
HAL Id: hal-03972769
https://hal.science/hal-03972769

Submitted on 3 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the accuracy of a rocket trajectory
simulation by program transformation

Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot

To cite this version:
Nasrine Damouche, Matthieu Martel, Alexandre Chapoutot. Optimizing the accuracy of a rocket tra-
jectory simulation by program transformation. Proceedings of the 12th ACM International Conference
on Computing Frontiers (CF’15), May 2015, Ischia, Italy. pp.1-2. �hal-03972769�

https://hal.science/hal-03972769
https://hal.archives-ouvertes.fr

Optimizing the Accuracy of a Rocket Trajectory Simulation
by Program Transformation1

Nasrine Damouche∗,?, Matthieu Martel∗,?
∗University of Perpignan, DALI, 66860, France
?LIRMM, Univ. Montpellier & CNRS, France

first.last@univ-perp.fr

Alexandre Chapoutot†
†ENSTA ParisTech, Palaiseau, France

first.last@ensta-paristech.fr

ABSTRACT
Static analysis by abstract interpretation is one of the most
successful techniques used to over-approximate the roundoff
errors in numerical programs. In our case, we are inter-
ested in using this method to improve the accuracy of pro-
grams which perform floating-point computations, known
for their sensitivity to the way formulas are written. We
are interested in transforming automatically pieces of code
by applying to them several rewriting rules. In this arti-
cle, we demonstrate the effectiveness of our approach on a
non-trivial numerical simulation code.

Categories and Subject Descriptors
F.3.2 [Logics and Meaning of Programs]: Semantics of Pro-
gramming Languages—Program Analysis; G.1.0 [Mathematics
of Computing]: Numerical Analysis—Computer Arithmetic.

General Terms
Algorithms, Languages, Theory, Verification.

Keywords
Program Transformation, Abstract Interpretation, Compiler Op-
timizations, Floating-Point Numbers, Accuracy.

1. INTRODUCTION
From the years 1990 and onwards, many industries have

suffered from major worries after numerical disasters. Ex-
amples go from the sinking of the Sleipner A platform in
1991 in the North Sea to an error in measuring the results
at the Olympic Games at London in 2012. One need of
these industries is to improve the numerical accuracy of
their programs in order to avoid dramatical consequences
such as the ones mentioned earlier. Recently, a collection
of work to optimize the accuracy of programs based on
floating-point arithmetic[1] has been done, e.g., the work
by A. Ioualalen [5] concerning the rewriting of arithmetic
expressions. Our objective is to go one step further than

http://dx.doi.org/10.1145/2742854.2742894 ...$15.00.

transforming arithmetic expressions by handling pieces of
code containing assignments, conditionals and loops [3]. To
optimize programs, we use static analysis by abstract inter-
pretation [2, 4] to over-approximate the roundoff errors as
well as a set of rewriting rules for the transformation itself.
In this article, we present our tool and we give experimen-
tal results to optimize a full application which computes the
trajectory of a rocket around the Earth.

2. ARITHMETIC EXPRESSIONS
The expressions accepted by our tool are constants, vari-

ables, operations � ∈ {+,−,×,÷,√} and trigonometric func-

tions. We have already mentioned former work [5] whose
interest is to transform arithmetic expression using Abstract
Program Expansion Graph (APEG). This structure is made
of abstraction boxes, containing a large number of equiva-
lent expressions up to associativity and commutativity. The
APEGs also contain equivalence classes which consist of of-
fering a choice of alternative nodes to build an expression.
It copes with the combinatory problem by remaining it in
polynomial size. An example of APEG A is given in Fig-

2 a

×

+

b

□

+(a,a,b)

×

c ×

+

c b c

×

a a

+×

× +

Figure 1: APEG for the expression e =
(
(a+a)+b

)
×c

ure 1. An equivalence class is denoted by a dotted ellipse.
The APEG A is:

(
(a+ a) + b

)
× c,

(
(a+ b) + a

)
× c,

(
(b+ a) + a

)
× c,(

(2× a) + b
)
× c, c×

(
(a+ a) + b

)
, c×

(
(a+ b) + a

)
,

c×
(
(b+ a) + a

)
, c×

(
(2× a) + b

)
, (a+ a)× c+ b× c, . . .

 .

The last step of the transformation consists of evaluating
the expressions in A with the abstract semantics to select
the most accurate one. We compute safe bounds on the
accuracy using abstract values defined by a pair of intervals
denoting the range of the floating-point value seen by the
program and the range of the error [3, 5].

3. COMMANDS
Our commands are made of assignments, conditionals,

loops and sequences of commands. In order to optimize

1This work was supported by the ANR Project ANR-12-INSE-
0007 ”CAFEIN”.

numerical programs, we use a set of transformation rules
presented as sequents. The use of each of these rules needs
some conditions to be satisfied. If we take the rules con-
cerning the assignments, we find: Rule (A1) discards an
assignment after saving it in the memory and the second
one, (A2), allows one to rewrite an assignment by using the
information memorized, to inline it in a second expression
in order to build a larger expression. By inlining expressions
in assignments when transforming programs, we create large
formulas. In our implementation, we slice these formulas
at a defined level of the syntactic tree and we assign the
sub-expressions to intermediary variables. Finally, we inject
them into the main program.

For example, we take a code with three variables x, y and
z and constants a = 0.1, b = 0.01, c = 0.001 and d = 0.0001.
We aim at optimizing z.

〈x = a + b; y = c + d; z = x + y, δ〉
∗−→

(A1)
〈z = x + y, δ′′ = δ′[y 7→ c + d]〉 −→

(A2)
〈z = ((d + c) + b) + a, δ′′〉

We remove the variable x and memorize it in δ. So, the
first assignment is discarded and the new environment is
δ[x 7→ a + b]. We then repeat the same process by using
(A1) on y. We must not remove z because it is the variable
to be optimized. Then, we substitute x and y by their value
in δ and we transform the expression as seen in Section 2.

The second kind of rules deals with conditionals. If the
condition is statically known, we execute the right branch,
otherwise we rewrite both branches of the conditional. Other
rules concerning the conditional consist of re-inserting vari-
ables that we have not to discard. For the while loop, one
rule shows how to rewrite the body of the loop, and the
other one is similar to the last one seen in conditionals. At
last, we use some rules dealing with sequences of commands.

4. EXPERIMENTS RESULTS
In order to perform experiments with our tool, we have

taken an example involving the positions of a rocket and a
satellite in space. It consists of simulating their trajectories
around the Earth using the Cartesian and polar systems,
in order to project the gravitational forces in the system
composed of the Earth, the rocket and the satellite. Note
that the coordinates of the satellite ui and of the rocket wi,
1 ≤ i ≤ 4 are computed by Euler’s method.

The program corresponding to this example is given in
Figure 3. The else branch is similar to the then branch
at the difference that w′2 and w′4 are computed without the

-8x106

-6x106

-4x106

-2x106

 0

 2x106

 4x106

 6x106

 8x106

 1x107

-8x106 -6x106 -4x106 -2x106 0 2x106 4x106 6x106 8x106

Rocket Trajectory Computed by the Transformed Code
Rocket Trajectory Computed by the Original Code

Satellite Trajectory Computed by the Original Code

Figure 2: Simulated trajectories

expression A · wi/(Mf − A · t) · dt. At the end of the loop,
variables are updated, for example u1 = u′1, etc. Figure 2

Constants are: The radius of the Earth R = 6.4 · 106 m, the gravity
G = 6.67428 · 10−11 m3 · kg−1 · s−2, the mass of the Earth Mt =
5.9736 · 1024 kg, the mass of the rocket Mf = 150000 kg and the
gas mass ejected by seconde A = 140 kg · s−1. The release rate of

the rocket vl is 0.7 ·
√

G·Mt
D with D = R + 4.0 · 105 m the distance

between the rocket and the Earth. Other variables are set to 0.

r0 = D; viss =
√

G×Mt
r0

; vθ0 = viss
r0

; nbsteps = T
dt ; rf = R;

vlrad =
vl
r0

; vθf = 1.1× vlrad; mf0 = Mf ;

while (i < nbsteps) do {
if (mf > 0.0) then {
u′1 = u2 × dt + u1; u′3 = u4 × dt + u3;
w′1 = w2 × dt + w1; w′3 = w4 × dt + w3;
u′2 = −G ·Mt/(u1 · u1) · dt+ u1 · u4 · u4 · dt+ u2;
u′4 = −2.0 · u2 · u4/u1 · dt+ u4;
w′2 =−G ·Mt/(w1 · w1) · dt+ w1 · w4 · w4 · dt

+(A · w2)/(Mf − A · t) · dt+ w2;
w′4 =−2.0 · w2 · w4/w1 · dt+ A · w4/(Mf − A · t) · dt+ w4;
m′f = mf − A× t; t = t+ dt; } else {[...]};

x = (cos(w′3) ∗ w
′
1); y = (sin(w′3) ∗ w

′
1); i = i+ 1.0; [...] }

Figure 3: Original simulation code

while (i < nbsteps) do {
if (mf > 0.0) then {
TMP2 = (u1 · u1); TMP4 = (59735.99e20/(w1 · w1));
TMP10 = (140.0 · t); m′f = (mf + (t · (−140.0)));
u′1 = (u1 + (u2 · 0.1)); u′3 = (u3 + (u4 · 0.1));
w′1 = (w1 + (w2 · 0.1)); w′3 = (w3 + (w4 · 0.1));
u′2 = ((−((0.66743e−10 · (59735.99e20/TMP2)) · 0.1)

+(((u1 · u4) · u4) · 0.1)) + u2);
u′4 = (((−2.0 · (u2 · (u4/u1))) · 0.1) + u4);

w′2 = (((−((0.66743e−10 · TMP4) · 0.1) + (((w1 · w4) · w4) · 0.1))
+(((140.0 · w2)/(150000.0− (140.0 · t))) · 0.1)) + w2);

w′4 = (((−2.0 · (w2 · (w4/w1))) · 0.1)
+((140.0 · ((w4/(150000.0− TMP10)) · 0.1)) + w4));

t = t+ 0.1; } else { [...] };
x = (cos(((0.1 ∗ w′4) + w′3)) ∗ (w

′
1 + (w′2 ∗ 0.1)));

y = (sin(((0.1 ∗ w′4) + w′3)) ∗ (w
′
1 + (w′2 ∗ 0.1))); i = i+ 1.0; [...]}

Figure 4: Transformed simulation code

shows the difference between the trajectories before and af-
ter transformation, after 2.25 days of simulated time.

5. CONCLUSION
We have presented results obtained with our tool that

rewrites codes to improve their accuracy. Future work con-
sists of extending our tool to, first, other programming pat-
terns like arrays and especially functions and, second, to
deal with optimizing many reference variables at once.

6. REFERENCES
[1] ANSI/IEEE. IEEE Standard for Binary Floating-Point

Arithmetic. SIAM, 2008.
[2] Cousot, P., and Cousot, R. Abstract interpretation: A

unified lattice model for static analysis of programs. In
POPL (1977).

[3] Damouche, N., Martel, M., and Chapoutot, A.
Intra-procedural optimization of the numerical accuracy of
programs. In FMICS (2015). To be published.

[4] Goubault, E., and Putot, S. Static analysis of finite
precision comp. In VMCAI (2011), vol. 6538 of LNCS.

[5] Ioualalen, A., and Martel, M. A new abstract domain
for the representation of mathematically equivalent
expressions. In SAS (2012).

