Eddy Caron
email: eddy.caron@ens-lyon.fr

Maurice Djibril Faye
email: maurice.faye@ens-lyon.fr

Jonathan Rouzaud-Cornabas
email: jonathan.rouzaud-cornabas@ens-lyon.fr

Ousmane Thiaré
email: ousmane.thiare@ugb.edu.sn

Modélisation d'un intergiciel de grille pour le déploiement auto-adaptatif

Keywords: Intergiciel, Déploiement, Modélisation, autoadaptation, Grille, Cloud

Les intergiciels pour grille-cloud sont des systèmes assez complexes. Cela rend leur exploitation très difficile pour les humains. En effet, en cas de défaillance ou de comportement non souhaité, le temps nécessaire pour localiser l'origine de la défaillance et pour prendre les mesures appropriées peut être trés long, laissant le système dans un état incohérent. Une solution pour remédier à cette limitation est de rendre ces systèmes autoadaptatifs. Un tel système a la capacité de modifier en temps réel et de manière autonome (partiellement ou totalement) son comportement en réponse à des variations de son environnement. Nous partons d'un intergiciel pour grille et cloud et voulons rendre son déploiement auto-adaptatif. Pour avoir une idée du comportement des algorithmes auto-adaptatifs que nous avons conçus, nous avons choisi de les simuler. Pour ce faire, nous avons d'abord commencé par modéliser les différentes entités qui seront utiles pour la simulation, à savoir: l'infrastructure physique, l'intergiciel et le déploiement (l'ensemble constitué d'une instance de l'intergiciel en exécution sur des ressources physiques). Nous présentons dans cet article les modèles de ces trois entités.

I. INTRODUCTION

Les environnements distribués sont des systèmes complexes, généralement organisés (logiquement) en trois couches: une couche physique, une couche intermédiaire (appelée intergiciel) et une couche application. L'intergiciel offre une vue unique des ressources physiques en cachant aux applications et utilisateurs finaux l'hétérogénéité des ressources de la couche physique. Avant de bénéficier des avantages d'un intergiciel, il faut d'abord les déployer et ce déploiement doit satisfaire généralement un ensemble de contraintes. Des outils pour réaliser des déploiements, de la configuration existent [START_REF] Caron | GoDIET: A Deployment Tool for Distributed Middleware on Grid'5000[END_REF]- [START_REF] Puppet | [END_REF]mais la plupart des déploiements réalisés sont statiques. Or, un déploiement statique sur un environnement dynamique comme les grilles ou les clouds n'est pas une bonne solution. Les variations de la plate-forme peuvent provenir de la défaillance de noeuds, de problèmes liés aux réseaux, du crash des processus de l'intergiciel. Elles peuvent aussi être inhérentes à la plate-forme comme dans le cas des clouds. Lorsque le déploiement est statique et qu'un comportement non souhaité est détecté, le seul moyen de réagir est souvent de reprendre tout le processus de déploiement, ce qui a un coût élevé.

Ainsi, faire de sorte de pouvoir prendre en compte les variations sans devoir tout reprendre à zéro présente des avantages certains.

Dans notre cas, nous voulons ajouter des fonctionnalités d'auto-adaptation à un intergiciel qui en était dépourvu pendant sa conception. Pour ce faire, nous allons introduire des algorithmes d'auto-adaptation. Pour simuler leurs comportements, nous allons réaliser un simulateur. Le simulateur a besoin d'un certain nombre de modèles. Il s'agit du modèle de l'infrastructure physique, de l'intergiciel (hiérarchique) et du modèle de déploiement. Dans cet article nous décrivons ces modèles. Les algorithmes d'auto-adaptation, leurs simulations et évaluations ne sont pas décrits ici.

La suite de l'article est organisée comme suit. La section II présente un exemple possible d'auto-adaptation d'un intergiciel comme motivation de notre travail. La section III présente sommairement quelques notions qui nous semblent utiles pour comprendre notre travail. La section IV introduit l'architecture que nous proposons pour le déploiement autoadaptatif d'intergiciel. La section V présente les trois modèles requis: infrastructure, intergiciel et déploiement. La section VI présente quelques travaux connexes; elle est suivie d'une conclusion.

II. MOTIVATION

La Figure 1 fournit un exemple de scénario qui met en avant la nécessité d'un processus de déploiement autoadaptatif. β correspond au nombre de requêtes qui arrivent dans le composant d'ordonnancement de l'intergiciel. Cx/Sy correspond au cluster x sur le site y. Chaque cluster est composé d'un ensemble de noeuds de calcul N i (i ∈ N). L'intergiciel est composé d'une hiérarchie d'instances de composants de base: MasterAgent (M i), LocalAgent (Li), Server-Daemon (Si) (i ∈ N). La situation (1) décrit un ensemble d'instances de composant exécutées sur des noeuds et un ensemble de requêtes β en cours de traitement. En partant de cette situation, le nombre d'instances diminue si le nombre de requêtes décroît (élément 2) ou augmente si le nombre de requête croit (élément 3). C'est ce type de scénario (parmi d'autres) que nous voulons gérer grâce à notre architecture.

III. CONTEXTE

A. Déploiement

Le processus de déploiement [START_REF] Carzaniga | A Characterization Framework for Software Deployment Technologies[END_REF], [START_REF]Deployment and Configuration of Component-based Distributed Applications Specification[END_REF] est une tâche complexe qui peut être subdivisée en deux phases. La première correspond à l'algorithme de planification qui alloue des ressources de l'infrastructure à des composants logiciels. La

B. Informatique autonome

L'informatique autonome [START_REF] Kephart | The vision of autonomic computing[END_REF] est une vision qui s'inspire des principes de l'automatique pour les appliquer dans le domaine du logiciel. L'informatique autonome cherche à construire des systèmes auto-adaptatifs [START_REF] De Lemos | Software engineering for self-adaptive systems: A second research roadmap[END_REF]- [START_REF] Psaier | A survey on self-healing systems: approaches and systems[END_REF]. Un système auto-adaptatif peut, de manière autonome (totalement ou partiellement), détecter des variations de son environnement et réagir en cas de besoin. Généralement, la réalisation d'un système autonome se fait par l'implémentation d'une boucle de contrôle constituée de différents modules: surveillance, analyse des données, planification et exécution qu'on appelle structure MAPE-K [START_REF] Kephart | The vision of autonomic computing[END_REF]. Cette organisation est standard dans la plupart des systèmes autonomes. La Figure 2 donne une vue d'ensemble de l'architecture de notre système qui repose sur une boucle de contrôle. Les modules liés au processus de déploiement automatique sont colorés en bleu et ceux relatif aux aspects automatiques et de redéploiement sont en vert. On peut remarquer que cette division n'est pas stricte et que des modules peuvent relever des deux aspects.

C. Architecture de l'intergiciel DIET

Dans cette section, nous décrivons l'intergiciel qui nous sert de cas d'utilisation.

DIET [START_REF] Caron | DIET: A Scalable Toolbox to Build Network Enabled Servers on the Grid[END_REF] est un intergiciel GridRPC [START_REF] Seymour | Overview of GridRPC: A Remote Procedure Call API for Grid Computing[END_REF], qui est lui même une extension des Remote Procedure Call (RPC) appliquée au domaine des grilles de calcul. L'architecture par composant de DIET est structurée de manière hiérarchique pour améliorer le passage à l'échelle. DIET est implémenté en CORBA, et est constitué de plusieurs composants logiciel de base que sont: le client, le SED, les agents.Un Client est une application qui utilise l'infrastructure DIET pour résoudre un problème par l'utilisation de GridRPC. Un SeD (Server Daemon) joue le rôle de fournisseur de service. Le troisième composant de DIET, les agents, facilitent la localisation et l'invocation des services et donc l'interaction entre les clients et les SeDs. La hiérarchie des agents fournit des services de haut niveau comme l'ordonnancement et la gestion des données. Ces services permettent un passage à l'échelle grâce à leur distribution dans la hiérarchie des agents. Les agents sont de deux types: Les agents maître (Master Agent ou MA) et les agents locaux (Local Agents ou LA). Plusieurs hiérarchies peuvent être inter-connectées pour former une plate-forme multi-MA.

IV. ARCHITECTURE PROPOSÉE

Fig. 2: Architecture pour le déploiement auto-adaptatif d'intergiciel

Dans cette section, nous décrivons l'architecture proposée. Nous commentons brièvement les différents modules en mettant l'accent sur les modules numérotés (2), (7), [START_REF] De Lemos | Software engineering for self-adaptive systems: A second research roadmap[END_REF], comme indiqué dans la figure 2 Algorithmes de planification (3): la fonction d'un algorithme de planification consiste à répartir les composants de l'intergiciel sur les ressources de la plate-forme qui satisfont leurs besoins (si possible) et que certains objectifs prédéfinis par l'utilisateur soient atteints. Pour ce faire, les algorithmes ont besoin de connaître:

• les paramètres de l'utilisateur (1) qui expriment les objectifs que l'utilisateur souhaite atteindre.

• le modèle de l'intergiciel [START_REF] Kephart | The vision of autonomic computing[END_REF] qui décrit l'organisation des composants de l'intergiciel, les relations et les exigences (propriétés de la conception).

• le modèle de plate-forme (8) qui décrit les ressources et de leurs connexions.

• la modélisation du déploiement (2) n'est pas obligatoire, et peut parfois être exprimée par les paramètres de l'utilisateur. Il permet à l'utilisateur final de décrire une hiérarchie particulière de composants sans préciser où les composants seront placés (les algorithmes de planification vont le faire).

• le fichier de déploiement (4): il s'agit de la sortie des algorithmes de planification. Il précise pour tous les composants de l'intergiciel les ressources qui leur sont allouées. Ce fichier a le même format que celui du module [START_REF] Hou | ADEM: Automating Deployment and Management of Application Software on the Open Science Grid[END_REF]. Mais certains éléments qui ne sont pas pertinents peuvent être laissés vides. Il s'agit d'une instance du modèle de déploiement.

Le convertisseur (5): ce module convertit le fichier de déploiement (exprimé dans un format générique) en un fichier au format compris par l'outil de déploiement particulier utilisé [START_REF]Deployment and Configuration of Component-based Distributed Applications Specification[END_REF]. Il faut prendre de (4) les informations pertinentes et créer l'entrée de l'outil de déploiement (6) qui exécute les opérations de déploiement réelles [START_REF] Carzaniga | A Characterization Framework for Software Deployment Technologies[END_REF], [START_REF]Deployment and Configuration of Component-based Distributed Applications Specification[END_REF] comme le transfert de fichiers, la configuration des ressources ciblées, l'activation du processus, etc. Après les actions de [START_REF]Deployment and Configuration of Component-based Distributed Applications Specification[END_REF], nous obtenons une hiérarchie de composants de l'intergiciel en cours d'exécution sur les ressources de l'infrastructure physique.

Information de surveillance (9): il surveille la plate-forme et recueille les informations. Ces informations concernent à la fois la plate-forme intergiciel et celle des ressources.

A partir des informations recueillies par [START_REF] Andersson | Modeling dimensions of self-adaptive software systems[END_REF], la carte du déploiement courant [START_REF] Caron | DIET: A Scalable Toolbox to Build Network Enabled Servers on the Grid[END_REF] est créée, c'est une mise en correspondance entre les composants intermédiaires à l'exécution et les moyens sur lesquels ils sont en cours d'exécution. Les états des ressources (12) sont obtenus et des mesures de la charge de travail de certains des composants intermédiaires sont prises. Ces trois modules peuvent communiquer avec l'outil de suivi et vice-versa.

Ces trois modules (11 à 13) sont des entrées des algorithmes de re-déploiement [START_REF] Goglin | Managing the topology of heterogeneous cluster nodes with hardware locality (hwloc)[END_REF]. Ces modules possèdent les connaissances nécessaires pour évaluer si un redéploiement est nécessaire. Si c'est le cas, le module regarde comment le faire en fonction de sa connaissance des paramètres actuels. Ce module s'appuie là-dessus et utilise la totalité ou une partie des algorithmes de planification (3). Les actions décidées [START_REF] Chouhan | Automatic Deployment for Application Service Provider Environments[END_REF] qui sont la sortie du module (14) sont dans le format d'un fichier de déploiement et peuvent avoir besoin d'être traduites par un convertisseur pour un outil de déploiement particulier qui permet d'exécuter les actions.

V. MODÈLES

Dans cette section, nous présentons les modèles correspondant aux modules (2), (7) et (8) de l'architecture proposée. Ces modèles ont été implémentés sous forme de schémas XML.

A. Modélisation des ressources de la plate-forme La Figure 3 représente le modèle décrivant les ressources de l'infrastructure. Ce modèle permet une abstraction et simplification d'un système distribué réel tel qu'une grille, une fédération de clusters ou de clouds. Notre but est de fournir un modèle qui puisse représenter les différents types de systèmes distribués. Il se compose de plusieurs éléments:

Plateform: Cet élément représente la plate-forme (infrastructure). La plate-forme est composée d'un ensemble de ressources ainsi que d'une série de liens. Elle a un nom et une propriété "variabilité".). Cette propriété est définie par les administrateurs de la plate-forme. Son but est de capturer à quel point les paramètres considérés de la plate-forme sont variables (peu fréquente, fréquente, très fréquente). Cette valeur peut être calculée (ou estimée) en prenant en compte la variabilité de chaque ressource composant la plate-forme ou en analysant l'historique de la plate-forme. Dans le cas des stratégies autoadaptative de redéploiement, il est utile d'avoir connaissance de la variabilité de la plate-forme. En effet, certaines stratégies de redéploiement peuvent être efficaces dans un milieu très dynamique et être moins performantes dans le cas de plateformes peu dynamique.

Resource: les ressources sont de type: Cluster, Noeud de Calcul (Node) et Site. Une ressource a un identifiant et dispose de zéro ou plusieurs Localisations (élément Location). Chaque localisation est une pair (clef,valeur) qui spécifie un groupe auquel appartient la ressource. Chaque pair capture la notation d'appartenance/localisation d'une ressource. Par exemple, une ressource appartient à un site (site, nomSite), à un réseau local (reseauLocal, adresses IP) et à une ville (ville, nomVille). Certaines localisations peuvent être géographiques et d'autres liées au réseau. La localisation et l'appartenance à des groupes d'une ressources sont nécessaires pour certaines décisions de redéploiement quand il est nécessaire de déplacer un composant ou des données mais aussi pour des raisons de sécurité. Une ressource est aussi décrit par un ensemble de liensLink.

Link: Cet élément décrit les liens de communications entre les ressources (noeud, cluster, site). Il est rattachée à deux ressources (endpoint1 et endpoint2). L'attribut linklevel spécifie la nature et le niveau dans la hiérarchie du lien. linklevel peut avoir les valeurs suivantes: "intraCluster", "intraSite", "interSite", "interCluster" et "interNode". Le lien est aussi composé d'un ensemble de Capacité comme la bande passante et la latence.

Capacity : Une capacité est décrite par un nom (CPU, diskSpace, numberOfCore, etc.), une capacityUnit qui spécifie dans quelle unité la valeur de la capacité est exprimée, une capacityFlavor qui définit si la valeur de la capacité est représenté comme une valeur simple, un intervalle ou une liste et capacityValue qui contient la ou les valeurs.

Node : Un noeud est défini comme un ensemble d'éléments Capacity. Il a un identifiant qui est unique au sein du cluster auquel il appartient.

Cluster: Un Cluster est un ensemble de noeuds dont un (des noeud) a une fonction spéciale (appelé frontEnd). Un cluster virtuel tournant dans un cloud est représenté comme un cluster avec un ensemble de machines virtuelles (décrites comme des noeuds) et un ensemble de liens de communications. Si un cluster appartient à un ou plusieurs sites, un ou plusieurs éléments Location sont utilisés. [START_REF] Koslovski | Vxdl: Virtual resources and interconnection networks description language[END_REF] propose un langage de description de ressources et leurs interconnections. L'accent est mis sur la description d'un réseau de machines virtuelles. [START_REF] Goglin | Managing the topology of heterogeneous cluster nodes with hardware locality (hwloc)[END_REF] permet une description assez fine de la structure des ressources physiques de type cluster et offre une API permettant de lancer des requêtes pour obtenir des informations sur la structure de la ressource entre autres. [START_REF] Chouhan | Automatic Deployment for Application Service Provider Environments[END_REF] présente un modèle pour les intergiciels hiérarchiques et des algorithmes pour déployer une hiérarchie d'ordonnanceurs sur un cluster ou une grille. Cependant, une sévère limitation de ce travail est qu'un seul type de service peut être déployé dans la hiérarchie. [START_REF] Depardon | Contribution to the Deployment of a Distributed and Hierarchical Middleware Applied to Cosmological Simulations[END_REF] propose une solution à cette limitation et présente un modèle et un algorithme pour le déploiement de intergiciel hiérarchique sur une plate-forme homogène mais ne s'intéresse pas à l'aspect auto-adaptatif. Dans [START_REF] Kichkaylo | Optimal resource aware deployment planning for component based distributed applications[END_REF], les auteurs présentent un modèle étendu pour le problème du placement de composants. [START_REF] Van Der Burg | Disnix: A toolset for distributed deployment[END_REF]présente une boite à outils pour le déploiement auto-adaptatif de système orienté service.

Fig. 1 :

 1 Fig. 1: Exemple d'un cas d'adaptation

Fig. 3 :Fig. 4 :

 34 Fig. 3: Modèle d'infrastructure

Fig. 5 :

 5 Fig. 5: Modèle de Déploiement

VII. CONCLUSION

Notre objectif est de réaliser un déploiement auto-adaptatif d'un intergiciel. Cette tâche est divisée en deux parties: la conception de modèles pour décrire l'infrastructure, l' intergiciel ainsi que le déploiement; la conception d'algorithmes de (re)déploiement et de planification. Ces algorithmes utilisent les connaissances fournies par les modèles et surveillent le déploiement afin de prendre des décisions qui permettront au système de s'auto-adapter. Dans cet article, nous avons présenté les trois modèles que nous avons utilisé pour simuler des algorithmes d'auto-adaptation pour un intergiciel de grille et Cloud.