210,010 =
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c210,010 = 0. A fully isotropic formulation considers c210 = c201, A = c220 =

ca202 = cb202 = 1
2
c211 et B = c210,010 = c201,010. These 2nd order constants are

related to isotropic second-order constants λ′s and λ′′s introduced by Kraus

[10] :

A =
3

2

λ′′s
M2

s

, B = −1

2

3λ′s + λ′′s
M2

s

.

Whether isotropic or cubic, these energy density forms allow for the mod-

eling of a second order effect in stress. They do not account for the progressive

saturation of the magnetostriction at high stress or the progressive reduction

in the susceptibility sensitivity to stress.

3. New cubic vanishing 2nd order energy

A new formulation of Gibbs energy density must involve consequently:

i) a second-order stress effect at low stress; ii) a progressive transition to

first order form at higher stresses; iii) a cubic symmetry description for both

situations; iv) remaining in a multiaxial framework; v) volume conservation.

Following these requirements, we propose the following formulation:

Ψµσ = c210σσσ
d : (mmm⊗mmm)d + c201σσσ

d̄ : (mmm⊗mmm)d̄+

c220(σσσd)2 : (mmm⊗mmm)d + cb202(σσσd̄)2 : (mmm⊗mmm)d̄

1 + α
√

3
2(σσσd + βσσσd̄) : (σσσd + βσσσd̄)

+

ca202(σσσd̄)2 : (mmm⊗mmm)d + c211(σσσd̄σσσd) : (mmm⊗mmm)d̄

1 + α
√

3
2(σσσd + βσσσd̄) : (σσσd + βσσσd̄)

(12)

The linear terms in the equation (9) are duplicated. The other four

terms are fractions formed by a 2nd order stress invariants which do not

depend on tr(σσσ) at the numerator (assumption of incompressibility of the

magnetostriction removes two other terms) and purely mechanical invariants
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at the denominator (see equation (10)). Each term is related to the diagonal

or out–of-diagonal parts of the stress deviator. New constant α allows for

the second order effect vanishing to be adjusted by giving more or less weight

to the purely mechanical part of energy. As shown in figure 5 where several

α values are tested, it is possible to adjust the monotony of the magnetic

behavior using this parameter. Constant β is introduced to take into account

the cubic symmetry : the stress invariants at the denominator correspond

to a cubic form of the Von Mises equivalent stress (remark: the von Mises

equivalent stress is defined by σvm =
√

3
2
σσσ′ : σσσ′ where σσσ′ is the deviatoric

part of σσσ). For low stress amplitude, the magneto-elastic energy density

exhibits a 2nd order character. At high stress amplitude, a 1rst order stress

magneto-elastic energy density is obtained. As for the full second order

situation, isotropy is obtained for K = c220 = ca202 = cb202 = 1
2
c211 and β = 1

(since σσσd + σσσd̄ = σσσ′). Therefore, 6 constants are used to model the morphic

effect. We reach the same constants number as Kraus [10]. But unlike his

proposition, our formulation allows for the magnetostriction saturation at

high stress and respects the volume conservation.

4. Illustrations using analytical modeling

We propose in this section to illustrate the various energy density forms

using a simple analytical model [5] derived from a more complete multiscale

model [11] using homogeneous stress and magnetic field conditions. The

simplified modeling argues that since an isotropic polycrystal is an aggregate

of single crystals with random orientation, and that magnetic domains are a

substructure of each single crystal, an isotropic polycrystal can be considered

as an aggregate of magnetic domains with random orientation and whose
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magnetization is aligned along one of the easy axes of the crystal. If we

consider on the other hand this direction as fixed in space and following a

Boltzmann-like distribution, the volume fraction of each domain family α is

given by:

fα =
exp (−AsΨ)∫

α exp (−AsΨ) dα
, with As =

3χ0

µ0M2
s

(13)

where χ0 is the stress-free initial anhysteretic susceptibility. The Gibbs free

energy density Ψ is only the sum of Zeeman and magneto-elastic energy

densities. This form consequently ignores any magnetization rotation mech-

anism on the one hand. Considering on the other hand the six < 100 >

directions as easy axes leads to get a magnetostriction tensor defined as an

equivalent isotropic magnetostriction tensor with magnitude λm = 2/5λ100

following homogenization rules [11, 5] (λ100 is the magnetostriction ampli-

tude along < 100 > axis that can be stress-dependent for higher-than-one

order formulations). The following definitions of the magnetoelastic energy

density and of the magnetostriction tensors are obtained:

Isotropic first order

Ψµσ
o =

2

5
c210σσσ

′ : (mmm⊗mmm)′ , εεεµo = −2

5
c210(mmm⊗mmm)′ (14)

Isotropic second order

Ψµσ
o =

2

5
c210σσσ

′ : (mmm⊗mmm)′ +
2

5
Aσσσ′2 : (mmm⊗mmm)′

εεεµo = −2

5
c210(mmm⊗mmm)′ − 2

5
A
(
σσσ′(mmm⊗mmm)′ + (mmm⊗mmm)′σσσ′

) (15)
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Isotropic vanishing second order

Ψµσ
o =

2

5
c210σσσ

′ : (mmm⊗mmm)′ +
2

5
K
σσσ′2 : (mmm⊗mmm)′

1 + ασvm

εεεµo = −2

5
c210(mmm⊗mmm)′ − 2

5
K

(
(σσσ′(mmm⊗mmm)′ + (mmm⊗mmm)′σσσ′)′

1 + ασvm
−

3σσσ′

2σvm
α(σσσ′)2 : (mmm⊗mmm)′

(1 + ασvm)2

)
(16)

where (•)′ is the deviatoric part of (•). Macroscopic magnetization and

magnetostriction strain are given by the following averaging operations:

MMM =

∫
α
fαmmmdα , εεεµm =

∫
α
fαεεε

µ
o (mmm,σσσ)dα (17)

Figures 2, 3 and 4 show respectively the results of models using the three

previous formulations of magneto-mechanical free energy densities ((14), (15)

and (16): on the one hand magnetic behavior (a) and magnetostriction (b)

measured along the applied field (uniaxial stress condition), initial suscepti-

bility vs. stress (c) and initial susceptibility in biaxial stress condition (d)

(with magnetic field applied along axis 1) on the other hand. Paramaters

have been improved to fit properly the uniaxial experimental results since

no relevant result in multiaxial stress condition is available in literature for

iron-silicon). They are gathered in Table 2. The monotonous character of

the linear formulation is clearly highlighted in figure 2 associated with a mag-

netostriction remaining positive. The introduction of second order allows for

an efficient modeling of non-monotony effect but magnetostriction exhibits a

divergence at high stress (figure 3). The vanishing second-order formulation

in figure 4 allows for a modeling of both the non-monotony of magnetization

(maximum of susceptibility at about 18MPa - transition from 2nd order to

1st order after 40 MPa) and the saturation of magnetostriction passing from

positive to negative values.
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Simulations of biaxial stress situation lead on the other hand to results in

accordance to previous simulations using equivalent stress formulation [12]

for the first order expression. The second order vanishing simulations sim-

ulate properly the non-monotony close to uniaxial condition (axis 1). Some

strong susceptibility spots occur with or without vanishing term that was

not observed with the first order simulation. This seems due to components

σ′211 that is null along σ2 = 2σ1 axis, leading to a dominant first order term

in energy along this axis. These results that can not be compared to experi-

mental data must however be considered with caution. They are outputs of

a simplified model considering isotropic material with parameters adjusted

for uniaxial stress condition.

Ms λ100 λ111

1.61× 10−6 23.5 -4.5

A.m−1 ppm ppm

Table 1: Material constants of Fe-3%Si NO.

χ0 A K α

9600 0.51× 10−18 2.83× 10−18 4.69× 10−2

- MPa−1.A−2.m2 MPa−1.A−2.m2 MPa−1

Table 2: New parameters used for simulations.
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Figure 2: Modeling result for 1rst order formulation: (a) magnetic behavior; (b) mag-

netostriction behavior; (c) initial susceptibility; (d) initial susceptibility in biaxial stress

condition with magnetic field applied along axis 1.
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Figure 3: Modeling result for 2nd order formulation: (a) magnetic behavior; (b) mag-

netostriction behavior; (c) initial susceptibility; (d) initial susceptibility in biaxial stress

condition with magnetic field applied along axis 1.
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Figure 4: Modeling result for 2nd order vanishing formulation: (a) magnetic behavior;

(b) magnetostriction behavior; (c) initial susceptibility; (d) initial susceptibility in biaxial

stress condition with magnetic field applied along axis 1.
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Figure 5: Modeling of magnetic behavior (left) and magnetostriction (right) for K =

2.83× 10−18 MPa−1.A−2.m2 and σ = 20 MPa.

5. Conclusion

Various formulations of magneto-mechanical Gibbs free energy density

built from a basis of cubic invariants are proposed in this study. The men-

tioned limitations of the pre-existing models (first order in stress and second

order in stress energy densities) have been corrected by the introduction of

a vanishing second order term in the framework of cubic symmetry. Illus-

trations have been proposed for isotropic and incompressibility conditions.

Indeed the identification of the 6 cubic parameters remains a strong issue.

It could be made possible by the introduction of the cubic vanishing model

inside the so-called multiscale model [11] and the implementation of an opti-

mization process based on measurements under stress (including multiaxial

stress) of the magnetic behavior and the magnetostriction of single and poly-

crystals.
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