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Abstract

Performing Data Assimilation (DA) at a low cost is of
prime concern in Earth system modeling, particularly at
the time of big data where huge quantities of observa-
tions are available. Capitalizing on the ability of Neu-
ral Networks techniques for approximating the solution
of PDE’s, we incorporate Deep Learning (DL) methods
into a DA framework. More precisely, we exploit the la-
tent structure provided by autoencoders (AEs) to design
an Ensemble Transform Kalman Filter with model er-
ror (ETKF-Q) in the latent space. Model dynamics are
also propagated within the latent space via a surrogate
neural network. This novel ETKF-Q-Latent (thereafter
referred to as ETKF-Q-L) algorithm is tested on a tai-
lored instructional version of Lorenz 96 equations, named
the augmented Lorenz 96 system: it possesses a latent
structure that accurately represents the observed dynam-
ics. Numerical experiments based on this particular sys-
tem evidence that the ETKF-Q-L approach both reduces
the computational cost and provides better accuracy than
state of the art algorithms, such as the ETKF-Q.

1 Introduction

Data Assimilation estimates the state of a system x ∈ Rn

given two sources of information: a model that provides
a background knowledge xb ∈ Rn and an observation
vector y ∈ Rp. We can either observe the system di-
rectly - partially or entirely - or implicitly through an
observation operator H, yielding the observation relation
y = H(x) [3, 7].

Most variational and ensemble DA algorithms en-
counter two problems that will be considered in the
present paper.

First, they are largely grounded on the Kalman filter
which assumes that errors follow a Gaussian distribution
and the physical model is mildly nonlinear. Another
issue is the cost of applying the propagation model that
can be computationally prohibitive. Thus, we propose
to follow a data-driven approach which can efficiently
represent nonlinear dynamics as long as a sufficient

amount of data is given. They can also make better
use of big data and exploit better the future computing
hardware.

In the last decade, machine learning (ML) techniques
managed to outperform existing methods in image clas-
sification [29, 31, 26, 54], segmentation [43, 20], Natural
Language Processing (NLP) [41, 21], language translation
[55, 67] and in mastering go game [52, 53] for instance. It
is now broadening to new areas like computational physics
where it achieves interesting results too, as exemplified
by the so-called physically informed artificial neural net-
works [44, 45, 40].

Nevertheless, the widespread applicability of ML to
plethora of problems is hampered by significant concerns
like the difficulty to incorporate physical knowledge in
DL frameworks [64, 10] or the existence of adversarial
examples [56, 14, 48] that reduces practical applications
in sensitive fields (e.g. automated driving). We can also
mention the absence of uncertainty estimation analysis
[47].

As suggested by [22], Data Assimilation and Deep
Learning can take advantage of each other as they are
complementary and have also similarities. Therefore, cou-
pling DA and DL is quite a natural approach. In this
study, we are interested in utilizing DL tools within a DA
framework to:

• reduce the computational cost and memory storage
by performing calculations in a reduced space (latent
space).

• get a better accuracy by exploiting the latent struc-
ture and a surrogate network.

• propose a novel and promising framework that could
be extended to other DA methods and NNs. The
proposed method simplicity is also a great advantage:
there is no need to change the DA algorithm, only
the operators.
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1.1 Related work and our contributions

Optimizing DA methods is a key issue in Earth system
modeling, particularly in the context of big data where
huge quantities of observations are now available (thanks
to remote sensing among other [30]), and where the
increase of the complexity of physical models goes hand
in hand with the augmentation of the computational
resources needed in applications. For this reason, model
reduction techniques and surrogate models have been
investigated by the DA community.

As shown in [3, Chapter 5], DA reduction techniques
rely on multiple mathematical tools in order to alleviate
the computational cost: singular value decompositions,
principal component analysis (PCA) or proper orthogo-
nal decomposition (POD), spectral decomposition (e.g.
Fourier series), wavelets and curvelets for instance. Re-
duction methods in DA can be divided into two groups:
either they aim at reducing the numerical cost of the time
integration of the model or they improve the DA method
itself.

Probably the most direct approach in the first cate-
gory consists in simplifying the model (see [38]), whereas
more sophisticated approaches rely on POD [13, 2] or on
wavelets [57]. Rank reduction techniques have been inves-
tigated as well for both variational and sequential meth-
ods: the core change is to introduce low rank approxi-
mations of the covariance matrices, without changing the
complexity of the time integration. In this case, some
methods focus on factorizing the model error covariance
matrix by possibly relying on sparse structures (see [6]
for a review). Propagating such a matrix through time is
also expensive, hence the idea is to use a Truncated Sin-
gular Value Decomposition (TSVD) on the model linear
operator [17].

When coming to improving the DA algorithm by space
reduction, we find the Singular Evolutive Extended
Kalman Filter (SEEK) [61] and, using sampling tech-
niques, ensemble DA methods like Ensemble Kalman
Filter (EnKF), the reduced-rank square root filter
(RRSQRT), the stochastic EnKF and the deterministic
EnKF.

Deep Learning also proposes reduction techniques
along with surrogate models. It is also establishing it-
self in computational physics. Recent research shows that
PDEs can be solved efficiently by using DL methods and
the computational cost of simulations can be reduced by
considering the latent space structure provided by NNs
[44, 45, 32, 51, 25, 27]. For instance, the Physics In-
formed Neural Networks (PINNs) [44, 45] are capable to
properly learn the solution of a nonlinear PDE while be-
ing computationally cheap. Also, one of the most promis-
ing research work, though not investigated here, consists
in making the most of Fourier transforms to solve PDEs
[32]: this technique has the advantage to be both accurate
and computationally efficient.

Creating a latent space is mostly performed with
well-known networks like autoencoders (AE), convolu-

tional autoencoders (CAE) or variational autoencoders
(VAE). The aim in creating a latent space is either to
get a better accuracy or to reduce the computational
cost. For example, in [12] a convolutional VAE is used
to construct a continuous parameterization for facies in
order to preserve the geological realism of the model (i.e.
predictions for oil and gas reservoirs). This leads to a
better accuracy. In [65, 66], the authors are mainly in-
terested in computational speed up and robust long-term
predictions for fluid flows simulations. They therefore
demonstrate the capability of data-driven approaches for
modeling fluid dynamics: they implemented a CAE for
spatial compression and stacked long-short term memory
(LSTM) layers to define their surrogate network, i.e. a
network that performs time propagation. They achieve
a compression ratio of 256 enabling them to replace
heavy fluid flows simulations. Similarly, [37] resorts to a
CAE for space reduction and recurrent neural networks
for the time propagation. About [35], in addition to
Control Variable Transform (CVT) they take advantage
of a CAE inspired by the image compression field that
uses state-of-the-art deep learning techniques. In [46],
fully-connected layers are considered to perform the
reduction. Lastly, we can quote [19] where the authors
utilize an AE to encode 3D virtual figurines, then deform
their motions within the latent space and finally get the
new pose in the full space. Time propagation within the
latent space is performed with a mere matrix product
given by the so-called Koopman operator. The reduced
space obtained with this method is of much smaller
dimension than linear model reduction techniques,
therefore it yields faster and more accurate results along
with improved robustness.

When including model reduction techniques within DA
frameworks, we find [12] and [35] which both employ neu-
ral networks in their data assimilation architectures. Yet,
they do not have the same purposes. Indeed, [12] trains
a convolutional variational autoencoder (CVAE) with the
aim to generate realistic geological facies by introducing a
new continuous parameterization which was not properly
achieved with prior techniques. They use a type of en-
semble smoother based on multiple data assimilation and
assimilate the data in the new parametrization (latent)
space which leads to a better accuracy. They do not use
a surrogate network in their DA method.

Regarding [35], the goal is to reduce the physical do-
main into a latent space to speed up computations in the
context of an ensemble based DA without temporal as-
pect. Besides the temporal aspect, the main difference
with our methodology is that they introduce an obser-
vation encoder network which includes an interpolation
operator to map the observations to the full space. This
observation network maps the observations to the latent
space where data assimilation is performed. Having an
interpolation operator may introduce additional errors
during DA. Whereas in our method, observations stay
in their original space and we do not need to apply any
transformation. In their latent space DA approach, they
also only focus on the computational cost gain.

2



As for surrogate networks coupled with DA algorithms,
we have [42] and [11] which both consider Lorenz 96
system. In [42], Pawar and San model unresolved flow
dynamics with a surrogate network and learn the cor-
relation between resolved flow processes and unresolved
subgrid variables thanks to a set of NNs. Whereas we
both aim to more accurately forecast, their approach
does not involve any space reduction technique. Their
main motivation is not on reducing the computational
cost either. Regarding [11], Brajard et al. use an ensem-
ble Kalman filter algorithm combined to a convolutional
neural network with skipconnections [26]. What is
remarkable here is that the surrogate model is iteratively
trained with the data assimilation algorithm, whereas
in our case NNs are not aware of the existence of an
outer data assimilation process: our networks are trained
independently of the ETKF-Q algorithm. Nonetheless,
Brajard et al. consider neither standard space reduction
techniques nor latent spaces obtained with NNs like we
do.

A first ingredient in the approach we introduce in the
present paper is to replace the (supposedly expensive)
time integration of the model with a NN surrogate. Time
stepping methods based on surrogates have already been
explored by several authors [34, 65, 66, 37, 63, 11, 42].
A key question that comes immediately is to ensure the
time stability of the resulting scheme (see [24, 23] for
an investigation within deep learning surrogate models)
when the model is repeatedly called to propagate the
state over several time steps. To this aim, we introduce
in the training loss an explicit stabilization that involves
a penalization of the growth of model iterations.

We also address the question of incorporating latent
spaces in DA frameworks. In general, DA and ML
are not really coupled, model reduction or surrogate
models are used only for the time propagation within
an existing DA algorithm. We believe our approach
is original in that it performs DA directly in the NN
latent space. This approach is appealing, since it
fully exploits an underlying geometry and leads to
perform the computations mostly in the space where
they are cheap (the latent space). We shall see that to
obtain good results, a special care has to be taken in
the description of the dynamical and observational errors.

Therefore, in this paper we propose a new latent space
DA methodology, that is the ETKF-Q-L one, which:

1. explores the ability of DL for creating a `-
dimensional reduced space, based on the assumption
that a latent space of size ` which accurately repre-
sents the full dynamics exists. This is achieved with
an autoencoder.

2. defines a surrogate network within the latent space
that performs time propagation. An innovative it-
erative training enforces the surrogate to be stable
over time.

3. implements an ensemble DA algorithm within the
learned `-dimensional latent space thanks to the AE
and the surrogate network.

Interestingly, 1. and 2. can be performed in an all-at-
once approach by training both the AE and the surrogate
at the same time through a well-suited custom loss func-
tion. The training set is an ensemble of simulations of the
physical system which lies in RN . For short, the proposed
methodology provides the following advantages:

1. since any DA algorithm requires to store vectors ly-
ing in the model space, discovering a lower dimen-
sional representation induces a reduction in memory
needs and computational cost.

2. performing the DA linear analysis in the latent space
obtained by AE is less susceptible to yield non-
physical solutions since the decoder is a nonlinear
transformation that fits the manifold where state tra-
jectory statistically belongs, when such a structure
does exist.

We show the relevance of our approach on a 400-
dimensional system possessing an underlying dynamics
that follows the 40-variables Lorenz 96 equations. The
existence of this latent physics is ensured by construction
of the full space dynamics which is built upon Lorenz 96
system.

1.2 Organization of this work

The remainder of this work is organized as follows: in
section 2, we precisely detail the role of the AE NN struc-
ture for the latent space computation. We also present
the surrogate network used for time stepping and expose
the loss function that allows the joint learning of these
two networks.

In section 3, we first remind some general DA concepts,
then we explain an ensemble algorithm that takes model
error into account that is the ETKF-Q algorithm. Lastly,
we detail our latent DA framework namely the ETKF-Q-
L method, based on the ETKF-Q algorithm associated
with the AE and the surrogate.

In section 4, we present the experimental context cho-
sen to benchmark our approach, i.e. the augmented
Lorenz 96 dynamics, the NN architectures and the train-
ing setting along with the DA context. We show the
performance of the new DA method on the augmented
Lorenz 96 system. A grid search algorithm is used to
tune the DA algorithm parameters.

2 Latent Space Dynamics

In this section we explain how to approximate the model
dynamics under consideration in a latent space. We
first briefly present the autoencoder (AE) structures,
which are widely used for dimension reduction [28],
and then provide more details on the surrogate network
which is nested in the AE (figure 1). We also discuss
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SURROGATEENCODER DECODER xk+1xk

zk zk+1

Figure 1: Training architecture of the autoencoder and
the surrogate: the encoder maps from RN to R` and the
decoder performs the reverse operation. The surrogate,
i.e. the time propagator operates within the latent space.
Both networks are trained together.

how to obtain a stable trajectory of the dynamics by
reformulating the loss function.

Resorting to a latent space data assimilation is also mo-
tivated by [60, 16, 58, 59]. In the case of nonlinear chaotic
dynamics, the state space can be indeed divided into un-
stable and stable subspaces. It turns out that perturba-
tions mostly live in the unstable manifold which is in gen-
eral of much smaller dimension than the full space. In [8],
these results are extended to the Kalman smoother and
ensemble formulations of the Kalman filter and smoother
are considered. This motivates the link we make between
latent DA and unstable manifold theory; our goal is to
learn a latent space that would capture the unstable man-
ifold. Indeed, as shown by [62, 15], tracking the unstable
directions is of primary relevance to properly perform the
assimilation in possibly high-dimensional models such as
the atmospheric or oceanic models.

2.1 Autoencoders

Autoencoders are a type of NNs that are trained to repro-
duce the input data by enforcing them to be accurately
represented in a lower dimension [28]. They consist of an
encoder and a decoder trained together. Given data lying
in RN , the encoder maps from RN to R` (with ` <<N)
and is generally made of successive fully connected or
convolutional layers with decreasing dimensions. The de-
coder performs the reverse operation and therefore mir-
rors encoder’s layers. A common loss function is the Mean
Square Error (MSE):

MSE (x,D (E (x))) =
1

N

N∑
i=1

(
x(i) − [D (E (x))](i)

)2
(1)

where x ∈ RN , x(i) denotes the i-th element of vector
x, E and D denote the encoder and the decoder, respec-
tively. Note that unlike Principal Component Analysis
(PCA), AEs leverage nonlinear transformations and are
thus better suited to handling nonlinearities [28].

In order to apprehend how AEs work, let us consider
MNIST dataset1 made of hand-written digits stored as
28 × 28 images or vectors of size 784: a very simple en-
coder could contain 4 fully connected layers whose input
dimensions could be as follows: 784, 300, 150, 100, 20.
Then, the decoder would hold the same number of
layers in the reverse order (i.e. with dimensions

1see http://yann.lecun.com/exdb/mnist/ for more details

20, 100, 150, 300, 784, respectively). Hence the bottleneck
structure of AE networks with the reduced space at the
encoder-decoder junction point.

While learning, encoder and decoder’s weights are mod-
ified so that the autoencoder can reconstruct the input
digit with the strong requirement that data have to be
well represented in a `-dimensional space called the la-
tent space.

AE’s quality is highly impacted by the type and the
number of layers, their dimensions and the size of the
latent space chosen. The major issue, that is used tackled
numerically by hyperparameter tuning, is to be able to
find the smallest latent space that enables to represent
the data the more accurately as possible.

In this study, which is more of a proof of concept, we as-
sume available a system of sizeN for which a latent space
of lower dimension ` is deemed to exist and in which the
observed dynamical system can be described. Our en-
coder maps from RN to R` and the decoder performs the
reverse operation. We want to emphasize that there is
absolutely no reason for the latent space of dimension `
produced by the autoencoder to be unique. Indeed, the
loss function used in the training promotes a coherence
between the triplet consisting of the decoder, the encoder
and the latent space on the one hand, and data on the
other hand. Whenever one particular latent space is dis-
covered (the network is completely free in the way it de-
signs the latent space), other latent spaces exist as well,
obtained by transformations such as rotations, or changes
of scales.

2.2 Surrogate network and stability

We want to train a surrogate network such that time
propagation of the model dynamics can be performed in
the latent space (obtained by the AE). Therefore, our
surrogate network is estimated using encoded data and
outputs a transformation acting on, and producing latent
vectors. Just like the AE, a first idea would consist in
training the surrogate network through a MSE loss func-
tion as follows:

MSE (xk+1, T (xk)) =
1

N

N∑
i=1

(
x
(i)
k+1 − [T (xk)]

(i)
)2

(2)

where xk,xk+1 ∈ RN are the state vectors at time
tk and tk+1, respectively and operator T is such that
T (.) = D (S (E (.))) with E , S and D denoting the
encoder, the surrogate and the decoder, respectively.

Nonetheless, training our surrogate with this loss
function (equation (2)) does not yield a stable solution.
This is especially easy to understand when the dynamics
under consideration is chaotic, as often the case in
data assimilation. In this case, if the non-vanishing
components of the dynamics are not represented with
enough accuracy, the surrogate dynamics is expected
to be of insufficient quality. This is even worse in
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Figure 2: Surrogate network: it is based on skipconnec-
tions [26], and more precisely on an updated version of
them [5]. The network consists of fully connected layers
of dimension `.

the case where the original dynamics would exhibit
conservative components; if the surrogate dynamics does
not capture these components accurately enough, it is
easy to conceive that nonphysical unstable subspaces
may occur, making the latent space time stepping with
the surrogate inappropriate for DA.

Issues related to stable NNs approximation of time
stepping methods have already been investigated in the
literature though outside of our DA context.

They have been linked to exploding or vanishing gradi-
ents issues and NNs’ robustness as well. [24, 23] get some
insights in this direction by proposing groundbreaking
methods to make deep neural networks stable. However,
the problem they address is not exactly the one we are
looking at: they focus on Deep Neural Networks’ (DNNs)
robustness to input perturbation, on their capability to
distinguish between two initial vector states, i.e. not to
bring both of them to 0 nor making them diverging.

Within the framework of DA, the presence of non-
physical unstable dynamics components is controlled by
using a simple penalty approach involving a technique we
describe now.

Our method relies on a chained loss function, meaning
that we train the surrogate to predict c successive states
to enforce stability. In practice, given xk ∈ RN , the
encoder yields zk ∈ R`. Then, the surrogate outputs
zk+1, . . . zk+c which are all decoded afterwards and their
distances to the ground truth states are measured through
a custom loss function defined as follows:

1

C

C∑
c=1

MSE (T c (xk) ,xk+c) (3)

where T c is a straightforward extension of operator T :
T c (.) = D (Sc (E)). Regarding Sc, it means that the
surrogate is applied c times in a row over the given data.

One remaining question is the number of iterations
C we need to perform in order to achieve this stability
criterion: according to our numerical experiments based
on the augmented Lorenz 96 system, just 2 consecu-
tive predictions already guarantee a stable behaviour.
In the numerical tests, we pick this parameter in {2, 3, 4}.

In the surrogate’s architecture, we found decisive the
use of so-called skipconnections [26] which are now a

common and good practice. It consists in adding the
result of layer i to the one of layer i− 1 in the form
z = z + layeri (z). This way we predict the increment
needed to reach zk+1 from zk rather than the raw output
directly. We even go a step further as [5] proposed an
updated version of skipconnections that performs better:
z = z + αilayeri (z) where αi are trainable parameters.
Our surrogate learned with and without the modulation
parameters αi: they are clearly beneficial as we achieve
better results while including them. Figure 2 exposes
the architecture of the surrogate network with the fully
connected layers of dimension ` and the associated
LeakyReLU activations.

2.3 Learning strategy: training both net-
works together

As often the case when optimizing functions of several
variables, performing sequential optimization by group of
variables may be appealing since it reduces the search
space of each optimization step. However it generally
leads to a sub-optimal solution. In our case too, numeri-
cal experiments, not reported here, showed that training
both the AE and the surrogate together gives better re-
sults than training the AE first and then the surrogate.
Since AE’s quality influences surrogate’s performances,
a combined training allows them to “communicate” and
“share” information in order to more properly learn: the
latent space is designed to fit the surrogate and vice versa.
To do so, we define a custom loss function with a weight-
ing parameter ρ that balances between equation (1) and
equation (3):

L (xk:k+C) = LAE (xk+1:k+C) + ρ×LSur (xk:k+C) (4)

where:

LAE (xk+1:k+C) =
1

C

C∑
c=1

MSE (D (E (xk+c) ,xk+c))

and:

LSur (xk:k+C) =
1

C

C∑
c=1

MSE (T c (xk) ,xk+c)

where xk:k+C denotes the sequence [xk,xk+1, . . . ,xk+C ].

3 Data Assimilation within a la-
tent space

Before presenting in details our ETKF-Q-Latent algo-
rithm, we first remind basic facts of sequential DA. The
upcoming sections section 3.1 and section 3.2 are strongly
inspired by [7, 4, 18].

3.1 Sequential Data Assimilation

Sequential or statistical DA is based on estimation theory
and refers to a DA method for which observations are
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sequentially assimilated as they become available.

Sequential data assimilation deals with the following
stochastic-dynamical system:{

yk = Hk (xk) + εk

xk =Mk (xk−1) + ηk

(5)

where xk ∈ Rn, yk ∈ Rp ∀k ∈ [0,K],Mk is the nonlinear
dynamical model used for time propagation of the state
from time tk−1 to time tk with the additive model error
ηk, andHk is the observation operator, mapping the state
from the model space to the observation space with the
observation error εk. The errors are assumed to be all
unbiased, uncorrelated in time and independent from x0.

In sequential DA, the state estimation by using this
stochastic-dynamical system is obtained based on the
Bayesian approach which takes into account probabil-
ity distributions of the errors. Available observation is
used to update the conditional probability density func-
tion (pdf) (analysis step), and then this pdf is propagated
to the next time step (forecast step).

A common choice for pdf is the Gaussian distribution
since many processes are well described with it and it is
algebraically convenient. Let us assume that in (equa-
tion (5)), the observation error follows a Gaussian distri-
bution with zero mean and a covariance matrix Rk and
similarly model error follows a Gaussian distribution with
zero mean and a covariance matrix Qk.

Using Gaussian error pdfs and under the assumption
that the model and observation operators are linear (de-
noted by Mk and Hk, respectively), the Kalman filter
recursively finds the analysis as the conditional mean of
the posteriori pdf:

xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
. (6)

Here, the state xf
k at time tk represents the model

prediction from the analysis at time tk−1, i.e. xf
k =

Mk

(
xa
k−1
)
and Kk denotes the Kalman gain matrix at

time k:

Kk = P f
kH

T
k

(
Rk +HkP

f
kH

T
k

)−1
(7)

where P f
k is the error covariance matrix of the forecast

xf
k . Note that the estimation given by (equation (6)) is

also known as the BLUE (Best Linear Unbiased Estima-
tor) estimate, which gives the minimum variance analysis
with the choice of Kk provided by (equation (7)).

Once the analysis is derived, the estimate and its error
covariance matrix are propagated through time:

xf
k+1 = Mk+1 (xa

k) (8)

P f
k+1 = Mk+1P

a
kM

T
k+1 +Qk+1 (9)

where P a
k is the error covariance matrix of the analysis.

P a
k is derived as follows:

P a
k = (Ik −KkHk)P f

k

with Ik being the identity matrix of order k.

3.2 Ensemble Transform Kalman Filter
with additive model error: ETKF-Q

Ensemble DA algorithms address downsides of the
Kalman filter such as handling nonlinear models and
storing and computing large matrices. For instance
with a Kalman filter one has to store and manipulate
error covariance matrices lying in Rn×n which is often
intractable in practice. Also, applying on both sides
the model Mk in equation (9) to compute the forecast

covariance matrix P f
k is prohibitively costly. Thus,

ensembles enable to approximate the forecast covariance
matrix thanks to a reduced set of sample vectors. In this
section, we expose a tailored version of the widely used
ensemble algorithm ETKF, namely ETKF-Q [18]. What
we call ETKF-Q method precisely denotes the IEnKS-Q
algorithm of [18, Algorithm 4.1] with parameters (L=0,
K=0, S=1, G=0, one Gauss Newton loop, transform
version).

Let us consider ensemble Ek at time k such that:
Ek = {x1

k,x
2
k, . . . ,x

m
k } ∈ Rn×m where m is the num-

ber of members. Thus, we can empirically approximate
its forecast covariance matrix:

P f
k =

1

m− 1

m∑
i=1

(
xi
k − x̄k

) (
xi
k − x̄k

)T
= Xf

k

(
Xf

k

)T
(10)

where superscript i denotes the i-th member of Ek and
x̄k the mean at time k (i.e. x̄k = 1

m

∑m
i=1 x

i
k). As for

Xf
k ∈ Rn×m, it denotes the anomaly matrix such that[
Xf

k

]i
=

xi
k−x̄k√
m−1 .

Then the analysis xa
k can be written as:

xa
k = x̄k +Xf

kw
a
k. (11)

Substituting this equation into equation (6) and using
Sherman-Morrison-Woodbury formula (see [3] for more
details) yields:

wa
k =

(
Im + Y kR

−1Y k

)−1
Y T

kR
−1
k dk (12)

being an m-dimensional vector with dk = yk − H (xk).
In equation (12), Y k represents observation anomalies,
i.e.

[Y k]
i

=
H
(
xi
k

)
− ȳk√

m− 1

with ȳk = 1/m
∑m

i=1H(xi
k).

Note that the decomposition of xa
k given by equa-

tion (11) is not unique due to rank deficient matrix Xf
k .

This yields an ill-defined change of variables in the ensem-
ble space that has to be fixed with the so called gauge-
fixing term ([9]). As an alternative Fillion et al. [18]
introduce deviation matrices to overcome this problem.

Definition Deviation matrix: a deviation matrix ∆ of a
symmetric semi-definite positive matrix Σ is an injective
factor verifying: ∆∆T = Σ. A deviation matrix of an

6



ensemble is a deviation matrix of its sample covariance
matrix.

Therefore, we aim to find a deviation matrix ∆k of P f
k

so that formulation in equation (11) yields a unique esti-
mate xa

k. Hence, we apply [18, Proposition 3.2]) to xa
k in

order to ensure such a requirement. Since then, it exists
a unique vector wa

k ∈ Rm−1 such that:

xa
k = x̄k + ∆wa

k.

and

E [wa
k] = 0m−1,

C [wa
k] = Im−1,

where E and C are the expectation and covariance
operator, respectively.

Remains the question of calculating a deviation matrix
of P f

k . Again, we rely on another Fillion et al.’s proposi-
tion ([18, Proposition 3.3]):

Proposition 1. (Deviation matrix and ensemble construction):
Let n,m, l ∈ N such that n ≥ m, l = m − 1. Let

Um ∈ Rm×l such that
[

1m√
m

Um

]
∈ Rm×m be an or-

thonormal matrix. If E ∈ Rn×m is a full column rank
ensemble, then the mean µ ∈ Rn and a deviation matrix
∆ ∈ Rn×l of E:

[µ ∆] = E ×
[

1m

m

Um√
l

]
. (13)

Conversely, if µ ∈ Rn and ∆ ∈ Rn×l then the ensemble
E ∈ Rn×m defined by

E = [µ ∆]×
[
1m

√
lUm

]T
(14)

has µ as sample mean and ∆∆T as sample covariance
matrix.

With equation (13), we can compute ∆k, a deviation

matrix of P f
k (we remind that l = m− 1):

∆k =
[
x1k, x

2
k, . . . , x

m
k

] Um√
m− 1

Regarding Um ∈ Rm×(m−1), it is a matrix such that[
1m√
m

Um

]
is orthonormal (where 1m denotes the m-

length vector [1, 1, . . . , 1]T ). It is worth mentioning that
Um can be constructed thanks to Householder’s rotations.

When propagating through time, we know that our
model Mk is not perfect and has an intrinsic error de-
noted ηk (see equation (5)). However, up to now we
have not included this particular knowledge in our anal-
ysis keeping the erroneous prediction as it is. Some ap-
proaches attempt to leverage this information in order to
perform a model error correction and thus improve pre-
dictions’ quality [50, 39, 49, 36, 1].

We now come to the core of the ETKF-Q algorithm,
the variant of the ETKF one which takes model error into

account in the expression of the covariance matrix of xk

(here xk denotes the real physical state):

xk =Mk (xk−1) + ηk

C
[
xk|y0:k−1

]
= C

[
Mk (xk−1) + ηk|y0:k−1

]
where y0:j denotes the sequence of all the observations
from time 0 to time j.

We have supposed that ηk ∀k ∈ [0,K] and x0 are mu-
tually independent. Then, as Mk (xk−1) is a function of
x0 and of η0,η1, . . . ,ηk−1, it comes thatMk (xk−1) and
ηk are independent which yields that

C
[
xk|y0:k−1

]
= C

[
Mk (xk−1) |y0:k−1

]
+ C

[
ηk|y0:k−1

]
We have also assumed that propagation and observation
errors ηk and εk are mutually independent ∀k ∈ [0,K].
Then, we have C

[
ηk|y0:k−1

]
= C [ηk] = Qk.

We get:

C
[
xk|y0:k−1

]
= C

[
Mk (xk−1) |y0:k−1

]
+Qk

But, C
[
Mk (xk−1) |y0:k−1

]
has been empirically approx-

imated by P f
k = ∆k∆T

k .
Hence we obtain that

C
[
xk|y0:k−1

]
≈∆k∆T

k +Qk.

Deviation matrices of ∆k∆T
k + Qk are supposed to lie

in Rn×n, but since a n × l deviation matrix is required
for the next cycle, a reduction has to be performed.
As ∆k∆T

k + Qk is symmetric (as a sum of symmet-
ric matrices), its eigendecomposition by using the first
` (= m−1) dominant eigenvectors yields V k ∈ Rn×(m−1)

and Λk ∈ R(m−1)×(m−1) such that:(
∆k∆T

k +Q
)
V k ≈ V kΛk

One could notice that this approximation is the best one
in matrix Frobenius norm.

Therefore, a square root approximation of ∆k∆T
k +Qk

is given by V kΛ
1/2
k . We hence update ∆k = V kΛ

1/2
k .

Then, equation (14) enables to update ensemble Ek ac-
cording to this new statistic:

Ek = x̄k + ∆k

√
m− 1UT

m

Similarly, we apply equation (13) to the observation en-
semble to produce Y k which is analogous to the observa-
tion anomalies in the regular ETKF algorithm:

Y k =
[
H
(
x1
k

)
,H
(
x2
k

)
, . . . ,H (xm

k )
] Um√

m− 1

From now on, it is a straightforward application of the
regular ETKF algorithm (see [7, Section 5.3]). In algo-
rithm 1, we detail the ETKF-Q algorithm with the addi-
tional assumptions that Rk = R, Qk = Q, ∀k ∈ [0,K].
In this algorithm, we mention that operator H is a
column-wise operator when applied to an ensemble, i.e.
H (Ek) =

[
H
(
x1
k

)
,H
(
x2
k

)
, . . . , (xm

k )
]
.

7



Algorithm 1: ETKF-Q

Inputs:
Observation vector y0 ∈ Rp ;
Observation operator H : Rn → Rp ;
Obs. error covariance matrix R ∈ Rp×p ;
Ensemble E0 = {x1

0,x
2
0, . . . ,x

m
0 } ∈ Rn×m ;

Model operator M : Rn → Rn ;
Model error covariance matrix Q ∈ Rn×n ;
Inflation parameter λ ∈ R ;

Initialization:
Construct Um matrix such that

[
1m√
m

Um

]
is

orthonormal ;

Define U :=
[
1m
m

Um√
m−1

]
;

for k = 1, 2, ... do
Propagation step

1 Ek :=M (Ea
k−1) ;

2 [x̄k ∆k] := Ek × U ;

3 Calculate eigenpairs of
(
∆k∆T

k + Q
)
:(

∆k∆T
k + Q

)
V k ≈ V kΛk with V k ∈ Rn×(m−1)

and Λk ∈ R(m−1)×(m−1) ;

4 ∆k := V kΛ
1/2
k (Update deviation matrix with

model error) ;
5 Ek := [x̄k ∆k]× U−1 (Update ensemble with new

statistics) ;
Analysis step

6 [ȳk Y k] := H (Ek)× U ;

7 Let Ωk ∈ R(m−1)×(m−1) such that:

ΩkΩT
k =

(
Im−1 + Y T

k R
−1Y k

)−1
;

8 wa
k := ΩkΩT

k Y kR
−1 (yk − ȳk) ;

9 Ea
k := x̄k1T

m + λ×∆k

(
wa

k1m +
√
m− 1Ωk

)
;

10 end

3.3 ETKF-Q-Latent algorithm

Our goal with the ETKF-Q-L algorithm is to perform
DA analysis within the latent space of our autoencoder.
Indeed, we now assume the existence of a N -dimensional
system possessing a latent representation of lower di-
mension `. From now on, variable N refers to the full
space dimension whereas notation ` denotes the latent
space dimension. Algorithm 2 exposes the changes we
made to do so. Here again operator H is a column-wise
operator when applied to an ensemble. We highlight
that ensemble E0 ∈ RN×m is first encoded into ensemble
Z0 ∈ R`×m and then all computations happen within
the latent space. In order to calculate the misfit vector
dk = yk − H (xk), first the decoder D is used to map
the ensemble from the latent space to the full space,
then the observation operator H maps the ensemble
from the full space to the observation space. Therefore,
we do not need to perform any operation with the
observations. They stay in their original space. Since
time propagation is performed in the latent space, we no
longer refer to matrix Q but we rather introduce Q`.
Instead of using ∆ to represent a deviation matrix, we
refer to it as Γ in the case of the latent algorithm. For
simplicity, we assume that R = σ2

RIp and Q` = σ2
Q`
I`.

Since we cannot characterize the error committed by

Algorithm 2: ETKF-Q-Latent

Inputs:
Observation vector y0 ∈ Rp ;

Observation operator H ◦ D : R` → RN → Rp ;
Obs. error covariance matrix R ∈ Rp×p ;

Ensemble E0 = {x1
0,x

2
0, . . . ,x

m
0 } ∈ RN×m ;

Surrogate model S : R` → R` ;

Model error covariance matrix Q` ∈ R`×` ;

Encoder E : RN → R` ;
Inflation parameter λ ∈ R ;

Initialization:
Construct Um matrix such that

[
1m√
m

Um

]
is

orthonormal ;

Define U :=
[
1m
m

Um√
m−1

]
;

Encode ensemble E0: Z0 := E (E0) ∈ R`×m ;

for k = 1, 2, ... do
Propagation Step

1 Zk := S (Za
k−1) ;

2 [z̄k Γk] := Zk × U ;

3 Calculate eigenpairs of
(
ΓkΓk

T + Q`

)
:(

ΓkΓk
T + Q`

)
V k ≈ V kΛk with V k ∈ R`×(m−1)

and Λk ∈ R(m−1)×(m−1) ;

4 Γk := V kΛ1/2 (Update deviation matrix with
model error) ;

5 Zk := [z̄k Γk]× U−1 (Update ensemble with new
statistics) ;

Analysis step
6 [ȳk Y k] := H (D (Zk))× U ;

7 Let Ωk ∈ R(m−1)×(m−1) such that:

ΩkΩT
k :=

(
Im−1 + Y T

k R
−1Y k

)−1
;

8 wa
k := ΩkΩT

k Y kR
−1 (yk − ȳk) ;

9 Za
k := z̄k1T

m + λ× Γk

(
wa

k1m +
√
m− 1Ωk

)
;

10 end

our surrogate network, the model correction step needs
a tuned parameter σQ`

that embodies the unknown
surrogate error.

In order to picture the overall architecture of our DA
framework, we can refer to figure 3.

The strong difference between algorithm 1 and algo-
rithm 2, is the reduction of the computational space from
RN to R`, which straightforwardly reduces both the com-
putational cost and the memory storage. In practice, our
latent space is 10 times smaller than our full space (see
section 4.4 for detailed results).

Numerical experiments also show an accuracy improve-
ment when the assimilation is performed within the latent
space. Indeed, decoding the analysis lying in the latent
space outputs a state that is more likely to be on the
system’s trajectory while the linear analysis in the full
space may deviate from it. Figure 4 details how latent
DA works compared to the regular DA: since a latent
dynamics exists in R`, latent DA leverages the nonlin-
ear transformation provided by the encoder whereas full
space DA might not capture the intrinsic dynamics and
yields a poorer estimate.
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xk

E (.)
zk

Model Error Correction

z
′

k z
′′

k

yk

S (.)
zk+1

Loop

Figure 3: Outline of the Data Assimilation framework
that includes the trained neural networks: zk denotes
the encoded input at time k, z

′

k represents zk corrected

with respect to the model error, z
′′

k is the estimate yielded
by assimilating observation yk, and E (.) and S (.) denote
the encoder and the surrogate operator, respectively.

State space in RN

y

xa1

xb

Latent space in R`

xa2

xt

Figure 4: Comparison between full space DA and latent
space DA (temporal subscript is dropped here). Variables
xb, xa1 , xa2 and xt denote the background knowledge,
the full space estimate, the latent estimate and the ground
truth state, respectively. We also assume H = IN .

4 Numerical experiments

4.1 Choice of a physical system: The
augmented Lorenz 96 model

The Lorenz 96 model [33] is widely used as a dynamical
system [11, 63, 42] in ensemble data assimilation in
particular for weather prediction.

It is defined as follows:

dx[i]

dt
=
(
x[i+1] − x[i−2]

)
x[i−1]−x[i] +F, ∀i = 1, . . . , L

(15)
with x[−1] = x[L−1], x[0] = x[L], x[L+1] = x[1], and
L ≥ 4. Subscript [i] denotes the i-th variable.

In this equation, quadratic terms represent the advec-
tion that conserves the total energy, linear term repre-
sents the damping through which the energy decreases,
and the constant term represents external forcing keep-
ing the total energy away from zero. The L variables may
be thought of as values of some atmospheric quantity in
L sectors of a latitude circle. For F = 8, the system is
known to have a chaotic behavior [33].

We consider the Lorenz 96 dynamics with L = 40 and
then construct an augmented model based on this latent
space representation. Doing so, we guarantee the exis-
tence of a latent space in which the observed dynamical
system can be accurately expressed. Hence, by construc-
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Figure 5: An illustration of two 40-variables Lorenz dy-
namics (top and bottom left) and their associated aug-
mented Lorenz models in dimension 400 (top and bottom
right). By construction, the augmented Lorenz systems
has a latent representation in dimension 40.

tion our augmented Lorenz dynamics has a latent repre-
sentation of dimension 40.

The definition of the augmented Lorenz system is given
as follows:

Definition Augmented Lorenz model: it is a N -
dimensional system for which there exists a function F
such that F transforms the augmented Lorenz model
into a `-dimensional system (` <<N) that follows
Lorenz 96 equations.

Let us consider simulations of a `(= 40)-dimensional
Lorenz 96 state generated by integrating the well-known
Lorenz equations (with a 4th order Runge-Kutta scheme
for instance). Then, we apply a non-linear function
F : R` → RN to generate the augmented Lorenz 96 state
of dimension N . In applying the nonlinear function, the
`-dimensional state is first mapped into a N -dimensional
state via an orthonormal matrix O ∈ R`×N and then an
element-wise non-linear function f (which is basically an
invertible 3rd degree polynomial) is applied, i.e.

F : x→ f (O (x))

Figure 5 shows two Lorenz 96 dynamics (generated from
two very close but different initial points) in dimension
40 and their associated augmented Lorenz 96 models in
R400. This figure helps in visualising how these dynamics
behave in their respective spaces.

4.2 Networks’ architectures

The encoder is made of 4 fully connected layers each one
followed by a 0.2 slope LeakyReLU activation except for
the last layer whose activation function is tanh. These
4 fully connected layers maps from R400 to R40 going
by dimensions 300, 200 and 150. The decoder performs
the reverse operation but there is no activation function
in the last layer. Several variants have been tested but

9



these consecutive layers give the best achievements.

The surrogate network consists of 5 fully connected lay-
ers each one being followed by a 0.2 slope LeakyReLU ac-
tivation except the last one. Data remain in R40 through
this network.

4.3 Neural Networks training

We have generated 1000 Lorenz 96 simulations with 500
time steps and 40 trajectories each, i.e. a thousand of
500 × 40 images. We precise that in this paper a trajec-
tory denotes the time evolution of one variable x[i] (see
equation (15)), i.e. of a row in a 500× 40 image, whereas
a simulation represents the image itself.

All simulations come from the same distribution de-
fined as follows (Python code):

1 X = np . z e ro s ( ( time , nb sim , dim ) )
2
3 for i in range ( nb sim ) :
4 x0 = np . random . randn ( dim ) ∗ 0 .01 + F0
5 i n i t i a l p e r t u r b a t i o n = np . random . randn ( dim )
6 x0 += i n i t i a l p e r t u r b a t i o n
7 X[ : , i ] = new t ra j e c to ry ( x0 , dim , burn , time , F0 , deltaT )

where x0 denotes the initial state, F0 the forcing term
in Lorenz 96 system (denoted F in equation (15)), dim
is the number of variables (here 40), burn the number of
burned states, time the number of time steps, nb sim the
number of simulations (here 1000) and deltaT represents
a single time step that is 0.01 in our case.

We have then transformed the 1000 Lorenz 96 simu-
lations into 1000 augmented Lorenz 96 ones, i.e. into a
thousand 400-dimensional data.

The training set represents 95% of all available data
and the test set the remaining ones. The batch size is set
to 32 and we chose an Adam optimizer with a learning
rate of 10−3. The number of epochs is first arbitrarily
fixed to 20 for computation time purposes. Then, once a
network shows satisfactory performances, it is retrained
with 40 epochs. Networks’ weights are saved each time
we reach a lower loss score on the testset. Also, it is worth
reminding that both the autoencoder and the surrogate
are trained together: parameter ρ of our custom loss
function (see equation (4)) is set to 5 and the number of
iterations C is set to 2. Figure 6 consists of four curves
that validate NNs effective learning: indeed, the smooth
exponential decreasing of the loss function (see top left
graph) indicates that NNs are performing the task they
are assigned to better and better over training. Second
and third plots (top right and bottom left, respectively)
confirm that both the AE and the surrogate do learn,
i.e. that none of them is left behind during the training
stage. Regarding the last plot (bottom right), it is close
to the third one as it also measures the efficiency of the
surrogate but without chaining, meaning that states are
encoded, propagated only once and decoded afterwards.
One could have noticed that LAE and LSur have almost
the same values over learning: it would suggest to set ρ to
1 rather than to 5 in order to define a fair loss function.
However, it turns out that weighting more LSur gives
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Figure 6: First plot (top left) represents the loss function
(see equation (4)) over learning. Second and third plots
(top right and bottom left, respectively) separately show
the two parts of equation (4). Last plot (bottom right)
measures surrogate’s efficiency but without chaining.
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Figure 7: First graph (left) represents the original Lorenz
96 dynamics in dimension 40. Second graph (right) is the
associated latent data yielded by the trained autoencoder.

better scores, meaning that more effort is needed for the
surrogate to properly learn than for the AE. Along with
the aforementioned stability issues, it confirms that the
surrogate network is the more challenging to train.

In section 2.1, we pointed out the fact that the latent
space produced by the autoencoder and the original 40-
variables Lorenz 96 dynamics have absolutely no reason
to be alike: indeed, we remind that no constraint is added
to the autoencoder in this sense. Figure 7 confirms this
comment by putting aside both the Lorenz 96 data in
dimension 40 and the associated latent transformation:
the autoencoder does not reproduce the original dynamics
within its latent space. One could note that since the last
activation function of the encoder is tanh we could not
expect the two plots to have the same order of magnitude
and range of values.

4.4 Assessing the performance of our DA
framework: the ETKF-Q-L

We have proposed a new latent space DA algorithm cou-
pled with an AE and a surrogate network. In this section
we perform benchmark tests against the ETKF-Q-L al-
gorithm presented in section 3.3. For the comparison, the
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Root Mean Square Error (RMSE) is computed in the full
space of dimension 400:

RMSE (xk,D (zk)) =

√√√√ 1

N

N∑
i=1

(
x
(i)
k −D

(
z
(i)
k

))2
(16)

where D denotes the decoder, zk is the latent prediction
at time k and xk is the truth at the same time.

Here is the list of the other approaches we benchmark
our ETKF-Q-L method against:

• ETKF-Q : we perform the standard ETKF-Q algo-
rithm [18] over the augmented Lorenz 96 data with-
out resorting to any neural network. Propagation is
performed by applying a standard Lorenz 96 propa-
gator based on the Runge-Kutta fourth-order (RK4)
scheme: this requires first to bring back the 400-
dimensional data to the 40 dimensional space by ap-
plying transformation F (see section 4.1). Data are
mapped to the full space afterwards and the method
loops back.

• ETKF-Q-P (ETKF-Q-Physical): it remains pretty
close to the regular ETKF-Q algorithm (see algo-
rithm 1) as only the propagation step differs from
it: instead of the standard propagator, we apply the
encoder, the surrogate and the decoder, respectively.
Notation -P indicates that data assimilation is per-
formed within the full - i.e. physical - space.

• PCA-S-P (Principal Component Analysis - Surro-
gate - Physical): it works exactly like ETKF-Q-P
except that the encoder and the decoder are switched
for a Principle Component Analysis (PCA) which
can be seen as the simplest linear space reduction
technique.

• PCA-S-L (Principal Component Analysis - Surrogate
- Latent): this approach and ours are very alike, the
only difference is that encoding and decoding stages
are performed with a PCA.

• PCA-LinReg-P (Principal Component Analysis -
Linear Regression - Physical): same as PCA-S-P but
here the surrogate is replaced with the scikit-learn
linear regression predictor.

• PCA-LinReg-L (Principal Component Analysis -
Linear Regression - Latent): same as PCA-S-L but
here again the surrogate is replaced with the scikit-
learn linear regression predictor.

Table 1 summarizes the benchmark context by spec-
ifying the DA space (i.e. the space where analysis is
performed) along with the propagation method used.

In the standard ETKF algorithm, the multiplicative in-
flation parameter needs to be tuned. For simplicity, we
chose R and Q as diagonal matrices: R = σ2

RIp and
Q = σ2

QIN . Then, in the ETKF-Q algorithm [18], in
addition to the multiplicative inflation parameter, there

Table 1: Data Assimilation benchmark context. DA
space denotes the analysis space.

Name DA space Propagation Correction
ETKF-Q Full space RK4 σQ

ETKF-Q-P Full space (D, S, E) σQ

ETKF-Q-L Latent space S σQ`

PCA-S-P Full space (PCA, S, reverse PCA) σQ

PCA-S-L Latent space S σQ`

PCA-LinReg-P Full space (PCA, LinReg, reverse PCA) σQ

PCA-LinReg-L Latent space LinReg σQ`

is another parameter namely the standard deviation of
the additive model error, σQ. The trajectories of the
ensemble states are corrected using this model error at
the beginning of each cycle (see algorithm 1 and algo-
rithm 2). These updated states are used as the forecast
states. However, due to the sampling error, this model
error at each step can be thought of as an additive type of
inflation. Thus, this model error parameter may correct
the sampling error as well. With this idea in mind, the
values of the model error during propagation and the up-
date of the deviation matrix may be different. According
to our experiments, indeed taking different values gives
better RMSE scores.

As for the observation operatorH, it is set to Ip, mean-
ing that observation and state spaces are the same i.e.
N = p.

For the latent space algorithms, we introduce
Q` = σ2

Q`
I`. Since we do not know the propagation

error of the surrogate model, we need to iteratively test
dozens of σQ`

to find the one that best suits.

After some hand-made experiments, we decided to find
the best parameters combination in a straightforward
manner through a grid search. The context of experi-
ment is as follows:

• Parameters:

– 40 ensemble members

– Observation error covariance matrix σR
2I400

with σR = 1.0.

– Initial forecast error covariance matrix σB
2I400

at time k = 0 with σB = 0.3.

– 1000 iterations/time steps.

– Model error covariance matrix σM
2I40 (for

ETKF-Q method only): σM = 0.3.

• Grid search:

– inflation ranges from 0.99 to 1.9.

– σQ/σQ`
ranges from 10−7 to 0.9.

We conducted an experiment that consists in tuning in-
flation and σQ or σQ`

parameters. Distinction between
σQ and σQ`

only aims at differentiating full space data
assimilation from latent space data assimilation, respec-
tively. Results are given in table 2.

They draw the conclusion that our approach is com-
petitive with other methods that rely on a simple space
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Table 2: Data Assimilation results (mean RMSE). Only
two parameters are tuned: inflation and σQ/σQ`

.

Name RMSE Inflation σQ/σQ`

ETKF-Q 0.194 1.12 0.07
ETKF-Q-P 0.217 1.08 0.1
ETKF-Q-L 0.168 1.004 5.10−5

PCA-S-P 0.383 1.145 0.5
PCA-S-L 0.383 1.13 0.6

PCA-LinReg-P 0.429 1.24 0.7
PCA-LinReg-L 0.426 1.2 0.9

reduction technique like PCA or on a very straightfor-
ward propagator such as the linear predictor from the
scikit-learn library. As best RMSE score is reached
for our solution, it suggests that the autoencoder fully
leverages nonlinear transformations to compress the
information hold by the augmented Lorenz 96 dynamics
(see figure 4). Besides, it proves that for this particular
tailored system, a mere Multi-Layer Perceptron (MLP)
can properly perform the time propagation step in a
suitable latent space: more precisely, the experiments
do not show that a simple MLP can propagate through
time, but it rather demonstrates that surrounded with
an encoder and a decoder, a MLP can replace the model.
Our training probably finds a latent space where the
MLP surrogate can perform well the time propagation.
Although the proposed approach seems both simple
and efficient, we remind that it was nonetheless not
straightforward and we needed to resort to a custom loss
function with an iterative training scheme that enhances
stability in order to achieve a satisfactory solving.

As priorly mentioned in the introduction, our method
also aims at tackling time computing issues faced by reg-
ular DA algorithms. Therefore, all our benchmark al-
gorithms have been run 100 times on a virtual machine
composed of four virtual CPUs, one NVIDIA Tesla P100
GPU and 15 GB of RAM. Table 3 evidences that our
method computes 2.4 to 2.5 times faster than the stan-
dard ETKF-Q algorithm. More generally, we notice that
as long as an algorithm utilizes a latent space structure to
perform DA analysis, a significant computational gain is
obtained. We do not observe a major difference between
GPU and CPU computations except for ETKF-Q-P al-
gorithm. Yet, standard deviations seem to be larger when
using CPU. Crossing these results with table 2 clearly re-
veals that our approach is the best one in our benchmark
context on both the accuracy and the computational cost
criteria.

5 Conclusion and Outlook

Broadening DL algorithms to solve physics is justified
by its efficiency in space reduction and time propagation
tasks. Whereas prior aims like performing image classi-
fication, segmentation or language processing have been
addressed by NNs solely, today’s challenges involve using
DL in more global processes. In this paper, we proposed
to study how to incorporate DL in a DA framework. For

Table 3: GPU and CPU average computational times
over 100 runs for all the algorithms tested in this case
study. Resorting to a GPU device is only meaningful
for methods that include NNs. Std denotes the standard
deviation.

Name
GPU CPU

Avg. Time Std Avg. Time Std
ETKF-Q 16.32s 0.20s 16.23s 0.31s

ETKF-Q-P 13.60s 0.19s 17.12s 0.84s
ETKF-Q-L 6.52s 0.12s 6.89s 0.62s

PCA-S-P 13.22s 0.18s 12.18s 0.31s
PCA-S-L 5.93s 0.10s 5.35s 0.16s

PCA-LinReg-P 12.09s 0.29s 11.62s 0.27s
PCA-LinReg-L 5.02s 0.12s 4.94s 0.15s

this proof of concept, we supposed that we were given a
dynamical system lying in RN exhibiting a latent repre-
sentation of lower dimension `. Under this assumption,
we proved that it is possible to perform the ETKF-Q algo-
rithm within a latent space of same size ` produced by an
autoencoder. While performing the ETKF-Q algorithm
in a latent space, we take proper account of the necessary
model calibration needed in the evolution model descrip-
tion in latent space.

The motivation for performing the latent space DA was
both reducing the computational cost and also getting a
better accuracy. Reducing the computational cost is a
natural gain due to performing DA in a reduced space.
The accuracy gain on the other hand depends on the fact
that DA linear analysis in the latent space obtained by
the AE is less susceptible to yield non-physical solutions.

We have therefore trained an AE and a surrogate net-
work through a single learning thanks to a chained custom
loss function. In addition to allowing a better training
since both the AE and the surrogate modify their weights
according to each other, this particular loss function also
enhances stability. Indeed, the surrogate is called several
times in a row and thus has to produce stable results at
least for two successive time steps. Experience demon-
strates that this is already enough to get a quite satis-
factory stable behaviour on longer time windows. Then,
given these two networks we can perform latent DA.

We have shown the potential of our methodology on
the instructional augmented Lorenz 96 system which is
designed such that we ensure the existence of a latent
dynamics. We have compared our methodology to the
existing ETKF-Q algorithm and numerical results con-
firmed that the proposed methodology performs better
than the usual full space strategy. Our methodology can
be utilized as long as a system lying in RN is accurately
representable in a lower dimension.

We believe that the proposed proof of concept is en-
couraging and that, as such, it stimulates several tracks
for future research. For instance, to before considering
a use in more operational situations, a number of the-
oretical question should be considered. For instance, it
would be interesting to further investigate the sensibil-
ity of the methodology to several hyper-parameters of
the method including the latent space dimension, obser-
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vation frequency, inflation etc. It is also important to
better understand how the properties of the full model
dynamics behave in the latent space including the model
error. We remind that in this study we consider very
simple NN architectures. Investigating more sophisti-
cated networks and introducing constraints to enforce la-
tent space’s structure could be of course important. This
structure may be motivated by underlying properties of
the physics, such as the coupling between variables, or
other structures. This being done, considering other toy
problems would necessary before going for more complex
problems.

Finally, the latent space strategy that we propose in
this paper for an ensemble Kalman filter type method is
quite general in the sense that it can be easily adapted to
other DA algorithms like the variational approaches.
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