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Highlights 

▪ Heat-related mortality was assessed on relative and absolute scales using a large set of 

heat waves definitions. 

▪ Associations between heat waves and mortality differed greatly depending on the 

definition. 

▪ According to the French heatwave warning system indicator, 129 heat-related deaths 

per summer were estimated. 

▪ Excess heat factor was the most impactful definition for the temperate oceanic and 

Mediterranean climate types.
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Abstract 

Introduction: In France, a heat warning system (HWS) has been implemented almost two 

decades ago and rely on some official heat wave (HW) definitions. However, no study has 

compared the burden associated with a large set of alternative HW definitions to the official 

definitions. Such comparison could be particularly helpful to identify HW conditions for which 

effective HWS would minimize the health burden across various geographical contexts and 

possibly update thresholds to trigger HWS. The aim of this study is to identify (and rank) 

definitions that drive the highest health burden in terms of mortality to inform future HWS 

across multiple cities in France. 

Methods: Based on weather data for 16 French cities, we compared the two official definitions 

used in France to: i) the Excess Heat Factor (EHF) used in Australia, and ii) 18 alternative 

hypothetical HW definitions based on various combinations of temperature metrics, intensity, 

and duration. Propensity score matching and Poisson regressions were used to estimate the 

effect of each HW exposure on non-accidental mortality for the May-September period from 

2000 to 2015. 

Results: The associations between HW and mortality differed greatly depending on the 

definition. The greatest burden of heat was 1,055 (95% confidence interval "CI": [856; 1,302]) 

deaths per summer and was obtained with the EHF. The EHF identified HW with 2.46 (95% 

CI: [1.92; 3.58]) or 8.18 (95% CI: [6.63; 10.61]) times the global burden at the national level 

obtained with the climatological indicator of the French national weather service and the HW 

indicator of the French national HWS, respectively and was the most impactful definition 

pattern for both temperate oceanic and Mediterranean climate types. 
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Conclusion: Identifying the set of extreme heat conditions that drive the highest health burden 

in a given geographical context is particularly helpful when designing or updating heat early 

warning systems. 

Keywords: climate change; heat waves; temperature; mortality; heat warning system; 

evidence-based decision making. 
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1. Introduction 

Climate change has been repeatedly identified as a major issue for public health for 

contemporary and future generations (Watts et al., 2018). The most emblematic consequence 

of climate change is the increase in the average temperature of the globe (Pascal, 2021; Pascal 

et al., 2019). Between 1959 and 2015, on a ten-year rolling average, France has seen the annual 

number of heat wave (HW) days, identified by the climatological indicator of Météo-France 

(French national weather service), increasing from one to five (Soubeyroux et al., 2016). In a 

scenario of no regulation of greenhouse gas emissions, the average temperature in France could 

rise sharply until the end of the century (Soubeyroux et al., 2020). Increased mortality is the 

most extreme of a wide range health impacts associated to extreme temperatures. These impacts 

are considered preventable with the implementation of individual and structural measures, 

intended to reduce heat exposure (McElroy et al., 2020; Pascal, 2021; Vicedo-Cabrera et al., 

2018). 

HWs can considerably increase mortality, as observed during the historical HW of summer 

2003 in Europe (Le Tertre et al., 2006). However, there is no universally accepted definition 

for HWs (Perkins and Alexander, 2013; Robinson, 2001). The general definition remains very 

broad, describing a period of unusually hot and dry or hot and humid weather, lasting at least 

two to three days, and having a discernible impact on health, quality of life, and infrastructure 

(McGregor and Menne, 2015). Most of several approaches found in the epidemiological 

literature defining HWs use a combination of temperature intensity and duration criteria (e.g. 

temperature above a historical temperature percentile, or an absolute value, generally for at least 

two to six days) (Hansen Alana et al., 2008; Nitschke et al., 2007; Robinson, 2001; Tong et al., 

2010). HW indicators can be based on one or more temperature parameters (maximum, average 

or minimum temperature) on average values over several days. Temperature percentiles can be 
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calculated on the temperature distribution of the month, the summer, or the year. Finally, some 

indicators combine several criteria and several temperature parameters (Chen et al., 2015; 

D’Ippoliti et al., 2010; Pascal et al., 2019; Perkins, 2015). 

A small change in the definition of HW has a significant effect on the estimated health impact 

(Pascal, 2021; Tong et al., 2010). On the one hand, a greater number of identified HW days 

leads to more important associated excess number of deaths (Anderson and Bell, 2011; Corso 

et al., 2017; Pascal et al., 2019; Gasparrini et al., 2015b). On the other hand, some HW 

definitions have shown similar attributable mortalities despite differences in the number of HW 

days identified (McElroy et al., 2020). Previous work reported that both the attributable burden 

and the relative risk of HW mortality are important to report and may not consistently coincide 

(Benmarhnia et al., 2014; McElroy et al., 2020; Nori-Sarma et al., 2019). It is important to 

identify HWs definitions that are driving the highest health burden when designing or updating 

public health intervention strategies to prevent and mitigate the impact of HWs in order to 

maximize the potential benefits. Following the 2003 HW, the French authorities designed a HW 

warning system based essentially on one definition chosen for its ability to provide a 

compromise between an acceptable number of alerts and an acceptable number of false alerts 

(Antics et al., 2012; Laaidi and Pascal, 2004). Yet, no previous study has compared in France 

a large set of HWs definitions to identify HWs conditions that would minimize the health 

burden across various geographical contexts. 

Our hypothesis is that the absolute risk of mortality is a relevant measure for defining the set of 

criteria for activating HW warning systems. The aim of this study is to identify (and rank) 

definitions that drive the highest health burden in terms of mortality to inform future early 

warning systems across multiple cities in France. Specifically, we conducted an 

epidemiological study based on the data from 16 French cities, and after identifying HW days 
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according to 21 definitions, we estimated the relative risk of mortality and mortality attributable 

to HW defined by each of these 21 definitions. 

2. Materials and methods 

2.1.  Study period and areas 

The study covered the period from 2000 to 2015. This period includes a phase when no heat 

prevention was available in France (2000-2003), and a phase when the national HW prevention 

plan was implemented (2004-2015). 

Sixteen cities in metropolitan France were selected: Bordeaux, Clermont-Ferrand, Dijon, Le 

Havre, Lille, Lyon, Marseille, Montpellier, Nancy, Nantes, Nice, Paris, Rennes, Rouen, 

Strasbourg, and Toulouse. These cities are representative of the diversity of climates (namely 

the oceanic, the temperate-oceanic, the semi-continental and the Mediterranean climate) and of 

urban environments in France (Figure 1). 

 

Figure 1. Cities included in the study and their climate. 
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2.2.  Data 

2.2.1. Weather data 

For all 16 cities, the French national weather service (Météo-France) provided the daily 

observed temperature data (maximum, mean and minimum) in degree Celsius (°C), 

precipitation height (in millimeter, mm), average wind speed (in meter per second, m/s) and 

average relative humidity (in percent, %) from one reference meteorological station per city 

(see list of stations in Table S1). 

2.2.2. Mortality data 

In each city, daily deaths for the entire population and for non-accidental causes (ICD10: A00-

R99) were provided by the Center for Epidemiology on medical Causes of Death (CépiDC) of 

the National Institute of Health and Medical Research (Inserm) for the period 2000-2015. 

2.3.  Heat waves definitions 

We used a total of 21 definitions of HWs. Three of them are officially used in France and 

Australia and the others were developed. The Australian indicator was included for its potential 

for international applicability (Nairn and Fawcett, 2015). 

The step of identification of HW episodes was focused on the days in the periods going from 

May to September. HWs were identified in each city using each definition. A binary variable 

was determined for each day, having value 1 for HW days identified according to a specific 

definition and 0 otherwise. For each indicator, at the national level (all cities combined), the 

HW days over the entire period 2000-2015 were cumulated without considering whether they 

were HWs in other cities. For example, a HW day in one city and in two other cities was counted 

three times.  
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2.3.1. Heat wave indicator of the French national heatwave warning system 

We retrospectively applied the official SACS (Système d’Alerte Canicule et Santé) definition, 

which is based on comparing minimum and maximum biometeorological indicators (in the 

following, IBM, in reference to the corresponding expression in French) to the defined alert 

thresholds. The IBM are the three-days rolling average of minimum (IBM min) and maximum 

(IBM max) temperatures provided by a reference weather station representative of the city's 

climate (Laaidi and Pascal, 2004; Pascal et al., 2013): 

A HW is identified by a period when the IBM min and IBM max simultaneously reached or 

exceeded the alert thresholds for at least three consecutive days. The minimum duration of a 

HW for a given city is thus, by definition, three nights and three consecutive days. The 

thresholds correspond to the 99.5th percentile of the rolling average temperature distribution for 

the months of June to August from 1973 to 2002 (Laaidi et al., 2005; Laaidi and Pascal, 2004; 

Pascal et al., 2013; Ung et al., 2019). The thresholds (in °C) used in this study are those used in 

2005 (see Table S2), defined at the departmental level (Laaidi et al., 2005) and used according 

to the department in which each city is located. 

2.3.2. Climatological indicator of the French national weather service (Météo-France) 

A HW has been defined as a period of at least three consecutive days with the daily mean 

temperature above the initial threshold (97.5th percentile of the temperature distribution), with 

at least one day with the daily mean temperature exceeding the peak heat threshold (99.5th 

percentile) (Soubeyroux et al., 2016). The HW is terminated if the mean temperature falls below 

the 95th percentile (interruption threshold) for even a single day. The thresholds are defined at 

the departmental level. The percentiles used to define these thresholds in our study are those 

from the work of Pascal et al. (Pascal et al., 2019) and calculated over the entire year and the 

period 1981-2010 (Table S2). 
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2.3.3. The Excess Heat Factor (Australian Bureau of Meteorology) 

The Excess Heat Factor (EHF) is comprised into a "historical" indicator (EHIsig) defining a 

significant deviation from a historical threshold (95th percentile of the mean temperature 

distribution over the last 30 years), and an "acclimation" indicator (EHIaccl), providing a 

deviation from the temperature of the previous 30 days (Nairn and Fawcett, 2015). Both 

deviations are calculated from the three-days moving average of daily mean temperatures. 

The 95th percentiles are calculated at the departmental level on the daily mean temperatures, 

full year, over the period 1981-2010 (Pascal et al., 2019) (Table S2). The overall indicator 

(EHF) is calculated as the product of these two indicators: 

𝐸𝐻𝐹 = 𝑚𝑎𝑥(0,  𝐸𝐻𝐼𝑠𝑖𝑔) ∗ 𝑚𝑎𝑥(1,  𝐸𝐻𝐼𝑎𝑐𝑐𝑙) 

There is a HW if EHF is strictly greater than zero. In other words, a HW is identified if the 

three-days moving average of daily mean temperatures is both strictly above, first, the historical 

normal temperature (defined as the 95th percentile of the distribution of daily mean temperatures 

during the whole year and over the period 1981-2010), and second, the average value over the 

previous 30 days of daily mean temperatures. 

2.3.4. Alternative definitions of heat waves 

To assess heat-related health impacts more broadly, we used 18 alternative definitions based on 

both heat intensity and duration. These definitions are based on values of a temperature 

parameter compared to defined thresholds. The temperature parameters were the maximum, the 

mean, and the minimum temperature used separately. The thresholds were the 95th, 97.5th, and 

99th percentiles of the whole-year temperature distribution over the period 2000-2015. 
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The definition of HWs was a period where the values of the temperature parameter (maximum 

temperature taken as an example in Table 1) reach or exceed the corresponding thresholds 

during at least two or three consecutive days. 

Table 1. Alternative definitions of heat waves based on the maximum daily temperature. 

Heat waves indicators Maximum temperature Duration (days) 

hw_max_95_2d* ≥ 95th percentile ≥ 2 

hw_max_95_3d ≥ 95th percentile ≥ 3 

hw_max_975_2d ≥ 97.5th percentile ≥ 2 

hw_max_975_3d ≥ 97.5th percentile ≥ 3 

hw_max_99_2d ≥ 99th percentile ≥ 2 

hw_max_99_3d ≥ 99th percentile ≥ 3 

* hw_max_95_2d defines a heat wave of at least two consecutive days where the maximum 

temperature is above the 95th percentile of the maximum temperature. 

2.4. Statistical analysis 

2.4.1. Propensity score matching and Poisson regressions (main analysis) 

Propensity score (PS) methods have recently been used in a wide range of epidemiological 

studies (their usage increased from 294 publications in the years 1998–2002 to 1,111 in 2003–

2007 and 3,539 in 2008–2012) (Littnerova et al., 2013) to reduce confounding effects (Austin, 

2011) and the impact of treatment-selection bias in the estimation of causal treatment effects 

(Austin, 2009). PS matching is frequently used in medical literature (Austin, 2008; Gayat et al., 

2010; Weitzen et al., 2004) and particularly in environmental epidemiology (McElroy et al., 

2020; Nori-Sarma et al., 2019), and it creates a balanced dataset, allowing separation of study 

design from study analysis and a simple and direct comparison of baseline covariates between 

treated and untreated units of analysis (Austin, 2011). 
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To analyze the impacts of HWs on mortality for each city, we used a PS matching approach 

(Austin, 2011; Rosenbaum and Rubin, 1983) for all definitions and then we proceeded to model 

the effect of different type of HWs on mortality observed the day the HW occurred and one day 

after. The PS is defined as the probability for each observed day to experience a HW, according 

to different types of HW definitions. PSs were generated using logistic regression via a 

Generalized Additive Model (GAM), in which an indicator variable for HW was used as the 

dependent variable and a list of identified meteorological and calendar confounders was used 

as predictors. 

The probability of each day to experience a HW (P[HW = 1]) was then estimated as a function 

of the following covariates: a smooth function of the precipitation height (PH), a smooth 

function of the average wind speed (WS), a smooth function of the relative humidity (RH), and 

categorical variables for day of week (DOW), vacations (V), bank holidays (BH), month and 

year. We also considered a smooth function of the lag variables ranging from one to three days 

for the variables PH, WS, RH. For the smooth terms, we used thin plate regression type basic 

spline functions with three knots (k): s(covariate, bs = “tp”, k = 3). In practice, k-1 (or k) sets 

the upper limit on the degrees of freedom (df) associated with a smooth term (one df is usually 

lost to the identifiability constraint on the smooth) (Wood, 2017). 

The following model was then replicated for each city and for each of the 21 HW definitions:  

𝑙𝑜𝑔𝑖𝑡 𝑃 [𝐻𝑊 = 1 | 𝑋]

=  𝛽0 + 𝛽1𝐷𝑂𝑊 + 𝛽2𝐵𝐻 +  𝛽3𝑉 + 𝛽4𝑚𝑜𝑛𝑡ℎ +  𝛽5𝑦𝑒𝑎𝑟 + 𝑠(𝑃𝐻) +  𝑠(𝑊𝑆)

+  𝑠(𝑅𝐻) +  ∑[𝑠(𝑙𝑎𝑔𝑖𝑃𝐻) +  𝑠(𝑙𝑎𝑔𝑖𝑊𝑆) +  𝑠(𝑙𝑎𝑔𝑖𝑅𝐻)]

3

𝑖=1

 

For each definition, a one-to-one matching based on the value of the PS was performed (within-

city matching). This method allows to compare days identified as HW by a given definition 
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with very similar non-HW days according to what is predicted by the set of covariates included 

in the PS calculation. The matching was performed in R using the Match() function in the 

Matching package (Sekhon, 2011) by specifying that every case (HW day) has be matched to 

a control (non-HW day) having the closest PS value and within the same year. The matching 

was done with replacement and by randomly breaking ties. The capacity of the matching 

procedure to properly match similar days was graphically evaluated through love plots, which 

show the absolute standardized mean difference between the two groups (HW days and non-

HW days) for covariates before and after matching (Greifer, 2021). The threshold of 0.1 in 

absolute standardized mean differences was used to objectively assess the balance of covariates 

between the two groups before and after matching, with values lower than 0.1 suggesting better 

balance (Austin and Stuart, 2015). 

The panel of matched observations was analyzed through a Poisson regression model separately 

for each city. General linear models with a Poisson distribution and a log link function were 

run in R using the pglm() function in the package of the same name (Croissant, 2020) to assess 

the relationship between HWs identified according to the different definitions and, first, non-

accidental deaths observed the same day (d) for all definitions, and second, non-accidental 

deaths observed the following day (d+1). The following model was estimated for each city and 

for each HW definition: 

𝑦𝑖,𝑡 ~ 𝑃(𝜆𝑡,𝑖) 

𝑙𝑜𝑔(𝜆𝑡,𝑖) =  𝛽𝐻𝑊𝑡,𝑖 +  𝜀𝑡,𝑖 

In this model, the daily mortality y for day t in the matched cluster i was assumed to follow a 

Poisson distribution having the parameter λ as mean and variance. HW represents a binary 

variable indicating whether the days were HW or not.  
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2.4.2. Generalized additive model (sensitivity analysis) 

In sensitivity analysis, a multivariable GAM using a Poisson distribution was constructed, with 

daily mortality as the dependent variable. This model is not estimated based on the PS matched 

sample but based on the whole sample of days in the May-September period of 2000-2015. The 

explanatory variables were a smooth function of PH, a smooth function of WS, a smooth 

function of RH, and categorical variables for day of week (DOW), vacations (V), bank holidays 

(BH), month, year and a binary variable indicating whether the days were HW or not (HW). We 

also included a smooth function of the lag variables ranging from one to three days for the 

variables PH, WS, RH. We used thin plate regression type basic spline functions for the smooth 

terms with three knots (k): s(covariate, bs = “tp”, k = 3). 

In environmental epidemiology, many time-series studies adjust for seasonality and long-term 

time-trend by adding a single time variable (Bell et al., 2004; Dominici et al., 2000) or a set of 

variables representing time (such as variable of calendar time of the year called day of the year 

or day of the season "DOS", and an indicator of year or equivalent) (Gasparrini et al., 2015a; 

Guo et al., 2017) into regression models. Natural cubic splines (ns) with some df per year are 

frequently used (Bhaskaran et al., 2013; Kim et al., 2021). In mortality studies, 3–8 df per year 

for the single time variable (corresponding to 3–8 df at the year-scale for the DOS variable) and 

one df per ten years for the variable of year are often used (Gasparrini et al., 2015a; Guo et al., 

2017; Peng et al., 2006; Perrakis et al., 2014; Schwartz et al., 2003), but depending on whether 

other variables explain seasonality to some extent are included in models, the optimal df may 

decrease (e.g., influenza epidemic, heat wave) (Schwartz et al., 2003). Based on this previous 

work and the restriction to 5-month seasons in our study (allowing 1–3 df in a 5-month scale 

for the DOS variable), we introduced a combination of two temporal indicators (described 

below) using ns functions with two df for each of the two temporal indicators (non-integer df 

were rounded to the nearest integer): ns(covariate, df = 2). The first indicator, to control for 
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seasonality, is the variable for the DOS, going from one at the first of May of every year and 

until 153 for 30th of September. The second indicator, to control for long-term trends, is the 

variable for the year (YEAR), going from one in 2000 to 16 in 2015. Sensitivity analyses were 

carried out to explore the variability of estimate of interest by varying the df (1 and 3) in the 

models for each of the 21 definitions. 

The corresponding model was: 

𝑦𝑡 ~ 𝑃(𝜆𝑡) 

𝑙𝑜𝑔(𝜆𝑡) =  𝛽0 + 𝛽1𝐻𝑊 + 𝛽2𝐷𝑂𝑊 +  𝛽3𝐵𝐻 +  𝛽4𝑉 + 𝛽5𝑚𝑜𝑛𝑡ℎ +  𝛽6𝑦𝑒𝑎𝑟 + 𝑠(𝑃𝐻)

+  𝑠(𝑊𝑆) +  𝑠(𝑅𝐻) + 𝑛𝑠(𝐷𝑂𝑆) + 𝑛𝑠(𝑌𝐸𝐴𝑅)

+  ∑[𝑠(𝑙𝑎𝑔𝑖𝑃𝐻) +  𝑠(𝑙𝑎𝑔𝑖𝑊𝑆) +  𝑠(𝑙𝑎𝑔𝑖𝑅𝐻)]

3

𝑖=1

 + 𝜀𝑡 

In this model, the daily mortality y for day t was assumed to follow a Poisson distribution having 

the parameter λ as mean and variance. The model was then replicated for each city and for each 

of the 21 HW definitions. 

2.4.3. Estimation of the relative risk and mortality attributable to heat wave 

The relative risks (RRs) of nonaccidental mortality during HW days versus non-HW days were 

obtained through the exponential of the coefficient β associated to the HW variable. The added 

effects of HWs on mortality on the days following the HW days (d+1) were also estimated by 

the same operation. 

To estimate pooled RRs at the national level, a random-effects meta-analysis was performed to 

pool the findings of the different cities (Viechtbauer, 2010). We assessed residual heterogeneity 

in the meta-analytic model by examining the results of the Cochran Q test and the I2 statistic. 
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At each city level, we estimated for all definitions the absolute number of deaths related to the 

HW days that they identified. First, when there was at least one HW day identified by a given 

definition in a city and the associated RR of mortality was greater than 1, the heat-attributable 

fraction (HAF) was calculated for this city and HW indicator using the formula: 

HAF = (RR-1)/RR 

Then, the number of deaths attributable to each definition for each city is obtained by 

multiplying the HAF by the mean daily deaths count over the May-September period of 2000-

2015 and the total number of days identified by the definition as HW in the same period 

(Benmarhnia et al., 2014; McElroy et al., 2020; Vaidyanathan et al., 2019). 

At the national level and over the entire May-September period from 2000 to 2015, for each 

definition, the mortality burden on day d was obtained by summing the attributable mortalities 

of the 16 cities. The same operation was performed to obtain the mortality on day d+1 and the 

overall impact in terms of mortality (on both days d and d+1) was obtained by summing the 

mortality attributable to the HWs on days d and d+1. We then divided the total number of 

attributable deaths for the period 2000–2015 by 16 to obtain an average attributable number of 

deaths per ''summer'' (May-September period). The number of attributable deaths per summer 

obtained with each HW definition was determined relative to that obtained with the SACS, 

Météo-France, and EHF definitions in terms of ratios and absolute differences. We calculated 

non-parametric bootstrap confidence intervals (CIs) for each point estimate using 1,000 

samples with replacement and computing the 2.5th and 97.5th percentiles (Carpenter and Bithell, 

2000). 

The descriptive and statistical analysis of the data were performed using R software (version 

4.2.0) (R Core Team, 2022). 
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3. Results 

3.1.  Descriptive statistics 

Over the period 2000-2015, from May to September, a total of 606,503 deaths due to non-

accidental causes were recorded for all cities, with an average of 16 (standard deviation "SD": 

23.4) deaths per day. Between cities, daily non-accidental mortality data showed high 

variability with values ranging from 3.6 (SD: 1.8) to 99.8 (SD: 24.3) average daily deaths 

(Rennes and Paris respectively) (Table S3). 

Maximum, mean, and minimum temperature density curves over all months of the 2000-2015 

period are provided for all cities in the supplementary materials (Figure S1). The number of 

cumulative HW days identified by the indicators ranged on average from 6.6 (SD: 6.0) to 504.8 

(SD: 340.7) per summer (all cities combined), obtained with the HW indicator SACS and the 

EHF respectively. The SACS definition and the indicators hw_min_99_2d, hw_min_99_3d, 

hw_mean_99_2d, hw_mean_99_3d, hw_max_99_2d and hw_max_99_3d had identified on 

average less than 30 HW days per summer (all cities combined) (Table S4). 

Considering each city, the SACS indicator (a combination of rolling average of maximum and 

minimum temperatures) was the most conservative (for example, it identified no HW days 

during the whole study period in cities like Le Havre and Montpellier), followed by the 

indicators hw_max_99_3d with eight days identified in Marseille and Nice and hw_min_99_3d 

with nine days identified in Lyon and 12 in Clermont-Ferrand. The EHF was the indicator that 

by far identified the higher number of days of HWs with for example 1,665 days in Nice and 

687 days in Clermont-Ferrand (results not shown).  
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3.2.  Balance diagnostics of the PS matching procedure 

The PS matching procedure correctly matched similar case and control days according to the 

different covariates, for all definitions and in all cities, except for the indicators hw_max_99_3d, 

SACS (correct matching only for Lyon), hw_min_99_3d (correct matching only for Nantes, 

Nancy, and Nice), hw_mean_99_3d (correct matching only for Nantes, Strasbourg, and 

Toulouse). 

Indeed, the difference between the medians and the distribution of the PSs of the two groups 

(HW days and non-HW days) is very marked before matching, and practically null after the 

matching and the PS distributions of the two groups are quasi-symmetric and comparable. 

While the absolute standardized mean difference between the two groups (HW days and non-

HW days) was important for some covariates in the unmatched sample, it was mainly below 

the threshold of 0.1 in the matched sample for most of the covariates (Figure S2). For definitions 

such as the SACS indicator, the distribution of the PS appeared identical before and after 

matching. The absolute standardized mean difference was important for several continuous 

covariates and close to zero for most of the binary variables globally in both unmatched and 

matched samples (Figure S3). 

3.3.  Relative risk of mortality 

At the national level, the impact of HW days on mortality on the same days compared to non-

HW days in terms of RR ranged from 1.08 (95% CI: [1.05; 1.11]) for EHF to 2.06 (95% CI: 

[1.72; 2.47]) for the SACS indicator. The RRs were significantly greater than 1 for all 

definitions. The added HWs effects on the next days were also significantly greater than 1 and 

ranged in terms of RR from 1.07 (95% CI: [1.04; 1.10]) for EHF to 1.90 (95% CI: [1.54; 2.35]) 

for the SACS indicator (Table 2). Residual intra-city heterogeneity was present and 

significantly important (the p-value of Q statistic was below 0.05 and I2 was above 50%). Some 
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degree of heterogeneity within the same climatological profiles was observed graphically, with 

some CIs of RRs that did not overlap (results not shown). 

At the national level, for all definitions, the point estimates of the RR of mortality obtained in 

the main analysis (Poisson model with matched data) were overall slightly higher than those 

obtained in the sensitivity analyses (multivariable GAM using 2 (Table S5) and 1 or 3 (Table 

S6) df per summer for the DOS natural spline functions) with, however, an overlap in their CIs. 

In the sensitivity analysis, using 2 df per summer for the DOS natural spline functions, the RR 

ranged from 1.06 (95% CI: [1.04; 1.08]) with EHF to 1.70 (95% CI: [1.43; 2.02]) with SACS 

indicator on HW days compared to non-HW days and from 1.05 (95% CI: [1.03; 1.07]) with 

EHF to 1.74 (95% CI: [1.48; 2.06]) with SACS indicator the days after HW (Table S5). 
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Table 2. Pooled relative risk of mortality associated with each definition and burden of mortality in national level in France (estimated over May-

September period of 2000-2015) during heat wave day and the day after heat wave. 

Definitions 
During heat wave day  During the day after heat wave 

RR 95% CI  Main AN 95% CI  RR 95% CI  Added AN 95% CI 

hw_EHF 1.08 [1.05; 1.11]  8,713 [6,998; 10,755]  1.07 [1.04; 1.10]  8,171 [6,375; 10,443] 

hw_MF 1.22 [1.12; 1.32]  3,848 [2,879; 4,464]  1.17 [1.08; 1.27]  3,022 [2,107; 3,621] 

hw_SACS 2.06 [1.72; 2.47]  1,090 [938; 1,170]  1.90 [1.54; 2.35]  973 [803; 1,059] 

hw_min_95_2d 1.10 [1.06; 1.13]  5,410 [3,714; 7,056]  1.10 [1.07; 1.14]  5,052 [3,526; 6,741] 

hw_min_95_3d 1.15 [1.10; 1.20]  4,287 [2,459; 5,538]  1.12 [1.08; 1.17]  3,654 [1,812; 4,980] 

hw_min_975_2d 1.18 [1.12; 1.26]  3,825 [2,323; 4,869]  1.16 [1.11; 1.21]  3,452 [1,742; 4,369] 

hw_min_975_3d 1.27 [1.18; 1.36]  2,798 [1,590; 3,578]  1.20 [1.09; 1.33]  2,487 [1,387; 3,284] 

hw_min_99_2d 1.27 [1.11; 1.45]  1,691 [1,181; 2,140]  1.23 [1.09; 1.39]  1,647 [1,122; 2,107] 

hw_min_99_3d 1.58 [1.32; 1.89]  1,313 [982; 1,485]  1.36 [1.11; 1.65]  1,166 [847; 1,342] 

hw_mean_95_2d 1.13 [1.10; 1.17]  6,671 [5,083; 8,489]  1.13 [1.10; 1.17]  6,503 [4,778; 8,315] 

hw_mean_95_3d 1.16 [1.13; 1.20]  5,244 [3,577; 6,581]  1.15 [1.09; 1.20]  4,844 [3,162; 6,177] 

hw_mean_975_2d 1.20 [1.14; 1.25]  4,110 [2,741; 5,069]  1.22 [1.17; 1.28]  4,375 [2,929; 5,230] 

hw_mean_975_3d 1.26 [1.18; 1.35]  2,622 [1,452; 3,362]  1.21 [1.13; 1.30]  2,757 [1,641; 3,449] 

hw_mean_99_2d 1.29 [1.17; 1.43]  2,141 [1,294; 2,689]  1.23 [1.12; 1.35]  1,996 [1,156; 2,544] 

hw_mean_99_3d 1.45 [1.26; 1.67]  1,346 [999; 1,569]  1.50 [1.33; 1.69]  1,300 [885; 1,529] 

hw_max_95_2d 1.14 [1.10; 1.17]  5,829 [4,050; 7,367]  1.13 [1.10; 1.17]  6,147 [4,317; 7,806] 

hw_max_95_3d 1.18 [1.14; 1.23]  4,372 [2,749; 5,459]  1.17 [1.12; 1.22]  4,383 [2,794; 5,411] 

hw_max_975_2d 1.15 [1.09; 1.21]  1,973 [1,140; 3,161]  1.19 [1.13; 1.25]  3,283 [1,870; 4,201] 

hw_max_975_3d 1.23 [1.11; 1.36]  2,528 [1,686; 3,067]  1.25 [1.12; 1.40]  2,443 [1,546; 2,958] 

hw_max_99_2d 1.21 [1.08; 1.34]  1,492 [769; 2,037]  1.36 [1.17; 1.58]  1,907 [1,148; 2,345] 

hw_max_99_3d 1.65 [1.40; 1.93]  1,248 [1,001; 1,402]  1.68 [1.46; 1.93]  1,259 [1,027; 1,387] 

Abbreviations: RR, Relative risk of mortality; CI, Confidence interval; AN, Attributable number of deaths (May-September period of 2000-2015). 
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Notes: The definitions are the Excess heat factor of the Australian Bureau of Meteorology (hw_EHF), the climatological indicator of the French 

national weather service (hw_MF), the heat wave indicator of the French national heatwave warning system (hw_SACS), and the others based on 

the temperature parameters, which are presented in the format as follow: (heatwave)_(temperature)_(percentile)_(minimum number of consecutive 

days). For example, hw_min_95_2d defines a heat wave if the minimum temperature was above the 95th percentile of the minimum temperature 

for at least two days.
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Figure 2. Attributable number of cumulative deaths for the main and added impacts of heat wave obtained with all heat wave definitions (estimated over the May-

September period of 2000-2015) for semi-continental (A), oceanic (B), temperate oceanic and Mediterranean (C) climate cities. 

Notes: Temperate oceanic cities are Lille, Paris, and Toulouse. Mediterranean climate cities are Marseille, Montpellier, and Nice. The definitions are the Excess heat 

factor of the Australian Bureau of Meteorology (hw_EHF), the climatological indicator of the French national weather service (hw_MF), the heat wave indicator of 

the French national heatwave warning system (hw_SACS), and the others based on the temperature parameters, which are presented in the format as follow: 

(heatwave)_(temperature)_(percentile)_(minimum number of consecutive days). For example, hw_min_95_2d defines a heat wave if the minimum temperature was 

above the 95th percentile of the minimum temperature for at least two days. 
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3.4.  Burden of mortality attributable for heat waves definitions 

The relationship between each RR (for HW days compared with non-HW days and for the day 

after HW days) and the corresponding number of attributable deaths differed considerably by 

climate zone and HW definitions. HWs with the highest RRs were not necessarily associated 

with the highest attributable number of deaths (Figures S4 - S7). 

Through the results at the national level of the main analysis, the EHF defined the HWs 

associated with the highest attributable mortality burden with a main impact of 8,713 (95% CI: 

[6,998; 10,755]) non-accidental deaths, and an additional impact of 8,171 (95% CI: [6,375; 

10,443]) non-accidental deaths. The EHF was followed by the indicators hw_mean_95_2d 

(with 6,671 "95% CI: [5,083; 8,489]", and 6,503 "95% CI: [4,778; 8,315]" non-accidental 

deaths for the main and added impacts, respectively), and hw_max_95_2d (with 5,829 "95% 

CI: [4,050; 7,367]", and 6,147 "95% CI: [4,317; 7,806]" non-accidental deaths for the main and 

added impacts, respectively) (Table 2). The results (heat-related mortality) of the sensitivity 

analyses (multivariable GAM based on all days in the period, not only PS matched days), using 

2 (Table S5) and 1 or 3 (Table S6) df per summer for the DOS natural spline functions, were 

overall quite close to those of the main analysis (Table 2). In these sensitivity analyses, as in 

the main analysis, the same (aforementioned) HWs definitions were found to be the ones 

identifying the most mortality attributable to HWs (Tables 2, S5 and S6). 

Focusing on the number of cumulative deaths for the main and added impacts, it appeared that 

HWs defined by EHF were associated with the highest burden of attributable deaths in all cities 

and climate zones except two out of five oceanic climate cities (Rouen with hw_mean_95_2d 

and Bordeaux with hw_max_95_2d) and two out of five semi-continental climate cities 

(Clermont-Ferrand with hw_mean_95_2d and Nancy with hw_mean_95_3d). HWs defined by 

the SACS indicator were consistently associated with the lowest impact on the burden of deaths 
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in one out of three temperate oceanic climate cities (Paris) and three out of five oceanic climate 

cities (Nantes, Rennes, and Rouen) (Figure 2). 

The global (main and added) mortality burden related to HWs ranged from 129 (95% CI: [112; 

137]) to 1,055 (95% CI: [856; 1,302]) deaths per summer obtained with the SACS and EHF 

definitions, respectively. Across each temperature parameter (minimum, mean, and maximum) 

defining the HW indicators, as percentiles decreased (resulting in many days identified as HW), 

corresponding heat-related mortalities increased (Table 3). The number of deaths attributable 

to HWs defined by the EHF corresponded to 2.46 (95% CI: [1.92; 3.58]), and 8.18 (95% CI: 

[6.63; 10.61]) times the number of deaths attributable to HWs defined by the Météo-France and 

SACS definitions, respectively. The next three definitions after EHF with the highest overall 

HW mortality burden were hw_mean_95_2d (823 "95% CI: [629; 1,029]" deaths per summer), 

hw_max_95_2d (748 "95% CI: [536; 930]" deaths per summer), and hw_min_95_2d (654 "95% 

CI: [465; 851]" deaths per summer). Compared with the SACS definition, the other HWs 

definitions had identified HWs with an overall attributable mortality burden multiplied by a 

factor ranging from 1.20 (95% CI: [0.92; 1.46]) obtained with hw_min_99_3d to 8.18 (95% CI: 

[6.63; 10.61]) obtained with EHF. This factor ranged from 0.30 (95% CI: [0.25; 0.39]) obtained 

with SACS definition to 2.46 (95% CI: [1.92; 3.58]) obtained with EHF relative to the Météo-

France definition, and from 0.12 (95% CI: [0.09; 0.15]) obtained with SACS definition to 0.78 

(95% CI: [0.56; 1.07]) obtained with hw_mean_95_2d relative to EHF (Table 3). The overall 

burden of mortality per summer attributable to HWs in France obtained with each HW 

definition versus the SACS, Météo-France, and EHF definitions in terms of absolute differences 

are provided in the supplementary materials (Table S7). 
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Table 3: Global burden of mortality per summer in France (estimated over the period 2000-2015) obtained with each heat wave definition and 

variation relative to the SACS, Météo-France, and EHF definitions in terms of ratio. 

Definitions ANPS 
Ratio (95% CI) of each definition’s ANPS by the one of 

hw_EHF hw_MF hw_SACS 

hw_EHF 1,055 [856; 1,302] 1 2.46 [1.92; 3.58] 8.18 [6.63; 10.61] 

hw_MF 429 [320; 494] 0.41 [0.28; 0.52] 1 3.33 [2.55; 4.07] 

hw_SACS 129 [112; 137] 0.12 [0.09; 0.15] 0.30 [0.25; 0.39] 1 

hw_min_95_2d 654 [465; 851] 0.62 [0.42; 0.87] 1.52 [1.09; 2.23] 5.07 [3.67; 6.87] 

hw_min_95_3d 496 [278; 643] 0.47 [0.25; 0.65] 1.16 [0.65; 1.66] 3.85 [2.16; 5.25] 

hw_min_975_2d 455 [267; 571] 0.43 [0.24; 0.57] 1.06 [0.64; 1.50] 3.53 [2.11; 4.61] 

hw_min_975_3d 330 [188; 421] 0.31 [0.17; 0.42] 0.77 [0.43; 1.12] 2.56 [1.53; 3.45] 

hw_min_99_2d 209 [147; 263] 0.20 [0.13; 0.27] 0.49 [0.34; 0.72] 1.62 [1.17; 2.14] 

hw_min_99_3d 155 [117; 176] 0.15 [0.10; 0.19] 0.36 [0.27; 0.48] 1.20 [0.92; 1.46] 

hw_mean_95_2d 823 [629;1,029] 0.78 [0.56; 1.07] 1.92 [1.45; 2.78] 6.39 [4.95; 8.46] 

hw_mean_95_3d 630 [426; 787] 0.60 [0.38; 0.80] 1.47 [0.99; 2.10] 4.89 [3.40; 6.49] 

hw_mean_975_2d 530 [366; 635] 0.50 [0.32; 0.66] 1.24 [0.84; 1.72] 4.11 [2.90; 5.22] 

hw_mean_975_3d 336 [200; 420] 0.32 [0.18; 0.43] 0.78 [0.46; 1.10] 2.61 [1.57; 3.44] 

hw_mean_99_2d 259 [164; 325] 0.25 [0.15; 0.33] 0.60 [0.38; 0.87] 2.01 [1.31; 2.62] 

hw_mean_99_3d 165 [121; 191] 0.16 [0.11; 0.20] 0.39 [0.28; 0.53] 1.28 [0.97; 1.60] 

hw_max_95_2d 748 [536; 930] 0.71 [0.49; 0.94] 1.74 [1.23; 2.55] 5.81 [4.27; 7.64] 

hw_max_95_3d 547 [351; 670] 0.52 [0.31; 0.68] 1.27 [0.82; 1.78] 4.24 [2.78; 5.43] 

hw_max_975_2d 328 [201; 448] 0.31 [0.18; 0.45] 0.77 [0.47; 1.18] 2.55 [1.56; 3.63] 

hw_max_975_3d 311 [209; 369] 0.29 [0.18; 0.38] 0.72 [0.47; 1.01] 2.41 [1.61; 3.03] 

hw_max_99_2d 212 [121; 272] 0.20 [0.11; 0.28] 0.49 [0.29; 0.72] 1.65 [0.98; 2.23] 

hw_max_99_3d 157 [128; 172] 0.15 [0.11; 0.19] 0.36 [0.29; 0.50] 1.22 [0.99; 1.46] 
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Abbreviations: ANPS, Attributable number of deaths per summer (May-September period) during heat wave day and the day after heat wave; CI, 

Confidence interval. 

Notes: The definitions are the Excess heat factor of the Australian Bureau of Meteorology (hw_EHF), the climatological indicator of the French 

national weather service (hw_MF), the heat wave indicator of the French national heatwave warning system (hw_SACS), and the others based on 

the temperature parameters, which are presented in the format as follow: (heatwave)_(temperature)_(percentile)_(minimum number of consecutive 

days). For example, hw_min_95_2d defines a heat wave if the minimum temperature was above the 95th percentile of the minimum temperature 

for at least two days. 
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4. Discussion 

For the period from May to September of the years 2000 to 2015, we analyzed the impacts of 

HWs identified according to different definitions on mortality in 16 cities in France by using 

historical data of observed temperatures and non-accidental mortality provided by competent 

French institutions. 

We adopted a PS matching approach that provided a matched sample of exposed and unexposed 

days who had similar PS values (Rosenbaum and Rubin, 1985, 1983). This approach includes 

the ability to graphically visualize the capacity of the procedure to match days that are similar 

(to approximate randomized experiments as closely as possible conditional on the observed 

covariates), to exclude days that are too different according to the covariates, and allows one to 

separate the design of an observational study from its analysis (Rubin, 2007). This makes easier 

to determine whether the model is correctly specified, comparing to a simple multivariable 

regression model relating the exposure variable (HW) and a set of identified confounding 

factors to mortality. Indeed, goodness-of-fit measures (such as model R2) does not provide a 

test of whether the multivariable model was correctly specified, and goodness-of-fit tests do not 

allow one to determine the degree to which the multivariable model has successfully eliminated 

systematic differences between HW and non-HW days (Austin, 2011). Furthermore, this 

method allows the HW effect to be estimated on the matched sample (as the average effect of 

HW on the days that ultimately experienced the HW, also known as average treatment effect 

on the treated "ATT") rather than on the overall sample (as average treatment effect "ATE") 

(Imbens, 2004).Multivariable regression may have increased flexibility when outcomes 

expressed as a binary variable are rare, and exposure is frequent (Braitman and Rosenbaum, 

2002). Prior work has indicated that low number of events can lead to major problems and has 

suggested that at least 10 events should be observed for each variable included in a regression 
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model when the outcomes are binary (Peduzzi et al., 1996, 1995). However, in our context, for 

definitions such as the SACS indicator, hw_min_99_2d, hw_min_99_3d, hw_mean_99_2d, 

hw_mean_99_3d, hw_max_99_2d and hw_max_99_3d , the logistic regression model was 

flexible in the modeling of the PS for which the outcome (variable indicating HW or not) 

presented a small number of HWs (on average, less than 30 per city during the whole study 

period). Future studies could focus on a larger study period that would allow the identification 

of important HW events in a context of climate change with an increase in the occurrence of 

HWs. 

Our results in the main (using Poisson regressions based on PS matched days) and sensitivity 

(using multivariable GAMs based on all days in the study period) analyses showed significant 

effects of HW overall comparable both for RR and heat-related deaths. It should be emphasized 

for RR that, similar to randomized controlled trials, PS methods (including matching) allow 

one to estimate population-average (or marginal) treatment effects (to estimate how the 

treatment/HW would change the risk of the outcome/mortality at the population of days level). 

In contrast, regression-based approaches allow one to obtain adjusted (or conditional) estimates 

of treatment effects (change in the risk of the outcome/mortality for an individual/day - at the 

subject/day level - when exposed to/experienced treatment/HW compared to receiving no 

treatment/not experiencing HW, conditional on the measured covariates) (Austin, 2011; Austin 

et al., 2007). Thus, depending on treatment effects researchers are interested in estimating using 

observational data, both approaches are appropriate analytical methods (Austin et al., 2007). 

However, in certain restrictive settings such as ours (count outcomes and RR as an effect 

measure) or linear regressions (continuous outcomes), marginal and conditional treatment 

effects coincide assuming that both the outcome regression model and the propensity score 

model were correctly specified (Austin, 2011; Austin et al., 2007). 
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We found that the mortality burden attributable to heat differed depending on the definitions 

used for HWs. Worldwide, HWs increase mortality, but there is variation in estimates of the 

effect depending on the definition of HWs (Anderson and Bell, 2009; Kent et al., 2014; 

McElroy et al., 2020; Tong et al., 2010; Xu et al., 2016). For example, McElroy et al. (McElroy 

et al., 2020) compared 18 HW definitions in order to identify the best indicator for targeting 

health impacts in San Diego County and found that small changes in HW definitions could 

result in substantial changes in health impacts. 

Our results revealed that the choice of an appropriate definition of HWs should consider both 

the number of alerts it could trigger (in terms of the number of HW days identified) and the 

scales for HW effect measures (RR and attributable mortality). These results demonstrate that 

the ranking of HW definitions is not similar when using attributable mortality as compared to 

RRs. The definition of a HW that best considers its effects on the health of a population may 

not correspond to the highest RR, because this measure does not consider the frequency of 

HWs. For example, a severe HW episode with a stronger estimated health impact in term of 

RR, by occurring less frequently, may have smaller consequences in term of attributable 

mortality than a HW identified by a broader definition with smaller estimated RR but occurring 

more regularly. 

We showed that the EHF indicator produced 8.18 times (95% CI: [6.63; 10.61]) the mortality 

attributable to heat obtained with the SACS indicator. EHF was the indicator that identified 

HWs with the greatest global (main and added) burden of heat attributable mortality at the 

national level (all cities combined) and was the most impactful definition pattern for both 

temperate oceanic and Mediterranean climate types. This indicator defines a HW based on the 

mean temperature and has advantage for considering both the historical exposure and an 

acclimation criterion. It followed by HWs indicators that separately use mean, maximum and 

minimum temperature, for the 95th percentile and a minimum duration of two consecutive days. 
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It may be beneficial in some cases (e.g., depending on the city or even the type of climate) to 

consider these definitions or a combination of mean, maximum, and minimum temperature 

parameters when designing a HW plan. However, it should be emphasized that the EHF 

indicator would produce an average of 504.8 alerts per summer in France (all 16 cities 

combined), compared to 6.6 for the SACS indicator. 

This study found that the greater the number of HWs days identified (depending on the 

thresholds used), the greater the number of heat-related deaths. As temperature has an impact 

on mortality even in moderate heat (below the thresholds used to define HWs) (Anderson and 

Bell, 2011; Corso et al., 2017; Gasparrini et al., 2015b), a greater impact can be expected if the 

threshold window is extended, raising the delicate question of how to set thresholds for HW 

alert systems, or how to reach a balance between the number of alerts and the potentially 

associated excess mortality. Setting high thresholds only prevents a small number of heat-

related deaths, but minimizes the number of alerts, as in the case of the SACS indicator, which 

follows an alert logic highlighting the impact of the most severe a priori events, but not the total 

impact of heat (Laaidi et al., 2005; Laaidi and Pascal, 2004). Setting lower thresholds avoids a 

large number of heat-related deaths at the cost of very frequent alerts, as is the case with the 

EHF indicator that highlights the existence of deaths during less extreme heat (Corso et al., 

2017). In a context in which HWs will be extremely more intense, long-lasting, earlier (as of 

May) or later (until October) in case of increasing greenhouse gases, and of low risk perception 

in the population, the question of the choice of indicator thresholds could be resolved in a 

reasonable way by keeping alert management targeted on the most severe HWs (for which the 

final objectives of excess mortality explicitly defined and quantified would depend on the 

decision-makers), complemented by a basic prevention of heat impacts throughout the summer. 

This prevention could involve education of the general population, training of health 

professionals, improvement of housing thermal comfort, development of social links. 
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In France, to have an anticipatory and reliable system, the choice has been made to work with 

indicators and thresholds that predict (high) excess mortality (Laaidi et al., 2005; Laaidi and 

Pascal, 2004). These indicators and thresholds must be able to evolve according to new 

scientific knowledge, characteristics of future HWs which could be different from those of the 

last 30 years (in particular wetter, with possibly also different wind conditions), demographic 

or structural evolution of populations dying, evolution of cities in terms of establishment or 

departure of health establishments or accommodation establishments for dependent elderly 

people which could lead to a greater vulnerability of the population. 

We also found a significant added effect of HWs on the mortality of the following HW days. 

In the literature, it is well documented that the effects of heat on mortality appear immediately 

on the same day and usually last for a few days (Guo et al., 2014; Rocklöv and Forsberg, 2008; 

Yu et al., 2012). To quantify the health impacts associated with heat, approaches used the 

temperature as a continuous metric (as in distributed lag linear or nonlinear models) or binary 

HW definitions based on temperature metrics. Furthermore, the choice of considering HWs as 

a binary exposure (HW and non-HW days) is more pertinent (Xu et al., 2016) compared to 

considering temperature as a continuous variable (Armstrong, 2006; Gasparrini et al., 2015b, 

2010; Muggeo and Hajat, 2009; Pascal et al., 2018) when referring to the policy approach 

generally adopted in the HW warning systems (use of temperature thresholds to trigger 

warnings and risk communication). 

In this study, we did not assess the determinants of the variations between or within cities in 

the burden associated with the different HW definitions. Indeed, several individual or 

contextual characteristics of subgroups marking greater vulnerability to heat effects have been 

documented (Benmarhnia et al., 2015; Gronlund, 2014; McElroy et al., 2020; Schwarz et al., 

2021). These factors could include, for example, demographic factors (age, gender, urban 

design, population density, chronic diseases), socioeconomic factors (education, ethnicity, 
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income or social isolation), neighborhood (or ecological) community factors, and material 

conditions (air conditioning) (Åström et al., 2011; Basu, 2009; Xu et al., 2012). Understanding 

the spatial variation in these vulnerabilities to heat-related mortality is an important step in 

targeting specific actions to sensible subgroups to reduce heat-related effects on health (Kovats 

et al., 2003). In the calculation of the different temperature thresholds used in the design of 

alternative definitions, we used whole year data over the period 2000-2015. This does not 

provide enough time for an optimal estimation of the thresholds. In comparison, a period of 30 

years is used for the definition of thresholds in the EHF, Météo-France, and SACS definitions 

(Laaidi et al., 2005; Laaidi and Pascal, 2004; Nairn and Fawcett, 2015). 

Our study was conducted using observed temperature data, whereas in anticipation of HW 

events, warning systems use forecast data. We did not consider a possible mismatch between 

the forecasted and observed HWs. The impact of HWs in terms of mortality does not include 

the burden of hospitalizations, which is a more moderate signal but may reveal broader health 

impacts as showed by Schwarz et al. exploring spatial variation in the joint effect of extreme 

heat events and ozone on respiratory hospitalizations in California (Schwarz et al., 2021). The 

study period (2000-2015) mainly covered a phase when the national HW prevention plan was 

implemented (2004-2015). The mortality burden attributable to HWs may be underestimated in 

this study and may be explained, for example, by the preventive measures set up by the health 

institutions and authorities after the 2003 HW, the implementation of the heat health watch 

warning system as of summer 2004, an awareness of the risk associated with extreme 

temperatures and a reduction in the vulnerability of populations to heat. 

In conclusion, differences in HWs definitions can result in substantial differences in estimated 

health outcomes. Identifying the set of extreme heat conditions that drive the highest health 

burden in a given geographical context is particularly helpful when designing or updating heat 
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early warning systems. Our findings may enable the implementation and reinforcement of 

government-, climate type-, and city-level management strategies for HWs.
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