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ABSTRACT
Thresholdedmode-switched ODEs are restricted dynamical systems

that switch ODEs depending on digital input signals only, and

produce a digital output signal by thresholding some internal signal.

Such systems arise in recent digital circuit delay models, where the

analog signals within a gate are governed by ODEs that change

depending on the digital inputs.

We prove the continuity of the mapping from digital input sig-

nals to digital output signals for a large class of thresholded mode-

switched ODEs. This continuity property is known to be instru-

mental for ensuring the faithfulness of the model w.r.t. propagating

short pulses. We apply our result to several instances of such digital

delay models, thereby proving them to be faithful.

KEYWORDS
mode-switched ordinary differential equations; thresholding opera-

tor; continuity; circuit delay models; faithfulness

1 INTRODUCTION
A natural class of hybrid systems can be described by the dynamics

of a continuous process, which is controlled by externally supplied

digital mode switch signals, and provides a digital output based on

whether some internal signal crosses a threshold, see Fig. 1 for an

illustration. Examples are digitally controlled thermodynamic pro-

cesses, hydrodynamic systems, and, in particular, digital integrated

circuits. The continuous dynamics of these systems are described

by Ordinary Differential Equations (ODEs) for the temperature, the

pipe’s pressures and fill-levels, or the gate’s currents and voltages

over time. Digital mode switches are used to switch between ODE

systems, e.g., by turning on a heater, closing a valve, or applying

an input transition to a gate’s input. The environment of the hy-

brid system is only notified if the temperature or fill-level crosses

a threshold, or, in the case of a digital gate, is said to produce an

output transition when some internal voltage crosses a threshold.

In this work, we consider the composition of such hybrid sys-

tems in a circuit, where digital threshold signals of one component

drive mode switch signals of a downstream component. We give
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Figure 1: Thresholded mode-switched ODE with a single
mode input 𝑖, the delayed input 𝑖𝑑 , two continuous states
𝑥,𝑦, and two thresholded outputs Θ𝛼 (𝑥) and Θ𝛽 (𝑦).

conditions that ensure the continuity of the outputs of such circuits

with respect to their inputs and provide two application examples in

the context of circuit delay models. The proven continuity property

shows that small variations of the inputs lead to small variations

of the output signal, a property that is necessary for digital circuit

models to be consistent with physical analog ODE models.

Digital circuits, continuity, and faithful delay models. Analog
simulations of digital circuits are time-consuming and are thus re-

placed by digital simulations whenever possible. Typical application

domains that require simulation of precise circuit transition times

are particularly timing-critical, asynchronous parts of a circuit,

e.g., inter-neuron links using time-based encoding in hardware-

implemented spiking neural networks [2], where the worst-case

delay estimates provided by static timing analysis techniques are

not sufficient for ensuring correct operation.

A mandatory prerequisite for dynamic timing analysis are digital

delay models, which allow to accurately determine the input-to-

output delay of every constituent gate in a circuit. Suitable models

must also account for the fact that the delay of an individual signal

transition usually depends on the previous transition(s), in particu-

lar, when they were close. The simplest class of such models are

single-history delay models [1, 7, 8], where the input-to-output delay
𝛿 (𝑇 ) of a gate depends on the previous-output-to-input delay 𝑇 .

It has been proved by Függer et al. [8] that a certain continuity

property of single-history models is mandatory for the digital ab-

straction to faithfully model the analog reality. In particular, the

predicted output transitions must not be substantially affected by

arbitrarily short input glitches. For example, the constant-low input
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Figure 2: Hybrid involution delay channel model (upper part)
with a sample execution (bottom part). Adapted from [8].

signal and an arbitrarily short low-high-low pulse must produce

arbitrary close gate output signals. So far, the only delay model

known to ensure this continuity property is the involution delay
model (IDM) [8], which consists of zero-time Boolean gates inter-

connected by single-input single-output involution delay channels.

An IDM channel is characterized by a delay function 𝛿 , which is

a negative involution, i.e., −𝛿 (−𝛿 (𝑇 )) = 𝑇 . In its generalized ver-

sion, different delay functions 𝛿↑ resp. 𝛿↓ are assumed for rising

resp. falling transitions, requiring −𝛿↑ (−𝛿↓ (𝑇 )) = 𝑇 . Unlike all

other existing delay models, the IDM has been proved to faithfully

model glitch propagation for the so-called short-pulse filtration

problem [8], and is hence the only candidate for a faithful delay

model known so far [7].

It has also been shown [8] that involution delay functions arise

naturally in a 2-state thresholded hybrid channel model, which con-

sists of a pure delay component, a slew-rate limiter with a rising

and falling switching waveform, and an ideal comparator (Fig. 2):

The binary-valued input 𝑖𝑎 is delayed by 𝛿min > 0, which assures

causality of channels, i.e., 𝛿↑/↓ (0) > 0. For every transition on 𝑖𝑑 ,

the generalized slew-rate limiter switches to the corresponding

waveform (𝑓↓/𝑓↑ for a falling/rising transition). The essential prop-

erty here is that the analog output voltage 𝑜𝑎 is a continuous (but
not necessarily smooth) function of time. Finally, the comparator

generates the output 𝑜𝑑 by digitizing 𝑜𝑎 w.r.t. the discretization

threshold voltage 𝑉𝑡ℎ .

Whereas the accuracy of IDM predictions for single-input, single-

output circuits like inverter chains or clock trees turned out to be

very good, this is less so for circuits involving multi-input gates [14].

It has been revealed by Ferdowsi et al. [4] that this is primarily due

to the IDM’s inherent lack of properly covering output delay vari-

ations caused by multiple input switching (MIS) in close temporal

proximity [3], also known as the Charlie effect: compared to the

single input switching case, output transitions are sped up/slowed

downwith decreasing transition separation time on different inputs.

Single-input, single-output delay channels like IDM cannot exhibit

such a behavior.

To capture MIS effects in a 2-input NOR gate, Ferdowsi et al. [4]
hence proposed an alternative digital delay model based on a 4-

state hybrid gate model. It has been obtained by replacing the 4

transistors in the RC-model of a CMOS NOR gate by ideal zero-time

switches, which results in one mode per possible digital state of

the inputs (𝐴, 𝐵) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. In each mode, the

voltage of the the output signal and an internal node are governed

by constant-coefficient first order ODEs. When an input signal

changes its state, the system switches to the new mode and its

corresponding ODEs.

Albeit digitizing this hybrid gate model, using a comparator

with a suitable threshold voltage 𝑉𝑡ℎ as in Fig. 2, leads to a quite

accurate digital delay model, it turned out to still fail to capture the

MIS delay for a rising output transition. In a follow-up paper [5],

Ferdowsi et. al. hence introduced a refined gate delay model, where

the switching-on of the pMOS transistors is not instantaneous, but

rather governed by a simple time evolution function ∼ 1/𝑡 , inspired
by the Shichman-Hodges transistor model [12]. The resulting 4-

state hybrid model consists of a single not-constant-coefficient

first-order ODE per mode, and has been shown to accurately model

MIS effects.

Whereas the experimental evaluation of the modeling accuracy

of the hybrid models discussed above shows that they outperform

the simple IDM model [14], it is not clear whether they are also

faithful digital delay models. What would be needed here is a proof

that the digital delay models obtained by digitizing hybrid models

satisfy the continuity property required for faithfulness.

Contributions. Our paper answers this question in the affirmative.

More generally, we prove that any thresholded hybrid model like

the one shown in Fig. 1 that satisfies some mild conditions on their

ODEs results in a continuous digitized hybrid model. We then show

that the above hybrid gate models fall into this category, and that

the proven continuity implies faithful short-pulse propagation of

any such model. Since the square of a signal is (proportional to) its

power, this also implies a continuity property from the input signal

power to the output signal power. Consequently, these delay models

are indeed promising candidates for the correct and timing+power-

accurate simulation of digital circuits. In more detail:

(1) We show that any hybrid model, where mode𝑚 is governed

by a system of first-order ODEs
𝑑𝑥
𝑑𝑡

= 𝑓𝑚 (𝑡, 𝑥), leads to a

continuous digital delay model, provided all the 𝑓𝑚 are con-

tinuous in 𝑡 and Lipschitz continuous in 𝑥 , with a common

Lipschitz constant for every 𝑡 > 0 and𝑚.

(2) We prove that the parallel composition of finitely many

digitized hybrid gates in a circuit result in a unique and

Zeno-free execution, under some mild conditions regarding

causality. In conjunction with our continuity result, we

prove that the resulting model is faithful w.r.t. solving the

canonical short-pulse filtration problem.

(3) We demonstrate that the hybrid gate models proposed in

[4, 5] satisfy these properties, and are hence continuous

and thus faithful.

Paper organization. In Section 2, we instantiate our general con-

tinuity result (Theorem 5). Section 3 presents our main continuity

result for hybrid gate models (Theorem 6 and Theorem 7), and

Section 4 deals with circuit composition. In Section 5, we provide

examples for the hybrid models considered in this work: a simple

heater from literature [9], the simple hybrid gate model [4], and

the advanced gate model [5]. Some conclusions and directions of

future research are provided in Section 6.
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2 THRESHOLDED MODE-SWITCHED ODES
In this section, we provide a generic proof that every hybrid model

that adheres to some mild conditions on its ODEs leads to a con-

tinuous digital delay model. We start with proving continuity in

the analog domain and then establish continuity of the digitized

signal obtained by feeding a continuous real-valued signal into a

threshold voltage comparator. Combining those results will allow

us to assert the continuity of digital delay channels like the one

shown in Fig. 2.

2.1 Continuity of ODE mode switching
For a vector 𝑥 ∈ R𝑛 , denote by ∥𝑥 ∥ its Euclidean norm. For a

piecewise continuous function 𝑓 : [𝑎, 𝑏] → R𝑛 , we write ∥ 𝑓 ∥1 =∫ 𝑏
𝑎
∥ 𝑓 (𝑡)∥ 𝑑𝑡 for its 1-norm and ∥ 𝑓 ∥∞ = sup𝑡 ∈[𝑎,𝑏 ] ∥ 𝑓 (𝑡)∥ for its

supremum norm. The projection function of a vector inR𝑛 onto

its 𝑘th component, for 1 ≤ 𝑘 ≤ 𝑛, is denoted by 𝜋𝑘 : R𝑛 → R.

In this section, we will consider non-autonomous first-order

ODEs of the form
𝑑
𝑑𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)), where the non-negative

𝑡 ∈ R+ represents the time parameter, 𝑥 (𝑡) ∈ 𝑈 for some arbitrary

open set 𝑈 ⊆ R𝑛 , 𝑥0 ∈ 𝑈 is some initial value, and 𝑓 : R+ ×𝑈 →
R𝑛 is chosen from a set 𝐹 of bounded functions that are continuous

for (𝑡, 𝑥) ∈ [0,𝑇 ] ×𝑈 , where 0 < 𝑇 < ∞, and Lipschitz continuous

in 𝑈 with a common Lipschitz constant for all 𝑡 ∈ [0,𝑇 ] and all

choices of 𝑓 ∈ 𝐹 . It is well-known that every such ODE has a unique

solution 𝑥 (𝑡) with 𝑥 (0) = 𝑥0 that satisfies 𝑥 (𝑡) ∈ 𝑈 for 𝑡 ∈ [0,𝑇 ],
is continuous in [0,𝑇 ], and differentiable in (0,𝑇 ).

The following lemma shows the continuous dependence of the

solutions of such ODEs on their initial values. To be more explicit,

the exponential dependence of the Lipschitz constant on the time

parameter allows temporal composition of the bound. The proof

can be found in standard textbooks on ODEs [13, Theorem 2.8].

Lemma 1. Let 𝑈 ⊆ R𝑛 be an open set and let 𝑓 : R ×𝑈 → R𝑛

be Lipschitz continuous with Lipschitz constant 𝐾 for 𝑡 ∈ [0,𝑇 ] with
𝑇 > 0, and let 𝑥,𝑦 : [0,𝑇 ] → 𝑈 be continuous functions that are
differentiable on (0,𝑇 ) such that 𝑑

𝑑𝑡
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) and 𝑑

𝑑𝑡
𝑦 (𝑡) =

𝑓 (𝑡, 𝑦 (𝑡)) for all 𝑡 ∈ (0,𝑇 ). Then, ∥𝑥 (𝑡) −𝑦 (𝑡)∥ ≤ 𝑒𝑡𝐾 ∥𝑥 (0) −𝑦 (0)∥
for all 𝑡 ∈ [0,𝑇 ].

A step function 𝑠 : R+ → {0, 1} is a right-continuous function
with left limits, i.e., lim𝑡→𝑡+

0

𝑠 (𝑡) = 𝑠 (𝑡0) and lim𝑡→𝑡−
0

𝑠 (𝑡) exists for
all 𝑡0 ∈ R+. A binary signal 𝑠 is a step function 𝑠 : [0,𝑇 ] → {0, 1},
a mode-switch signal 𝑎 is a step function 𝑎 : [0,𝑇 ] → 𝐹 , 𝑡 ↦→ 𝑎𝑡 .

Given a mode-switch signal 𝑎, a matching output signal for 𝑎 is
a function 𝑥𝑎 : [0,𝑇 ] → 𝑈 that satisfies

(i) 𝑥𝑎 (0) = 𝑥0,

(ii) the function 𝑥𝑎 is continuous,

(iii) for all 𝑡 ∈ (0,𝑇 ), if 𝑎 is continuous at 𝑡 , then 𝑥𝑎 is differen-

tiable at 𝑡 and 𝑑
𝑑𝑡
𝑥𝑎 (𝑡) = 𝑎𝑡 (𝑡, 𝑥𝑎 (𝑡)).

For (iii), recall that the domain of 𝑎 is 𝐹 .

Lemma 2.1 (Existence and uniqeness of matching output

signal). Given a mode-switch signal 𝑎, the matching output signal
𝑥𝑎 for 𝑎 exists and is unique.

Proof. 𝑥𝑎 can be constructed inductively, by pasting together

the solutions 𝑥𝑡 𝑗 of
𝑑
𝑑𝑡
𝑥𝑡 𝑗 (𝑡) = 𝑎𝑡 𝑗 (𝑡, 𝑥𝑡 𝑗 (𝑡)), where 𝑡0 = 0 and 𝑡1 <

𝑡2 < . . . are 𝑎’s switching times in 𝑆𝑎 : For the induction basis 𝑗 = 0,

we define 𝑥𝑎 (𝑡) := 𝑥𝑡0 (𝑡) with initial value 𝑥𝑡0 = 𝑥𝑡0 (𝑡0) := 𝑥0 for

𝑡 ∈ [0, 𝑡1]. Obviously, (i) holds by construction, and the continuity

and differentiability of 𝑥𝑡0 (𝑡) at other times ensures (ii) and (iii).

For the induction step 𝑗 → 𝑗 + 1, we assume that we have

constructed 𝑥𝑎 (𝑡) already for 0 ≤ 𝑡 ≤ 𝑡 𝑗 . For 𝑡 ∈ [𝑡 𝑗 , 𝑡 𝑗+1], we
define 𝑥𝑎 (𝑡) := 𝑥𝑡 𝑗+1

(𝑡) with initial value 𝑥𝑡 𝑗+1
= 𝑥𝑡 𝑗+1

:= 𝑥𝑎 (𝑡 𝑗 ) =
𝑥𝑡 𝑗 (𝑡 𝑗 ). Continuity of 𝑥𝑎 (𝑡) at 𝑡 = 𝑡 𝑗 follows by construction, and

the continuity and differentiability of 𝑥𝑡 𝑗+1
(𝑡) again ensures (ii)

and (iii). □

Given two mode-switch signals 𝑎, 𝑏, we define their distance as

𝑑𝑇 (𝑎, 𝑏) = 𝜆
(
{𝑡 ∈ [0,𝑇 ] | 𝑎𝑡 ≠ 𝑏𝑡 }

)
(1)

where 𝜆 is the Lebesgue measure onR. The distance function 𝑑𝑇 is

a metric on the set of mode-switch signals.

The following Theorem 2 shows that the mapping 𝑎 ↦→ 𝑥𝑎 is

continuous.

Theorem 2. Let 𝐾 ≥ 1 be a common Lipschitz constant for all
functions in 𝐹 and let𝑀 be a real number such that ∥ 𝑓 (𝑡, 𝑥 (𝑡))∥ ≤ 𝑀

for all 𝑓 ∈ 𝐹 , all 𝑥 ∈ 𝑈 , and all 𝑡 ∈ [0,𝑇 ]. Then, for all mode-switch
signals 𝑎 and 𝑏, if 𝑥𝑎 is the output signal for 𝑎 and 𝑥𝑏 is the output
signal for 𝑏, then ∥𝑥𝑎 − 𝑥𝑏 ∥∞ ≤ 2𝑀𝑒𝑇𝐾𝑑𝑇 (𝑎, 𝑏). Consequently, the
mapping 𝑎 ↦→ 𝑥𝑎 is continuous.

Proof. Let 𝑆 = {𝑡 ∈ (0,𝑇 ) | 𝑎 or 𝑏 is discontinuous at 𝑡} ∪
{0,𝑇 } be the set of switching times of 𝑎 and 𝑏. The set 𝑆 must be

finite, since both 𝑎 and 𝑏 are right-continuous on a compact interval.

Let 0 = 𝑠0 < 𝑠1 < 𝑠2 < · · · < 𝑠𝑚 = 𝑇 be the increasing enumeration

of 𝑆 .

We show by induction on 𝑘 that

∀𝑡 ∈ [0, 𝑠𝑘 ] : ∥𝑥𝑎 (𝑡) − 𝑥𝑏 (𝑡)∥ ≤ 2𝑀𝑒𝑡𝐾𝑑𝑡 (𝑎, 𝑏) (2)

for all 𝑘 ∈ {0, 1, 2, . . . ,𝑚}. The base case 𝑘 = 0 is trivial. For the

induction step 𝑘 ↦→ 𝑘 + 1, we distinguish the two cases 𝑎𝑠𝑘 = 𝑏𝑠𝑘
and 𝑎𝑠𝑘 ≠ 𝑏𝑠𝑘 .

If 𝑎𝑠𝑘 = 𝑏𝑠𝑘 , then we have 𝑎𝑡 = 𝑏𝑡 for all 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1
) and hence

𝑑𝑡 (𝑎, 𝑏) = 𝑑𝑠𝑘 (𝑎, 𝑏) for all 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1
]. Moreover, we can apply

Lemma 1 and obtain

∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1
] : ∥𝑥𝑎 (𝑡) − 𝑥𝑏 (𝑡)∥ ≤ 𝑒 (𝑡−𝑠𝑘 )𝐾 ∥𝑥𝑎 (𝑠𝑘 ) − 𝑥𝑏 (𝑠𝑘 )∥ .

(3)

Plugging in (2) for 𝑡 = 𝑠𝑘 reveals that (2) holds for all 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1
]

as well.

If 𝑎𝑠𝑘 ≠ 𝑏𝑠𝑘 , then 𝑥𝑎 and 𝑥𝑏 follow different differential equations

in the interval 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1
]. We can, however, use the mean-value

theorem for vector-valued functions [11, Theorem 5.19] to obtain

∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1
] : ∥𝑥𝑎 (𝑡) − 𝑥𝑎 (𝑠𝑘 )∥ ≤ 𝑀 (𝑡 − 𝑠𝑘 ) and (4)

∀𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1
] : ∥𝑥𝑏 (𝑡) − 𝑥𝑏 (𝑠𝑘 )∥ ≤ 𝑀 (𝑡 − 𝑠𝑘 ). (5)

This, combinedwith the induction hypothesis, the equality𝑑𝑡 (𝑎, 𝑏) =
𝑑𝑠𝑘 (𝑎, 𝑏) + (𝑡 − 𝑠𝑘 ), and the inequalities 1 ≤ 𝑒𝑡𝐾 and 𝑒𝑠𝑘𝐾 ≤ 𝑒𝑡𝐾 ,
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implies

∥𝑥𝑎 (𝑡) − 𝑥𝑏 (𝑡)∥ ≤ ∥𝑥𝑎 (𝑡) − 𝑥𝑎 (𝑠𝑘 )∥
+ ∥𝑥𝑎 (𝑠𝑘 ) − 𝑥𝑏 (𝑠𝑘 )∥ + ∥𝑥𝑏 (𝑠𝑘 ) − 𝑥𝑏 (𝑡)∥

≤ 2𝑀 (𝑡 − 𝑠𝑘 ) + 2𝑀𝑒𝑠𝑘𝐾𝑑𝑠𝑘 (𝑎, 𝑏)

≤ 2𝑀𝑒𝑡𝐾 (𝑡 − 𝑠𝑘 ) + 2𝑀𝑒𝑡𝐾𝑑𝑠𝑘 (𝑎, 𝑏)

= 2𝑀𝑒𝑡𝐾
(
𝑑𝑡 (𝑎, 𝑏) − 𝑑𝑠𝑘 (𝑎, 𝑏)

)
+ 2𝑀𝑒𝑡𝐾𝑑𝑠𝑘 (𝑎, 𝑏)

= 2𝑀𝑒𝑡𝐾𝑑𝑡 (𝑎, 𝑏)
for all 𝑡 ∈ [𝑠𝑘 , 𝑠𝑘+1

]. This concludes the proof. □

We conclude this section with the remark that the (proof of

the) continuity property of Theorem 2 is very different from the

standard (proof of the) continuity property of controlled variables in

closed thresholded hybrid systems. Mode switches in such systems

are caused by the time evolution of the system itself, e.g., when

some controlled variable exceeds some value. Consequently, such

systems can be described by means of a single ODE system with

discontinuous righthand side [6].

By contrast, in our hybrid systems, the mode switches are solely

caused by changes of digital inputs that are externally controlled:

For every possible pattern of the digital inputs, there is a dedicated

ODE system that controls the analog output. Consequently, the time

evolution of the output now also depends on the time evolution of

the inputs. Proving the continuity of the (discretized) output w.r.t.

different (but close, w.r.t. some metric) digital input signals requires

relating the output of different ODE systems.

2.2 Continuity of thresholding
For a real number 𝜉 ∈ R and a function 𝑥 : [𝑎, 𝑏] → R, denote by

Θ𝜉 (𝑥) the thresholded version of 𝑥 defined by

Θ𝜉 (𝑥) : [𝑎, 𝑏] → {0, 1}, Θ𝜉 (𝑥) (𝑡) =
{

0 if 𝑥 (𝑡) ≤ 𝜉,

1 if 𝑥 (𝑡) > 𝜉 .
(6)

Lemma 3. Let 𝜉 ∈ R and let 𝑥 : [𝑎, 𝑏] → R be a continuous
strictly monotonic function with 𝑥 (𝑏) = 𝜉 . Then, for every 𝜀 > 0, there
exists a 𝛿 > 0 such that, for every continuous function𝑦 : [𝑎, 𝑏] → R,
the condition ∥𝑥 − 𝑦∥∞ < 𝛿 implies ∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥1 < 𝜀.

Proof. We show the lemma for the case that 𝑥 is strictly in-

creasing. The proof for strictly decreasing 𝑥 is analogous.

Set 𝜒 = 𝑥 (𝑎). Since 𝑥 is bijective onto the interval [𝜒, 𝜉], it
has an inverse function 𝑥−1

: [𝜒, 𝜉] → [𝑎, 𝑏]. The inverse func-
tion 𝑥−1

is continuous because the domain [𝑎, 𝑏] is compact [11,

Theorem 4.17].

The relation 𝑡 ≤ 𝑥−1 (𝜉 − 𝛿) implies 𝑥 (𝑡) + 𝛿 ≤ 𝜉 . Hence, if

∥𝑥 −𝑦∥∞ < 𝛿 , then 𝑦 (𝑡) ≤ 𝑥 (𝑡) + 𝛿 ≤ 𝜉 for all 𝑡 ≤ 𝑥−1 (𝜉 − 𝛿). This
means that Θ𝜉 (𝑦) (𝑡) = 0 for all 𝑡 ≤ 𝑥−1 (𝜉 − 𝛿), so 𝑡 > 𝑥−1 (𝜉 − 𝛿)
for every 𝑡 ∈ [𝑎, 𝑏] where Θ𝜉 (𝑦) (𝑡) = 1.

By assumption, we have Θ𝜉 (𝑥) (𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏]. Thus,
∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥1 = 𝜆

(
{𝑡 ∈ [0,𝑇 ] | Θ𝜉 (𝑦) = 1}

)
= 𝜆

(
{𝑡 ∈ [0,𝑇 ] | 𝑦 (𝑡) > 𝜉}

)
≤ 𝑏 − 𝑥−1 (𝜉 − 𝛿).

(7)

Note that continuity of 𝑦 is sufficient to ensure that the set in (7)

is measurable. Since 𝑥−1
is continuous, we have 𝑥−1 (𝜉 − 𝛿) →

𝑥−1 (𝜉) = 𝑏 as 𝛿 → 0. In particular, for every 𝜀 > 0, there exists a

𝛿 > 0 such that 𝑏 − 𝑥−1 (𝜉 − 𝛿) < 𝜀. This concludes the proof. □

The following Lemma 4 shows that we can drop the assumption

𝑥 (𝑏) = 𝜉 in Lemma 3:

Lemma 4. Let 𝜉 ∈ R and let 𝑥,𝑦 : [𝑎, 𝑏] → R be two continuous
functions where 𝑥 is strictly monotonic. Then, for every 𝜀 > 0, there
exists a 𝛿 > 0 such that ∥𝑥 −𝑦∥∞ < 𝛿 implies ∥Θ𝜉 (𝑥) −Θ𝜉 (𝑦)∥1 < 𝜀.

Proof. We again show the lemma for the case that 𝑥 is strictly

increasing. The proof for strictly decreasing 𝑥 is analogous.

Let 𝜀 > 0. We distinguish three cases:

(i) If 𝑥 (𝑏) < 𝜉 , then we have Θ𝜉 (𝑥) (𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏].
Choosing 𝛿 = 𝜉 − 𝑥 (𝑏), we deduce 𝑦 (𝑡) < 𝑥 (𝑡) + 𝛿 ≤ 𝑥 (𝑏) + 𝜉 −
𝑥 (𝑏) = 𝜉 for all 𝑡 ∈ [𝑎, 𝑏] whenever ∥𝑥 − 𝑦∥∞ < 𝛿 . Hence, we get

Θ𝜉 (𝑦) (𝑡) = 0 for all 𝑡 ∈ [𝑎, 𝑏] and thus ∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥1 = 0 < 𝜀.

(ii) If 𝑥 (𝑎) > 𝜉 , then we can choose 𝛿 = 𝑥 (𝑎) − 𝜉 and get

Θ𝜉 (𝑦) (𝑡) = Θ𝜉 (𝑥) (𝑡) = 1 for all 𝑡 ∈ [𝑎, 𝑏] whenever ∥𝑥 − 𝑦∥∞ < 𝛿 .

In particular, ∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥1 = 0 < 𝜀.

(iii) If 𝑥 (𝑎) ≤ 𝜉 ≤ 𝑥 (𝑏), then there exists a unique 𝑐 ∈ [𝑎, 𝑏]
with 𝑥 (𝑐) = 𝜉 . Applying Lemma 3 on the restriction of 𝑥 on

the interval [𝑎, 𝑐], we get the existence of a 𝛿1 > 0 such that

∥𝑥 − 𝑦∥ [𝑎,𝑐 ],∞ < 𝛿1 implies ∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥ [𝑎,𝑐 ],1 < 𝜀/2; herein,

∥·∥ [𝑎,𝑐 ],∞ and ∥·∥ [𝑎,𝑐 ],1 denote the supremum-norm and the 1-norm

on the interval [𝑎, 𝑐], respectively. Applying Lemma 3 on the restric-

tion of 𝑥 on the interval [𝑐, 𝑏] after the coordinate transformation

𝑡 ↦→ −𝑡 yields the existence of a 𝛿2 > 0 such that ∥𝑥−𝑦∥ [𝑐,𝑏 ],∞ < 𝛿2

implies ∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥ [𝑐,𝑏 ],1 < 𝜀/2. Setting 𝛿 = min{𝛿1, 𝛿2}, we
thus get ∥Θ𝜉 (𝑥)−Θ𝜉 (𝑦)∥ [𝑎,𝑏 ],1 = ∥Θ𝜉 (𝑥)−Θ𝜉 (𝑦)∥ [𝑎,𝑐 ],1+∥Θ𝜉 (𝑥)−
Θ𝜉 (𝑦)∥ [𝑐,𝑏 ],1 < 𝜀/2 + 𝜀/2 = 𝜀 whenever ∥𝑥 − 𝑦∥ [𝑎,𝑏 ],∞ < 𝛿 . □

The following Theorem 5 shows that the mapping 𝑥 ↦→ Θ𝜉 (𝑥) is
continuous for a given function 𝑥 , provided that 𝑥 has only finitely

many local optima, i.e., points where 𝑥 ′ (𝑡) = 0:

Theorem 5. Let 𝜉 ∈ R and let 𝑥,𝑦 : [0,𝑇 ] → R be two differen-
tiable functions. Assume that 𝑥 has only finitely many local optima.
Then, for every 𝜀 > 0, there exists a 𝛿 > 0 such that ∥𝑥 −𝑦∥∞ < 𝛿 im-
plies ∥Θ𝜉 (𝑥) −Θ𝜉 (𝑦)∥1 < 𝜀. Consequently, the mapping 𝑥 ↦→ Θ𝜉 (𝑥)
is continuous.

Proof. LetN = {𝑡 ∈ [0,𝑇 ] | 𝑥 has a local optimum at 𝑡}∪{0,𝑇 },
which is finite by assumption, and 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑚 be

the increasing enumeration of N . By the mean-value theorem,

the function 𝑥 is strictly monotonic in every interval [𝑡𝑘 , 𝑡𝑘+1
] for

𝑘 ∈ {0, 1, 2, . . . ,𝑚 − 1}.
Let 𝜀 > 0. Applying Lemma 4 to the restriction of 𝑥 on each of

the intervals [𝑡𝑘 , 𝑡𝑘+1
], we get the existence of 𝛿𝑘 > 0 such that

∥𝑥−𝑦∥ [𝑡𝑘 ,𝑡𝑘+1 ],∞ < 𝛿𝑘 implies ∥Θ𝜉 (𝑥)−Θ𝜉 (𝑦)∥ [𝑡𝑘 ,𝑡𝑘+1 ],1 < 𝜀/𝑚 for

each 𝑘 ∈ {0, 1, 2, . . . ,𝑚 − 1}. Setting 𝛿 = min{𝛿0, 𝛿1, 𝛿2, . . . , 𝛿𝑚−1},
we thus obtain

∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥ [0,𝑇 ],1 =

𝑚−1∑︁
𝑘=0

∥Θ𝜉 (𝑥) − Θ𝜉 (𝑦)∥ [𝑡𝑘 ,𝑡𝑘+1 ],1

<

𝑚−1∑︁
𝑘=0

𝜀/𝑚 = 𝜀

(8)

whenever ∥𝑥 − 𝑦∥ [0,𝑇 ],∞ < 𝛿 . □
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3 CONTINUITY OF DIGITIZED HYBRID GATE
To prepare for our general result about the continuity of hybrid

gate models, we will first (re)prove the continuity of IDM channels

as shown in Fig. 2, which has been established by a quite tedious

direct proof in [8]. In our notation, an IDM channel consists of:

• A nonnegative minimum delay 𝛿min ≥ 0 and a delay func-

tion Δ𝛿min
(𝑠) that maps the binary input signal 𝑖𝑎 , aug-

mented with the left-sided limit 𝑖𝑎 (0−) as the initial value1
that can be different from 𝑖𝑎 (0), to the binary signal 𝑖𝑑 =

Δ𝛿min
(𝑖𝑎), defined by

Δ𝛿min
(𝑖𝑎) (𝑡) =

{
𝑖𝑎 (0−) if 𝑡 < 𝛿min

𝑖𝑎 (𝑡 − 𝛿min) if 𝑡 ≥ 𝛿min .
(9)

• An open set 𝑈 ⊆ R𝑛 , where 𝜋1 [𝑈 ] represents the analog
output signal and 𝜋𝑘 [𝑈 ], 𝑘 = {2, 3, . . . , 𝑛}, specifies the
internal state variables of the model. In this fashion,

2
we

presume that 𝜋1 [𝑈 ] = (0, 1), i.e., the range of output signals
is contained in the interval (0, 1).

• Two bounded functions 𝑓↑, 𝑓↓ : R × 𝑈 → R𝑛 with the

following properties:

– 𝑓↑, 𝑓↓ are continuous for (𝑡, 𝑥) ∈ [0,𝑇 ] × 𝑈 , for any
0 < 𝑇 < ∞, and Lipschitz continuous in 𝑈 , which

entails that every trajectory 𝑥 of the ODEs
𝑑
𝑑𝑡
𝑥 (𝑡) =

𝑓↑ (𝑡, 𝑥 (𝑡)) and 𝑑
𝑑𝑡
𝑥 (𝑡) = 𝑓↓ (𝑡, 𝑥 (𝑡)) with any initial

value 𝑥 (0) ∈ 𝑈 satisfies 𝑥 (𝑡) ∈ 𝑈 for all 𝑡 ∈ [0,𝑇 ],
recall Section 2.1.

– for no trajectory 𝑥 of the ODEs
𝑑
𝑑𝑡
𝑥 (𝑡) = 𝑓↑ (𝑡, 𝑥 (𝑡))

and
𝑑
𝑑𝑡
𝑥 (𝑡) = 𝑓↓ (𝑡, 𝑥 (𝑡)) with initial value 𝑥 (0) ∈ 𝑈

does 𝜋1 ◦ 𝑥 have infinitely many local optima, i.e.,

critical points with (𝜋1 ◦ 𝑥)′ (𝑡) = 0.

• An initial value 𝑥0 ∈ 𝑈 , with 𝑥0 = 𝑓↑ if 𝑖𝑎 (0−) = 1 and

𝑥0 = 𝑓↓ if 𝑖𝑎 (0−) = 0.

• A mode-switch signal 𝑎 : [0,𝑇 ] → {𝑓↑, 𝑓↓} defined by

setting 𝑎(𝑡) = 𝑓↑ if 𝑖𝑑 (𝑡) = 1 and 𝑎(𝑡) = 𝑓↓ if 𝑖𝑑 (𝑡) = 0.

• The analog output signal 𝑜𝑎 = 𝑥𝑎 , i.e., the output signal

for 𝑎 and initial value 𝑥0.

• A threshold voltage 𝜉 = 𝑉𝑡ℎ ∈ (0, 1) for the comparator

that finally produces the binary output signal 𝑜𝑑 = Θ𝜉 (𝑜𝑎).
By combining the results from Section 2.1 and 2.2, we obtain:

Theorem 6. The channel function of an IDM channel, which maps
from the input signal 𝑖𝑎 to the output signal 𝑜𝑑 , is continuous with
respect to the 1-norm on the interval [0,𝑇 ].

Proof. The mapping from 𝑖𝑎 to 𝑜𝑑 is continuous as the concate-

nation of continuous mappings:

• The mapping from 𝑖𝑎 ↦→ 𝑖𝑑 is continuous since Δ𝛿min
is

trivially continuous for input and output binary signals

with the 1-norm.

• The mapping 𝑖𝑑 ↦→ 𝑎 is a continuous mapping from the

set of signals equipped with the 1-norm to the set of mode-

switch signals equipped with the metric𝑑𝑇 , since the points

1
In [8], this initial value of a signal was encoded by extending the time domain to the

wholeR and using 𝑖𝑎 (−∞) .
2
In real circuits, the interval (0, 1) typically needs to be replaced by (0,𝑉𝐷𝐷 ) .

of discontinuity of 𝑎 are the points where 𝑖𝑑 is discontinu-

ous.

• By Theorem 2, the mapping 𝑎 ↦→ 𝑥𝑎 is a continuous map-

ping from the set of mode-switch signals equipped with the

metric 𝑑𝑇 to the set of piecewise differentiable functions

[0,𝑇 ] → 𝑈 equipped with the supremum-norm.

• The mapping 𝑥𝑎 ↦→ 𝜋1 ◦ 𝑥𝑎 is a continuous mapping from

the set of piecewise differentiable functions [0,𝑇 ] → 𝑈

equipped with the supremum-norm to the set of piecewise

differentiable functions [0,𝑇 ] → (0, 1) equipped with the

supremum-norm. Since ∥(𝑥1, . . . , 𝑥𝑛)∥1 = ∥𝑥1∥1 + · · · +
∥𝑥𝑛 ∥1 for every 𝑥 ∈ 𝑈 , this follows from ∥𝜋1 (𝑥)∥1 ≤ ∥𝑥 ∥1.

• By Theorem 5, the mapping 𝜋1 ◦ 𝑥𝑎 ↦→ Θ𝜉 (𝜋1 ◦ 𝑥𝑎) is a
continuous mapping from the set of piecewise differentiable

functions [0,𝑇 ] → (0, 1) equipped with the supremum-

norm to the set of binary signals equipped with the 1-norm.

□

General digitized hybrid gates have 𝑐 ≥ 1 binary input signals

𝑖𝑎 = (𝑖1𝑎, . . . , 𝑖𝑐𝑎), augmented with initial values (𝑖1𝑎 (0−), . . . , 𝑖𝑐𝑎 (0−)),
and a single binary output signal 𝑜𝑑 , and are specified as follows:

Definition 3.1 (Digitized hybrid gate). A digitized hybrid gate

with 𝑐 inputs consists of:

• 𝑐 delay functions Δ𝛿 𝑗 (𝑠) with 𝛿 𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝑐 , that map

the binary input signal 𝑖
𝑗
𝑎 with initial value 𝑖

𝑗
𝑎 (0−) to the

binary signal 𝑖
𝑗

𝑑
= Δ𝛿 𝑗 (𝑖

𝑗
𝑎), defined by

Δ𝛿 𝑗 (𝑖
𝑗
𝑎) (𝑡) =

{
𝑖
𝑗
𝑎 (0−) if 𝑡 < 𝛿 𝑗

𝑖
𝑗
𝑎 (𝑡 − 𝛿 𝑗 ) if 𝑡 ≥ 𝛿 𝑗 .

(10)

• An open set 𝑈 ⊆ R𝑛 , where 𝜋1 [𝑈 ] represents the analog
output signal and 𝜋𝑘 [𝑈 ], 𝑘 = {2, 3, . . . , 𝑛}, specifies the
internal state variables of the model.

• A set 𝐹 of bounded functions 𝑓 ℓ : R ×𝑈 → R𝑛 , with the

following properties:

– 𝑓 ℓ is continuous for (𝑡, 𝑥) ∈ [0,𝑇 ]×𝑈 , for any 0 < 𝑇 <

∞, and Lipschitz continuous in𝑈 , with a common Lip-

schitz constant, which entails that every trajectory 𝑥

of the ODE
𝑑
𝑑𝑡
𝑥 (𝑡) = 𝑓 ℓ (𝑡, 𝑥 (𝑡)) with any initial value

𝑥 (0) ∈ 𝑈 satisfies 𝑥 (𝑡) ∈ 𝑈 for all 𝑡 ∈ [0,𝑇 ].
– for no trajectory 𝑥 of the ODEs

𝑑
𝑑𝑡
𝑥 (𝑡) = 𝑓 ℓ (𝑡, 𝑥 (𝑡))

with initial value 𝑥 (0) ∈ 𝑈 does 𝜋1 ◦ 𝑥 have infin-

itely many local optima, i.e., critical points with (𝜋1 ◦
𝑥)′ (𝑡) = 0.

• A mode-switch signal 𝑎 : [0,𝑇 ] → 𝐹 , which obtained by

a continuous choice function 𝑎𝑐 acting on 𝑖
1

𝑑
(𝑡), . . . , 𝑖𝑐

𝑑
(𝑡),

i.e., 𝑎(𝑡) = 𝑎𝑐 (𝑖1𝑑 (𝑡), . . . , 𝑖
𝑐
𝑑
(𝑡)).

• An initial value 𝑥0 ∈ 𝑈 , which must correspond to the mode

selected by 𝑎𝑐 (𝑖1𝑎 (0−), . . . , 𝑖𝑐𝑎 (0−)).
• The analog output signal 𝑜𝑎 = 𝑥𝑎 , i.e., the output signal

for 𝑎 and initial value 𝑥0.

• A threshold voltage 𝜉 = 𝑉𝑡ℎ ∈ (0, 1) for the comparator

that finally produces the binary output signal 𝑜𝑑 = Θ𝜉 (𝑜𝑎).
By essentially the same proof as for Theorem 6, we obtain:

Theorem 7. The gate function of a digitized hybrid gate with 𝑐
inputs, which maps from the vector of input signals 𝑖𝑎 = (𝑖1𝑎, . . . , 𝑖𝑐𝑎)
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to the output signal 𝑜𝑑 , is continuous with respect to the 1-norm on
the interval [0,𝑇 ].

4 COMPOSING GATES IN CIRCUITS
In this section, we will first compose digital circuits from digitized

hybrid gates and reason about their executions. More specifically, it

will turn out that, under certain conditions ensuring the causality

of every composed gate, the resulting circuit will exhibit a unique

execution, for every given execution of its inputs. This uniqueness

is mandatory for building digital dynamic timing simulation tools.

Moreover, we adapt the proof that no circuit with IDM channels

can solve the bounded SPF problem utilized in [8] to our setting:

Using the continuity result of Theorem 7, we will prove that no

circuit with digitized hybrid gates can solve bounded SPF. Since

unbounded SPF can be solved with IDM channels, which are simple

instances of digitized hybrid gate models, faithfulness follows.

4.1 Executions of circuits
Circuits. Circuits are obtained by interconnecting a set of input

ports and a set of output ports, forming the external interface of a

circuit, and a finite set of digitized hybrid gates. We constrain the

way components are interconnected in a natural way, by requiring

that any gate input, channel input and output port is attached to

only one input port, gate output or channel output, respectively.

Formally, a circuit is described by a directed graph where:

C1) A vertex Γ can be either a circuit input port, a circuit output
port, or a digitized hybrid gate.

C2) The edge (Γ, 𝐼 , Γ′) represents a 0-delay connection from the

output of Γ to a fixed input 𝐼 of Γ′.
C3) Circuit input ports have no incoming edges.

C4) Circuit output ports have exactly one incoming edge and

no outgoing one.

C5) A 𝑐-ary gate𝐺 has a single output and 𝑐 inputs 𝐼1, . . . , 𝐼𝑐 , in

a fixed order, fed by incoming edges from exactly one gate

output or input port.

Executions. An execution of a circuit C is a collection of binary

signals 𝑠Γ defined on [0,∞) for all vertices Γ of C that respects all

the gate functions and input port signals. Formally, the following

properties must hold:

E1) If 𝑖 is a circuit input port, there are no restrictions on 𝑠𝑖 .

E2) If 𝑜 is a circuit output port, then 𝑠𝑜 = 𝑠𝐺 , where 𝐺 is the

unique gate output connected to 𝑜 .

E3) If vertex 𝐺 is a gate with 𝑐 inputs 𝐼1, . . . , 𝐼𝑐 , ordered ac-

cording to the fixed order condition C5), and gate func-

tion 𝑓𝐺 , then 𝑠𝐺 = 𝑓𝐺 (𝑠Γ1
, . . . , 𝑠Γ𝑐 ), where Γ1, . . . , Γ𝑐 are the

vertices the inputs 𝐼1, . . . , 𝐼𝑐 of𝐶 are connected to via edges

(Γ1, 𝐼1,𝐺), · · · , (Γ𝑑 , 𝐼𝑐 ,𝐺).
The above definition of an execution of a circuit is “existential”,

in the sense that it only allows checking for a given collection of

signals whether it is an execution or not: For every hybrid gate in

the circuit, it specifies the gate output signal, given a fixed vector

of input signals, all defined on the time domain 𝑡 ∈ [0,∞). A priori,

this does not give an algorithm to construct executions of circuits,

in particular, when they contain feedback loops. Indeed, the parallel

composition of general hybrid automata may lead to non-unique

executions and bizarre timing behaviors known as Zeno, where an
infinite number of transitions may occur in finite time [10].

To avoid such behaviors in our setting, we require all discretized

hybrid gates in a circuit to be strictly causal:

Definition 4.1 (Strict causality). A digitized hybrid gate 𝐺 with 𝑐

inputs is strictly causal, if the pure delays 𝛿 𝑗 for every 1 ≤ 𝑗 ≤ 𝑐

are positive. Let 𝛿𝐶
min

> 0 be the minimal pure delay of any input

of any gate in circuit 𝐶 .

We proceed with defining input-output causality for gates, which

is based on signal transitions. Every binary signal can equivalently

be described by a sequence of transitions: A falling transition at

time 𝑡 is the pair (𝑡, 0), a rising transition at time 𝑡 is the pair (𝑡, 1).

Definition 4.2 (Input-output causality). The output transition

(𝑡, .) ∈ 𝑠𝐺 of a gate G is caused by the transition (𝑡 ′, .) ∈ 𝑠 𝑗
𝐺
on in-

put 𝐼 𝑗 of𝐺 , if (𝑡, .) occurs in the mode 𝑎𝑐 (𝑖1𝑑 (𝑡
+), . . . , 𝑖𝑐

𝑑
(𝑡+)), where

𝑖
𝑗

𝑑
(𝑡+) is the pure-delay shifted input signal at input 𝐼 𝑗 at the last

mode switching time 𝑡+ ≤ 𝑡 (see (10)) and (𝑡 ′, .) is the last transition
in 𝑠

𝑗

𝐺
before or at time 𝑡+−𝛿 𝑗 , i.e., �(𝑡 ′′, .) ∈ 𝑠 𝑗𝐺 for 𝑡 ′ < 𝑡 ′′ ≤ 𝑡+−𝛿 𝑗 .

We also assume that the output transition (𝑡, .) ∈ 𝑠𝐺 causally
depends on every transition in 𝑠

𝑗

𝐺
before or at time 𝑡+ − 𝛿 𝑗 .

Strictly causal gates satisfy the following obvious property:

Lemma 4.3. If some output transition (𝑡, .) ∈ 𝑠𝐺 of a strictly causal
digitized hybrid gate 𝐺 in a circuit 𝐶 causally depends on its input
transition (𝑡 ′, .) ∈ 𝑠 𝑗

𝐺
, then 𝑡 − 𝑡 ′ ≥ 𝛿 𝑗 .

The following Theorem 4.4 shows that every circuit made up of

strictly causal gates has a unique execution, defined for 𝑡 ∈ [0,∞).

Theorem 4.4 (Uniqe execution). Every circuit 𝐶 made up of
finitely many strictly causal digitized hybrid gates has a unique
execution, which either consists of finitely many transitions only or
else requires [0,∞) as its time domain.

Proof. We will inductively construct this unique execution by

a sequence of iterations ℓ ≥ 1 of a simple deterministic simulation

algorithm, which determines the prefix of the sought execution up

to time 𝑡ℓ . Iteration ℓ deals with transitions occurring at time 𝑡ℓ ,

starting with 𝑡1 = 0. To every transition 𝑒 generated throughout its

iterations, we also assign a causal depth 𝑑 (𝑒) that gives the maxi-

mum causal distance to an input port: 𝑑 (𝑒) = 0 if 𝑒 is a transition at

some input port, and 𝑑 (𝑒) is the maximum of 1 + 𝑑 (𝑒 𝑗 ), 1 ≤ 𝑗 ≤ 𝑐 ,
for every transition added at the output of a 𝑐-ary gate caused by

transitions 𝑒 𝑗 at its inputs.

Induction basis ℓ = 1: At the beginning of iteration 1, which

deals with all transitions occurring at time 𝑡1 = 0, all gates are in

their initial mode, which is determined by the initial values of their

inputs. They are either connected to input ports, in which case

𝑠𝑖 (0−) is used, or to the output port of some gate 𝐺 , in which case

𝑠𝐺 (0) (determined by the initial mode of 𝐺) is used. Depending

on whether 𝑠𝑖 (0−) = 𝑠𝑖 (0) or not, there is also an input transition

(0, 𝑠𝑖 (0)) ∈ 𝑠𝑖 or not. All transitions in the so generated execution

prefix [0, 𝑡1] = [0, 0] have a causal depth of 0.

Still, the transitions that have happened by time 𝑡1 may cause

additional potential future transitions. They are called future transi-

tions, because they occur only after 𝑡1, and potential because they
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need not occur in the final execution. In particular, if there is an

input transition (0, 𝑠𝑖 (0)) ∈ 𝑠𝑖 , it may cause a mode switch of every

gate𝐺 that is connected to the input port 𝑖 . Due to Lemma 4.3, how-

ever, such a mode switch, and hence each of the output transitions 𝑒

that may occur during that new mode (which all are assigned a

causal depth 𝑑 (𝑒) = 1), of 𝐺 can only happen at or after time

𝑡1 + 𝛿𝐶
min

. In addition, the initial mode of any gate 𝐺 that is not

mode switched may also cause output transitions 𝑒 at arbitrary

times 𝑡 > 0, which are assigned a causal depth 𝑑 (𝑒) = 0. Since

at most finitely many critical points may exist for every mode’s

trajectory, it follows that at most finitely many such future potential

transitions could be generated in each of the finitely many gates

in the circuit. Let 𝑡2 > 𝑡1 denote the time of the closest transi-

tion among all input port transitions and all the potential future

transitions just introduced.

Induction step ℓ → ℓ + 1: Assume that the execution prefix for

[0, 𝑡ℓ ] has already been constructed in iterations 1, . . . , ℓ , with at

most finitely many potential future transitions occurring after 𝑡ℓ . If

the latter set is empty, then the execution of the circuit has already

been determined completely. Otherwise, let 𝑡ℓ+1 > 𝑡ℓ be the closest

future transition time.

During iteration ℓ + 1, all transitions occurring at time 𝑡ℓ+1 are

dealt with, exactly as in the base case: Any transition 𝑒 , with causal

depth 𝑑 (𝑒), happening at 𝑡ℓ+1 at a gate output or at some input port

may cause a mode switch of every gate 𝐺 that is connected to it.

Due to Lemma 4.3, such a mode switch, and hence each of the at

most finitely many output transitions 𝑒′ occurring during that new
mode (which all are assigned a causal depth 𝑑 (𝑒′) = 𝑑 (𝑒) + 1), of 𝐺

can only happen at or after time 𝑡ℓ+1 +𝛿𝐶
min

. In addition, the at most

finitely many potential future transitions w.r.t. 𝑡ℓ of all gates that

have not been mode-switched and actually occur at times greater

than 𝑡ℓ+1 are retained, along with their assigned causal depth, as

potential future transitions w.r.t. 𝑡ℓ+1. Overall, we again end up with

at most finitely many potential future transitions, which completes

the induction step.

To complete our proof, we only need to argue that limℓ→∞ 𝑡ℓ =
∞ for the case where the iterations do not stop at some finite ℓ .

This follows immediately from the fact that, for every 𝑘 ≥ 1, there

must be some iteration ℓ ≥ 1 such that 𝑡ℓ ≥ 𝑘𝛿𝐶
min

. If this was

not the case, there must be some iteration after which no further

mode switch of any gate takes place. This would cause the set of

potential future transitions to shrink in every subsequent iteration,

however, and thus the simulation algorithm to stop, which provides

the required contradiction. □

From the execution construction, we also immediately get:

Lemma 4.5. For all ℓ ≥ 1, (a) the simulation algorithm never
assigns a causal depth larger than ℓ to a transition generated in
iteration ℓ , and (b) at the end of iteration ℓ the sequence of causal
depths of transitions in 𝑠Γ for 𝑡 ∈ [0, 𝑡ℓ ] is nondecreasing for all
components Γ.

4.2 Impossibility of short-pulse filtration
The results of the previous subsection allow us to adapt the impos-

sibility proof of [8] to our setting. We start with the the definition

of the SPF problem:

Short-Pulse Filtration. A signal contains a pulse of length Δ
at time 𝑇0, if it contains a rising transition at time 𝑇0, a falling

transition at time 𝑇0 + Δ, and no transition in between. The zero
signal has the initial value 0 and does not contain any transition. A

circuit solves Short-Pulse Filtration (SPF), if it fulfills all of:

F1) The circuit has exactly one input port and exactly one out-

put port. (Well-formedness)
F2) If the input signal is the zero signal, then so is the output

signal. (No generation)
F3) There exists an input pulse such that the output signal is

not the zero signal. (Nontriviality)
F4) There exists an 𝜀 > 0 such that for every input pulse the

output signal never contains a pulse of length less than or

equal to 𝜀. (No short pulses)

We allow the circuit to behave arbitrarily if the input signal is not

a single pulse or the zero signal.

A circuit solves bounded SPF if additionally:

F5) There exists a 𝐾 > 0 such that for every input pulse the

last output transition is before time 𝑇0 + Δ + 𝐾 , where 𝑇0 is

the time of the first input transition. (Bounded stabilization
time)

A circuit is called a forward circuit if its graph is acyclic. Forward

circuits are exactly those circuits that do not contain feedback loops.

Equipped with the continuity of digitized hybrid gates and the fact

that the composition of continuous functions is continuous, it is not

too difficult to prove that the inherently discontinuous SPF problem

cannot be solved with forward circuits.

Theorem 4.6. No forward circuit solves bounded SPF.

Proof. Suppose that there exists a forward circuit that solves

bounded SPF with stabilization time bound 𝐾 . Denote by 𝑠Δ its

output signal when feeding it a Δ-pulse at time 0 as the input.

Because 𝑠Δ in forward circuits is a finite composition of continuous

functions by Theorem 7, ∥𝑠Δ∥ [0,𝑇 ],1 depends continuously on Δ,
for any 𝑇 .

By the nontriviality condition (F3) of the SPF problem, there

exists some Δ0 such that 𝑠Δ0
is not the zero signal. Set𝑇 = 2Δ0 +𝐾 .

Let 𝜀 > 0 be smaller than both Δ0 and ∥𝑠Δ0
∥ [0,𝑇 ],1. We show a

contradiction by finding some Δ such that 𝑠Δ either contains a pulse

of length less than 𝜀 (contradiction to the no short pulses condition

(F4)) or contains a transition after time Δ + 𝐾 (contradicting the

bounded stabilization time condition (F5)).

Since ∥𝑠Δ∥ [0,𝑇 ],1 → 0 as Δ → 0 by the no generation condition

(F2) of SPF, there exists a Δ1 < Δ0 such that ∥𝑠Δ1
∥ [0,𝑇 ],1 = 𝜀

by the intermediate value property of continuity. By the bounded

stabilization time condition (F5), there are no transitions in 𝑠Δ1
after

time Δ1 +𝐾 . Hence, 𝑠Δ1
is 0 after this time because otherwise it is 1

for the remaining duration 𝑇 − (Δ1 + 𝐾) > Δ0 > 𝜀, which would

mean that ∥𝑠Δ1
∥ [0,𝑇 ],1 > 𝜀. Consequently, there exists a pulse in 𝑠Δ1

before time Δ1+𝐾 . But any such pulse is of length at most 𝜀 because

∥𝑠Δ1
∥ [0,Δ1+𝐾 ],1 ≤ ∥𝑠Δ1

∥ [0,𝑇 ],1 = 𝜀. This is a contradiction to the no

short pulses condition (F4). □

We next show how to simulate (part of) an execution of an

arbitrary circuit C by a forward circuit C′
generated from C by the
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Figure 3: Circuit C (left) and C3 (𝑂) (right) under the as-
sumption that the gate 𝐵 has initial value 0. It is 𝑧 (𝑋0) = 0,
𝑧 (𝐼 ) = 𝑧 (𝐴(2) ) = ∞, 𝑧 (𝐵 (1) ) = 1, 𝑧 (𝐵 (2) ) = 2, 𝑧 (𝐶 (3) ) = 3, and
𝑧 (𝑂 (3) ) = 3.

unrolling of feedback loops. Intuitively, the deeper the unrolling,

the longer the time C′
behaves as C.

Definition 4.7. Let C be a circuit, 𝑉 a vertex of C, and 𝑘 ≥ 0.

We define the 𝑘-unrolling of C from 𝑉 , denoted by C𝑘 (𝑉 ), to be a
directed acyclic graph with a single sink, constructed as follows:

The unrolling C𝑘 (𝐼 ) from input port 𝐼 is just a copy of that

input port. The unrolling C𝑘 (𝑂) from output port𝑂 with incoming

channel 𝐶 and predecessor 𝑉 comprises a copy of the output port

𝑂 (𝑘 )
and the unrolled circuit C𝑘 (𝑉 ) with its sink connected to𝑂 (𝑘 )

by an edge.

The 0-unrolling C0 (𝐵) from hybrid gate 𝐵 is a trivial Boolean

gate 𝑋𝑣 without inputs and the constant output value 𝑣 equal to

𝐵’s initial digitized output value. For 𝑘 > 0, the 𝑘-unrolling C𝑘 (𝐵)
from gate 𝐵 comprises an exact copy of that gate 𝐵 (𝑘 )

. Additionally,

for every incoming edge of 𝐵 from 𝑉 in C, it contains the circuit
C𝑘−1

(𝑉 ) with its sink connected to 𝐵 (𝑘 )
. Note that all copies of the

same input port are considered to be the same.

To each component Γ in C𝑘 (𝑉 ), we assign a value 𝑧 (Γ) ∈ N0 ∪
{∞} as follows: 𝑧 (Γ) = ∞ if Γ has no predecessor (in particular,

is an input port) and Γ ∉ {𝑋0, 𝑋1}. Moreover, 𝑧 (𝑋0) = 𝑧 (𝑋1) = 0,

𝑧 (𝑉 ) = 𝑧 (𝑈 ) if 𝑉 is an output port connected by an edge to 𝑈 , and

𝑧 (𝐵) = min𝑐∈𝐸𝐵 {1+𝑧 (𝑐)} if 𝐵 is a gate with its inputs connected to

the components in the set 𝐸𝐵 . Fig. 3 shows an example of a circuit

and an unrolled circuit with its 𝑧 values.

Noting that, for every component Γ in𝐶𝑘 (𝑉 ), 𝑧 (Γ) is the number

of gates on the shortest path from an 𝑋𝑣 node to Γ, or 𝑧 (Γ) = ∞ if

no such path exists, we immediately get:

Lemma 4.8. The 𝑧-value assigned to the sink vertex 𝑉 (𝑘 ) of a
𝑘-unrolling C𝑘 (𝑉 ) of C from 𝑉 satisfies 𝑧 (𝑉 (𝑘 ) ) ≥ 𝑘 .

Recalling the causal depths assigned to transitions during the

execution construction in Theorem 4.4, we are now in the position

to prove the result for a circuit simulated by an unrolled circuit.

Theorem 4.9. Let C be a circuit with input port 𝐼 and output
port 𝑂 that solves bounded SPF. Let C𝑘 (𝑂) be an unrolling of C, Γ a
component in C, and Γ′ a copy of Γ in C𝑘 (𝑂). For all input signals 𝑠𝐼
on 𝐼 , if a transition 𝑒 is generated for Γ by the execution construction
algorithm run on circuit C with input signal 𝑠𝐼 and 𝑑 (𝑒) ≤ 𝑧 (Γ′),
then 𝑒 is also generated for Γ′ by the algorithm run on circuit C𝑘 (𝑂)
with input signal 𝑠𝐼 ; and vice versa.

Proof. Assume that 𝑒 is the first transition violating the theo-

rem. The input signal is the same for both circuits, and the initial

digitized values of gates in C and both their copies in C𝑘 (𝑂) and the

𝑋𝑣 gates resulting from their 0-unrolling are equal as well. Hence,

𝑒 cannot be any such transition (added in iteration 1 only).

If 𝑒 was added to the output of a gate 𝐵 in either circuit, the

transition 𝑒′ resp. 𝑒′′ at one of its inputs that caused 𝑒 in C resp.

C𝑘 (𝑉 ) must have been different. These transitions 𝑒′ resp. 𝑒′′ must

come from the output of some other gate 𝐵1, and causally precede

𝑒 . Hence, by Definition 4.2, 𝑑 (𝑒) = 𝑑 (𝑒′) + 1, and by Lemma 4.5,

𝑑 (𝑒) ≥ 𝑑 (𝑒′′). Also by definition, 𝑧 (𝐵) = 𝑧 (𝐵1) + 1 in 𝐶𝑘 (𝑂). Since
𝑑 (𝑒) ≤ 𝑧 (𝐵) by assumption, we find 𝑑 (𝑒′) ≤ 𝑧 (𝐵1) and 𝑑 (𝑒′′) ≤
𝑧 (𝐵), so applying our theorem to 𝑒′ and 𝑒′′ yields a contradiction
to 𝑒 being the first violating transition. □

We can finally prove that bounded SPF is not solvable, even with

non-forward circuits.

Theorem 4.10. No circuit solves bounded SPF.

Proof. We first note that the impossibility of bounded SPF also

implies the impossibility of bounded SPF when restricting pulse

lengths to be at most some Δ0 > 0.

Since all transitions generated in the execution construction

Theorem 4.4 up to any bounded time 𝑡ℓ have bounded causal depth,

let 𝜁 be an upper bound on the causal depth of transitions up to

the SPF stabilization time bound Δ0 + 𝐾 . Then, by Theorem 4.9

and Lemma 4.8, the 𝜁 -unrolled circuit C𝜁 (𝑂) has the same output

transitions as the original circuit C up to time Δ0 + 𝐾 , and hence,

by definition of bounded SPF, the same transitions for all times. But

since C𝜁 (𝑂) is a forward circuit, it cannot solve bounded SPF by

Theorem 4.6, i.e., neither can C. □

5 APPLICATIONS
We next discuss three examples of thresholded mode-switched ODE

systems. For all non-closed systems, the proven continuity shows

that similar digital inputs lead to similar digital outputs.

We start with an introductory example from control theory, the

bang-bang heating controller for thermodynamic systems. Follow-

ing [9], let 𝑥 (𝑡) be the system’s temperature at time 𝑡 and ℎ(𝑡) be
the mode of the binary heating signal that can be off (0) or on (1).

With a pure delay 𝛿 > 0 for the heating to take effect, we assume

that the heat flow is described as

¤𝑥 =

{
−0.1𝑥 (𝑡) if ℎ(𝑡 − 𝛿) = 0

5 − 0.1𝑥 (𝑡) if ℎ(𝑡 − 𝛿) = 1

(11)

for the heating being off or on, respectively: the temperature falls

to 0 in the former case and approaches 50 degrees in the latter.

The heating signal is controlled by a bang-bang controller (with

hysteresis) with two threshold temperatures, 19 and 20 degrees.

It could be implemented by an ideal SR-latch, with pure delay 𝛿 ,

where the Set port (S) is driven by the inverted ¬Θ19 (𝑥), the reset
port (R) is driven by Θ21 (𝑥), and the output of the latch controlling

the heating mode signal ℎ.

In fact, digital circuits are a particularly rich and interesting

source of application examples in general. We will demonstrate this

by means of two hybrid gate models for a CMOS NOR gate (see Fig. 4
for the schematics), namely, the simple model proposed in [4] (as

an instance of an autonomous ODE model) and the advanced model

presented in [5] (as an instance of a non-autonomous ODE model).
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Figure 4: Transistor level implementation of the NOR gate.

The SR-latch from the previous example can be implemented via

two cross-coupled NOR gates.

5.1 Simple Hybrid Model
The simple hybrid gate model proposed in [4] replaces all transistors

in Fig. 4 by ideal zero-time switches, which are switched on and off

at the relevant input threshold voltage𝑉𝑡ℎ = 𝑉𝐷𝐷/2 crossing times.

More precisely, depending on whether the corresponding input is

1 or 0, every pMOS transistor is removed (𝑅 = ∞) resp. replaced by

a fixed resistor 𝑅 < ∞, and vice versa for an nMOS transistor. This

leads to the following system of coupled autonomous first-order

ODEs governing the analog trajectories of the gate’s output in the

respective mode:

• System (1, 1): 𝑉𝐴 = 1, 𝑉𝐵 = 1: If inputs 𝐴 and 𝐵 are 1,

both nMOS transistors are conducting and thus replaced by

resistors, causing the output 𝑂 to be discharged in parallel.

By contrast, 𝑁 is completely isolated and keeps its value.

This leads to the following ODEs:( d

d𝑡
𝑉𝑖𝑛𝑡 (𝑡)

d

d𝑡
𝑉𝑜𝑢𝑡 (𝑡)

)
=

(
𝑓1 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓2 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
=

(
0

−
(

1

𝐶𝑅3

+ 1

𝐶𝑅4

)
𝑉𝑜𝑢𝑡 (𝑡)

)
• System (1, 0): 𝑉𝐴 = 1, 𝑉𝐵 = 0: Since 𝑇1 and 𝑇4 are open,

node 𝑁 is connected to 𝑂 , and 𝑂 to GND. Both capacitors

have to be discharged over resistor 𝑅3, resulting in less

current that is available for discharging 𝐶 . One obtains:

( d

d𝑡
𝑉𝑖𝑛𝑡 (𝑡)

d

d𝑡
𝑉𝑜𝑢𝑡 (𝑡)

)
=

(
𝑓3 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓4 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
=

( −𝑉𝑖𝑛𝑡 (𝑡 )
𝐶𝑖𝑛𝑡𝑅2

+ 𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑖𝑛𝑡𝑅2

𝑉𝑖𝑛𝑡 (𝑡 )
𝐶𝑅2

−
(

1

𝐶𝑅2

+ 1

𝐶𝑅3

)
𝑉𝑜𝑢𝑡 (𝑡)

)
• System (0, 1): 𝑉𝐴 = 0, 𝑉𝐵 = 1: Opening transistors 𝑇2 and

𝑇3 again decouples the nodes 𝑁 and 𝑂 . We thus get

( d

d𝑡
𝑉𝑖𝑛𝑡 (𝑡)

d

d𝑡
𝑉𝑜𝑢𝑡 (𝑡)

)
=

(
𝑓5 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓6 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
=

(−𝑉𝑖𝑛𝑡 (𝑡 )
𝐶𝑖𝑛𝑡𝑅1

+ 𝑉𝐷𝐷

𝐶𝑖𝑛𝑡𝑅1

−𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅4

)
• System (0, 0): 𝑉𝐴 = 0, 𝑉𝐵 = 0: Closing both pMOS transis-

tors causes both capacitors to be charged over the same

resistor 𝑅1, similarly to system (1, 0). Thus( d

d𝑡
𝑉𝑖𝑛𝑡 (𝑡)

d

d𝑡
𝑉𝑜𝑢𝑡 (𝑡)

)
=

(
𝑓7 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓8 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
=

(−( 1

𝐶𝑖𝑛𝑡 (𝑡 )𝑅1

+ 1

𝐶𝑖𝑛𝑡 (𝑡 )𝑅2

)
𝑉𝑖𝑛𝑡 + 𝑉𝑜𝑢𝑡 (𝑡 )

𝐶𝑖𝑛𝑡𝑅2

+ 𝑉𝐷𝐷

𝐶𝑖𝑛𝑡𝑅1

𝑉𝑖𝑛𝑡 (𝑡 )
𝐶𝑅2

− 𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅2

)
Every 𝑓𝑖 , 𝑖 ∈ {1, . . . , 8}, is a mapping from 𝑈 = (0, 1)2 ⊆ R2

to

R, whereat 𝑈 is the vector of the voltages at the nodes 𝑁 and 𝑂 in

Fig. 4. Solving the above ODEs provides analytic expressions for

these voltage trajectories, which can even be inverted to obtain the

relevant gate delays. As it turned out in [4], although the model per-

fectly covers the MIS effects in the case of falling output transitions,

it fails to do so in the rising output transitions case. Nevertheless,

despite this accuracy shortcoming, the results of the present paper

imply that the model is faithful. More specifically, we obtain the

following theorem:

Theorem 5.1. For any 𝑖 ∈ {1, . . . , 8}, the mapping 𝑓𝑖 , defined
above, is Lipschitz continuous.

Consequently, we can instantiate Definition 3.1 with

𝑎𝑐 (𝑖𝐴𝑑 , 𝑖
𝐵
𝑑
) =



(
𝑓1 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓2 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
(𝑖𝐴
𝑑
, 𝑖𝐵
𝑑
) = (1, 1)(

𝑓3 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓4 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
(𝑖𝐴
𝑑
, 𝑖𝐵
𝑑
) = (1, 0)(

𝑓5 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓6 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
(𝑖𝐴
𝑑
, 𝑖𝐵
𝑑
) = (0, 1)(

𝑓7 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))
𝑓8 (𝑉𝑖𝑛𝑡 (𝑡),𝑉𝑜𝑢𝑡 (𝑡))

)
(𝑖𝐴
𝑑
, 𝑖𝐵
𝑑
) = (0, 0)

5.2 Advanced Hybrid Model
Unlike the simple hybrid model [4] outlined in the previous section,

the advanced hybrid gate model proposed in [5] covers all MIS

delay behaviors properly. It can be viewed as a generalization of

the simple model, in which switching-on the pMOS transistors is

not instantaneous but instead governed by a simple time evolution

function representing the Shichman-Hodges transistor model [12].

To be more specific, the idea is to replace the transistors with

time-variant resistors (see Fig. 5b), so that the values of 𝑅𝑖 (𝑡), 𝑖 ∈
{1, . . . , 4}, vary between some fixed on-resistance 𝑅𝑖 and the off-

resistance∞, according to the following functions:

𝑅on𝑖 (𝑡) = 𝛼𝑖

𝑡 − 𝑡on + 𝑅𝑖 ; 𝑡 ≥ 𝑡on, (12)

𝑅
off
𝑖

(𝑡) = ∞; 𝑡 ≥ 𝑡off . (13)

Herein, 𝛼𝑖 [Ω s] and on-resistance 𝑅𝑖 [Ω] are constant slope pa-

rameters; 𝑡on resp. 𝑡off represent the time when the respective

transistor is switched on resp. off. The switching-on of the nMOS

transistors happens instantaneously also here, so 𝛼3 = 𝛼4 = 0.

Applying Kirchhoff’s rules to Fig. 5b leads to𝐶
d𝑉𝑜𝑢𝑡

d𝑡
=

𝑉𝐷𝐷−𝑉𝑜𝑢𝑡
𝑅1 (𝑡 )+𝑅2 (𝑡 ) −

𝑉𝑜𝑢𝑡
𝑅3 (𝑡 ) | | 𝑅4 (𝑡 ) ,which can be transformed into the non-homogeneous

non-autonomous ODE with non-constant coefficients

d𝑉𝑜𝑢𝑡

d𝑡
= 𝑓 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) = −𝑉𝑜𝑢𝑡 (𝑡)

𝐶 𝑅𝑔 (𝑡)
+𝑈 (𝑡), (14)
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Figure 5: Implementations of a CMOS NOR gate.

Table 1: 𝑓 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) for each state transition.

State transition 𝑓 (𝑡,𝑉𝑜𝑢𝑡 (𝑡))
(0, 0) → (1, 0) 𝑓1 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )

𝐶𝑅𝑛𝐴

(1, 1) → (1, 0) 𝑓1 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅𝑛𝐴

(0, 1) → (1, 0) 𝑓1 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅𝑛𝐴

(0, 0) → (0, 1) 𝑓2 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅𝑛𝐵

(1, 1) → (0, 1) 𝑓2 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅𝑛𝐵

(1, 0) → (0, 1) 𝑓2 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅𝑛𝐵

(1, 0) → (0, 0) 𝑓3 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) �
(
−𝑉𝑜𝑢𝑡 (𝑡 )+𝑉𝐷𝐷

)
𝐶 ( 𝛼1

𝑡
+ 𝛼

2

𝑡+Δ +2𝑅)

(0, 1) → (0, 0) 𝑓4 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) �
(
−𝑉𝑜𝑢𝑡 (𝑡 )+𝑉𝐷𝐷

)
𝐶 ( 𝛼

1

𝑡+Δ +
𝛼

2

𝑡
+2𝑅)

(1, 1) → (0, 0) 𝑓5 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) �
(
−𝑉𝑜𝑢𝑡 (𝑡 )+𝑉𝐷𝐷

)
𝑡

𝐶 (2𝑅𝑡+𝛼1+𝛼2 )
(1, 0) → (1, 1) 𝑓6 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )

𝐶
( 1

𝑅𝑛𝐴
+ 1

𝑅𝑛𝐵
)

(0, 1) → (1, 1) 𝑓6 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )
𝐶

( 1

𝑅𝑛𝐴
+ 1

𝑅𝑛𝐵
)

(0, 0) → (1, 1) 𝑓6 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) � −𝑉𝑜𝑢𝑡 (𝑡 )
𝐶

( 1

𝑅𝑛𝐴
+ 1

𝑅𝑛𝐵
)

where
1

𝑅𝑔 (𝑡 ) = 1

𝑅1 (𝑡 )+𝑅2 (𝑡 ) +
1

𝑅3 (𝑡 ) +
1

𝑅4 (𝑡 ) and𝑈 (𝑡) = 𝑉𝐷𝐷

𝐶 (𝑅1 (𝑡 )+𝑅2 (𝑡 ) ) .

As comprehensively described in [5], depending on each partic-

ular resistor’s mode in each input state transition, different expres-

sions for 𝑅𝑔 (𝑡),𝑈 (𝑡) and thus for 𝑓 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) are obtained. They
are summarized in Table 1. Note that we have used the notation

𝑅1 = 𝑅𝑝𝐴 , 𝑅2 = 𝑅𝑝𝐵 with abbreviations 2𝑅 = 𝑅𝑝𝐴 + 𝑅𝑝𝐵 , 𝑅3 = 𝑅𝑛𝐴 ,

and 𝑅4 = 𝑅𝑛𝐵 for the two nMOS transistors 𝑇3 and 𝑇4. Due to the

symmetry, we end up with only six different functions.

The following theorem shows that they are continuous in the

first argument and Lipschitz continuous in the second argument.

Theorem 5.2. Let 𝐹 = {𝑓1, . . . , 𝑓6 : R × (0, 1) → R} be the set of
all functions described in Table 1, modulo symmetry. Every 𝑓𝑖 ∈ 𝐹 ,
where 𝑖 ∈ {1, . . . , 6}, is continuous and Lipschitz continuous in the
second argument 𝑉𝑜𝑢𝑡 (𝑡).

Defining 𝑠 (𝑡) = (𝑖𝐴
𝑑
(𝑡+), 𝑖𝐵

𝑑
(𝑡+)) and 𝑠𝑝 (𝑡) = (𝑖𝐴

𝑑
(𝑡), 𝑖𝐵

𝑑
(𝑡)), we

can again instantiate Definition 3.1 by the choice function

𝑎𝑐 (𝑠 (𝑡)) =



𝑓1 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) 𝑠 (𝑡) = (1, 0)
𝑓2 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) 𝑠 (𝑡) = (0, 1)
𝑓3 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) 𝑠 (𝑡) = (0, 0), 𝑠𝑝 (𝑡) = (1, 0)
𝑓4 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) 𝑠 (𝑡) = (0, 0), 𝑠𝑝 (𝑡) = (0, 1)
𝑓5 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) 𝑠 (𝑡) = (0, 0), 𝑠𝑝 (𝑡) = (1, 1)
𝑓6 (𝑡,𝑉𝑜𝑢𝑡 (𝑡)) 𝑠 (𝑡) = (1, 1)

which, according to (14), results in 𝑑𝑉𝑜𝑢𝑡 (𝑡)/𝑑𝑡 being



−𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅𝑛𝐴

𝑠 (𝑡) = (1, 0)
−𝑉𝑜𝑢𝑡 (𝑡 )
𝐶𝑅𝑛𝐵

𝑠 (𝑡) = (0, 1)(
−𝑉𝑜𝑢𝑡 (𝑡 )+𝑉𝐷𝐷

)
𝑡 (𝑡+Δ𝑡 )

𝐶
(
2𝑅𝑡2+(𝛼1+𝛼2+2Δ𝑡𝑅)𝑡+𝛼1Δ𝑡

) 𝑠 (𝑡) = (0, 0), 𝑠𝑝 (𝑡) = (1, 0)(
−𝑉𝑜𝑢𝑡 (𝑡 )+𝑉𝐷𝐷

)
𝑡 (𝑡+Δ𝑡 )

𝐶
(
2𝑅𝑡2+(𝛼1+𝛼2+2Δ𝑡𝑅)𝑡+𝛼2Δ𝑡

) 𝑠 (𝑡) = (0, 0), 𝑠𝑝 (𝑡) = (0, 1)(
−𝑉𝑜𝑢𝑡 (𝑡 )+𝑉𝐷𝐷

)
𝑡

𝐶 (2𝑅𝑡+𝛼1+𝛼2 ) 𝑠 (𝑡) = (0, 0), 𝑠𝑝 (𝑡) = (1, 1)
−𝑉𝑜𝑢𝑡 (𝑡 )

𝐶
( 1

𝑅𝑛𝐴
+ 1

𝑅𝑛𝐵
) 𝑠 (𝑡) = (1, 1) .

6 CONCLUSIONS
We presented a general continuity proof for a broad class of first-

order thresholded hybrid models, as they arise naturally in digital

circuits. We showed that, under mild conditions regarding causality,

digitized hybrid gates could be composed to form circuits with

unique and well-behaved executions. We concluded with concrete

gate model instantiations of our model.
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A ADDITIONAL DETAILS FOR SECTION 5
(APPLICATIONS)

Theorem 5.1. For any 𝑖 ∈ {1, . . . , 8}, the mapping 𝑓𝑖 , defined
above, is Lipschitz continuous.

Proof. Albeit the proof is evident, we elaborate it for 𝑓7; sim-

ilar arguments apply to the other cases. Let 𝐾 = 𝑚𝑎𝑥
{
( 1

𝐶𝑖𝑛𝑡𝑅1

+
1

𝐶𝑖𝑛𝑡𝑅2

), 1

𝐶𝑖𝑛𝑡𝑅2

}
. For any voltages of𝑉𝑖𝑛𝑡 (𝑡) (1) ,𝑉𝑖𝑛𝑡 (𝑡) (2) ,𝑉𝑜𝑢𝑡 (𝑡) (1) ,

and 𝑉𝑜𝑢𝑡 (𝑡) (2) belonging to (0, 1), we find𝑓7 (𝑉𝑖𝑛𝑡 (𝑡) (1) ,𝑉𝑜𝑢𝑡 (𝑡) (1) ) − 𝑓7 (𝑉𝑖𝑛𝑡 (𝑡) (2) ,𝑉𝑜𝑢𝑡 (𝑡) (2) ) =−( 1

𝐶𝑖𝑛𝑡𝑅1

+ 1

𝐶𝑖𝑛𝑡𝑅2

)
(𝑉𝑖𝑛𝑡 (𝑡) (1) −𝑉𝑖𝑛𝑡 (𝑡) (2) )+

1

𝐶𝑖𝑛𝑡𝑅2

(
𝑉𝑜𝑢𝑡 (𝑡) (1) −𝑉𝑜𝑢𝑡 (𝑡) (2) )

 ≤
𝐾
(𝑉𝑖𝑛𝑡 (𝑡) (1) −𝑉𝑖𝑛𝑡 (𝑡) (2) ) + (𝑉𝑜𝑢𝑡 (𝑡) (1) −𝑉𝑜𝑢𝑡 (𝑡) (2) )

.
□

Theorem 5.2. Let 𝐹 = {𝑓1, . . . , 𝑓6 : R × (0, 1) → R} be the set of
all functions described in Table 1, modulo symmetry. Every 𝑓𝑖 ∈ 𝐹 ,
where 𝑖 ∈ {1, . . . , 6}, is continuous and Lipschitz continuous in the
second argument 𝑉𝑜𝑢𝑡 (𝑡).

Proof. The proof is clear for functions 𝑓1, 𝑓2, and 𝑓6. It is also

straightforward for 𝑓5: Let 𝑔(𝑡) � 𝑡
𝐶 (2𝑅𝑡+𝛼1+𝛼2 ) . Since 𝑡 ∈ [0,𝑇 ],

𝑔(𝑡) takes its supremum value in the interval, which we denote by

𝐾 (i.e., 𝑠𝑢𝑝𝑡 ∈[0,𝑇 ]𝑔(𝑡) = 𝐾 ). We observe

∥ 𝑓5 (𝑡,𝑉 1

𝑜𝑢𝑡 (𝑡)) − 𝑓5 (𝑡,𝑉 2

𝑜𝑢𝑡 (𝑡))∥ = (−𝑉 1

𝑜𝑢𝑡 (𝑡) +𝑉𝐷𝐷
)
𝑡

𝐶 (2𝑅𝑡 + 𝛼1 + 𝛼2)
−

(
−𝑉 2

𝑜𝑢𝑡 (𝑡) +𝑉𝐷𝐷
)
𝑡

𝐶 (2𝑅𝑡 + 𝛼1 + 𝛼2)

 = −𝑡
𝐶 (2𝑅𝑡 + 𝛼1 + 𝛼2)

· (𝑉 1

𝑜𝑢𝑡 (𝑡) −𝑉 2

𝑜𝑢𝑡 (𝑡))
 ≤ |𝐾 |

(𝑉 1

𝑜𝑢𝑡 (𝑡) −𝑉 2

𝑜𝑢𝑡 (𝑡))
,

which concludes the proof for 𝑓5. The proof for 𝑓3 and 𝑓4 follows

the same route; we only sketch the proof of the Lipschitz continuity

for 𝑓3. We can write

∥ 𝑓3 (𝑡,𝑉 1

𝑜𝑢𝑡 (𝑡)) − 𝑓3 (𝑡,𝑉 2

𝑜𝑢𝑡 (𝑡))∥ =
−(𝑉 1

𝑜𝑢𝑡 (𝑡) −𝑉 2

𝑜𝑢𝑡 (𝑡))
𝛼1

𝑡+Δ + 𝛼2

𝑡 + 2𝑅

.
The fact that 𝑡 and Δ both belong to the closed interval [0,𝑇 ]
provides us with a Lipschitz constant 𝐿, which is independent of 𝑡 .

Consequently,

∥ 𝑓3 (𝑡,𝑉 1

𝑜𝑢𝑡 (𝑡)) − 𝑓3 (𝑡,𝑉 2

𝑜𝑢𝑡 (𝑡))∥ ≤ 𝐿 · ∥
(
𝑉 1

𝑜𝑢𝑡 (𝑡) −𝑉 2

𝑜𝑢𝑡 (𝑡)
)
∥,

which completes the proof. □
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