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Abstract:  20 

The defected kaolinite is common in sedimentary kaolin, but its 21 

structure and disorder mechanism remains unclear. In this paper, three 22 

different size distributions of kaolinite particles: 0~300 nm, 200~1000 23 

nm, and 500~2000 nm, were separated and classified from high-defect 24 

sedimentary kaolin, collected from Quaternary sedimentary kaolin in 25 

Guangxi Zhuang Autonomous Region of China. The three particle 26 

sizes of kaolinite have been monitored by particle size analyzer, high-27 

resolution magic-angle spinning NMR (MAS NMR), small and wide-28 

angle X-ray scattering (SAXS and WAXS), X-ray diffraction (XRD), 29 

BET surface analyzer, nitrogen gas-adsorption, scanning electron 30 

microscopy (SEM), and high-resolution transmission electron 31 

microscopy (HRTEM). The results revealed that the smallest particle 32 

size of kaolinite exhibited high degrees of broken Al-O-Al and Si-O-Si 33 

bonds, more disordered structure, and elevated specific surface area. 34 

The degree of the structural disorder of kaolinite increases as the 35 

particle size decreases, which can be attributed to the more aluminum 36 

substituted for silicon in tetrahedron sheet in the finer kaolinite crystal, 37 

compared to the coarser kaolinite crystals.  38 
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1. Introduction 41 

Kaolinite, Al2Si2O5(OH)4, with the unit cell parameters: a0=0.517 nm，42 

b0=0.898 nm, c0=0.735 nm, α=91.68°, β=105.12°, γ=89.75° (Richard 43 

and Rendtorff, 2019), is a 1:1 layered dioctahedral hydrous 44 

aluminosilicate that generally exhibits structural order and disorder in 45 

nature (Awad et al., 2018; Bish, 1993; Brindley et al., 1986). Silicon 46 

atoms are organized as ditrigonal rings of silicon-oxygen tetrahedra 47 

and form the tetrahedral sheet. In contrast, aluminum atoms are 48 

organized as aluminum-oxygen octahedra in the octahedral sheet that 49 

also contains one-third of empty octahedral voids, which maintains the 50 

electrical balance of the whole structure. Kaolinite is then an 51 

uncharged structure, even if some samples bear a small permanent 52 

negative charge due to the existence of isomorphic substitutions in 53 

either the tetrahedral or octahedral sheet. Numerous authors have 54 

debated the origin of structural disorder in kaolinite. It was supposed 55 

that disorder in kaolinite is caused by substituting cations within the 56 

lattice, such as replacing Al3+ with Fe3+ in alumina octahedral sheet or 57 

Si4+ substituted by Al3+ in silica tetrahedral sheet (Brindley et al., 1986; 58 

Newman et al., 1994). The second reason for the structural disorder 59 
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was suggested that the translation between adjacent layers, which is 60 

related to the pseudo-mirror plane, coincident with the long diagonal 61 

of the unit cell (Plançon et al., 1989). The third possibility relies on the 62 

existence of interlayer shifts between two adjacent layers. There are 63 

two types of shifts: t1 and t2, where t1 is a shift of (~-a/3) and t2 (~-64 

a/3+b/3). Such alternating t1 and t2 shifts were observed by High-65 

Resolution Transmission Electron Microscopy (HRTEM) by Kogure et 66 

al. (2010) in sedimentary kaolinite from Brasil. These three types of 67 

defects broaden the reflections observed by X-Ray Diffraction (XRD). 68 

They particularly affect the (02l) and (11l) sequences (20-23° 2θ, using 69 

CuKα), and the (13l) and (20l) sequences (35-40° 2θ, using CuKα) 70 

(Aparicio, 1999).  71 

The question of the link between kaolinite particle size distribution 72 

(PSD) and the extent of disorder in the structure remains somehow 73 

open. A better understanding of the potential relationships between 74 

disorder and particle size would provide relevant information to better 75 

assess the geological processes that control the composition of 76 

kaolinite formed during weathering and, therefore, yield data about the 77 

geological background at the time of mineralization (Varajão et al., 78 
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2001).  79 

The particle size of kaolinite platelets is generally < 2 μm (equivalent 80 

sphere diameter). Suspensions of kaolinite fine particles display low 81 

viscosity (Rand and Melton, 1977), better rheological behavior (Gupta 82 

et al., 2011; Mpofu et al., 2003), and anti-flocculation performance 83 

(Du et al., 2010). It is worth pointing out that the size of kaolinite 84 

particles used commercially is generally less than 2 μm, such as paper 85 

coating kaolin, where 70~90% of the particles used are less than 2 μm 86 

(Morsy et al., 2014; Silva et al., 2009). Even finer particles less than 1 87 

μm used for high-performance thermal shock resistance ceramics 88 

(Kobayashi et al., 2000), and 300 nm for high reinforcement of 89 

polymer filler (Zhang et al., 2021a; Zhang et al., 2010). Most 90 

advanced applications of kaolinite derive from its versatility in terms 91 

of particle size, morphology, and microstructure (Jaber et al., 2018; 92 

Liu et al., 2021; Yang et al., 2020; Zhang et al., 2017; Zhang et al., 93 

2021b). Microstructural features play a significant role in determining 94 

some of the physical and mechanical properties of kaolinite (i.e., 95 

thermal resistance and deformation indices). Still, until now, little 96 

research has been carried out to investigate the effect of kaolinite PSD 97 
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on microstructure and micromorphology. One of the main reasons is 98 

likely related to the difficulties associated with controlling natural 99 

kaolinite particle size.  100 

Wet sieving and pipette methods are the primary ways to assess the 101 

particle size distribution of clay minerals (Konert and Vandenberghe, 102 

1997; Wen et al., 2002; Yang et al., 2015), but mainly suitable for sizes 103 

ranged from 50 to 2000 μm. For smaller particles and especially for 104 

particles lower than 2 μm, the sedimentation-based pipette method 105 

(SPM) is commonly used. The pipette method defines the particles as 106 

the size of a sphere that settles in the liquid at the same sedimentation 107 

velocity, supported by Stokes’ law (Cheng and Schachman, 1955; 108 

Yang et al., 2015). However, based on Stokes’ law, it will take 180 h to 109 

separate the < 1 μm part for a kaolinite suspension with a viscosity less 110 

than 5.7 mpa·s. It is time-consuming for the ultrafine part, and the 111 

results are increasingly unreliable because of the effect of Brownian 112 

motion on the rate of sedimentation (Eshel et al., 2004).  113 

Mechanical grinding, such as ball and planetary milling, was used to 114 

generate ultrafine kaolinite particles (Hamzaoui et al., 2015; Makó et 115 

al., 2001; Suraj et al., 1997). However, elevated grinding times will 116 
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destroy the kaolinite structure. Another option for decreasing particle 117 

size is to perform sonication, however, delamination induced by 118 

ultrasonics increases the (-1/3a+1/3b) translation disorder (Franco et 119 

al., 2004a), and the Hinkley Index (HI) correspondingly decreases 120 

from 1.19 to 0.53 (Franco et al., 2004b). Although grinding and 121 

ultrasonication can yield very fine kaolinite particles, the products bear 122 

numerous non-natural disorder structures. Consequently, such 123 

treatments are not adequate for studying the disordered structure of 124 

natural ultrafine kaolinite.  125 

Bearing this in mind, the objective of the present paper is three-fold: (1) 126 

to separate three classes of kaolinite particles under 2 μm, to yield 127 

“ultrafine” (< 300 nm), “intermediate” (200~1000 nm), and “coarse 128 

particles” (500~2000 nm); (2) to examine the microstructure and 129 

micromorphology of the three particle sizes of kaolinite; (3) to 130 

postulate a mechanism of the structural disorder and verify it through 131 

NMR and XRD experiments.  132 

2. Materials and methods 133 

2.1 Materials 134 

The sample used for this study was a high-defect (“poor-crystallized”) 135 
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kaolinite with a Hinckley Index of 0.175, collected from Quaternary 136 

sedimentary kaolin in Guangxi Zhuang Autonomous Region, China. 137 

Before particle size classification, the original kaolin sample consisted 138 

of 82.6% kaolinite, 12.3% quartz, 1.1% anatase, 0.6% rutile, 1.4% 139 

illite, and 2% other minerals (Fig. 1) as derived from Rietveld 140 

refinement of X-Ray Diffractograms. 141 

The chemical composition of the raw kaolin sample was measured by 142 

X-ray Fluorescence (XRF), and the result is summarized in Table 1. It 143 

can be noted that the percentages of the main elements (Al2O3 and 144 

SiO2) slightly deviate from the theoretical one predicted by the 145 

structural formula, confirming the relatively low purity of the kaolin 146 

sample inferred from XRD experiments. 147 

2.2 Particle size classification of kaolinite 148 

A series of settlement tests were carried out to obtain particle sizes 149 

under 2 μm. Kaolin (solid content: 20%) was dispersed in water with 150 

1%wt sodium polyacrylate to obtain a slurry (Yang et al., 2020). The 151 

settling velocity v of the kaolinite in the kaolin slurry can be calculated 152 

according to Stokes’ law: 153 

� = ������	��

��                                                                                    (1) 154 
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� = �
�                                                                                                   (2) 155 

� = � ���
�����	��
                                                                   (3) 156 

where v is the settling velocity (mh-1), g is the acceleration due to 157 

gravity (9.80ms-2), D is the equivalent sphere diameter of kaolinite (m), 158 

ρ1 is the density of kaolinite (kgm-3), ρ2 is the density of the liquid, and 159 

μ is the viscosity of the slurry system (kgm-1s-1). H is the settling 160 

distance (m), and t is the settling time (h). Based on equation (1), the 161 

particle size of kaolinite is related to the settling time in the same 162 

viscosity system. Six barrels of kaolin slurry were prepared, and the 163 

settling time were fixed at 10 cm/1 h, 10 cm/2 h, 10 cm/3 h, 10 cm/5 h, 164 

10 cm/10 h, and 10 cm/15 h (Fig. S2 Supplementary material). 165 

All supernatants were collected by the siphon method, and part of it 166 

was kept for further analysis. 167 

For size sorting kaolinite, vacuum filtration was performed as follows: 168 

first, a 200 nm membrane was used to filter the < 2 μm kaolin slurry. 169 

The filtered solution was referred to as A1. The solids on the 170 

membrane were recovered, mixed with an additional aqueous solution, 171 

and dispersed again by stirring for 30 min. This process was repeated 172 

three times to completely separate the particles from the suspension. A 173 
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450 nm membrane was then used to repeat the same filtering process.  174 

The filtered solution was referred to as A2, while the solids remaining 175 

on the membrane were referred to as A3. These three particle size 176 

fractions,  A1, A2, and A3, were finally oven-dried at 105 ℃ for 24 h.  177 

2.3  Sample characterization  178 

The particle size distribution of kaolinite was evaluated using a laser 179 

particle size analyzer (Mastersizer 2000, Malvern, UK). Prior to 180 

analysis, the sample was sonicated for 5 minutes. Additional 181 

ultrasound was applied for 1 min in the injection cycle, whereas the 182 

total test time was 1~2min. 183 

Small- and Wide-angle X-ray Scattering (SAXS and WAXS) 184 

experiments were performed to determine the microscale structure of 185 

kaolinite platelets. Aqueous suspension samples were sealed in 186 

cylindrical glass capillaries of 1.0 ± 0.1 mm diameter (Glas-Technik & 187 

Konstruktion, Germany). SAXS patterns were recorded at the SWING 188 

beamline of the SOLEIL synchrotron (Orsay, France) using fixed 189 

energy of 16keV (λ=0.777 Å) with two samples-to-detector distances 190 

of 0.5 m and 6 m.  Bidimensional patterns were recorded on an Eiger 191 

detector. The radial integration of the scattering patterns yielded the 192 
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evolution of the scattered intensity versus scattering vector q, where q 193 

is : 194 

� = �� ��� �
�                                                                                         (4) 195 

where: λ is the X-ray wavelength and θ is half the scattering angle. In 196 

such conditions, the explored q range extends from 0.0008 Å-1 to 2Å-1.  197 

XRD patterns of unoriented powders were measured using an X-ray 198 

diffractometer (D8 Advance Bruker-AXS, Germany) with CuKα 199 

radiation (λ=1.5405 Å). The diffraction patterns were tested over the 200 

range of 2.5-70° (2θ) with a scan rate of 1°/min. 201 

Brunauer–Emmet–Teller (BET) specific surface areas were deduced 202 

from the nitrogen adsorption isotherm at 77 K using the BET surface 203 

analyzer (Micromeritics ASAP 2460, U.S.A.). Before measurement, 204 

each sample was evacuated under vacuum at 473 K for 2 h. The BET 205 

surface area, total pore volume, average pore diameter, particle size, 206 

pore width distribution, and micropore area are obtained from the 207 

adsorption isotherms. The pore size distribution was acquired from the 208 

desorption branch of the isotherm, supported by Kelvin’s equation 209 

(Kuila and Prasad, 2013). 210 

The morphology of the samples was examined by scanning electron 211 
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microscopy (SEM, Hitachi SU8020, Japan) and high-resolution 212 

transmission electron microscopy (HRTEM, JEOL-2010, 200 kV 213 

Japan). Before TEM examination, the powder samples were dispersed 214 

in ethanol solvent, and a drop of the suspension was deposited onto a 215 

carbon film-coated copper grid to let the kaolinite particles precipitate 216 

homogeneously. Selected-area electron diffraction (SAED) was 217 

recorded with a point resolution of 0.18 nm. 218 

1H, 29Si, and 27Al Magic angle spinning (MAS) nuclear magnetic 219 

resonance (NMR) spectra were acquired on a Bruker Advance 500 220 

spectrometer operating at ΩL =500.50 MHz (1H) and 99.43 MHz (29Si) 221 

with a 2.5 mm and 4 mm H-X MAS probe. Chemical shifts were 222 

calibrated by the signal position of adamantane (1.85 ppm) for 1H and 223 

tetramethylsilane (TMS, 0 ppm) for 29Si as external standards. The 1H 224 

experiment was examined under 90° pulse with a spinning rate of 14 225 

kHz, with several scans of 512 and 1s of recycling delay. The 29Si 226 

experiment was performed under 90° pulse with a 1H decoupling 227 

spinal and was recorded at the same spinning rate. The number of 228 

scans was 10240, and the recycling time was 10s. The decomposition 229 

of the spectra was performed using Dmfit-2020 software. The spectra 230 
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were deconvoluted using mixed Gaussian/Lorentzian line fitting 231 

(Massiot et al., 2002; Quillard et al., 2011). 232 

3. Results and discussion  233 

3.1 Particle size classification of kaolinite by membrane 234 

separation 235 

Filter membrane and vacuum filtration classify the kaolin slurry of < 2 236 

μm into three particle size grades. Fig. 2 (A) reveals that such a 237 

classification is effective as three distinct peaks of particle size 238 

distribution can be observed in A1, A2, and A3 curves. A1 displays 239 

the smallest particle size, with an equivalent average sphere diameter 240 

of around 300 nm. This value is higher than that of the pores of the 241 

filter membrane used in the separation (200 nm), which can be 242 

assigned to the anisotropic nature of kaolin and/or to the partial 243 

aggregation of primary particles.  The same trend is observed in the 244 

A2 sample, where the equivalent diameter of the largest particles 245 

(1000 nm) is higher than the membrane pore size (450 nm). Fig. 2 (B)  246 

displays the cumulative percentage frequency distributions for the 247 

three fractions. A2 particles are distributed in the 200~1000 nm range, 248 

whereas the size distribution for A3 particles ranges between 500 and 249 
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2000 nm. 250 

3.2 Morphology 251 

The reduction in particle size associated with size classification is 252 

clearly illustrated in the scanning electron micrographs (Fig. 3). A2 253 

and A3 particles display a roughly hexagonal shape and significant 254 

size heterogeneity, whereas the smallest size fraction displays more 255 

homogeneous and rounded particles (Fig. 3 (a)). The sub-rounded 256 

platy shape suggests the existence of numerous crystalline defects that 257 

are particularly common in transported kaolinites. Compared with A2 258 

(Fig. 3 (b)) and A3 (Fig. 3 (c)), the lateral distance between platelets 259 

in A1 is lower, and more gaps under 50 nm are visible. The kaolinite 260 

lamellae (Fig. 3 (a)) of A1 display a thickness of 50-300 nm and the 261 

stack of layers are linked to each other forming compact face-face 262 

associations after settling. This is in good agreement with Zbik and 263 

Gupta’s observation (Gupta et al., 2011; Zbik et al., 2008). 264 

Fig. S3 (Supplementary material) displays more selected TEM 265 

images of particles belonging to the three classes of kaolinite particles. 266 

In agreement with the SEM observations, the platelet size decreases 267 

from A3 to A1. The images also clearly reveal a turbostratic 268 
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arrangement of stacked crystallites. The selected area electron 269 

diffraction (SAED) pattern shown in Fig. S3 (a) confirms the disorder 270 

structure of kaolinite, and the rings correspond to the (020), (-130), (-271 

113), (014), (3-11), and (-333) lattice plane.  272 

3.3 XRD  273 

XRD patterns of the raw kaolin sample are in good agreement with the 274 

standard PDF card of JCPDS 78-2110 (Fig. 1) and reveal the presence 275 

of some impurities that should be at least partially eliminated by 276 

sedimentation. Still, as revealed by the XRD patterns of the different 277 

classes (Fig. 4), significant amounts of mineral impurities are still 278 

present in the coarser fraction A3. Fraction A2 still contains small 279 

amounts of quartz, which likely corresponds to very fine particles. In 280 

contrast, the smallest fraction with an average particle size of 300 nm 281 

is completely devoid of any impurities, and the corresponding XRD 282 

pattern only exhibits kaolinite diffraction peaks (Fig. 4). Between 19° 283 

and 22° (2θ),  the reflections (02l), (11l) are weak and broaden with 284 

decreasing particle size. These reflections are very sensitive to the 285 

abundance of translation defects, both random and specific 286 

displacements of type t1 (~-a/3) and t2 (~-a/3+b/3) (Kogure et al., 287 
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2010), and their weakening and broadening decrease the HI. The A1 288 

sample, therefore, has low crystallinity and is the most disordered 289 

among the three fractions. This may be due to either recrystallization 290 

in low concentration solution or to weathering of large kaolinite 291 

particles. Whereas all patterns display a decrease in the intensities of 292 

all XRD reflections, the (060) peak at 61.5°-63° (2θ) is less affected 293 

when kaolinite becomes more disordered. As shown by Brindley and 294 

Kurtossy (1961), the I(00l)/I(060) ratio (l=1 or 2) allows the evaluation of 295 

the primary orientation of the disorder. In the case of sample A1, the 296 

narrowing of the (060) reflection and broadening of the (001) indicate 297 

a increasing dimensions along the b axis and decreasing along the c 298 

axis. This means that the finest particles have a higher aspect ratio.  299 

3.4 SAXS and WAXS 300 

Fig. 5 displays the SAXS and WAXS results obtained by presenting 301 

the evolution of the scattered intensity as a function of the scattering 302 

vector q for the three size-sorted kaolinite samples. On a logarithmic 303 

scale, the SAXS intensity dependence follows a power-law decay. At 304 

high q, the three systems display a power law behavior where I scale 305 

as q-3.8 for the two larger sizes and as q-3.7 for the smaller size. Such 306 



18 

 

behavior is close to Porod’s law which states that the evolution for 307 

sharp interfaces should scale as q-4.  The deviation from Porod’s law 308 

can be assigned to the surface roughness of the samples. In that 309 

context, the smallest particles appear to be slightly rougher than the 310 

two other classes. For A1 and A2 particles, a crossover towards a 311 

lower slope around q-2 is observed around 0.03 Å-1 for A2 and 0.07 Å-1 312 

for A1. This indicates a scattering by slightly aggregated randomly 313 

oriented platelets with a high aspect ratio (Duijneveldt et al., 2005; 314 

Hotton et al., 2021; Pasco et al., 2021), which agrees with the TEM 315 

observations. For the smallest size (A1), the beginning of a Guinier 316 

plateau is observed for q ≈  1.5 10-3 Å-1. This suggests that the largest 317 

objects in this class of kaolinites have a size of around 4000 Å (2π/1.5 318 

10-3Å-1) , which concurs with the laser diffraction results (Fig. 2).   319 

In the high q-range from 0.5 to 2 Å-1, the WAXS profiles provide 320 

information about the crystalline structure. A clear peak at q≈0.88 Å-1 321 

corresponds to a characteristic distance of 7.14 nm is observed. It can 322 

be assigned to the d(001) of kaolinite.  323 

3.5 Adsorption isotherms 324 

Fig. 6 shows the adsorption-desorption isotherms of N2 at liquid N2 325 
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(77 K) temperature for the three particle sizes. The shapes of the 326 

isotherm provide a qualitative assessment of the porous structure of 327 

the samples. Sample A3 displays an almost reversible Type II nitrogen 328 

isotherm. The isotherm shape indicates that this sample does mainly 329 

contain macropores, with non-existing micropores and few mesopores. 330 

Indeed, the hysteresis is extremely narrow, indicating the presence of a 331 

few large mesopores. The situation changes with decreasing particle 332 

size. Indeed,  both A1 and A2 powders display significant hysteresis 333 

patterns without any plateau at high P/Po and can then be assigned to 334 

Type IV or Type IIB isotherms (Rouquerol et al., 2013). In such cases, 335 

the sample contains both mesopores accountable for the hysteresis and 336 

macropores, which explain the absence of any plateau at high relative 337 

pressure. The volume uptaken at P/Po near 1.0 indicates the total 338 

porosity of A1 and A2 for pore sizes < ~200 nm. As shown in Table 2, 339 

sample A1 has the most pores.  Besides, it has more micropores than 340 

A2 powder, as shown by a larger adsorbed volume at an extremely low 341 

relative pressure (P/Po < 0.01). 342 

The H3 hysteresis loop (according to IUPAC classification) of A1 and 343 

A2 are examples of Type II(b) isotherm, indicating the presence of 344 
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aggregates of plate-like particles.  345 

3.6 Specific surface area and pore size distribution 346 

The measured specific surface area values for A1 and A2 (40.65 and 347 

27.13 m2/g, respectively) exceed the range of 10~20 m2/g of refined 348 

natural kaolinite reported in the literature (Cases et al., 1986; Gregg 349 

and Packer, 1954). The increase in the specific area of A1 and A2 is 350 

mainly due to the decreased particle size of these fractions. For all 351 

samples, the average particle size calculated from N2-adsorption 352 

(Table 2) is close to the size distribution deduced from laser 353 

diffraction (Fig. 2A and B). 354 

Fig. 7 displays the BJH-HJ PbSD (partial volume V of each pore 355 

diameter D) obtained from the adsorption isotherm of the three 356 

powders. The parameter dV/d (logD) is used to access the partial 357 

porosity for each pore diameter range (Kuila and Prasad, 2013; 358 

Mintova et al., 2015).  For kaolinite powder A1, the distribution is 359 

bimodal, with a major peak between 50~100 nm and a minor but 360 

noticeable peak around 2~3 nm. Compared with A1, A2 displays a 361 

similar pore size distribution, with the main peak located around 362 

70~100 nm and the peak at 2~3 nm with lower intensity than in the 363 
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case of A1.  364 

Combing the results of B.J.H. pore size distribution (Fig. 7) and pore 365 

structure parameters (Table 2), it is clear that sample A1 had higher 366 

BET, larger pore volume, and smaller average pore radius than 367 

samples A2 and A3. 368 

This variety of pore structures can be attributed to the presence of 369 

more internal defects in ultrafine nano-kaolinite (Fig. S3). 370 

3.7 Solid-state NMR 371 

Solid-state NMR was used for probing the local environment and 372 

short-range order in size-sorted kaolinites. 1H MAS NMR spectra of 373 

the three particle sizes of kaolinite were obtained at 500.5 MHz (Fig. 374 

8). They can be decomposed into 6 or 7 Gaussian/Lorentzian peaks. 375 

Peak 1 located at ~6.40 ppm, indicates the presence of residual water 376 

in the three kaolinite samples (Zhu et al., 2016). A second peak at 377 

4.3~4.5 ppm can be assigned to physically adsorbed water on the 378 

external kaolinite surface. Both kinds of water will be easily 379 

dehydrated overnight under a vacuum at 100 ℃. In the range of 380 

around 2 ppm, two peaks are observed at 2.79~2.65 ppm and at 381 

1.81~1.80 ppm for the three samples of A1, A2 and A3. Peak 3 at 382 
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2.79~2.65 ppm is assigned to inner surface hydroxyls that form a 383 

hydrogen bond with oxygens from the SiO4 tetrahedra, whereas peak 4 384 

at 1.80 ppm corresponds to inner hydroxyls, with no linkage with any 385 

chemical groups in agreement with previously reported data (Fafard et 386 

al., 2017; Zhu et al., 2016). The integral areas (S) of peak 3 of A1, A2, 387 

and A3 are 38.48%, 21.31%, and 17.02%, respectively. S3A1> S3A2> 388 

S3A3 indicate that the degree of broken Al-O-Al and Si-O-Si bonds of 389 

particles evolve as A1> A2> A3. This seems to concur with the 390 

appearance of samples as observed by SEM and TEM. It must be 391 

pointed out that for an ideal Al2Si2O5(OH)4 kaolinite structure (Fafard 392 

et al., 2017), the ratio between the integrated signals of inner surface 393 

hydroxyl protons and inner hydroxyl protons should be 3:1 (Fig. 8 (h)). 394 

The ratios obtained for A1, A2, and A3 are significantly lower (0.97:1, 395 

0.75:1, and 0.63:1, respectively), which may be attributed to the highly 396 

disordered structure and fine particle size of the studied kaolinite. In 397 

addition, these ratios decrease with increasing particle size, which 398 

suggests that the smaller the particles, the higher the number of 399 

hydroxyl groups. 400 

In the range 0~2 ppm, the 1H resonance peak displays two chemical 401 
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shifts (i) peak 5 around 1.3 ppm ( 1.38, 1.35 and 1.32 ppm for A1 to 402 

A3, respectively) assigned to (AlVI)2-OH; (ii) peak 6 between 0 and 1 403 

ppm (δ 0.85, 0.56 and 0.60 ppm for A1 to A3, respectively) assigned 404 

to the singly coordinated hydroxyl of AlVI-OH (Huittinen et al., 2013). 405 

The integral areas of this latter signal for A1, A2, and A3 are 15.5%, 406 

8.68%, and 9.97%, respectively, which proves again that A1 has the 407 

most edge hydroxyl groups. For the two large of A2 and A3, an 408 

additional strong, sharp signal exists at 1.01 ppm, which can be 409 

attributed to small isolated SiO2 particles bearing hydrogen-bonded 410 

hydroxyl groups (Si-OH-Si) (Viani et al., 2017).  411 

The 29Si NMR spectra between -90~ -92.5 ppm can be decomposed 412 

into three components. A weak one located at about -89 ppm can be 413 

assigned to Q3(1Al) (Cadars et al., 2012; Magi et al., 1984; Thompson, 414 

1984) and corresponds to the presence of one tetrahedral Al connected 415 

to three tetrahedral silicon atoms via bridging oxygen atoms, and to 416 

the octahedral sheet by an apical oxygen atom (see details in Fig. 10). 417 

The relative intensity of this signal increases with diminishing particle 418 

size. Considering that the radius of  Al3+(IV) (0.39 Å) is larger than 419 

that of Si4+ (Radii=0.26 Å), the presence of more Al for Si substitution 420 
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in the finest particles could explain at least partially the high degree of 421 

disorder displayed by A1 particles. At a slightly lower chemical shift, 422 

all samples exhibit a wide signal that can be decomposed into two 423 

components with almost equal intensities (see Fig. 8 (b), (d), and (f)) 424 

that are both ascribed to Q3(0Al). The fact that the signal is split in two 425 

reveals that Si sites in SiO4 tetrahedrons, i.e., are not strictly equivalent, 426 

which agrees with previous studies (Magi et al., 1984; Thompson et al., 427 

1992). In addition,  samples A2 and A3 display additional resonances 428 

at δ -107.23 ppm and -107.17 ppm that correspond to Q4 signals 429 

assigned to the presence of silica impurities.   430 

The 27Al NMR spectra (Fig. 9) display a strong peak at δ=3 ppm 431 

assigned to six-coordinated Al (Al(VI)) and a much weaker signal at 432 

δ=70 ppm assigned to Al(IV) (Newman et al., 1994; Thompson, 1984). 433 

This latter signal is rather weak in agreement with the structure of 434 

kaolinite, but its intensity increases with decreasing particle size, 435 

which confirms the results obtained from the analysis of 29Si spectra, 436 

i.e., that Al for Si substitution is more important in smaller particles.  437 

4. Conclusion 438 

Three different particle sizes of kaolinite were separated from high-439 
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defect raw sedimentary kaolin through sedimentation and vacuum 440 

membrane filtration, that is, A1 (<300 nm), A2 (200~1000 nm), and 441 

A3 (500~2000 nm). The comprehensive studies reveal that the degree 442 

of the structural disorder of kaolinite increases as the particle size 443 

decreases. The smallest particle size of kaolinite possessed high 444 

degrees of broken Al-O-Al and Si-O-Si bonds, a more disordered 445 

structure, and an elevated specific surface area. The high disorder 446 

degree of tiny kaolinite crystals can be attributed to the more 447 

aluminum substituted for silicon in the tetrahedron sheet of their 448 

structure, compared to the coarser kaolinite crystals. 449 

 450 

451 
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 611 

 612 

Fig. 1. XRD patterns of raw kaolin sample. 613 

 614 
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 620 

 621 

Fig. 2. Particle size distribution (A) and cumulative particle size distribution (B) of 622 

kaolinite after vacuum filtration of the < 2 μm kaolin suspension. 623 

 624 

 625 
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626 

 627 

 628 

Fig. 3. SEM observations of three different particle sizes of kaolinite; (a) A1; (b) A2; 629 

(c) A3. 630 
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 633 

 634 

Fig. 4. XRD patterns of kaolinite samples classified into different particle sizes; A1 635 

≤300 nm, A2 200~1000 nm, A3 500~2000 nm. 636 

 637 
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 639 

 640 
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 643 
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 645 

 646 

Fig. 5. Small- and Wide-angle scattering curves were obtained from SAXS and 647 

WAXS. 648 

 649 
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Fig. 6. Adsorption-desorption isotherms of N2 at liquid N2 (77 K) temperature of 650 

three particle size distributions of A1, A2, and A3.  651 

 652 

 653 

 654 

Fig. 7. BJH-HJ PbSD of A1, A2, and A3 acquired from the N2 adsorption isotherm; 655 

Sample A1 and A2 have bimodal distribution with a minor peak around 2~3 nm, 656 

while A1 has a major peak at 50-100 nm and A2 at 70~100 nm. A3 shows a 657 

unimodal distribution with a very weak peak around 100 nm. 658 

 659 
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 660 

Fig. 8. 1H (left) and 29Si (right) MAS NMR spectra of A1, A2, and A3. 661 

 662 
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 663 

Fig. 9. 27Al MAS NMR spectra of A1, A2, and A3. 664 

 665 

 666 

Fig. 10. Projection of the structure of kaolinite from the (100) direction, which 667 

contains one Q3(1Al) Si moieties per unit cell. 668 

 669 

 670 

 671 
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Table 1 Chemical composition of original kaolin in the study (wt%) . 672 

Sample SiO2 Al2O3 TiO2 Fe2O3 P2O5 K2O CaO MgO SO3 Cr2O3 LOI 

Kaolin 49.92 31.29 1.79 1.15 0.16 0.12 0.09 0.09 0.06 0.027 15.1 

 673 

 674 

 675 

 676 

Table 2 BET and pore structure parameters of three different particle 677 

sizes of kaolinite. 678 

 cBET Surface 
Area (m2/g) 

aPore Volume 
(cm3/g) 

bPore size 
(nm) 

cNanoparticle Size 
(Average Particle Size, nm) 

A1 40.6572 0.178006 17.51289 147.5753 

A2 27.1262 0.136377 15.67295 430.963 

A3 11.0345 0.035655 10.92476 1087.4934 

 679 

a: Single point adsorption total pore volume of pores less than 127.7428 nm 680 

diameter at p/p° of A1= 0.984750664; 681 

Single point adsorption total pore volume of pores less than 122.8734 nm 682 

diameter at p/p° of A2= 0.984134123; 683 

Single point adsorption total pore volume of pores less than 160.7880 nm 684 

diameter at p/p° of A3 = 0.987934275; 685 

b: Adsorption average pore diameter (4V/A by B.E.T.); 686 

c: Average Particle Size. 687 

 688 




