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Abstract 28 

Beliefs that neighbourhood environments influence body mass index (BMI) assume 29 

people residing proximally have similar outcomes. However, spatial relationships are 30 

rarely examined. We considered spatial autocorrelation when estimating associations 31 

between neighbourhood environments and BMI in two Australian cities. Using cross-32 

sectional data from 1329 participants (Melbourne=637, Adelaide=692), spatial 33 

autocorrelation in BMI was examined for different spatial weights definitions. Spatial 34 

and ordinary least squares regression were compared to assess how accounting for 35 

spatial autocorrelation influenced model findings. Geocoded household addresses were 36 

used to generate matrices based on distances between addresses. We found low positive 37 

spatial autocorrelation in BMI; magnitudes differed by matrix choice, highlighting the 38 

need for careful consideration of appropriate spatial weighting. Results indicated 39 

statistical evidence of spatial autocorrelation in Adelaide but not Melbourne. Model 40 

findings were comparable, with no residual spatial autocorrelation after adjustment for 41 

confounders. Future neighbourhoods and BMI research should examine spatial 42 

autocorrelation, accounting for this where necessary. 43 

  44 
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1. Introduction 45 

Many health issues arise from having a high BMI (body mass index) and an enormous 46 

research effort is placed on investigating the determinants of BMI. Research has shown 47 

that BMI is geographically and spatially clustered, suggesting that people residing 48 

proximally generally have a more similar BMI than to those residing further away 49 

(Mills et al., 2020; Qiu et al., 2020; Kim et al., 2018; Guessous et al., 2014; Huang et 50 

al., 2015; King et al., 2006). Explanations for this clustering have included geographical  51 

variations in access to built environmental features considered health promoting (e.g., 52 

retailers selling fresh food, recreational facilities including open space) or health 53 

harming (e.g., fast food retailers, car-dominant streetscapes) with these variations said 54 

to influence diet and physical activity (PA) behaviours (Lam et al., 2021; Papas et al., 55 

2007). However, few studies investigating relationships between the neighbourhood 56 

built environment and BMI have adequately accounted for spatial autocorrelation. This 57 

is because commonly used methods like linear regression (Duncan et al., 2014; Hobbs 58 

et al., 2018) assume spatial independence. Ignoring spatial autocorrelation can lead to 59 

incorrect inference by not appropriately estimating standard errors when data are 60 

spatially correlated (Chi and Zhu, 2007). Also, since in any real situation, sample sizes 61 

will be finite, ordinary least squares (OLS) model parameters may be biased when 62 

violations of independence occur (Keitt et al., 2002). 63 

 64 
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To handle potential spatial autocorrelation, some studies have accounted for the 65 

clustering of participants living in the same neighbourhoods often defined by an 66 

administrative unit boundary (Cunningham-Myrie et al., 2020; King et al., 2006; Mason 67 

et al., 2020; Tseng et al., 2014; van Lenthe and Mackenbach, 2002; Feng and Wilson, 68 

2015). However, accounting for clustering may be insufficient to explain all of the 69 

spatial relationships in the data. This is because adminstrative units could be spatially 70 

proximate (even sharing a common boundary), thus sharing common environmental 71 

conditions, yet considered independent. Research has demonstrated that different 72 

conclusions may be reached when comparing spatial regression and multilevel 73 

regression analysis (Takagi et al., 2012; Takagi and Shimada, 2019; Chaix et al., 2005a; 74 

Chaix et al., 2005b), implying that multilevel regression may not fully account for 75 

spatial autocorrelation. As highlighted elsewhere, approaches exclusively based on 76 

accounting for clustering according to geographical areas, rather than individual 77 

neighbours, are insufficient to assess how neighbouring individuals affect one another 78 

(Zangger, 2019). Spatial regression models based on distances between participant 79 

locations, in contrast, enable a better reflection of the effects of neighbouring 80 

individuals on one another (Zangger, 2019). 81 

 82 

Policies and land use planning guidelines that advocate for health promoting built 83 

environments are becoming increasingly popular (McKinnon et al., 2020; Kent and 84 

Thompson, 2014). Originally proposed in Portland (City of Portland Bureau of 85 
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Planning and Sustainability, 2012), the 20-minute neighbourhood (20MN) concept has 86 

since been adopted in Melbourne (State of Victoria Department of Environment, 2019). 87 

Variations are now seen in European cities, including Paris (Paris En Commun, 2020). 88 

In Melbourne, the written definition of a 20MN has undergone various iterations (State 89 

of Victoria Department of Environment, 2019; State of Victoria Department of 90 

Environment, 2017; State of Victoria Department of Transport, 2014; State of Victoria 91 

Department of Environment, 2015). In brief, a 20MN is a setting that provides residents 92 

with the services and resources to meet most of their daily needs (e.g., access to healthy 93 

food stores, recreational facilities, health and education services) within a 20-minute 94 

non-motorised transport trip from home (noting that in more recent versions of the 95 

policy the mode of transport has been restricted to walking) (Victorian Government 96 

Department of Environment Land Water and Planning, 2020). Urban renewal and 97 

liveability policies that advocate for 20MNs do so under the assumption that these 98 

encourage more physically active lifestyles that in turn lead to better population health. 99 

 100 

Our study aimed to i) examine spatial autocorrelation in BMI using individual 101 

household addresses, and ii) assess differences in BMI between people living in 20MNs 102 

and non-20MNs, accounting for spatial autocorrelation. The statistical approach used 103 

here is arguably an important advance over prior research exploring neighbourhood-104 

level influences on BMI where assumptions related to the spatial independence of 105 

observations may be totally or partially violated. Advanced statistical modelling is vital 106 
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to create a more robust evidence base regarding the relationships between place and 107 

heath.  108 

 109 

2. Methods 110 

Our study used data from the cross-sectional Places and Locations for Activity and 111 

Nutrition study (ProjectPLAN) which aimed to investigate the benefits of living in a 112 

20MN on PA and dietary behaviors in two Australian cities, Melbourne, Victoria and 113 

Adelaide, South Australia. Melbourne is the capital city of the state of Victoria located 114 

in the south-east edge of Australia; Greater Melbourne covers an area of 9992.5km2 and 115 

has a population of almost 5 million (City of Melbourne, Last accessed June 2022; 116 

Australian Bureau of Statistics, Last accessed June 2022). Adelaide is the capital city 117 

of the state of South Australia located in the southern central part of Australia; Greater 118 

Adelaide covers an area of 3259.8km2 (Australian Bureau of Statistics, Last accessed 119 

June 2022) with a population of approximately 1.3 million (Australian Bureau of 120 

Statistics, Last accessed July 2022a). Cities were considered separately in the analysis 121 

as the driving distance from the centre of Melbourne to the centre of Adelaide is over 122 

700km. Data collection took place from October 2018 to May 2019. The study was 123 

approved by the Deakin University Human Research Ethics Committee (HEAG-H 124 

168_2017). 125 

 126 
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2.1. Neighbourhood characteristics 127 

20MNs were conceived as address points having high-service and amenity provision, 128 

with the particular services and amenities considered for inclusion based on 20MN 129 

policy documents and a review of existing literature (State of Victoria Department of 130 

Environment, 2019; Thornton et al., 2022). These services and amenities included 131 

multiple attributes across five domains: 1) healthy food outlets (e.g., supermarkets), 2) 132 

recreational resources (e.g., gyms), 3) community resources (e.g., primary schools, 133 

general practitioners, pharmacies), 4) public open spaces, and 5) public transport access. 134 

Attributes of the 20MN are described in Supplementary Table S1. Non-20MNs had low 135 

service and amenity provision, defined as fewer than five individual attributes in 136 

Melbourne and four individual attributes in Adelaide (due to different public transport 137 

infrastructures). Full details of the approach to operationalise the 20MN are described 138 

elsewhere (Thornton et al., 2022). In brief, geocoded services and amenities from a 139 

combination of government and commercial sources were overlayed on a pedestrian 140 

network layer. For healthy food outlets, recreational resources and community 141 

resources, a 1.5-kilometre (km) distance pedestrian network service area, was created 142 

using the service or amenity location as the start point. Different measures were used 143 

for public open space and public transport, with accessibility to these domains guided 144 

by literature or Australian planning guideline recommendations where available. Areas 145 

of overlap between service areas could then be identified to determine 20MNs and non-146 

20MNs. The level of service and resource provision was determined across the whole 147 
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of the Melbourne and Adelaide metropolitan areas. This allowed the identification of 148 

address points with access to all services and resources (these address points were 149 

defined as having a 20MN) and addresses with low numbers of services and resources 150 

(non-20MNs). This approach means we were not bound by a clustered study design 151 

whereby participants needed to be within the same administrative units, typical of many 152 

studies of neighbourhood effects. The distribution of 20MNs in both cities are shown 153 

in Figures 4 and 5 of Thornton et al. (2022). In general, residential addresses that had a 154 

20MN were commonly situated within inner and mid-suburban areas of Melbourne, 155 

although they extended to the outer areas along the train lines. In Adelaide, residential 156 

addresses with a 20MN were typically located centrally in the city, although they were 157 

also found in townships extended through the middle and outer edges of the city. 158 

 159 

Areas of low and high socioeconomic status (SES) were identified using the Australian 160 

Bureau of Statistics (ABS) Index of Relative Socio-economic Advantage and 161 

Disadvantage (IRSAD). Areas with low socioeconomic conditions were defined by 162 

extracting deciles 1, 2 or 3 of the IRSAD at Statistical Areas Level 1 (SA1, i.e., 163 

geographical areas built from whole Mesh Blocks which are the smallest geographical 164 

areas defined by the ABS) which were located within IRSAD deciles 1, 2 or 3 at the 165 

larger Statistical Areas Level 2 (SA2). This approach was adopted to ensure that small 166 

areas of low socioeconomic conditions were located within a larger community that 167 
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also had low socioeconomic conditions. The process was repeated for SA1s and SA2s 168 

within deciles 8, 9 and 10 to represent areas with high socioeconomic conditions. 169 

 170 

2.2. Sampling and recruitment 171 

Stratified random sampling was used to identify households within each city 172 

(Melbourne or Adelaide), neighbourhood type (20MN or non-20MN), and level of 173 

neighbourhood SES (low or high) to be sent an invitation letter with a URL and unique 174 

password for accessing either a food or PA survey. The sampling approach allowed the 175 

household location of participants to be captured which was necessary to account for 176 

the spatial autocorrelation between participants. Only address points within residential 177 

Mesh Blocks were included in the sampling frame to reduce the number of invitations 178 

sent to non-residential addresses. Address point data were sourced from routinely 179 

available government data sources (Department of Environment, 2021; Government of 180 

South Australia, 2021). The total number of eligible addresses within each city by 181 

neighbourhood type and SES are shown in Table 1. We aimed to recruit equal numbers 182 

within each stratum. Higher numbers of letters were mailed to address points within 183 

low SES areas in both cities due to lower anticipated response rates in these areas. 184 

Reminder letters were also issued to some address points to increase response rates. 185 

 186 

Given the sampling approach, there were eight combinations of city, neighbourhood 187 

type and status (i.e., Melbourne 20MN low SES; Melbourne 20MN high SES; 188 
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Melbourne non-20MN low SES; Melbourne non-20MN high SES; Adelaide 20MN low 189 

SES; Adelaide 20MN high SES; Adelaide non-20MN low SES; Adelaide non-20MN 190 

high SES). Within each combination, randomly selected eligible households were 191 

mailed an invitation to participate in either the online food or PA survey. Participants 192 

aged 18 years or older were invited to complete the food survey if they were at least 193 

jointly if not fully responsible for the household food shopping. The person (aged ≥18 194 

years) in the household who had the most recent birthday was asked to complete the PA 195 

survey. Participants were asked to confirm they lived at the address on file. In total, 782 196 

participants (3.7% response rate) from Melbourne and 830 participants (4.2% response 197 

rate) from Adelaide consented to complete either the food or PA survey (Table 1). 198 

 199 

2.3. Variables 200 

2.3.1. Exposure 201 

The exposure was neighbourhood type (20MN or non-20MNs). 202 

  203 

2.3.2. Outcome 204 

BMI (weight [kilograms, kg]/height [metres, m]2) was calculated from self-reported 205 

weight and height. 206 

 207 
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2.3.3. Other covariates 208 

Potential confounders included gender (male; female), age, individual SES based on 209 

highest qualification obtained (less than university; university) and self-rated financial 210 

stress indicated by the ability to manage on household income (very difficult or difficult; 211 

just getting by; comfortable or very comfortable). 212 

 213 

2.4. Statistical analysis  214 

Participants who were pregnant or who had missing or implausible BMI (>50kg/m2 or 215 

<15kg/m2) were excluded, leaving 1382 (86%) participants from the original sample 216 

eligible for analysis. The statistical analysis was conducted for eligible participants with 217 

complete data for the exposure and potential confounding variables. A high percentage 218 

of the eligible sample had complete data (n=1329, 96%). Descriptive characteristics for 219 

the eligible, complete case and omitted samples are shown in Supplementary Table S2. 220 

 221 

Analyses were conducted separately for Melbourne and Adelaide because there were 222 

slightly different definitions of 20MN used (due to different public transport systems) 223 

in each city. Food survey and PA survey participants were combined for analyses and a 224 

parameter for survey type included in the models as these surveys had different target 225 

populations; the food survey was completed by the primary or joint primary household 226 

food purchaser and the PA survey was any adult in the household. The resulting sample 227 

sizes were 637 for Melbourne (Melbourne Food Survey=287, Melbourne PA 228 
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Survey=350) and 692 for Adelaide (Adelaide Food Survey=351, Adelaide PA 229 

Survey=341). Demographic characteristics for the two cities were compared to the 2016 230 

Census data for Greater Melbourne (Australian Bureau of Statistics, Last accessed July 231 

2022b) and Greater Adelaide (Australian Bureau of Statistics, Last accessed July 232 

2022a). 233 

 234 

2.4.1. Global spatial autocorrelation 235 

Moran’s I was calculated to assess spatial autocorrelation in BMI for both Melbourne 236 

and Adelaide under different spatial weights definitions (Cliff and Ord, 1971; Cliff and 237 

Ord, 1972). Moran’s I is the most commonly used measure of spatial autocorrelation, 238 

providing a measure of how related observations are based on the location at which 239 

they are measured. The correlation ranges from values of -1, indicating negative spatial 240 

autocorrelation or complete spatial dispersion, to 1, indicating high positive spatial 241 

autocorrelation. A value of 0 indicates complete spatial randomness.  242 

 243 

Eight spatial weights matrices were considered based on both the Euclidean and road 244 

network distance between individual household addresses to investigate whether 245 

findings were sensitive to the weight chosen. A 3-km bandwidth weight matrix was 246 

considered as this distance was directly related to the 20MN exposure definition. Under 247 

the assumption that people residing in 20MNs have similar health and behaviour 248 

outcomes, it could be hypothesised that those living proximally (i.e., within the pre-249 
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specified threshold of a 20MN) have correlated outcomes so this matrix choice enabled 250 

us to assess this assumption. In this definition, participants were defined to be 251 

neighbours (with a ‘1’ entered in the matrix) if they lived within a 3-km distance of one 252 

another; otherwise, participants were not considered neighbours (‘0’ in the matrix). It 253 

was assumed that 1.5-km is the distance an adult can walk in 20 minutes, as discussed 254 

previously, so participant pairs whose distances were less than 3-km could share the 255 

same amenity or service, as illustrated in Figure 1. In addition, a 1.5-km bandwidth 256 

weight matrix, corresponding to the assumed distance that can be travelled in a 20-257 

minute walk, was considered. Matrices were row-normalised, meaning each element in 258 

row i (where i represents each study participant) was divided by the sum of the elements 259 

of row i, meaning all weight elements took a value between 0 and 1. This means that 260 

the spatial weight is shared among the total number of neighbours of participant i (e.g., 261 

for the 3-km bandwidth weight matrix, if participant i had 3 neighbours, each was 262 

weighted by 1/3). 263 

  264 

Inverse-distance weights using the calculated distance between each pair of 265 

observations were also considered; this matrix allows all observations to have 266 

neighbours, with those living nearer assumed to be more related than those living 267 

further. The analysis using the inverse-distance matrix thus assumes that participants 268 

would be more influenced by those who live closer to them than those who live further 269 

away but enables all participants to have a spatial relationship with all other participants 270 
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within strata of city (Adelaide or Melbourne). In addition, the inverse-distance-squared 271 

matrix was considered which allows the weights between neighbours to decrease 272 

rapidly with increasing distance. 273 

2.4.2. Regression models  274 

Unadjusted and confounder-adjusted OLS linear regression models were fitted to 275 

examine associations between having a 20MN (no/yes) and BMI in each of the two 276 

cities. The Moran’s I test was used to assess spatial autocorrelation in the residuals of 277 

these models using all spatial weights definitions. 278 

 279 

To account for potential residual spatial autocorrelation in the OLS regression models, 280 

spatial error regression models were fitted to compare with results from the OLS 281 

regression models. The spatial lag model was not considered because these models are 282 

most suitable for situations where there is an intuitive or theoretical motivation that the 283 

dependent variable will depend on its neighbours’ values (e.g., housing price, local 284 

government actions) (LeSage and Pace, 2009). The purpose of the spatial modelling in 285 

this analysis was to avoid residual spatial autocorrelation where a spatial pattern in the 286 

residuals could exist due to omitted random factors. Hence, spatial error models were 287 

used in this study. The spatial error models do not assume the interdependence between 288 

any two neighbouring observations operate in any particular way, meaning that the 289 

outcome (i.e., BMI) of a given individual will be to some degree dependent on the 290 

behaviours of their neighbours due to some unmeasured variables, thus accounting for 291 
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any unmeasured environmental exposures or individual characteristics shared by 292 

neighbouring participants (Zangger, 2019). The spatial error model is expressed as 293 

follows:  294 

𝑦 = 𝑿𝛽 + 𝜀 295 

     𝜀 =  𝜆𝑾𝜀 + 𝑢 296 

where 𝑢~𝑁(0, 𝜎2𝐼)  is the N x 1 error vector, assumed to be independent and 297 

identically distributed; 𝑾 is the N x N spatial weight matrix (either 3-km bandwidth 298 

or inverse-distance) and 𝜆𝑾𝜀 is the vector of the spatially weighted average of errors 299 

(from the observation’s neighbours, when the matrix is row-normalised); 𝜆  is the 300 

spatial autoregressive coefficient, representing the spatial autocorrelation of the error 301 

term 𝜀. Since 𝜀 = (𝑰 − 𝜆𝑾)−1𝑢, the error variance-covariance matrix is written as: 302 

𝜎2(𝑰 − 𝜆𝑾)−1(𝑰 − 𝜆𝑾𝑇)−1 303 

Once the variance-covariance matrix of error was obtained, after estimating 𝜆  by 304 

maximum likelihood, the estimated parameters for the association between 305 

neighbourhood type and BMI in the spatial error model were estimated by OLS method. 306 

The coefficients of neighbourhood type and their 95% confidence intervals (CIs) can 307 

be interpreted as the differences in mean BMI between participants residing in 20MNs 308 

and non-20MNs. 309 

 310 

2.4.3. Sensitivity analyses 311 
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Two additional types of spatial weights matrix were considered in sensitivity analyses 312 

using both Euclidean and road network distances: an exponential decay weight matrix 313 

with decay constant 1, which allows the weights between neighbours to decrease more 314 

slowly with increasing distance, and an inverse-distance with 3-km bandwidth weight 315 

matrix. 316 

 317 

All analyses were conducted using R (version 3.5.3, The R Foundation) and RStudio 318 

(version 1.1.463, RStudio, Inc.), with spatial analysis conducted using the “spdep” 319 

package (Bivand and Wong, 2018). 320 

 321 

3. Results 322 

3.1. Descriptive analysis 323 

Descriptive characteristics are shown in Table 2. The average age of participants was 324 

50.6 (standard deviation [SD]=16.4) years in Melbourne and 57.3 (SD=15.7) years in 325 

Adelaide. The ProjectPLAN participants reflect a demographic older than the general 326 

populations of Greater Melbourne and Greater Adelaide (Supplementary Table S3). 327 

There were higher percentages of women than men in each sample (57.3% in 328 

Melbourne and 58.4% in Adelaide); both greater than the overall proportion (51%) of 329 

women in the general population for each city. A much higher proportion of 330 

ProjectPLAN participants had university education (46.4% in Adelaide and 60.4% in 331 
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Melbourne) than observed in the general population of these two cities (21-28%; see 332 

Supplementary Table S3). Mean BMI was slightly higher in the Adelaide sample at 333 

26.8kg/m2 (SD=5.0) than in the Melbourne sample (25.4kg/m2, SD=4.4). Just over half 334 

of respondents in Adelaide (53.0%) resided in a 20MN. The percentage residing in a 335 

20MN was lower in Melbourne (39.9%). 336 

 337 

The median Euclidean distance between participants was lower in Adelaide (16.7-km, 338 

interquartile range [IQR]: 9.5-26.3) than in Melbourne (20.6km, IQR: 12.5-23.4). 339 

Similarly, participants had a lower median network distance in Adelaide (22.1-km, 340 

IQR:11.8-30.8) than in Melbourne (26.8-km, IQR: 15.1-38.1). The median number of 341 

neighbours within 3-km was higher in Adelaide (38.5, IQR: 24-61) than Melbourne (22, 342 

IQR: 12-33). Further details are shown in Supplementary Table S4. 343 

 344 

3.2. Spatial autocorrelation in BMI 345 

The Moran’s I values for BMI based on the eight spatial weights definitions are shown 346 

in Table 3.  347 

 348 

3.2.1 Euclidean distance 349 

The estimated spatial autocorrelation in BMI was low and positive for all types of 350 

Euclidean spatial matrix, ranging from 0.008 (Melbourne: inverse-distance spatial 351 

matrix) to 0.059 (Adelaide: 1.5-km bandwidth spatial matrix). The estimated spatial 352 
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autocorrelation was lower in Melbourne than Adelaide for all spatial weight definitions. 353 

Analyses showed no evidence against the null hypothesis of spatial randomness for 354 

almost all spatial weight definitions in Melbourne, although the Moran’s I test based 355 

on the Euclidean 3-km bandwidth spatial weights on the Melbourne sample had a small 356 

p-value (Moran’s I=0.032, p=0.029). In contrast, three of four Euclidean spatial 357 

matrices in the Adelaide sample showed strong evidence against the null hypothesis of 358 

spatial randomness in BMI.  359 

 360 

The Moran’s I values based on the 3-km bandwidth weights matrices and the 1.5-km 361 

bandwidth weights matrices were slightly larger than the inverse-distance or the 362 

inverse-distance-squared weights matrices in both cities. 363 

 364 

3.2.2 Network distance 365 

Findings using network distances were comparable to those using Euclidean distances. 366 

The spatial autocorrelation in BMI ranged from 0.004 (Melbourne: inverse-distance 367 

spatial matrix) to 0.051 (Adelaide: 3-km bandwidth spatial matrix). Similar to the 368 

Euclidean-distance-based matrices, there was no evidence against the null hypothesis 369 

of spatial randomness for all spatial weight definitions in Melbourne, while three of 370 

four network spatial matrices in Adelaide showed strong evidence to suggest the 371 

presence of positive spatial autocorrelation in BMI. Generally, the values of Moran’s I 372 

derived from network distances were smaller than those derived from Euclidean 373 
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distances. 374 

 375 

3.2. Comparison of regression models 376 

The difference in mean BMI between residents of 20MN and non-20MN and the 377 

corresponding CIs for each model are shown in Figure 2. The results show that 378 

adjustment for covariates affected the estimated differences, indicating potential bias in 379 

the unadjusted estimates due to confounding. The estimated mean difference in BMI 380 

was positive for all models, indicating a higher mean BMI in people living in non-381 

20MNs than 20MNs. However, after adjustment for potential confounders, differences 382 

in mean BMI attenuated in both Melbourne (0.22kg/m2, 95% CI=-0.48-0.93; Model 2 383 

Supplementary Table S5) and Adelaide (0.71kg/m2, 95% CI=-0.04-1.45; Model 2 384 

Supplementary Table S6). 385 

 386 

Moran’s I values for the residuals of the unadjusted models were smaller than those 387 

observed for BMI in all the samples (Table 3). There was no residual spatial 388 

autocorrelation in Melbourne after adjusting for living in 20MN (unadjusted OLS 389 

model). Findings for Adelaide were mixed and dependent on the spatial matrix 390 

considered. There was strong evidence of residual spatial autocorrelation in Adelaide 391 

for all but one (the inverse-distance-squared) Euclidean distance spatial matrices. 392 

However, there was only evidence of positive residual spatial autocorrelation for the 3-393 

km bandwidth matrix when considering the network distance. After accounting for 394 
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potential confounders in the OLS models, the spatial autocorrelation attenuated to close 395 

to zero in both Melbourne and Adelaide for all spatial weights matrices (Table 3), 396 

indicating complete spatial randomness.  397 

 398 

There was little discrepancy in inference assessing the difference in BMI between 399 

20MN and non-20MNs comparing the OLS regression models with the spatial 400 

regression models, irrespective of which spatial matrix or type of distance was used.  401 

 402 

3.3 Sensitivity analyses 403 

Sensitivity analyses are presented in Supplementary Table S7. Similar to the results 404 

presented in Table 3, there was strong evidence of spatial autocorrelation in BMI in 405 

Adelaide considering the inverse-distance with 3-km bandwidth spatial weight or 406 

Exponential decay weight, with Moran’s I ranging from 0.044 (p=0.042; inverse-407 

distance with 3-km bandwidth network distance matrix) to 0.055 (p<0.001; Exponential 408 

decay network distance matrix). Estimated spatial autocorrelation in Melbourne was 409 

lower (0.021 to 0.029) and there was only strong statistical evidence of spatial 410 

autocorrelation using the exponential decay Euclidean distance matrix (Moran’s 411 

I=0.032, p=0.037). As with the other spatial matrices considered, the estimated residual 412 

spatial autocorrelation in both Melbourne and Adelaide attenuated to close to zero after 413 

accounting for potential confounders in the OLS regression models. 414 

    415 
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4. Discussion 416 

Our study found some evidence of positive global spatial autocorrelation in BMI in 417 

Adelaide for almost all types of spatial weights matrices considered. However, this was 418 

of a low level, with estimated correlations below 0.1. This is accordant with some 419 

previous studies that considered area-level measures to define spatial matrices (Laraia 420 

et al., 2014; Han et al., 2018; Paquet et al., 2016) but in contrast to others that 421 

demonstrate spatial randomness or spatial dispersion (Penney et al., 2014; Schuurman 422 

et al., 2009). Only the inverse-distance-squared weight matrix provided no statistical 423 

evidence of spatial autocorrelation in BMI in Adelaide. Generally, there was no 424 

evidence of spatial autocorrelation in BMI in Melbourne, where estimated spatial 425 

autocorrelation was consistently lower than in Adelaide for all spatial matrices 426 

considered. However, our results do show differences in the magnitude of spatial 427 

autocorrelation depending on the choice of spatial weights matrix, with positive 428 

correlations in BMI ranging from 0.008 to 0.040 in Melbourne and 0.021 to 0.059 in 429 

Adelaide. This highlights the importance of the choice of spatial weights matrix in the 430 

analysis.  431 

 432 

Estimated spatial autocorrelation in BMI was found to be lower using the inverse-433 

distance weights than the bandwidth weights. The use of the inverse-distance weight is 434 

appealing as it does not enforce an arbitrary threshold on distances when defining 435 
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neighbours. However, by not imposing any distance limits, the inverse-distance matrix 436 

considers weighting between pairs even if they reside very far from one another. In this 437 

approach, two participants residing 50-km and 51-km from participant i would have 438 

different weights, even though arguably these participants reside too far for either to 439 

have an impact on participant i. Therefore, perhaps the inverse-distance weights 440 

become meaningless beyond certain distances. Interestingly, the estimated spatial 441 

autocorrelations in BMI from sensitivity analysis using combined inverse-distance and 442 

threshold weights were more comparable to those of the bandwidth only approach than 443 

the inverse-distance only approach.  444 

 445 

Comparison of adjusted OLS and spatial regression models examining BMI by 446 

neighbourhood type showed little difference in findings when accounting for spatial 447 

autocorrelation using any of the spatial weights matrix definitions. After adjustment for 448 

potential confounders in the OLS models, there was no evidence of residual spatial 449 

autocorrelation in either city. This suggests the spatial autocorrelation in BMI observed 450 

in Adelaide may be due to the shared environment or characteristics of the neighbours.  451 

Of course, these findings are study- and context-specific, and our results in no way 452 

negate a need to appropriately consider spatial relationships in research in this area. Our 453 

results provide some indication that mean BMI was higher in non-20MNs than 20MNs, 454 

with the estimated mean difference higher in Adelaide than Melbourne. All observed 455 

differences were subsequently attenuated, however, after adjustment for confounders. 456 
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This was so even for Adelaide, where CIs included the null, though with minimal 457 

overlap. Importantly, as our samples were older and more highly educated than the 458 

general population of Greater Melbourne and Greater Adelaide, our findings may not 459 

be generalisable as representative of the broader population. No other studies have 460 

examined the effect of having a 20MN on BMI. However, studies examining composite 461 

neighbourhood environment measures have yielded mixed findings. In Australia, Tseng 462 

et al. (2014) did not find meaningful correlations in the relationship between an index 463 

of neighbourhood access to food resources, PA facilities and transport and BMI among 464 

women living in socioeconomically disadvantaged areas. In the UK, Hobbs et al. (2018) 465 

found that a combination of access to both food and PA environmental facilities may be 466 

important for BMI and that the richness of environmental attributes is not necessarily 467 

linearly associated with BMI. Future research on liveable environments, considering 468 

multiple measures of neighbourhood attributes, is required to understand built 469 

environment relationships with BMI. 470 

 471 

Choosing a spatial weights matrix is challenging but critical for spatial analysis as it 472 

proposes the spatial dependence structure imposed and can affect both the spatial 473 

autocorrelation test and the estimates of spatial regression models (Anselin, 2002; 474 

Fingleton, 2003). In research conducted elsewhere examining the ability to estimate 475 

area-level relative risk of birth defects in Australia, the researchers found that models 476 

incorporating distance-based spatial weights matrices performed better than adjacency-477 
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based weights (Earnest et al., 2007). One reason Earnest et al. citied for this is that 478 

adjacency matrices are likely to perform better with more regular shaped areas than 479 

obtained when dealing with administrative data and they argue the need for careful 480 

consideration of appropriate spatial matrices. In addition to the methods used in the 481 

present study, a spatial weight matrix could be chosen through an exploratory analysis 482 

to assess the degree of spatial autocorrelation (Earnest et al., 2007). One approach to 483 

reduce the arbitrariness of the choice is to select from a set of predefined matrices by 484 

criterion, such as comparison of values of Moran’s I, AIC or model boosting method 485 

(Kostov, 2010).  486 

 487 

Our use of the 3-km bandwidth is appealing as it is linked to the distance deemed 488 

important for our 20MN exposure definition. However, this approach places an 489 

arbitrary threshold on the definition of ‘neighbours’ through this dichotomisation (e.g., 490 

participants located within 2.99-km of one another are classified as neighbours while 491 

those 3.01-km apart are not). Defining participants as neighbours (an entry of 1 in the 492 

matrix) or not (0) using the 3-km bandwidth is analogous to the common approach used 493 

when considering administrative boundaries where areas (e.g., postal areas or ZIP codes) 494 

are defined as neighbourhoods if they share a common boundary. Although attractive 495 

due to simplicity, the common approach using administrative boundaries does not allow 496 

for vastly varying sizes typical of administrative units. For example, in Australia inner 497 

city administrative units are much smaller than those in regional or rural areas. This 498 
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means the distance between participants deemed ‘neighbours’ in remote areas can be 499 

much greater than the distances considered between neighbours in more urban areas. 500 

While understandable as administrative units are created based on the number of 501 

households and population density, the implications of this are that within the same 502 

study, the distance used to represent neighbours can vary extensively. 503 

 504 

The use of distance-based spatial weights in built environment and health research 505 

avoids this issue. The inverse-distance spatial matrix, or variations of this matrix (e.g., 506 

inverse-distance-squared), allows the relative distance between all participants to be 507 

considered, avoiding the specification of arbitrary boundaries and administrative 508 

neighbouring areas of varying size, whether distance-based (e.g., the 3-km bandwidth) 509 

or not (e.g., defining administrative areas as neighbours if they share common 510 

boundaries). However, it should be noted that the inverse-distance spatial matrix is 511 

typically calculated based on Euclidean distances. Although Euclidean distances often 512 

work well in the context of highly urbanised areas where the underlying level of 513 

connectivity is high (Thornton et al., 2012), this means that barriers (e.g., highways or 514 

bodies of water) between participants are not accounted for when defining neighbours. 515 

This has important implications when considering built environment and health 516 

research where increasingly exposure measures, such as access to retail or public open 517 

space, are defined based on pedestrian street network distances. Therefore, to better 518 

reflect neighbours in this context, spatial matrices should also be based on a network 519 
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distance measure, as considered in this study, to represent the walking or driving 520 

distance between study participants as this may better reflect accessibility between 521 

participants. Our findings show that the magnitude of spatial autocorrelation can differ 522 

when using Euclidean or network distances, although our inference regarding the 523 

relationship between 20MNs and BMI was not affected by which type of distance was 524 

used. 525 

 526 

Importantly, it should be noted that our study was able to consider distances based on 527 

participant location as our sample sizes were modest at less than 700 in each sample. 528 

Larger studies may encounter difficulties in fitting spatial models considering between 529 

participant distances. In Stata, for example, the maximum possible matrix size is 530 

currently 11,000. Therefore, large studies could either incorporate weighted averages 531 

of the response as model covariates as shown in spatial modelling elsewhere (Lee and 532 

Neocleous, 2010) or define neighbours based on areal units. 533 

 534 

Strengths of our study include our approach to create spatial matrices considering the 535 

precise spatial location of participants through geocoded home addresses. This enabled 536 

greater specification of spatial relationships than the use of arbitrary boundaries. While 537 

research in this area is often hampered by a lack of access to sensitive spatial location 538 

data, particularly if using secondary data sources to examine neighbourhood effects on 539 

health, our project greatly reduced the risk of participant identification by analysts by 540 
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separately creating spatial matrices before merging only the spatial matrices, not the 541 

address data, to anonymised participant characteristic data. This demonstrates the 542 

possibility of spatial matrices being created externally without the need to release 543 

participant data with geocoded addresses. This is an approach that may be considered 544 

by other researchers wishing to take spatial relationships into account who are unable 545 

to access participant locations. It may be possible for data custodians to create these 546 

matrices using open-source software to be linked to participant characteristic data 547 

without the geocoded locations. 548 

 549 

Although we considered a number of different spatial matrices in this analysis, future 550 

research could consider other types of spatial matrix, including different distance decay 551 

functions or exploring different thresholds in a mixed approach combining distance 552 

decay with different distance cut-points. Our choice of a 3-km cut-point was based on 553 

accessible distances related to the 20MN definition. However, across different contexts, 554 

there will be questions about what this threshold distance should be. The choice of the 555 

spatial matrices used in the primary analysis for this study was based on common matrix 556 

types likely to be adopted by behavioural researchers in neighbourhoods and health 557 

wishing to undertake spatial analysis and is by no means exhaustive. However, our 558 

findings suggest that spatial autocorrelation values are relatively low and have minimal 559 

impact on modelling findings. 560 

 561 



29 

 

The lack of consideration of spatial models in most studies of the environment and BMI 562 

could be attributable to several reasons. Researchers may be unfamiliar with these 563 

approaches, or the diverse and complex nature of spatial models may be off-putting. 564 

However, the analysis conducted in this study was undertaken using open source 565 

statistical and geographical tools, demonstrating that these methods are becoming more 566 

accessible to researchers. Although the findings from ProjectPLAN suggest little need 567 

for spatial regression models when examining differences in BMI by neighbourhood 568 

type after adjustment for individual characteristics, it is important to acknowledge that 569 

these findings are context specific. Therefore, future studies of the built environment 570 

on BMI, or other health outcomes, should take care to examine and appropriately 571 

account for spatial autocorrelation. 572 

 573 
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TABLES 

Table 1. Number of eligible addresses by city and neighbourhood type. 

Melbourne Number 

of eligible 

addresses 

Total 

number 

of 

mailed 

letters* 

Total 

number of 

reminder 

letters 

issued 

Total 

number of 

letters sent 

to unique 

address 

points** 

Number of 

consenting 

participants          

(% response**) 

20MN Low 

SES 

4365 7973 3860 4113 112 (2.7%) 

20MN High 

SES 

61187 4039 500 3539 204 (5.8%) 

Non-20MN 

Low SES 

30064 9786 0 9786 239 (2.4%) 

Non-20MN 

High SES 

24653 4292 500 3792 227 (6.0%) 

Overall 120269 26090 4860 21230 782 (3.7%) 

      

Adelaide      

20MN Low 

SES 

4537 5701 1600 4101 147 (3.6%) 

20MN High 

SES 

24799 4200 0 4200 290 (6.9%) 

Non-20MN 

Low SES 

18118 7606 0 7606 216 (2.8%) 

Non-20MN 

High SES 

32333 2403 0 2403 177 (7.4%) 

Overall 79787 19910 1600 18310 830 (4.5%) 
*Including reminder letters. **From total number of mailed letters subtracting the number of reminder letters. 
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Table 2. Descriptive characteristics of ProjectPLAN participants by city. 

 Melbourne 

(N=637) 

Adelaide 

(N=692) 

Overall 

(N=1329) 

Neighbourhood Status    

20MN 254 (39.9%) 367 (53.0%) 621 (46.7%) 

non-20MN 383 (60.1%) 325 (47.0%) 708 (53.3%) 

Neighbourhood SES    

High 367 (57.6%) 401 (57.9%) 768 (57.8%) 

Low 270 (42.4%) 291 (42.1%) 561 (42.2%) 

Gender    

Female 365 (57.3%) 404 (58.4%) 769 (57.9%) 

Male 272 (42.7%) 288 (41.6%) 560 (42.1%) 

Education    

Less than university education 252 (39.6%) 371 (53.6%) 623 (46.9%) 

University education 385 (60.4%) 321 (46.4%) 706 (53.1%) 

Ability to manage on income    

Comfortable/Very Comfortable 416 (65.3%) 462 (66.8%) 878 (66.1%) 

Just getting by 160 (25.1%) 162 (23.4%) 322 (24.2%) 

Very difficult/Difficult 61 (9.6%) 68 (9.8%) 129 (9.7%) 

Age (years)    

Mean (SD) 50.6 (16.4) 57.3 (15.7) 54.1 (16.4) 

Survey Type    

Food 287 (45.1%) 351 (50.7%) 638 (48.0%) 

Physical Activity 350 (54.9%) 341 (49.3%) 691 (52.0%) 

BMI (kg/m2)    

Mean (SD) 25.4 (4.4) 26.8 (5.0) 26.2 (4.8) 
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Table 3. Moran’s I test of spatial autocorrelation in BMI and the OLS model residuals. 

   

Melbourne  

(N = 637) 

Adelaide  

(N =692) 

 

Distance 

type Weight type 
Moran's I p-value Moran's I p-value 

BMI Euclidean Inverse-distance 0.008 0.357 0.026 0.001 

  3-km bandwidth 0.032 0.029 0.051 <0.001 

  Inverse-distance-squared 0.019 0.504 0.037 0.170 

  1.5-km bandwidth 0.031 0.183 0.059 0.001 

 Network Inverse-distance 0.004 0.691 0.021 0.022 

  3-km bandwidth 0.026 0.163 0.051 0.001 

  Inverse-distance-squared 0.022 0.420 0.026 0.329 

  1.5-km bandwidth 0.040 0.164 0.049 0.040 

Residual of unadjusted 

OLS regression model Euclidean 
Inverse-distance 0.004 0.558 0.015 0.027 

  3-km bandwidth 0.024 0.078 0.034 0.001 

  
Inverse-distance-squared 0.014 0.586 0.027 0.290 

  1.5-km bandwidth 0.025 0.248 0.045 0.009 

 Network Inverse-distance 0.000 0.877 0.012 0.153 

  3-km bandwidth 0.018 0.304 0.032 0.033 

  Inverse-distance-squared 0.018 0.473 0.016 0.504 

  1.5-km bandwidth 0.034 0.210 0.033 0.147 

Residual of adjusted 

OLS regression model* Euclidean 
Inverse-distance 0.000 0.748 0.003 0.481 

  3-km bandwidth 0.000 0.888 0.000 0.707 

  
Inverse-distance-squared 0.006 0.496 -0.002 0.939 

  1.5-km bandwidth -0.008 0.876 0.013 0.355 

 Network Inverse-distance -0.003 0.993 0.004 0.511 

  3-km bandwidth -0.007 0.749 0.002 0.721 

  Inverse-distance-squared 0.005 0.896 -0.007 0.922 

  1.5-km bandwidth -0.004 0.970 0.005 0.688 

*Models adjusted for neighbourhood SES, gender, age, education, ability to manage on income and survey type. 
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FIGURES 

Figure 1. Concept of the 3-km bandwidth spatial weight matrix. 

 

It is assumed that 1.5-km is the distance an adult can walk in 20 minutes, so participant pairs whose distances 

were less than 3-km may share the same facility. 

 

Figure 2. Estimated difference in mean BMI with 95% confidence intervals by 

neighbourhood status from OLS regression and spatial error regression models by city. 

 

OLS adjusted and all spatial weights models presented adjusted for neighbourhood SES, gender, age, education, 

ability to manage on income and survey type. 

 


