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POINCARÉ INEQUALITIES AND INTEGRATED
CURVATURE-DIMENSION CRITERION FOR GENERALISED

CAUCHY AND CONVEX MEASURES

BAPTISTE HUGUET

Abstract. We obtain new sharp weighted Poincaré inequalities for convex
measures on Riemannian manifolds. When specified to generalised Cauchy mea-
sures, it gives a unified and simple proof of the weighted Poincaré inequality for
the whole range of parameters, with the optimal spectral gap, the error term
and the extremal functions.
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1. Introduction

The family of generalised Cauchy distributions is a family of probability mea-
sures defined on Rn by dµβ ∼ (1 + |x|2)−βdx, for β > n/2. This family plays an
important role in different mathematical problem. In [6], S. Bobkov and M. Ledoux
pointed out that these measures approximate the Gaussian measure as β diverges,
up to rescaling. This inspired them to study the property of these measures in
terms of functional inequalities and more especially, Poincaré inequalities. Due to
their heavy-tail, these measures can not satisfy the classical Poincaré inequality.
Anyway, they proved a weighted version of it, with the radial weight ω(x) = 1+|x|2.
For all n ≥ 1 and all β ≥ n (or β > 1 if n = 1), we have

2(β − 1)(√
1 + 2

β−1 +
√

2
β−1

)2 Varµβ(f) ≤
∫
Rn
|df |2(1 + |x|2) dµβ,
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2 B. HUGUET

for all smooth bounded function f . This result allows to recover the classical
Poincaré inequality for Gaussian measure in Rn. However, it does not cover the
entire range n/2 < β and the constant is not optimal.

Simultaneously, this question has been studied in the perspective of convergence
rate of solutions to fast diffusion equations. Indeed, generalised Cauchy measures
are the twins of Gaussian measures in the study of heat equation. In [5], A.
Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J.-L. Vázquez prove Hardy-
Poincaré inéqualities for β ∈ R \ {n/2}. When β > n/2, i.e when the measure is
a probability, these inequalities are equivalent to weighted Poincaré inequalities.
Furthermore, in [7], they obtain a complete description of the continuous spectrum
and the eigenvalues of an adequate operator for β ≥ n/2. The bottom of this
spectrum is then related to the optimal constant of the Poincaré inequality. Their
proof relies on deep and involved spectral theory arguments. Besides, it is specific
to the generalised Cauchy measures.

These articles paved the way to numerous works on weighted Poincaré inequal-
ities. On the one hand, these works address the question of general convex mea-
sures. They establish criteria under which there are weighted Poincaré inequalities
satisfied with explicit bound on the optimal constant. On the other hand, they
question the relevance of probabilistic arguments in comparison to spectral the-
ory arguments, in particular, Markov semigroups and curvature-dimension theory.
These works often lead to more general functional inequalities as logarithmic-
Sobolev or other Φ-entropies.

In [15], V.H. Nguyen, proves sharp weighted Poincaré inequalities for convex
measures, i.e dµ ∼ ω−βdx on Rn, where ω is smooth and Hess(ω) uniformly lower
bounded by some constant ρ > 0. His proof is inspired by Hörmander L2-method.
His result is valid for β ≥ n + 1. In the case of generalised Cauchy measures, his
bound is proved to be optimal and associated to an eigenfunction.

In [8], M. Bonnefont, A. Joulin and Y. Ma complete the proof in one-dimension
using the intertwining approach. They make a great step in a second article
[9] for the n-dimensional case. They obtain a general comparison between the
spectral gap of a radially log-concave measure and the spectral gap of its one-
dimensional radial part. Applied to generalised Cauchy measures, it gives a
weighted Poincaré inequality for the whole range β > n/2. Nonetheless, they
can not reach the optimal constant for n = 2 and (3 +

√
5)/2 ≤ β ≤ 3 and

for n ≥ 3 and n+ n/(n+ 1) ≤ β ≤ n+ 1.
Besides these major articles, several papers recover partial results and enlighten

new perspectives. For example, in [17], A. Saumard, uses Stein kernel to recover
the optimal bound in dimension 1 for β > 3/2. In [1], M. Arnaudon, M. Bonnefont
and A. Joulin obtain a new bound for β > n using intertwining, unfortunately, their
bound is not optimal. In [13], the author improves the previous method by mixing
it with manifold embedding. He obtains a better lower bound in dimension n = 2,
even optimal for 1 < β ≤ 1+

√
2. In [4], D. Bakry, I. Gentil and G. Scheffer recover
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the optimal bound for β ≥ n + 1 using harmonicness and curvature-dimension
argument. Their result generalised the work of [15] to Riemannian manifold. In
[12], I. Gentil and S. Zugmeyer recover this Riemannian result using the curvature-
dimension criterion on the Laplace operator only.

Each one of these articles uses different perspectives and different techniques.
Together, they do not allow to understand the link between curvature-dimension
criterion and the weighted Poincaré inequality, especially for generalised Cauchy
measures. The goal of this article is to obtain a simple, self-contained and intrinsic
proof of sharp Poincaré inequalities for convex measures using curvature-dimension
arguments only. When specified to generalised Cauchy measure, we recover the
optimal constant, λ1(−L) such that

λ1(−L) Varµβ(f) ≤
∫
Rn
|df |2(1 + |x|2) dµβ,

for the whole range of parameters. This optimal constant will be interpreted as a
spectral gap. Our main result is the following theorem.

Theorem 1.1. For n = 1, we have

λ1(−L) =

{
(β − 1/2)2 if 1/2 < β ≤ 3/2
2(β − 1) if 3/2 ≤ β

.

For n ≥ 2, we have

λ1(−L) =

 (β − n/2)2 if n/2 < β ≤ n/2 + 2
4(β − n/2− 1) if n/2 + 2 ≤ β ≤ n+ 1
2(β − 1) if n+ 1 ≤ β

.

We also obtain an estimation of the error term in the inequality and the asso-
ciated extremal functions, when they exist. Our method is inspired by the inte-
grated curvature-dimension criterion. This criterion has been firstly introduced
by M. Obata in [16], for the Laplace operator on compact Riemannian manifolds,
and developed by M. Ledoux in [14]. An improvement of this criterion is pro-
posed in [11], with an explicit expression of the error term in Poincaré inequality.
This improvement allows to characterise extremal functions. With an appropriate
choice of diffusion, we prove weighted Poincaré inequalities for convex measures,
with explicit sharp lower bound of the optimal constant, extending the classical
result to β ≤ n+ 1 and to Riemannian manifolds.

Let us describe the structure of this paper. In Section 2 we present the inte-
grated curvature-dimension criterion and its link to weighted Poincaré inequalities.
In section 3, we prove weighted Poincaré inequalities for the measures dµ ∼ ω−β,
where ω is smooth and positive. These inequalities will be satisfied under assump-
tions which need to be discussed. Section 4 is dedicated to the generalised Cauchy
measures. We apply the previous results and obtain a lower bound on the spectral
gap. In Section 5, we prove the optimality of our lower bound and we discuss
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the existence of extremal functions. Finally, in Section 6, we return to the one-
dimensional case, as a toy application of our method. This section can be read at
the beginning as it exposes most of our arguments in a simpler case.

2. A variance representation formula

Let M be a complete Riemannian manifold of dimension n. Let µ be a prob-
ability measure on M and L a reversible diffusion operator associated to µ. We
denote by P the L2-semigroup generated by L. We assume that the semigroup P
is ergodic. We denote by Γ and Γ2 the carré du champ and iterated carré du
champ operators, respectively defined on f ∈ C∞c (M) by

2Γ(f) = L(f 2)− 2fLf and 2Γ2(f) = LΓ(f)− 2Γ(f, Lf).

Under suitable conditions, discussed in [3], these operators can be uniquely
extended to the domain D(L) ⊂ L2(µ). The link between these operators and
functional inequalities satisfied by the measure µ have been studied since the work
of D. Bakry and M. Émery [2]. The operator L satisfies the curvature-dimension

criterion CD(ρ,∞), also called Bakry-Émery criterion, with ρ ∈ R, if

Γ2 ≥ ρΓ. (1)

Moreover, if ρ > 0, then under the CD(ρ,∞) criterion, the associated measure µ
satisfies a Poincaré-type inequality with constant ρ

ρVarµ(f) ≤
∫
M

Γ(f) dµ. (2)

For the operator L = ∆−∇V · ∇ associated to dµ = e−V dx, the carré du champ
operator is Γ(f) = |df |2 and (2) is the classical Poincaré inequality. However,
for a general L, this inequality is a weighted Poincaré inequality. Actually, both
Poincaré inequality and weighted Poincaré inequality are equivalent to a spectral
gap property on the generator L. We denote by λ1(−L) this spectral gap

λ1(−L) = inf

{∫
M
−fLf dµ

Varµ(f)
, f ∈ D(−L)

}
.

Actually, curvature-dimension criterion implies stronger functional inequalities
than Poincaré-type inequalities, such as logarithmic-Sobolev inequalities. In [14],
M. Ledoux, proves in Rn that the classical Poincaré inequality is equivalent to
an integrated version of the Bakry-Émery criterion. This result is very general
and have been adapted to a larger class of diffusion and space. See [3] or [10] for
more details. The version we recall here, comes from [11], where the deficit term
is explicit.

Proposition 2.1 ([11]). For all f ∈ C∞c (M) and for all ρ 6= 0 we have

Varµ(f) =
1

ρ

∫
M

Γ(f)dµ− 2

ρ

∫ +∞

0

∫
M

(Γ2 − ρΓ)(Ptf) dµ dt.
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In particular, λ1(−L) is the largest ρ > 0 such that
∫
M

(Γ2 − ρΓ) dµ ≥ 0.

Proof. Let us define h(t) =
∫
M

(Ptf)2 dµ. We have

Varµ(f) = − [ht]
+∞
0 =

−1

2ρ
h′(0)− 1

ρ

∫ +∞

0

1

2
h′′(t) + ρh′(t) dt.

Then, we compute the first derivatives of h.

h′(t) =

∫
M

∂t(Ptf)2 dµ =

∫
M

2PtfLPtf dµ = −2

∫
M

Γ(Ptf) dµ

h′′(t) = −2

∫
M

∂tΓ(Ptf) dµ = −4

∫
M

Γ(Ptf, LPtf) dµ = 4

∫
M

Γ2(Ptf) dµ

This proves the formula. Besides, if L satisfies an integrated Bakry-Émery
criterion, with constant ρ > 0, then it is clear that λ1(−L) ≥ ρ. Conversely, using
Cauchy-Schwarz inequality, we have∫

M

Γ(f) dµ =

∫
M

(
f −

∫
M

f dµ

)
(−L)f dµ ≤ Varµ(f)1/2

(∫
M

Γ2(f) dµ

)1/2

.

Hence, we have

λ1(−L) ≤ inf
f∈C∞c (M)

∫
M

Γ2(f) dµ∫
M

Γ(f) dµ
.

�

Let us remark that this formula can be extended to other Φ-entropy inequalities,
such as logarithmic-Sobolev inequality, using

h(t) =

∫
M

Φ(Ptf) dµ.

Thanks to the explicit expression of the error term this proposition provides a
necessary condition for extremal function, up to regularity considerations, or at
least, an heuristic for finding them. If L satisfies an integrated curvature-dimension
criterion and if f ∈ D(L) is extremal, then we have∫

M

(Γ2 − ρΓ)(f) dµ = 0.

It has been used in [11] on the Ornstein-Uhlenbeck operator to recover the extremal
functions in Poincaré and logarithmic-Sobolev inequalities for the Gaussian mea-
sures. The regularity arguments involved will be further discussed in Section 5.

In the following, we use Proposition 2.1 to determine weighted Poincaré inequal-
ities for convex measures. In the case of generalised Cauchy measures, we will also
use Proposition 2.1 to find the extremal functions and prove the optimality of our
results.
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3. Weighted Poincaré inequalities

Let ω be a smooth positive function on M . We assume that there exits β > 0
such that the measure with density ω−β with respect to the Riemannian volume
measure, denoted µβ, is a probability measure. Up to additional assumptions on ω
we will be able to determine on which range of β this measure assumption is satis-
fied. The goal of this section is to obtain general weighted Poincaré inequalities for
the probability µβ. These inequality will be sharp in the sense that for generalised
Cauchy measures, the weight and the constant are optimal. The main innovation
of this section is the generalisation of Poincaré inequalities for convex measures to
small β ≤ n+ 1.

The measure µ is associated to the symmetric diffusion operator on C∞c (M)

Lf = ω∆f − (β − 1)〈dω, df〉.
This special operator is chosen such that its carré du champ gives the weight ω in
the Poincaré-type inequalities. Indeed, we have the following result.

Proposition 3.1. For all f ∈ C∞c (M), we have

Γ(f) =ω|df |2,

Γ2(f) =‖ωHess(f)‖2HS + ω2 Ric(∇f,∇f) +
1

2

[
ω∆ω − (β − 1)|dω|2

]
|df |2

+ 〈d|df |2, ωdω〉 − 〈∆fdf, ωdω〉+ (β − 1)ωHess(ω)(∇f,∇f).

Proof. The computation for Γ does not present any difficulties. We will only
develop the computation of Γ2. For f ∈ C∞c (M), we have

2Γ2(f) = LΓ(f)− 2Γ(f, Lf)

= ω∆(ω|df |2)− (β − 1)〈dω, d(ω|df |2)〉
− 2ω 〈df, d(ω∆f − (β − 1)〈dω, df〉)〉

= ω∆ω|df |2 + 2ω〈dω, d|df |2〉+ ω2∆|df |2

− (β − 1)|dω|2|df |2 − (β − 1)〈d|df |2, ωdω〉
− 2〈∆fdf, ωdω〉 − 2ω2〈df, d|df |2〉+ 2(β − 1)ω 〈df, d〈df, dω〉〉

Then, we use the Bochner formula for the Laplacian

∆|df |2 − 2〈df, d∆f〉 = 2‖Hess(f)‖2HS + 2 Ric(∇f,∇f). (3)

Together with the remark that Hess(f)(∇f, ·) = 1
2
d|df |2, it ends the proof. �

Remarks that, as ω is positive, then the carré du champ cancels only on constant
functions. This means that the diffusion is ergodic and Proposition 2.1 can be
applied.

It remains unclear whereas L satisfies or not a curvature-dimension criterion. In
Section 4, we will give a positive answer for generalised Cauchy measures but with



7

a non-positive ρ. This is a reason why we are interested to integrated curvature-
dimension criterion. Before going further, we establish the following integration
by parts formulae.

Lemme 3.2. For all f ∈ C∞c (M), we have∫
M

〈d|df |2, ωdω〉 dµβ =

∫
M

[
−ω∆ω + (β − 1)|dω|2

]
|df |2 dµβ, (4)∫

M

〈∆fdf, ωdω〉 dµβ =

∫
M

−1

2
〈d|df |2, ωdω〉 − ωHess(ω)(∇f,∇f)

+ (β − 1)〈df, dω〉2 dµβ.
(5)

Furthermore, if β 6= 2, we have∫
M

〈d|df |2, ωdω〉 dµβ =
1

β − 2

∫
M

ω2∆|df |2 dµβ, (6)∫
M

〈∆fdf, ωdω〉 dµβ =
1

β − 2

∫
M

ω2〈df, d∆f〉+ (ω∆f)2 dµβ. (7)

3.1. Strong convexity. Firstly, we recover a general weighted Poincaré inequality
proved in the Euclidean space Rn in [15, Theorem 12] and Riemannian manifolds
with non-negative Ricci curvature in [12]. We also provide a criterion for general
Riemannian manifold. As the computation will show, this result will be valid only
for β ≥ n + 1 and under strong convexity property. The core step of our method
is to rearrange the terms in Γ2 thanks to a good choice of integration by parts.

Proposition 3.3. For all β 6= 2 and f ∈ C∞c (M), we have∫
M

Γ2(f) dµβ =

∫
M

β − (n+ 1)

β − 2
‖ωHess(f)‖2HS

+
n

β − 2

[
‖ωHess(f)‖2HS −

1

n
(ω∆f)2

]
+ (β − 1)ω

[
1

β − 2
ωRic + Hess(ω)

]
(∇f,∇f) dµβ.

Proof. From Proposition 3.1, we have∫
M

Γ2(f) dµβ =

∫
M

‖ωHess(f)‖2HS + ω2 Ric(∇f,∇f)

+
1

2

[
ω∆ω − (β − 1)|dω|2

]
|df |2 +

1

2
〈d|df |2, ωdω〉︸ ︷︷ ︸

(i)

+
1

2
〈d|df |2, ωdω〉︸ ︷︷ ︸

(ii)

−〈∆fdf, ωdω〉︸ ︷︷ ︸
(iii)

+(β − 1)ωHess(ω)(∇f,∇f)
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=

∫
M

‖ωHess(f)‖2HS + ω2 Ric(∇f,∇f) + (β − 1)ωHess(ω)(∇f,∇f)

+
ω2

2(β − 2)
(∆|df |2 − 2〈df, d∆|df |2〉)− ω2

β − 2
(∆f)2

where we use the equalities (4), (6) and (7) on (i), (ii) and (iii) respectively. Using
again the Bochner formula (3), we obtain the result. �

Remark that this expression of
∫
M

Γ2(f) dµ can be found in [15], without the
use of the carré du champ formalism.

The previous formula suggests some conditions under which we can obtain a
spectral gap inequality. Let us assume that β 6= 2 and that there exists a c > 0
such that

ω

β − 2
Ric + Hess(ω) ≥ c id . (H1)

This assumption is not very convenient because it depends on β and because
this dependence is not explicit. Yet, in the Euclidean space, the assumption is
equivalent to strong convexity on ω : it exists ρ− > 0 such that

Hess(ω) ≥ ρ− id . (8)

Remarks that under this convexity assumption, the measure dµβ is a probability
measure for every β > n

2
. The hypothesis (8) is also sufficient in a Riemannian

manifold with non-negative Ricci curvature. We can now state our first result.

Theorem 3.4. For n ≥ 2 and β ≥ n + 1, under assumption (H1), we have
λ1(−L) ≥ c(β − 1). Moreover, we have the explicit upper bound of the error term

c(β − 1) Varµβ(f) −
∫
M

Γ(f) dµβ

≤ −2

∫ +∞

0

∫
M

β − (n+ 1)

β − 2
‖ωHess(Ptf)‖2HS

+
n

β − 2

[
‖ωHess(Ptf)‖2HS −

1

n
(ω∆Ptf)2

]
dµβ dt.

For n = 1 and β > 1, under assumption (H1), we have λ1(−L) ≥ c(β − 1).
Moreover, we have the explicit upper bound of the error term

c(β − 1) Varµβ(f)−
∫
M

Γ(f) dµβ ≤ −2

∫ +∞

0

∫
M

‖ωHess(Ptf)‖2HS dµβ dt.

Proof. Let us begin with the general case n ≥ 2. We must remark that for n ≥ 2
and β ≥ n+ 1 the assumption β 6= 2 is redundant as we have β > 2. Then, under
the assumption (H1) we have proved that∫

M

Γ2(f)− c(β − 1)Γ(f) dµβ ≥
∫
M

β − (n+ 1)

β − 2
‖ωHess(f)‖2HS
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+
n

β − 2

[
‖ωHess(f)‖2HS −

1

n
(ω∆f)2

]
dµβ.

The numerical coefficients are non-negative and the Cauchy-Schwarz inequality
implies that for all linear operator A acting on the tangent bundle TM , we have

‖A‖2HS ≥
1

n
(TrA)2.

Applying it to A = ωHess(f), we obtain an average curvature-dimension criterion
and we conclude with Proposition 2.1.

In the particular case n = 1, if β 6= 2, after simplifications, we have shown∫
M

Γ2(f)− c(β − 1)Γ(f) dµβ ≥
∫
M

‖ωHess(f)‖2HS dµβ.

Then, the case β = 2 can be deduced by dominated convergence. �

Actually, in the one dimensional case, the result can be directly obtain, without
any dominated convergence as we can avoid the integration by parts (6) and (7).
This will be illustrated by the example of the generalised Cauchy measures in
Section 6.

3.2. Upper bounded convexity. To obtained Proposition 3.3, we have made
the choice to keep Hessian terms and only them. Now, in order to obtain Poincaré
inequalities for smaller β, we use the integration by parts formulae to make them
disappear. This choice of terms is specific to the dimension n ≥ 2. These Poincaré
inequalities for β ≤ n+ 1 is an innovation of our work. Nonetheless, it requires a
stronger assumption on ω.

Proposition 3.5. For all n ≥ 2, β 6= 2 and f ∈ C∞c (M), we have∫
M

Γ2(f) dµβ =

∫
M

n

n− 1

[
‖ωHess(f)‖2HS −

1

n
(ω∆f)2

]
+

(n+ 1− β)(β − 1)

n− 1

[
|df |2|dω|2 − 〈df, dω〉2

]
+ ω

[
n

n− 1
ωRic +(β − 1) Hess(ω)

]
(∇f,∇f)

+
n+ 1− β
n− 1

ω [Hess(ω)−∆ω id] (∇f,∇f) dµβ.

Proof. Let λ ∈ R be a parameter to be optimised later. We have∫
M

Γ2(f) dµβ =

∫
M

‖ωHess(f)‖2HS + ω2 Ric(∇f,∇f)

+
1

2

[
ω∆ω − (β − 1)|dω|2

]
|df |2 +

1

2
〈d|df |2, ωdω〉︸ ︷︷ ︸

(i)
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+
λ

2
〈d|df |2, ωdω〉 − λ〈∆fdf, ωdω〉

+
1− λ

2
〈d|df |2, ωdω〉︸ ︷︷ ︸

(ii)

−(1− λ) 〈∆fdf, ωdω〉︸ ︷︷ ︸
(iii)

+ (β − 1)ωHess(ω)(∇f,∇f) dµβ

=

∫
M

‖ωHess(f)‖2HS +
1− λ
β − 2

[
‖ωHess(f)‖2HS − (ω∆f)2

]
+
λ

2
〈d|df |2, ωdω〉︸ ︷︷ ︸

(iv)

−λ 〈∆fdf, ωdω〉︸ ︷︷ ︸
(v)

+(β − 1)ωHess(ω)(∇f,∇f)

+

(
1 +

1− λ
β − 2

)
ω2 Ric(∇f,∇f) dµβ

Here we have used the formulae (4), (6) and (7) for (i), (ii) and (iii) respectively
and Bochner formula. Then we choose λ in order to exactly compensate the
terms (∆f)2 with the term ‖Hess(f)‖2HS. It results that

λ =
n+ 1− β
n− 1

.

To conclude, we use (4) and (5) on (iv) and (v) respectively. It gives the claimed
result. �

In order to derive some spectral gap inequality, for β < n + 1, the assumption
(H1) is not sufficient. In this case, we assume that it exist c̃ > 0 such that

n

n− 1
ωRic +(β − 1) Hess(ω) +

n+ 1− β
n− 1

ω[Hess(ω)−∆ω id] ≥ c̃ id . (H2)

In a general Riemannian manifold, it seems difficult to obtain an handy condi-
tion on ω. However, in the Euclidean space Rn, this condition is equivalent to
boundedness of the Hessian operator : it exists 0 < ρ− ≤ ρ+ such that

ρ− id ≤ Hess(ω) ≤ ρ+ id . (9)

In this case, we will denote by κ the condition number associated :

κ =
ρ+
ρ−
≥ 1.

As previously, in a Riemannian manifold with non-negative Ricci curvature, we
can also use this simpler boundedness assumption (9). Even if it is more restrictive
than (H2), it is more explicit.

Let us remark that if the Hessian is uniformly bounded, then µ is a probability
on Rn if and only if β > n

2
.

Theorem 3.6. For n ≥ 2 and β ≤ n+ 1, under assumption (H2), we have

λ1(−L) ≥ c̃
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and for all f ∈ C∞c (M)

c̃Varµβ(f)−
∫
M

Γ(f) dµβ

≤ −2

∫ +∞

0

∫
M

n

n− 1

[
‖ωHess(Ptf)‖2HS −

1

n
(ω∆Ptf)2

]
+

(n+ 1− β)(β − 1)

n− 1

[
|dPtf |2|dω|2 − 〈dPtf, dω〉2

]
dµβ dt

Furthermore, if Ric ≥ 0, then, under assumption (9), we have

λ1(−L) ≥ ρ−

(
β − 1− n+ 1− β

n− 1
(nκ− 1)

)
, ∀ β ∈

[
n(n+ 1)κ− 2

n(κ+ 1)− 2
, n+ 1

]
.

Proof. The first general result is clear using Cauchy-Schwarz inequality. Then, we
remark that β − 1 + λ ≥ 0 and λ ≥ 0. Under assumption (9), we have

(β − 1 + λ) Hess(ω)− λ∆ω id ≥ [ρ−(β − 1 + λ)− λnρ+] id

≥ ρ−[β − 1− λ(nκ− 1)] id

The term ρ−[β − 1− λ(nκ− 1)] is positive if and only if n(n+1)κ−2
n(κ+1)−2 < β. �

The assumption (9) implies the assumption (8), then it is interesting to remark
that the associated spectral gap bounds are continuous at β = n + 1. As the
condition number κ is always greater than 1, we have

n(n+ 1)κ− 2

n(κ+ 1)− 2
≥ n

2
+ 1.

Hence, our two spectral gap lower bound do not cover the entire range ]n/2,+∞[
admissible under assumption (8). Actually, it seems difficult to obtain any result
for the small β in this general case but in the particular case of generalised Cauchy
measure, we will be able to conclude.

4. Generalised Cauchy measures

In this section we apply our method to the generalised Cauchy measures on Rn

to get some lower bounds of the spectral gap λ1(−L) together with error term
estimates. The optimality of these bounds and the extremal functions will be
discussed in Section 5. In this section, we assume that n ≥ 2. The one-dimensional
case has already been proved in [8]. We will recover this result in Section 6, with
our method, as it is the simplest illustration of it and as it gives nice heuristic for
the n-dimensional computations.
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We denote by ω the function defined on Rn by ω(x) = 1 + |x|2. The generalised
Cauchy measure µβ is the probability measure defined on Rn, for β > n/2, by

dµβ =
1

Zn,β
ω−βdx, with Zn,β =

πn/2Γ(β − n/2)

Γ(β)
.

It is associated to the symmetric operator defined on C∞c (Rn) by

Lf = ω∆f − 2(β − 1)〈x, df〉.
The main result of this article is the spectral gap of the operator −L for all n ≥ 1

and all β > n/2. We recall the major theorem.

Theorem 4.1. For n = 1, we have

λ1(−L) =

{
(β − 1/2)2 if 1/2 < β ≤ 3/2
2(β − 1) if 3/2 ≤ β

.

For n ≥ 2, we have

λ1(−L) =

 (β − n/2)2 if n/2 < β ≤ n/2 + 2
4(β − n/2− 1) if n/2 + 2 ≤ β ≤ n+ 1
2(β − 1) if n+ 1 ≤ β

.

It is noticeable that the expressions obtained are continuous in β. Remark that
in dimension n = 2 the intermediate range n/2+2 ≤ β ≤ n+1 is reduced to β = 3.
This result shows that curvature-dimension argument are sufficient to obtain the
spectral gap for generalised Cauchy measures. It is a real improvement. Besides,
we will complete this result with the study of error term in the associated weighted
Poincaré inequality and the extremal functions.

Firstly, we recover the carré du champ operators. According to Proposition 3.1,
they are given by the following formulae.

Proposition 4.2. For all f ∈ C∞c (Rn) we have

Γ(f) = ω|df |2,
Γ2(f) = ‖ωHess(f)‖2HS + [nω + 2(β − 1)]|df |2 + 2〈d|df |2, ωx〉 − 2〈∆fdf, ωx〉.

As we remarked in the general case, these formulae do not clearly establish
that the Cauchy measure does not fulfil a CD(ρ,∞) criterion for a positive ρ.
Nonetheless, in this particular case, we can prove a curvature-dimension result.

Proposition 4.3. For n ≥ 2, L satisfies CD(−(n+ 8),∞).

Proof. For all α, ε > 0, we have

Γ2(f) = ‖ωHess(f)‖2HS + [nω + 2(β − 1)]|df |2 + 2〈d|df |2, ωx〉 − 2〈∆fdf, ωx〉
≥ ‖ωHess(f)‖2HS + [nω + 2(β − 1)]|df |2 + 4 Hess(f)(∇f, ωx)

− α(ω∆f)2 − 1

α
|df |2|x|2
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≥ (1− nα)‖ωHess(f)‖2HS +

[
nω + 2(β − 1)− 1

α
|x|2
]
|df |2

+ 4 Hess(f)(∇f, ωx)

≥ (1− nα)‖ωHess(f) + ε∇f ⊗ x‖2HS + (4− 2(1− nα)ε) Hess(f)(∇f, ωx)

+

[
nω + 2(β − 1)−

(
1

α
+ (1− nα)ε2

)
|x|2
]
|df |2

We get the claimed result choosing α = 1/2n and ε = 4. �

Actually, this result is not optimal. In dimension n = 1, we prove a CD(0,∞)
criterion in Section 6. In [13], a CD(0,∞) criterion is proved in dimension n = 2.
We can make the conjecture that this is general, although, we do not need it,
neither for the spectral gap nor for the extremal functions.

First of all, we remark that

Hess(ω) = 2 id,

then ω satisfies the assumption (9) (and so (8)) with ρ− = 2 and κ = 1. This
allows us to use the results from the previous section. In the general case, we
have obtained two different spectral gap’s lower bounds on two different ranges
of β. In the Cauchy particular case, we can reach a lower third range and span
all ]n/2,+∞[. Those range are the lower range, n/2 < β ≤ n/2 + 2, the interme-
diate range, n/2 + 2 ≤ β ≤ n+ 1, and the upper range, n+ 1 ≤ β.

4.1. Upper range. In the subsection, we assume that β ≥ n+ 1. From Proposi-
tion 3.3, the integrations by parts prove the following expression.∫

Rn
Γ2(f) dµβ =

∫
Rn

β − (n+ 1)

β − 2
‖ωHess(f)‖2HS

+
n

β − 2

[
‖ωHess(f)‖2HS −

1

n
(ω∆f)2

]
+ 2(β − 1))Γ(f) dµβ

Then, following Theorem 3.4, we obtain the first lower bound.

Corollary 4.4. For all n ≥ 2 and β ≥ n+1, we have the spectral gap lower bound

λ1(−L) ≥ 2(β − 1),

and for all f ∈ C∞c (Rn), we have

2(β − 1) Varµβ(f)−
∫
Rn
|df |2(1 + |x|2) dµβ

= −2

∫ +∞

0

∫
Rn

β − (n+ 1)

β − 2
‖ωHess(Ptf)‖2HS

+
n

β − 2

[
‖Hess(ωPtf)‖2HS −

1

n
(ω∆Ptf)2

]
dµβ dt.
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4.2. Intermediate range. We will ow use Proposition 3.5 and Theorem 3.6 to
obtain a lower bound for β < n+1. As Hess(ω) = 2 id, these propositions allow to
obtain a bound on the range n/2 + 1 < β ≤ n+ 1. However, this bound will only
be optimal for n/2 + 2 < β ≤ n + 1. In the literature, in this range, the spectral
gap was not fully know for n ≥ 3 with curvature-dimension arguments.

From Proposition 3.5, we obtain the following formula.∫
Rn

Γ2(f) dµβ =

∫
Rn

n

n− 1

[
‖ωHess(f)‖2HS −

1

n
(ω∆f)2

]
+ 4(β − 1)

n+ 1− β
n− 1

[
|df |2|x|2 − 〈df, x〉2

]
+ 4(β − n

2
− 1)Γ(f) dµβ.

(10)

Finally, from Theorem 3.6, we get the following lower bound.

Corollary 4.5. For all n ≥ 2 and n/2 + 1 < β ≤ n+ 1, we have the spectral gap
lower bound

λ1(−L) ≥ 4(β − n/2− 1),

and for all f ∈ C∞c (Rn), we have

4(β − n/2− 1) Varµβ(f)−
∫
Rn
|df |2(1 + |x|2) dµβ

= −2

∫ +∞

0

∫
Rn

n

n− 1

[
‖ωHess(Ptf)‖2HS −

1

n
(ω∆Ptf)2

]
+ 4(β − 1)

n+ 1− β
n− 1

[
|dPtf |2|x|2 − 〈dPtf, x〉2

]
dµβ dt.

This result for mid-range β improves the previous results from [9] in which there

was still a gap for n(n+2)
n+1

≤ β ≤ n+ 1 without optimal constant.

4.3. Lower range. As for the one dimensional case, the appropriate formula for
the lower range is obtained by combining order one and order two terms, in the
way we proved the curvature-dimension criterion. In this range, we must take care
of the value β = 2, reachable in dimensions n = 2 or n = 3, where Proposition 3.5
is not licit.

Let ε be an optimisation parameter. We have∥∥∥∥ωHess f + ε
∇f ⊗ x+ x⊗∇f

2

∥∥∥∥2
HS

= ‖ωHess f‖2HS + ε〈d|df |2, xω〉

+
ε2

2
[|df |2|x|2 + 〈df, x〉2]

(ω∆f + ε〈df, x〉)2 = (ω∆f)2 + 2ε〈∆fdf, xω〉+ ε2〈df, x〉2
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We inject these twisted terms in equation (10) and then, we use the integration
by parts (5) and (4). We obtain the following formula.∫

Rn
Γ2(f) dµβ

=

∫
Rn

n

n− 1

[∥∥∥∥ωHess f + ε
∇f ⊗ x+ x⊗∇f

2

∥∥∥∥2 − 1

n
(ω∆f + ε〈df, x〉)2

]
+ Bε

[
|df |2|x|2 − 〈df, x〉2

]
+
[
Cε +Dε|x|2

]
|df |2 dµβ,

with

Bε =
(n− 2)ε2 − 8(β − 1)ε+ 8(β − 1)(n+ 1− β)

2(n− 1)

Cε = (n+ 2)ε+ 4(β − n

2
− 1)

Dε = −ε2 + (n+ 2− 2(β − 1))ε+ 4(β − n

2
− 1)

We need to reconstruct a factor ω from the term Cε + Dε|x|2. For all ε > 0, we
have Cε ≥ Dε. The maximum of D is reached for ε0 = n/2 + 2 − β, for which we
have

Bε0 =
2(β − 1)(3n− 6) + n2 − 4

4(n− 1)
≥ 0,

Dε0 =
(
β − n

2

)2
.

Then, for all n ≥ 2, for all β ≥ n/2 such that β 6= 2, we have the following
formula.

∫
Rn

Γ2(f) dµβ

=

∫
Rn

n

n− 1

[∥∥∥∥ωHess f + ε0
∇f ⊗ x+ x⊗∇f

2

∥∥∥∥2 − 1

n
(ω∆f + ε0〈df, x〉)2

]

+
2(β − 1)(3n− 6) + n2 − 4

4(n− 1)

[
|df |2|x|2 − 〈df, x〉2

]
+
(n

2
+ 2− β

)(
β +

n

2

)
|df |2 +

(
β − n

2

)2
Γ(f) dµβ.

(11)

By a dominated convergence argument, this formula is still valid for β = 2
when n = 2 or n = 3. On the range n/2 < β ≤ n/2 + 2, the coefficients are
non-negative. Hence, we have proved the following weighted Poincaré inequality
on the lower range.
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Corollary 4.6. For all n ≥ 2 and n/2 < β ≤ n/2 + 2, we have the spectral gap
lower bound

λ1(−L) ≥
(
β − n

2

)2
and for all f ∈ C∞c (Rn), we have(

β − n

2

)2
Varµβ(f)−

∫
Rn
|df |2(1 + |x|2) dµβ

= −2

∫ +∞

0

∫
Rn

n

n− 1

∥∥∥∥ωHess Ptf + ε0
∇Ptf ⊗ x+ x⊗∇Ptf

2

∥∥∥∥2
− 1

n− 1
(ω∆Ptf + ε0〈dPtf, x〉)2

+
2(β − 1)(3n− 6) + n2 − 4

4(n− 1)

[
|dPtf |2|x|2 − 〈dPtf, x〉2

]
+
(n

2
+ 2− β

)(
β +

n

2

)
|dPtf |2 dµβ dt.

where ε0 = β − n
2
− 2.

The two last corollary gives two lower bounds of λ1(−1), on two intersecting
ranges of β, ]n/2 + 1, n+ 1] and ]n/2, n/2 + 2] respectively. To conclude the first
part of Theorem 1.1 proof, we remark that on [n/2 + 1, n/2 + 2], we have

4(β − n

2
− 1) ≤ (β − n

2
)2.

5. Eigenfunctions and optimality

The goal of this section is to prove the optimality of the spectral gap bounds
obtained in Sections 4 and to describe, if they exist, the extremal functions. Ac-
tually, upper bounds have already been obtained in [9] on the whole range of β
but the optimality has not been proved for all parameters. Nevertheless, our error
estimate brings a new perspective upon this question. The existence of extremal
functions is sufficient to prove the optimality of the spectral gap bound. Those
extremal functions can be interpreted as eigenfunctions of the operator −L. In
the lower range ]n/2, n/2 + 2[, we show that another strategy is needed.

As explained in Section 2, Proposition 2.1 characterises extremal functions, up
to regularity arguments. There are two subtleties. The first one is to extend our
error estimate formulae to f ∈ D(−L). When the operator L is essentially self-
adjoint and satisfies a curvature-dimension criterion for some ρ ∈ R, both the carré
du champ and carré du champ iterated operators are uniquely defined on D(−L)
(see [3]). This is satisfied for generalised Cauchy measure. However, in our case,
the problem is more critical as we used integrations by parts. The second subtlety
is the convergence of Ptf as t tends to 0. Despite these regularity considerations,
Proposition 2.1 remains a good heuristic to find extremal functions.
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Looking at the error estimates in Corollary 4.4, 4.5 and 4.6, we see that up to
regularity, any extremal function satisfies one of these conditions, depending on
the considered ranges of β

either ‖Hess(f)‖2HS = 0 and ‖Hess(f)‖2HS =
1

n
(∆f)2,

or ‖Hess(f)‖2HS =
1

n
(∆f)2 and |df ||x| = 〈df, x〉,

or |df | = 0.

This leads to consider affine functions on the upper range and quadratic ones
for the intermediate range. Reciprocally, we will show that these functions are
extremal. This also shows that there is no extremal function on the lower range.

5.1. Eigenfunctions. The extremal functions exhibited previously can be inter-
preted as eigenfunctions providing that they are square-integrable. This implies
that the spectral gap bounds 2(β−1) and 4(β− n

2
−1) are eigenvalues. This proves

their optimality.

Proposition 5.1. Let be n ≥ 1 and β > n/2 + 1. For all v ∈ Rn, the linear
function x 7→ 〈v, x〉 belongs to L2(µβ) and is an eigenfunction of −L associated to
the eigenvalue 2(β − 1). In particular, for all β > n/2 + 1, we have

inf
f∈D(L)

∫
R Γ(f) dµβ

Varµβ(f)
≤ 2(β − 1).

For β > n/2 + 2, the function x 7→ |x|2 − n
2β−n−2 belongs to L2(µβ) and is

an eigenfunction associated to the eigenvalue 4(β − n
2
− 1). In particular, for

all β > n/2 + 2, we have

inf
f∈D(L)

∫
R Γ(f) dµβ

Varµβ(f)
≤ 4(β − n

2
− 1).

In particular, up to regularity, the extremal functions on the upper range are of
type x ∈ Rn 7→ 〈v, x〉 + c and the extremal functions on the intermediate range
are of the type x ∈ Rn 7→ a|x|2 + c, with v ∈ Rn and a, c ∈ R. We remark that
for β = n + 1, the space of extremal functions is of dimension 3 whereas it is of
dimension 2 on the interior of the upper and intermediate ranges.

5.2. The special case of the lower range. In the lower rang, we have shown
that, up to regularity, the error term is positive. Hence, it does not admit any
extremal functions. In this case, the spectral gap is not an eigenvalue. In [5],
it is interpreted as the bottom of continuous spectrum. Then our bound is still
optimal. We give a new proof of this optimality based on the one-dimensional
argument from [8], recalled in Proposition 6.4. Their proof needs some adaptation
to the n-dimensional case. The following heuristic gives an idea of the adequate
sequence. Firstly, the optimal ε is n/2 + 2 − β, which suggests a sequence fε
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whose L2-norm blows up as ε→ (2β−n− 4)/4. Secondly, the terms to cancel are
not related to Hessian but to quadratic functions which suggest a factor |x|2. It
leads to the following result.

Proposition 5.2. For n ≥ 2, n/2 < β ≥ n/2 + 2 and ε < (2β − n − 4)/4 the
functions fε : x 7→ |x|2ωε(x) belongs to L2(µβ) and we have

lim
ε↑(2β−n−4)/4

∫
R Γ(fε) dµβ

Varµβ(fε)
=
(
β − n

2

)2
.

In particular, we have

inf
f∈D(L)

∫
R Γ(f) dµβ

Varµβ(f)
≤
(
β − n

2

)2
.

Proof. Firstly, we remark that fε ∈ L2(µβ) if and only if ε < (2β − n − 4)/4 but
at the limit we still have f(2β−n−4)/4 ∈ L1(µβ). So, we have

Varµβ(fε)∫
Rn f

2
ε dµβ

= 1−
(∫

Rn fε dµβ
)2∫

Rn f
2
ε dµβ

−→
ε→(2β−n−4)/4

1.

Then, for all ε < (2β − n− 4)/4, we have

∇fε(x) = 2xωε(x) + 2εx|x|2ωε−1(x)

Hess(fε(x)) = 2nωε(x) id +2nε|x|2ωε−1(x) id +8εωε−1(x)x⊗ x
+ 4ε(ε− 1)|x|2ωε−2(x)x⊗ x

−Lfε(x) = [4β − 2n− 4− 2ε(−2β + n+ 4− 2ε)] fε(x)− 2n
fε(x)

|x|2

− 4ε(β − ε)fε(x)

ω(x)
.

So, we have∫
Rn −fεLfε dµβ∫

Rn f
2
ε dµβ

= 4β − 2n− 4− 2ε(−2β + n+ 4 + 2ε)− 2n

∫
Rn f

2
ε (x)|x|−2 dµβ∫
Rn f

2
ε dµβ

− 4ε(β − ε)
∫
Rn f

2
εω
−1 dµβ∫

Rn f
2
ε dµβ

.

We remark that, as ε → (2β − n − 4)/4, f 2
ε (x)|x|−2 and f 2

εω
−1 are integrable.

So, we have

lim
ε↑(2β−n−4)/4

∫
R Γ(fε) dµβ

Varµβ(fε)
= lim

ε↑(2β−n−4)/4

∫
R−fεLfε dµβ∫

Rn f
2
ε dµβ

=
(
β − n

2

)2
.

�
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6. The one-dimensional case

In this section, we end the proof of Theorem 1.1 with the dimension n = 1. For
the sake of completeness, we recover this result with our method and make some
further remarks, especially on the error term and on the extremal functions.

We still denote by ω the function

ω : x ∈ R 7→ 1 + x2,

and as shown in Section 4, we have

Lf = ωf ′′ − 2(β − 1)xf ′Γ(f) = ωf ′2,

Γ2(f) = ω2f ′′2 + [ω + 2(β − 1)]f ′2 + 2f ′′f ′xω.

Firstly, we remark that, the operator L satisfies a nice curvature-dimension
criterion.

Proposition 6.1. For all 1/2 < β, L satisfies the CD(0,∞) criterion but does
not satisfy any CD(ρ,∞) criterion for ρ > 0.

Proof. For all f ∈ C∞c (R), we have

Γ2(f) = ω2f ′′2 + [ω + 2(β − 1)]f ′2 + 2f ′′f ′xω

= (ωf ′′ + xf ′)2 + (2β − 1)f ′2

= (ωf ′′ + xf ′)2 +
2β − 1

ω
Γ(f)

So Γ2 > 0 but 2β−1
ω

is not uniformly lower bounded by a positive constant. �

This elementary proof enlightens one of the two options we have. The first one
is the integration by parts, as used in our general method. The second one, which
appears here, is the factorisation. A mix between these two approaches allows to
recover the spectral gap for the whole range β ∈]1/2,+∞[.

Let ε ∈ R be an optimisation parameter. We have

Γ2(f) = (ωf ′′ + εxf ′)2 + 2(1− ε)f ′′f ′xω + [2(β − 1) + ω − ε2x2]f ′2

Now, using the integration by parts formula (4), we get∫
R

Γ2(f) dµβ =

∫
R
(ωf ′′ + εxf ′)2 + [Aε +Bε|x|2]f ′2 dµβ

with Aε = 2(β − 1) + ε and Bε = 2(β − 1) + ε− ε(2(β − 1) + ε). We optimise to
obtain the maximum over ε of min{Aε, Bε}. Two cases appear : small β and large
β.

If β ≥ 3/2 then the optimum is reached for ε = 0, as a direct application of
Theorem 3.4. We obtain∫

R
Γ2(f) dµβ =

∫
R
ω2f ′′2 + 2(β − 1)f ′2 dµβ.
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Then, according to Proposition 2.1, we have the following result.

Corollary 6.2. If β ≥ 3/2, then λ(−L) ≥ 2(β − 1) and for all f ∈ C∞c (R), we
have

2(β − 1) Varµβ(f) =

∫
R

Γ(f) dµβ − 2

∫ +∞

0

∫
R
ω2(Ptf)′′2 dµβ dt.

Furthermore, if β > 3/2 then λ(−L) = 2(β− 1) as linear functions are eigenfunc-
tions associated to 2(β − 1).

Actually, affine functions are the only extremal functions, up to regularity, as
any extremal function, f , satisfies f ′′2 = 0. Remark that we can not conclude yet
when β = 3/2 as affine functions do not belong to L2(µ3/2).

If 1/2 < β ≤ 3/2, the maximum over ε is obtain for ε = 3/2− β and we have∫
R

Γ2(f) dµβ =

∫
R

(
ωf ′′ +

(
3

2
− β

)
f ′
)2

+

(
β − 1

2

)2

ωf ′2

+

(
β − 1

2

)(
3

2
− β

)
f ′2 dµβ.

Then, we obtain the final result.

Corollary 6.3. If 1/2 < β ≤ 3/2, then λ(−L) = (β − 1/2)2 and for all(
β − 1

2

)2

Varµβ(f)−
∫
R

Γ(f) dµβ = −2

∫ +∞

0

∫
R

(
ωPtf

′′ +

(
3

2
− β

)
Ptf

′
)2

+

(
3

2
− β

)(
β − 1

2

)
Ptf

′2 dµβ dt.

Our calculus only provides a lower bound of the spectral gap. On this range,
there is no eigenfunction, as in the n-dimensional case. The article [8] prove the
optimality using a sequence of functions.

Proposition 6.4 ([8]). For n = 1, 1/2 < β ≤ 3/2 and ε < (2β−3)/4, the function
fε : x 7→ xωε(x) belongs to L2(µ) and we have

lim
ε↑(2β−3)/4

∫
R Γ(fε) dµβ

Varµβ(fε)
=

(
β − 1

2

)2

.

While looking for an extremal function f associated to (β− 1/2)2, we saw that,
up to regularity, if it exists, this function would satisfy the equation

ωf ′′ +

(
3

2
− β

)
f ′ = 0.

The solutions of this equation are primitives from ω(2β−3)/4. This explains the
choice of fε. Heuristically, the sequence fε converges toward a function close to
cancels the Hessian part but who is not in L2(µβ).
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