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20-minute neighbourhood on body mass index.

Introduction

Many health issues arise from having a high BMI (body mass index) and an enormous research effort is placed on investigating the determinants of BMI. Research has shown that BMI is geographically and spatially clustered, suggesting that people residing proximally generally have a more similar BMI than to those residing further away [START_REF] Mills | Use of small-area estimates to describe county-level geographic variation in prevalence of extreme obesity among US adults[END_REF][START_REF] Qiu | Geographic clustering and region-specific determinants of obesity in the Netherlands[END_REF][START_REF] Kim | Geographic association between income inequality and obesity among adults in New York State[END_REF][START_REF] Guessous | A comparison of the spatial dependence of body mass index among adults and children in a Swiss general population[END_REF][START_REF] Huang | The spatial clustering of obesity: does the built environment matter?[END_REF][START_REF] King | Weight and place: a multilevel crosssectional survey of area-level social disadvantage and overweight/obesity in Australia[END_REF]. Explanations for this clustering have included geographical variations in access to built environmental features considered health promoting (e.g., retailers selling fresh food, recreational facilities including open space) or health harming (e.g., fast food retailers, car-dominant streetscapes) with these variations said to influence diet and physical activity (PA) behaviours [START_REF] Lam | Associations between the built environment and obesity: an umbrella review[END_REF][START_REF] Papas | The built environment and obesity[END_REF]. However, few studies investigating relationships between the neighbourhood built environment and BMI have adequately accounted for spatial autocorrelation. This is because commonly used methods like linear regression [START_REF] Duncan | Characteristics of walkable built environments and BMI z-scores in children: evidence from a large electronic health record database[END_REF][START_REF] Hobbs | Neighbourhood typologies and associations with body mass index and obesity: A cross-sectional study[END_REF] assume spatial independence. Ignoring spatial autocorrelation can lead to incorrect inference by not appropriately estimating standard errors when data are spatially correlated [START_REF] Zhu | Spatial regression models for demographic analysis[END_REF]. Also, since in any real situation, sample sizes will be finite, ordinary least squares (OLS) model parameters may be biased when violations of independence occur [START_REF] Keitt | Accounting for spatial pattern when modeling organism-environment interactions[END_REF].

To handle potential spatial autocorrelation, some studies have accounted for the clustering of participants living in the same neighbourhoods often defined by an administrative unit boundary [START_REF] Cunningham-Myrie | Understanding neighbourhood retail food environmental mechanisms influencing BMI in the Caribbean: a multilevel analysis from the Jamaica Health and Lifestyle Survey: a cross-sectional study[END_REF][START_REF] King | Weight and place: a multilevel crosssectional survey of area-level social disadvantage and overweight/obesity in Australia[END_REF][START_REF] Mason | Do neighbourhood characteristics act together to influence BMI? A cross-sectional study of urban parks and takeaway/fast-food stores as modifiers of the effect of physical activity facilities[END_REF][START_REF] Tseng | Is neighbourhood obesogenicity associated with body mass index in women? Application of an obesogenicity index in socioeconomically disadvantaged neighbourhoods[END_REF][START_REF] Van Lenthe | Neighbourhood deprivation and overweight: the GLOBE study[END_REF][START_REF] Feng | Do neighbourhood socioeconomic circumstances not matter for weight status among Australian men? Multilevel evidence from a household survey of 14 691 adults[END_REF]. However, accounting for clustering may be insufficient to explain all of the spatial relationships in the data. This is because adminstrative units could be spatially proximate (even sharing a common boundary), thus sharing common environmental conditions, yet considered independent. Research has demonstrated that different conclusions may be reached when comparing spatial regression and multilevel regression analysis [START_REF] Takagi | Neighborhood social capital and crime victimization: comparison of spatial regression analysis and hierarchical regression analysis[END_REF][START_REF] Takagi | A spatial regression analysis on the effect of neighborhood-level trust on cooperative behaviors: comparison with a multilevel regression analysis[END_REF]Chaix et al., 2005a;Chaix et al., 2005b), implying that multilevel regression may not fully account for spatial autocorrelation. As highlighted elsewhere, approaches exclusively based on accounting for clustering according to geographical areas, rather than individual neighbours, are insufficient to assess how neighbouring individuals affect one another [START_REF] Zangger | Making a place for space: Using spatial econometrics to model neighborhood effects[END_REF]. Spatial regression models based on distances between participant locations, in contrast, enable a better reflection of the effects of neighbouring individuals on one another [START_REF] Zangger | Making a place for space: Using spatial econometrics to model neighborhood effects[END_REF].

Policies and land use planning guidelines that advocate for health promoting built environments are becoming increasingly popular [START_REF] Mckinnon | Strengthening the links between planning and health in England[END_REF][START_REF] Kent | The three domains of urban planning for health and well-being[END_REF]. Originally proposed in Portland (City of Portland Bureau of Planning and Sustainability, 2012), the 20-minute neighbourhood (20MN) concept has since been adopted in Melbourne (State of Victoria Department of Environment, 2019).

Variations are now seen in European cities, including Paris (Paris En Commun, 2020).

In Melbourne, the written definition of a 20MN has undergone various iterations , 2015). In brief, a 20MN is a setting that provides residents with the services and resources to meet most of their daily needs (e.g., access to healthy food stores, recreational facilities, health and education services) within a 20-minute non-motorised transport trip from home (noting that in more recent versions of the policy the mode of transport has been restricted to walking) (Victorian Government Department of Environment Land Water and Planning, 2020). Urban renewal and liveability policies that advocate for 20MNs do so under the assumption that these encourage more physically active lifestyles that in turn lead to better population health.

Our study aimed to i) examine spatial autocorrelation in BMI using individual household addresses, and ii) assess differences in BMI between people living in 20MNs and non-20MNs, accounting for spatial autocorrelation. The statistical approach used here is arguably an important advance over prior research exploring neighbourhoodlevel influences on BMI where assumptions related to the spatial independence of observations may be totally or partially violated. Advanced statistical modelling is vital to create a more robust evidence base regarding the relationships between place and heath. 2.1. Neighbourhood characteristics 20MNs were conceived as address points having high-service and amenity provision, with the particular services and amenities considered for inclusion based on 20MN policy documents and a review of existing literature (State of Victoria Department of Environment, 2019;[START_REF] Thornton | Operationalising the 20minute neighbourhood[END_REF]. These services and amenities included multiple attributes across five domains: 1) healthy food outlets (e.g., supermarkets), 2) recreational resources (e.g., gyms), 3) community resources (e.g., primary schools, general practitioners, pharmacies), 4) public open spaces, and 5) public transport access.

Methods

Our

Attributes of the 20MN are described in Supplementary Table S1. Non-20MNs had low service and amenity provision, defined as fewer than five individual attributes in Melbourne and four individual attributes in Adelaide (due to different public transport infrastructures). Full details of the approach to operationalise the 20MN are described elsewhere [START_REF] Thornton | Operationalising the 20minute neighbourhood[END_REF]. In brief, geocoded services and amenities from a combination of government and commercial sources were overlayed on a pedestrian network layer. For healthy food outlets, recreational resources and community resources, a 1.5-kilometre (km) distance pedestrian network service area, was created using the service or amenity location as the start point. Different measures were used for public open space and public transport, with accessibility to these domains guided by literature or Australian planning guideline recommendations where available. Areas of overlap between service areas could then be identified to determine 20MNs and non-20MNs. The level of service and resource provision was determined across the whole of the Melbourne and Adelaide metropolitan areas. This allowed the identification of address points with access to all services and resources (these address points were defined as having a 20MN) and addresses with low numbers of services and resources . This approach means we were not bound by a clustered study design whereby participants needed to be within the same administrative units, typical of many studies of neighbourhood effects. The distribution of 20MNs in both cities are shown in Figures 4 and5 of [START_REF] Thornton | Operationalising the 20minute neighbourhood[END_REF]. In general, residential addresses that had a 20MN were commonly situated within inner and mid-suburban areas of Melbourne, although they extended to the outer areas along the train lines. In Adelaide, residential addresses with a 20MN were typically located centrally in the city, although they were also found in townships extended through the middle and outer edges of the city.

Areas of low and high socioeconomic status (SES) were identified using the Australian Bureau of Statistics (ABS) Index of Relative Socio-economic Advantage and Disadvantage (IRSAD). Areas with low socioeconomic conditions were defined by extracting deciles 1, 2 or 3 of the IRSAD at Statistical Areas Level 1 (SA1, i.e., geographical areas built from whole Mesh Blocks which are the smallest geographical areas defined by the ABS) which were located within IRSAD deciles 1, 2 or 3 at the larger Statistical Areas Level 2 (SA2). This approach was adopted to ensure that small areas of low socioeconomic conditions were located within a larger community that also had low socioeconomic conditions. The process was repeated for SA1s and SA2s within deciles 8, 9 and 10 to represent areas with high socioeconomic conditions.

Sampling and recruitment

Stratified random sampling was used to identify households within each city (Melbourne or Adelaide), neighbourhood type (20MN or non-20MN), and level of neighbourhood SES (low or high) to be sent an invitation letter with a URL and unique password for accessing either a food or PA survey. The sampling approach allowed the household location of participants to be captured which was necessary to account for the spatial autocorrelation between participants. Only address points within residential Mesh Blocks were included in the sampling frame to reduce the number of invitations sent to non-residential addresses. Address point data were sourced from routinely available government data sources (Department of Environment, 2021; Government of South Australia, 2021). The total number of eligible addresses within each city by neighbourhood type and SES are shown in Table 1. We aimed to recruit equal numbers within each stratum. Higher numbers of letters were mailed to address points within low SES areas in both cities due to lower anticipated response rates in these areas.

Reminder letters were also issued to some address points to increase response rates.

Given the sampling approach, there were eight combinations of city, neighbourhood type and status (i.e., Melbourne 20MN low SES; Melbourne 20MN high SES;

Melbourne non-20MN low SES; Melbourne non-20MN high SES; Adelaide 20MN low SES; Adelaide 20MN high SES; Adelaide non-20MN low SES; Adelaide non-20MN high SES). Within each combination, randomly selected eligible households were mailed an invitation to participate in either the online food or PA survey. Participants aged 18 years or older were invited to complete the food survey if they were at least jointly if not fully responsible for the household food shopping. The person (aged ≥18 years) in the household who had the most recent birthday was asked to complete the PA survey. Participants were asked to confirm they lived at the address on file. In total, 782 participants (3.7% response rate) from Melbourne and 830 participants (4.2% response rate) from Adelaide consented to complete either the food or PA survey (Table 1).

Variables

Exposure

The exposure was neighbourhood type (20MN or non-20MNs).

Outcome

BMI (weight [kilograms, kg]/height [metres, m]

2 ) was calculated from self-reported weight and height.

Other covariates

Potential confounders included gender (male; female), age, individual SES based on highest qualification obtained (less than university; university) and self-rated financial stress indicated by the ability to manage on household income (very difficult or difficult; just getting by; comfortable or very comfortable).

Statistical analysis

Participants who were pregnant or who had missing or implausible BMI (>50kg/m 2 or <15kg/m 2 ) were excluded, leaving 1382 (86%) participants from the original sample eligible for analysis. The statistical analysis was conducted for eligible participants with complete data for the exposure and potential confounding variables. A high percentage of the eligible sample had complete data (n=1329, 96%). Descriptive characteristics for the eligible, complete case and omitted samples are shown in Supplementary Table S2.

Analyses were conducted separately for Melbourne and Adelaide because there were slightly different definitions of 20MN used (due to different public transport systems) in each city. Food survey and PA survey participants were combined for analyses and a parameter for survey type included in the models as these surveys had different target populations; the food survey was completed by the primary or joint primary household food purchaser and the PA survey was any adult in the household. The resulting sample sizes were 637 for Melbourne (Melbourne Food Survey=287, Melbourne PA Survey=350) and 692 for Adelaide (Adelaide Food Survey=351, Adelaide PA Survey=341). Demographic characteristics for the two cities were compared to the 2016 Census data for Greater Melbourne (Australian Bureau of Statistics, Last accessed July 2022b) and Greater Adelaide (Australian Bureau of Statistics, Last accessed July 2022a).

Global spatial autocorrelation

Moran's I was calculated to assess spatial autocorrelation in BMI for both Melbourne and Adelaide under different spatial weights definitions (Cliff and [START_REF] Ad | Evaluating the percentage points of a spatial autocorrelation coefficient[END_REF][START_REF] Ord | Testing for spatial autocorrelation among regression residuals[END_REF]). Moran's I is the most commonly used measure of spatial autocorrelation, providing a measure of how related observations are based on the location at which they are measured. The correlation ranges from values of -1, indicating negative spatial autocorrelation or complete spatial dispersion, to 1, indicating high positive spatial autocorrelation. A value of 0 indicates complete spatial randomness.

Eight spatial weights matrices were considered based on both the Euclidean and road network distance between individual household addresses to investigate whether findings were sensitive to the weight chosen. A 3-km bandwidth weight matrix was considered as this distance was directly related to the 20MN exposure definition. Under the assumption that people residing in 20MNs have similar health and behaviour outcomes, it could be hypothesised that those living proximally (i.e., within the pre-specified threshold of a 20MN) have correlated outcomes so this matrix choice enabled us to assess this assumption. In this definition, participants were defined to be neighbours (with a '1' entered in the matrix) if they lived within a 3-km distance of one another; otherwise, participants were not considered neighbours ('0' in the matrix). It was assumed that 1.5-km is the distance an adult can walk in 20 minutes, as discussed previously, so participant pairs whose distances were less than 3-km could share the same amenity or service, as illustrated in Figure 1. In addition, a 1.5-km bandwidth weight matrix, corresponding to the assumed distance that can be travelled in a 20minute walk, was considered. Matrices were row-normalised, meaning each element in row i (where i represents each study participant) was divided by the sum of the elements of row i, meaning all weight elements took a value between 0 and 1. This means that the spatial weight is shared among the total number of neighbours of participant i (e.g., for the 3-km bandwidth weight matrix, if participant i had 3 neighbours, each was weighted by 1/3).

Inverse-distance weights using the calculated distance between each pair of observations were also considered; this matrix allows all observations to have neighbours, with those living nearer assumed to be more related than those living further. The analysis using the inverse-distance matrix thus assumes that participants would be more influenced by those who live closer to them than those who live further away but enables all participants to have a spatial relationship with all other participants within strata of city (Adelaide or Melbourne). In addition, the inverse-distance-squared matrix was considered which allows the weights between neighbours to decrease rapidly with increasing distance.

Regression models

Unadjusted and confounder-adjusted OLS linear regression models were fitted to examine associations between having a 20MN (no/yes) and BMI in each of the two cities. The Moran's I test was used to assess spatial autocorrelation in the residuals of these models using all spatial weights definitions.

To account for potential residual spatial autocorrelation in the OLS regression models, spatial error regression models were fitted to compare with results from the OLS regression models. The spatial lag model was not considered because these models are most suitable for situations where there is an intuitive or theoretical motivation that the dependent variable will depend on its neighbours' values (e.g., housing price, local government actions) [START_REF] Lesage | Introduction to spatial econometrics[END_REF]. The purpose of the spatial modelling in this analysis was to avoid residual spatial autocorrelation where a spatial pattern in the residuals could exist due to omitted random factors. Hence, spatial error models were used in this study. The spatial error models do not assume the interdependence between any two neighbouring observations operate in any particular way, meaning that the outcome (i.e., BMI) of a given individual will be to some degree dependent on the behaviours of their neighbours due to some unmeasured variables, thus accounting for any unmeasured environmental exposures or individual characteristics shared by neighbouring participants [START_REF] Zangger | Making a place for space: Using spatial econometrics to model neighborhood effects[END_REF]. The spatial error model is expressed as follows:

𝑦 = 𝑿𝛽 + 𝜀 𝜀 = 𝜆𝑾𝜀 + 𝑢
where 𝑢~𝑁(0, 𝜎 2 𝐼) is the N x 1 error vector, assumed to be independent and identically distributed; 𝑾 is the N x N spatial weight matrix (either 3-km bandwidth or inverse-distance) and 𝜆𝑾𝜀 is the vector of the spatially weighted average of errors (from the observation's neighbours, when the matrix is row-normalised); 𝜆 is the spatial autoregressive coefficient, representing the spatial autocorrelation of the error term 𝜀. Since 𝜀 = (𝑰 -𝜆𝑾) -1 𝑢, the error variance-covariance matrix is written as:

𝜎 2 (𝑰 -𝜆𝑾) -1 (𝑰 -𝜆𝑾 𝑇 ) -1
Once the variance-covariance matrix of error was obtained, after estimating 𝜆 by maximum likelihood, the estimated parameters for the association between neighbourhood type and BMI in the spatial error model were estimated by OLS method.

The coefficients of neighbourhood type and their 95% confidence intervals (CIs) can be interpreted as the differences in mean BMI between participants residing in 20MNs and non-20MNs.

Sensitivity analyses

Two additional types of spatial weights matrix were considered in sensitivity analyses using both Euclidean and road network distances: an exponential decay weight matrix with decay constant 1, which allows the weights between neighbours to decrease more slowly with increasing distance, and an inverse-distance with 3-km bandwidth weight matrix.

All analyses were conducted using R (version 3.5.3, The R Foundation) and RStudio (version 1.1.463, RStudio, Inc.), with spatial analysis conducted using the "spdep" package [START_REF] Bivand | Comparing implementations of global and local indicators of spatial association[END_REF].

Results

Descriptive analysis

Descriptive characteristics are shown in Table 2. The average age of participants was 50.6 (standard deviation [SD]=16.4) years in Melbourne and 57.3 (SD=15.7) years in Adelaide. The ProjectPLAN participants reflect a demographic older than the general populations of Greater Melbourne and Greater Adelaide (Supplementary Table S3).

There were higher percentages of women than men in each sample (57.3% in Melbourne and 58.4% in Adelaide); both greater than the overall proportion (51%) of women in the general population for each city. A much higher proportion of ProjectPLAN participants had university education (46.4% in Adelaide and 60.4% in Melbourne) than observed in the general population of these two cities (21-28%; see Supplementary Table S3). Mean BMI was slightly higher in the Adelaide sample at 26.8kg/m 2 (SD=5.0) than in the Melbourne sample (25.4kg/m 2 , SD=4.4). Just over half of respondents in Adelaide (53.0%) resided in a 20MN. The percentage residing in a 20MN was lower in Melbourne (39.9%).

The median Euclidean distance between participants was lower in Adelaide (16.7-km, interquartile range [IQR]: 9.5-26.3) than in Melbourne (20.6km, IQR: 12.5-23.4).

Similarly, participants had a lower median network distance in Adelaide (22.1-km, IQR:11.8-30.8) than in Melbourne (26.8-km, IQR: 15.1-38.1). The median number of neighbours within 3-km was higher in Adelaide (38.5, IQR: 24-61) than Melbourne (22, IQR: 12-33). Further details are shown in Supplementary Table S4.

Spatial autocorrelation in BMI

The Moran's I values for BMI based on the eight spatial weights definitions are shown in Table 3.

Euclidean distance

The estimated spatial autocorrelation in BMI was low and positive for all types of Euclidean spatial matrix, ranging from 0.008 (Melbourne: inverse-distance spatial matrix) to 0.059 (Adelaide: 1.5-km bandwidth spatial matrix). The estimated spatial autocorrelation was lower in Melbourne than Adelaide for all spatial weight definitions.

Analyses showed no evidence against the null hypothesis of spatial randomness for almost all spatial weight definitions in Melbourne, although the Moran's I test based on the Euclidean 3-km bandwidth spatial weights on the Melbourne sample had a small p-value (Moran's I=0.032, p=0.029). In contrast, three of four Euclidean spatial matrices in the Adelaide sample showed strong evidence against the null hypothesis of spatial randomness in BMI. The Moran's I values based on the 3-km bandwidth weights matrices and the 1.5-km bandwidth weights matrices were slightly larger than the inverse-distance or the inverse-distance-squared weights matrices in both cities.

Network distance

Findings using network distances were comparable to those using Euclidean distances.

The spatial autocorrelation in BMI ranged from 0.004 (Melbourne: inverse-distance spatial matrix) to 0.051 (Adelaide: 3-km bandwidth spatial matrix). Similar to the Euclidean-distance-based matrices, there was no evidence against the null hypothesis of spatial randomness for all spatial weight definitions in Melbourne, while three of four network spatial matrices in Adelaide showed strong evidence to suggest the presence of positive spatial autocorrelation in BMI. Generally, the values of Moran's I derived from network distances were smaller than those derived from Euclidean potential confounders in the OLS models, the spatial autocorrelation attenuated to close to zero in both Melbourne and Adelaide for all spatial weights matrices (Table 3), indicating complete spatial randomness.

There was little discrepancy in inference assessing the difference in BMI between 20MN and non-20MNs comparing the OLS regression models with the spatial regression models, irrespective of which spatial matrix or type of distance was used.

Sensitivity analyses

Sensitivity analyses are presented in Supplementary Table S7. Similar to the results presented in Table 3, there was strong evidence of spatial autocorrelation in BMI in Adelaide considering the inverse-distance with 3-km bandwidth spatial weight or Exponential decay weight, with Moran's I ranging from 0.044 (p=0.042; inversedistance with 3-km bandwidth network distance matrix) to 0.055 (p<0.001; Exponential decay network distance matrix). Estimated spatial autocorrelation in Melbourne was lower (0.021 to 0.029) and there was only strong statistical evidence of spatial autocorrelation using the exponential decay Euclidean distance matrix (Moran's I=0.032, p=0.037). As with the other spatial matrices considered, the estimated residual spatial autocorrelation in both Melbourne and Adelaide attenuated to close to zero after accounting for potential confounders in the OLS regression models.

Discussion

Our study found some evidence of positive global spatial autocorrelation in BMI in Adelaide for almost all types of spatial weights matrices considered. However, this was of a low level, with estimated correlations below 0.1. This is accordant with some previous studies that considered area-level measures to define spatial matrices [START_REF] Laraia | Spatial pattern of body mass index among adults in the diabetes study of Northern California (DISTANCE)[END_REF][START_REF] Han | Spatial association of public sports facilities with body mass index in Korea[END_REF][START_REF] Paquet | Geographic clustering of cardiometabolic risk factors in metropolitan centres in France and Australia[END_REF] but in contrast to others that demonstrate spatial randomness or spatial dispersion [START_REF] Penney | A spatial analysis of community level overweight and obesity[END_REF][START_REF] Schuurman | Are obesity and physical activity clustered? A spatial analysis linked to residential density[END_REF]. Only the inverse-distance-squared weight matrix provided no statistical evidence of spatial autocorrelation in BMI in Adelaide. Generally, there was no evidence of spatial autocorrelation in BMI in Melbourne, where estimated spatial autocorrelation was consistently lower than in Adelaide for all spatial matrices considered. However, our results do show differences in the magnitude of spatial autocorrelation depending on the choice of spatial weights matrix, with positive correlations in BMI ranging from 0.008 to 0.040 in Melbourne and 0.021 to 0.059 in Adelaide. This highlights the importance of the choice of spatial weights matrix in the analysis.

Estimated spatial autocorrelation in BMI was found to be lower using the inversedistance weights than the bandwidth weights. The use of the inverse-distance weight is appealing as it does not enforce an arbitrary threshold on distances when defining neighbours. However, by not imposing any distance limits, the inverse-distance matrix considers weighting between pairs even if they reside very far from one another. In this approach, two participants residing 50-km and 51-km from participant i would have different weights, even though arguably these participants reside too far for either to have an impact on participant i. Therefore, perhaps the inverse-distance weights become meaningless beyond certain distances. Interestingly, the estimated spatial autocorrelations in BMI from sensitivity analysis using combined inverse-distance and threshold weights were more comparable to those of the bandwidth only approach than the inverse-distance only approach.

Comparison of adjusted OLS and spatial regression models examining BMI by neighbourhood type showed little difference in findings when accounting for spatial autocorrelation using any of the spatial weights matrix definitions. After adjustment for potential confounders in the OLS models, there was no evidence of residual spatial autocorrelation in either city. This suggests the spatial autocorrelation in BMI observed in Adelaide may be due to the shared environment or characteristics of the neighbours.

Of course, these findings are study-and context-specific, and our results in no way negate a need to appropriately consider spatial relationships in research in this area. Our results provide some indication that mean BMI was higher in non-20MNs than 20MNs, with the estimated mean difference higher in Adelaide than Melbourne. All observed differences were subsequently attenuated, however, after adjustment for confounders. This was so even for Adelaide, where CIs included the null, though with minimal overlap. Importantly, as our samples were older and more highly educated than the general population of Greater Melbourne and Greater Adelaide, our findings may not be generalisable as representative of the broader population. No other studies have examined the effect of having a 20MN on BMI. However, studies examining composite neighbourhood environment measures have yielded mixed findings. In Australia, [START_REF] Tseng | Is neighbourhood obesogenicity associated with body mass index in women? Application of an obesogenicity index in socioeconomically disadvantaged neighbourhoods[END_REF] did not find meaningful correlations in the relationship between an index of neighbourhood access to food resources, PA facilities and transport and BMI among women living in socioeconomically disadvantaged areas. In the UK, [START_REF] Hobbs | Neighbourhood typologies and associations with body mass index and obesity: A cross-sectional study[END_REF] found that a combination of access to both food and PA environmental facilities may be important for BMI and that the richness of environmental attributes is not necessarily linearly associated with BMI. Future research on liveable environments, considering multiple measures of neighbourhood attributes, is required to understand built environment relationships with BMI.

Choosing a spatial weights matrix is challenging but critical for spatial analysis as it proposes the spatial dependence structure imposed and can affect both the spatial autocorrelation test and the estimates of spatial regression models [START_REF] Anselin | Under the hood Issues in the specification and interpretation of spatial regression models[END_REF][START_REF] Fingleton | Externalities, economic geography, and spatial econometrics: conceptual and modeling developments[END_REF]. In research conducted elsewhere examining the ability to estimate area-level relative risk of birth defects in Australia, the researchers found that models incorporating distance-based spatial weights matrices performed better than adjacency-based weights [START_REF] Earnest | Evaluating the effect of neighbourhood weight matrices on smoothing properties of Conditional Autoregressive (CAR) models[END_REF]. One reason Earnest et al. citied for this is that adjacency matrices are likely to perform better with more regular shaped areas than obtained when dealing with administrative data and they argue the need for careful consideration of appropriate spatial matrices. In addition to the methods used in the present study, a spatial weight matrix could be chosen through an exploratory analysis to assess the degree of spatial autocorrelation [START_REF] Earnest | Evaluating the effect of neighbourhood weight matrices on smoothing properties of Conditional Autoregressive (CAR) models[END_REF]. One approach to reduce the arbitrariness of the choice is to select from a set of predefined matrices by criterion, such as comparison of values of Moran's I, AIC or model boosting method [START_REF] Kostov | Model boosting for spatial weighting matrix selection in spatial lag models[END_REF].

Our use of the 3-km bandwidth is appealing as it is linked to the distance deemed important for our 20MN exposure definition. However, this approach places an arbitrary threshold on the definition of 'neighbours' through this dichotomisation (e.g., participants located within 2.99-km of one another are classified as neighbours while those 3.01-km apart are not). Defining participants as neighbours (an entry of 1 in the matrix) or not (0) using the 3-km bandwidth is analogous to the common approach used when considering administrative boundaries where areas (e.g., postal areas or ZIP codes) are defined as neighbourhoods if they share a common boundary. Although attractive due to simplicity, the common approach using administrative boundaries does not allow for vastly varying sizes typical of administrative units. For example, in Australia inner city administrative units are much smaller than those in regional or rural areas. This means the distance between participants deemed 'neighbours' in remote areas can be much greater than the distances considered between neighbours in more urban areas.

While understandable as administrative units are created based on the number of households and population density, the implications of this are that within the same study, the distance used to represent neighbours can vary extensively.

The use of distance-based spatial weights in built environment and health research avoids this issue. The inverse-distance spatial matrix, or variations of this matrix (e.g., inverse-distance-squared), allows the relative distance between all participants to be considered, avoiding the specification of arbitrary boundaries and administrative neighbouring areas of varying size, whether distance-based (e.g., the 3-km bandwidth)

or not (e.g., defining administrative areas as neighbours if they share common boundaries). However, it should be noted that the inverse-distance spatial matrix is typically calculated based on Euclidean distances. Although Euclidean distances often work well in the context of highly urbanised areas where the underlying level of connectivity is high [START_REF] Thornton | Does the choice of neighbourhood supermarket access measure influence associations with individual-level fruit and vegetable consumption? A case study from Glasgow[END_REF], this means that barriers (e.g., highways or bodies of water) between participants are not accounted for when defining neighbours.

This has important implications when considering built environment and health research where increasingly exposure measures, such as access to retail or public open space, are defined based on pedestrian street network distances. Therefore, to better reflect neighbours in this context, spatial matrices should also be based on a network distance measure, as considered in this study, to represent the walking or driving distance between study participants as this may better reflect accessibility between participants. Our findings show that the magnitude of spatial autocorrelation can differ when using Euclidean or network distances, although our inference regarding the relationship between 20MNs and BMI was not affected by which type of distance was used.

Importantly, it should be noted that our study was able to consider distances based on participant location as our sample sizes were modest at less than 700 in each sample.

Larger studies may encounter difficulties in fitting spatial models considering between participant distances. In Stata, for example, the maximum possible matrix size is currently 11,000. Therefore, large studies could either incorporate weighted averages of the response as model covariates as shown in spatial modelling elsewhere [START_REF] Lee | Bayesian quantile regression for count data with application to environmental epidemiology[END_REF] or define neighbours based on areal units.

Strengths of our study include our approach to create spatial matrices considering the precise spatial location of participants through geocoded home addresses. This enabled greater specification of spatial relationships than the use of arbitrary boundaries. While research in this area is often hampered by a lack of access to sensitive spatial location data, particularly if using secondary data sources to examine neighbourhood effects on health, our project greatly reduced the risk of participant identification by analysts by separately creating spatial matrices before merging only the spatial matrices, not the address data, to anonymised participant characteristic data. This demonstrates the possibility of spatial matrices being created externally without the need to release participant data with geocoded addresses. This is an approach that may be considered by other researchers wishing to take spatial relationships into account who are unable to access participant locations. It may be possible for data custodians to create these matrices using open-source software to be linked to participant characteristic data without the geocoded locations.

Although we considered a number of different spatial matrices in this analysis, future research could consider other types of spatial matrix, including different distance decay functions or exploring different thresholds in a mixed approach combining distance decay with different distance cut-points. Our choice of a 3-km cut-point was based on accessible distances related to the 20MN definition. However, across different contexts, there will be questions about what this threshold distance should be. The choice of the spatial matrices used in the primary analysis for this study was based on common matrix types likely to be adopted by behavioural researchers in neighbourhoods and health wishing to undertake spatial analysis and is by no means exhaustive. However, our findings suggest that spatial autocorrelation values are relatively low and have minimal impact on modelling findings.

29

The lack of consideration of spatial models in most studies of the environment and BMI could be attributable to several reasons. Researchers may be unfamiliar with these approaches, or the diverse and complex nature of spatial models may be off-putting.

However, the analysis conducted in this study was undertaken using open source statistical and geographical tools, demonstrating that these methods are becoming more accessible to researchers. Although the findings from ProjectPLAN suggest little need for spatial regression models when examining differences in BMI by neighbourhood type after adjustment for individual characteristics, it is important to acknowledge that these findings are context specific. Therefore, future studies of the built environment on BMI, or other health outcomes, should take care to examine and appropriately account for spatial autocorrelation. It is assumed that 1.5-km is the distance an adult can walk in 20 minutes, so participant pairs whose distances were less than 3-km may share the same facility. OLS adjusted and all spatial weights models presented adjusted for neighbourhood SES, gender, age, education, ability to manage on income and survey type.

TABLES

  study used data from the cross-sectional Places and Locations for Activity and Nutrition study (ProjectPLAN) which aimed to investigate the benefits of living in a 20MN on PA and dietary behaviors in two Australian cities, Melbourne, Victoria and Adelaide, South Australia. Melbourne is the capital city of the state of Victoria located in the south-east edge of Australia; Greater Melbourne covers an area of 9992.5km 2 and has a population of almost 5 million (City of Melbourne, Last accessed June 2022; Australian Bureau of Statistics, Last accessed June 2022). Adelaide is the capital city of the state of South Australia located in the southern central part of Australia; Greater Adelaide covers an area of 3259.8km 2 (Australian Bureau of Statistics, Last accessed June 2022) with a population of approximately 1.3 million (Australian Bureau of Statistics, Last accessed July 2022a). Cities were considered separately in the analysis as the driving distance from the centre of Melbourne to the centre of Adelaide is over 700km. Data collection took place from October 2018 to May 2019. The study was approved by the Deakin University Human Research Ethics Committee (HEAG-H 168_2017).
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Table 1 .

 1 Number of eligible addresses by city and neighbourhood type.

	Melbourne	Number	Total	Total	Total	Number of
		of eligible	number	number of	number of	consenting
		addresses	of	reminder	letters sent	participants
			mailed	letters	to unique	(% response**)
			letters*	issued	address	
					points**	
	20MN Low	4365	7973	3860		112 (2.7%)
	SES					
	20MN High	61187	4039	500		204 (5.8%)
	SES					
	Non-20MN	30064	9786	0		239 (2.4%)
	Low SES					
	Non-20MN	24653	4292	500		227 (6.0%)
	High SES					
	Overall	120269	26090	4860		782 (3.7%)
	Adelaide					
	20MN Low	4537	5701	1600		147 (3.6%)
	SES					
	20MN High	24799	4200	0		290 (6.9%)
	SES					
	Non-20MN	18118	7606	0		216 (2.8%)
	Low SES					
	Non-20MN	32333	2403	0		177 (7.4%)
	High SES					
	Overall	79787	19910	1600		830 (4.5%)

*Including reminder letters. **From total number of mailed letters subtracting the number of reminder letters.

Table 2 .

 2 Descriptive characteristics of ProjectPLAN participants by city.

		Melbourne	Adelaide	Overall
		(N=637)	(N=692)	(N=1329)
	Neighbourhood Status			
	20MN	254 (39.9%)	367 (53.0%)	621 (46.7%)
	non-20MN	383 (60.1%)	325 (47.0%)	708 (53.3%)
	Neighbourhood SES			
	High	367 (57.6%)	401 (57.9%)	768 (57.8%)
	Low	270 (42.4%)	291 (42.1%)	561 (42.2%)
	Gender			
	Female	365 (57.3%)	404 (58.4%)	769 (57.9%)
	Male	272 (42.7%)	288 (41.6%)	560 (42.1%)
	Education			
	Less than university education	252 (39.6%)	371 (53.6%)	623 (46.9%)
	University education	385 (60.4%)	321 (46.4%)	706 (53.1%)
	Ability to manage on income			
	Comfortable/Very Comfortable	416 (65.3%)	462 (66.8%)	878 (66.1%)
	Just getting by	160 (25.1%)	162 (23.4%)	322 (24.2%)
	Very difficult/Difficult	61 (9.6%)	68 (9.8%)	129 (9.7%)
	Age (years)			
	Mean (SD)	50.6 (16.4)	57.3 (15.7)	54.1 (16.4)
	Survey Type			
	Food	287 (45.1%)	351 (50.7%)	638 (48.0%)
	Physical Activity	350 (54.9%)	341 (49.3%)	691 (52.0%)
	BMI (kg/m 2 )			
	Mean (SD)	25.4 (4.4)	26.8 (5.0)	26.2 (4.8)

Table 3 .

 3 Moran's I test of spatial autocorrelation in BMI and the OLS model residuals.

	Melbourne	Adelaide
	(N = 637)	(N =692)

*Models adjusted for neighbourhood SES, gender, age, education, ability to manage on income and survey type.
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distances.

Comparison of regression models

The difference in mean BMI between residents of 20MN and non-20MN and the corresponding CIs for each model are shown in Figure 2. The results show that adjustment for covariates affected the estimated differences, indicating potential bias in the unadjusted estimates due to confounding. The estimated mean difference in BMI was positive for all models, indicating a higher mean BMI in people living in non-20MNs than 20MNs. However, after adjustment for potential confounders, differences in mean BMI attenuated in both Melbourne (0.22kg/m 2 , 95% CI=-0.48-0.93; Model 2 Supplementary Table S5) and Adelaide (0.71kg/m 2 , 95% CI=-0.04-1.45; Model 2 Supplementary Table S6).

Moran's I values for the residuals of the unadjusted models were smaller than those observed for BMI in all the samples (Table 3). There was no residual spatial autocorrelation in Melbourne after adjusting for living in 20MN (unadjusted OLS model). Findings for Adelaide were mixed and dependent on the spatial matrix considered. There was strong evidence of residual spatial autocorrelation in Adelaide for all but one (the inverse-distance-squared) Euclidean distance spatial matrices.

However, there was only evidence of positive residual spatial autocorrelation for the 3km bandwidth matrix when considering the network distance. After accounting for
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