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Abstract

To counter the challenge of integrating fluctuating renewables into the grid,
devices like thermostatically controlled loads (water-heaters, air conditioners,
etc) offer flexible demand. However, efficiently controlling a large population of
these devices to track desired consumption signals remains a complex challenge.
Existing methods lack convergence guarantees and computational efficiency, or
resort to regularization techniques instead of tackling the target tracking prob-
lem directly. This work addresses these drawbacks. We propose to model the
problem as a finite horizon episodic Markov decision process, enabling us to
adapt convex optimization algorithms with convergence guarantees and computa-
tional efficiency. This framework also extends to online learning scenarios, where
daily control decisions are made without prior knowledge of consumer behavior
and with daily-changing target profiles due to fluctuations of energy production
and inflexible consumption. We introduce a new algorithm, called Online Target
Tracker (OTT), the first online learning load control method, for which we prove
sub-linear regret. We demonstrate our claims with realistic experiments. This
combination of optimization and learning lays the groundwork for more dynamic
and efficient load control methods.

1



Keywords: Thermostatically controlled loads, Online learning, Convex optimization,
Markov decision process

1 Introduction

The fight against climate change heavily relies on our capability to completely decar-
bonize the electricity supply, considering that the energy sector is the primary source
of greenhouse gas emissions into the atmosphere [1]. However, it is extremely difficult
to make these solutions economically viable while also scaling them up. As large-scale
electricity storage is costly and relies on inefficient systems, it is crucial to maintain
a strict balance between electricity supply and demand at all times. The intermit-
tent nature of renewable energy sources can cause significant fluctuations in energy
supply, which may impact the balance of the power grid. Current solutions to keep
the system in balance rely heavily on fossil fuel power plants, which have significant
environmental costs, or on energy imports, which have capital and operating costs.

To address these issues, Demand-Side Management (DSM) [2] offers a set of strate-
gies that utilities use to control electricity demand by continuously monitoring energy
consumption and managing devices, reducing energy acquisition costs and improving
the reliability of energy systems. Yet, implementing DSM solutions is challenging, as
it involves large-scale data processing and near real-time scenarios. For this reason,
machine learning solutions have recently emerged to solve DSM problems [3] with
examples ranging from using multi-armed bandits to develop pricing solutions [4], to
deep learning models for smart charging of electric vehicles [5].

This paper presents a new approach using convex optimization and learning to
exploit the potential of thermostatically controlled loads (TCLs) as a flexible energy
storage solution to mitigate the impact of intermittent renewable energy sources.
Thermostatic loads are electrically powered devices that regulate temperature within
a specified range, like air conditioners, heaters, refrigerators and freezers. Our main
objective is to design signals to control the on-off states of a large population of TCLs,
ensuring that their combined energy consumption follows a predetermined target
consumption profile. We present three new contributions to the field of load control:

• Using a Markov decision process (MDP) framework, we effectively model the load
control problem. This allows us to apply existing convex optimization algorithms
like Mirror Descent with a specialized regularization function [6] and Fictitious
play for mean field games [7] to solve the TCL control problem. These algorithms
provide closed-form solutions and do not use regularization techniques, so their
convergence results apply directly to the load problem. This is a novelty compared
to existing approaches [8]. In addition, their convergence guarantees are O(1/K),
where K represents the number of iterations.

• We introduce an original algorithm, called Online Target Tracker (OTT), when
the target consumption profile is allowed to change daily due to variations in
energy supply and inflexible consumption, and when consumer behavior is not
known in advance and must therefore be learned. OTT is the first online learning
algorithm for the load control problem. The regret of OTT can be decomposed
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into two components. The first term, reflecting the uncertainty in consumer
behavior, scales as Õ(

√
T ), where T is the number of days. The second term,

accounting for daily variations in the target consumption profile, requires novel
analysis. We demonstrate that OTT achieves a regret bound of O(log(T )) for
the dynamic target term, improving on the traditional online learning bounds of
Õ(
√
T ) [9] using optimism [10] and specific characteristics of the load problem.

• We empirically illustrate the performance of the proposed offline algorithms and
the new online algorithm, OTT, on the problem of controlling the average con-
sumption of a large population of water-heaters. To this end, we describe a
controlled model of water-heaters and numerically simulate their consumption
using a realistic dataset [11].1

1.1 Problem Context

For any s ∈ N, we define [s] := {1, . . . , s}. We call ∆S the simplex on any finite set S,
and denote by |S| its size.

We model the On-Off switching dynamic of a TCL as a loop-free episodic Markov
decision process (MDP) with a finite horizon [12]. We divide a day in discrete time
steps n ∈ [N ]. At time n, the device is at a state xn = (mn, θn) ∈ X := {0, 1} × Θ
where mn is the operating state (On if 1, Off if 0), and θn represents its temperature.
It chooses an action an ∈ A := {0, 1} (to turn or stay On if 1, or Off if 0) according to
a probability vector πn(·|xn) ∈ ∆A, then moving to a next state xn+1 according to a
transition kernel pn+1(·|xn, an) ∈ ∆X encompassing the device dynamics and external
uncertainties from human behavior (e.g., hot water withdraws for water-heaters). The
control unit aims to find a policy π := (πn)n∈[N ] to be sent to each device inducing an
average consumption as close as possible to a target consumption profile γ := (γn)n∈[N ]

over the course of the day, without interfering with consumer behavior.
Addressing decision-making problems involving a large number of agents is a com-

plex task. To tackle this problem, we employ a mean field approximation [13, 14],
which consists of considering a continuous population of devices. This simplification
is justified by assuming all devices have the same transition kernel. This enables us
to express the average consumption curve over a day using the state-action distribu-
tion sequence induced when the devices, with dynamics p, adhere to the policy π, i.e.,
µπ,p := (µπ,p

n )n∈[N ].
For a target consumption profile γ := (γn)n∈[N ], we quantify the one-day loss

incurred by the control unit, when all devices follow the sequence of policies π, by
F (µπ,p; γ), such that F (·; γ) : [0, 1]N×|X|×|A| → R is a convex function capturing the
distance between the target curve γ and the average consumption computed with µπ,p.
In this paper, we consider two variants of the target tracking problem:

Offline optimization problem

Thanks to the mean field limit, we can consider the problem of minimizing F (·; γ),
for a fixed target consumption profile γ, over the space of policies inducing state-
action distributions, assuming that the probability transition kernel p illustrating the

1All the code to reproduce the empirical results is available at: https://github.com/biancammoreno/
tcl-online-control
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dynamics of a water-heater is known in advance, as in Eq. (1),

min
π∈(∆A)X×N

F (µπ,p; γ) . (1)

Online learning problem

We consider an extension of Problem (1) to the online learning scenario, where the
goal is to compute a sequence of policies (πt)t∈[T ] for T days in order to minimize the
total loss:

LT :=

T∑
t=1

F (µπt,p; γt) , (2)

where the target consumption profile γt can change daily due to variations in energy
supply and inflexible consumption, and is revealed to the learner at the start of episode
t. In order to encompass more realistic scenarios, we assume that consumer behavior
is unknown, which means that the probability transition kernel p is also partially
unknown and must then be learned. Therefore, the control unit’s main objective is to
minimize its total loss while learning consumer behavior.

1.2 Related Work

In the 1980s, pioneering models for thermostatically controlled load (TCL) switching
dynamics were developed by [15–17], paving the way for load control in demand-
side management. Today, different types of load control can be envisaged. Centralized
load control, where the central directly commands the On-Off operational state of
each device, is not scalable for large populations. Non-centralized approaches can be
divided into two categories: Distributed : Decisions at a TCL are computed based on
information exchanged with its neighbors, such as in [18–20]. This technique is not
well-suited for discrete decisions, making it less practical. Decentralized : The central
computes a control command and sends it to all TCLs, and each device behaves locally
following this control [21]. For a comprehensive overview see [22].

Managing a large population of devices is challenging. The works of [23, 24] were
the first to use a mean field approximation to circumvent this difficulty in load con-
trol. In this paper we consider a decentralized mean field approach with randomized
policies, i.e., the policy determines the probability of switching each device On or Off.
Initial work using randomized policies by [25] and [26] required solving non-convex
optimization problems. More recently, [27] proposed a method using a quadratic objec-
tive and a Kullback-Leibler (KL) penalty, enabling a Lagrangian approach optimizing
both the control policy and the probability transition kernel. However, this method
cannot handle uncontrolled noises, so uncertainties like water drains must be modeled
deterministically.

Closest to our work, [8] considers the uncontrolled stochastic environment in the KL
quadratic control framework by adding constraints on the probability transition kernel.
The KL penalty added to the objective function is essential to their main results.
However, there is a trade-off between adding the KL penalty and obtaining a good
target tracking curve. In contrast, our approach enables the solution of any convex
problem without the need to modify the objective function through regularization
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penalties. Besides, we also address the situation where the distribution of the stochastic
environment is not known and has to be learned.

The way we formulate the load control Problem (1) is also known as the Concave
Utility Reinforcement Learning (CURL) problem outside of the load control literature
[28]. The CURL problem extends the Reinforcement Learning (RL) task [29], and
recent approaches to tackling this more general framework include [6, 28, 30, 31]. In
the mean field community, [32] has shown that all the algorithms for solving mean
field games in model-based RL can be applied to solving CURL.

To the best of our knowledge, we are the first to consider the online learning version
of the load control problem, where the probability transition dynamics are unknown
and the target is allowed to change at each day. Modeling devices’ dynamic as a Markov
decision process (MDP) enables us to efficiently tackle the online learning problem.
Online MDPs have mostly been studied in specific cases of CURL, e.g. [33, 34], rather
than in its general form, and draw inspiration from online learning problems [9]. The
firsts to propose a sub-linear regret algorithm to the online CURL framework are
[6]. Building upon their approach, we develop an original algorithm to tackle the
online load control task. Due to the specifics of the loading problem, we obtain a sub-
linear regret of order O(log(T )) for the regret term associated with dynamic target
consumption profiles, where T represents the number of days, improving the bound of
[6] of Õ(

√
T ).

2 General Problem Formulation

Let us consider a collection of M electrical devices indexed by i. Recall that we model
the switching dynamics of a device as an episodic MDP, where each episode is a day
divided into N time steps, and the evolution of each device is independent of the
evolution of the other devices. At the start of a day, each initial state-action pair of a
device is sampled from a fixed distribution µ0 ∈ ∆X×A. At time step n, a device i in
state xin = (mi

n, θ
i
n) ∈ X , wheremi

n ∈ {0, 1} is its operational state, and θin its internal
temperature, chooses the action ain ∼ πn(·|xin) by means of a policy πn : X → ∆A,
and moves to the next state xin+1 determined by the equation

xin+1 := g(xin, a
i
n, ε

i
n), (3)

where g comprises the physical dynamics of the device and can be computed by
approximating an ordinary differential equation (see Section 5), and (εin)n∈[N ] is an
independent sequence of external noises, independent from one device to another, with
εin ∼ hn(·) for hn a distribution (e.g., hot water withdrawal for a water-heater). The
MDP’s probability transition kernel can then be expressed, for all (x, a, x′) ∈ X×A×X
and n ∈ [N ], as pn(x

′|x, a) := P
(
g(x, a, εn) = x′

)
. All results hold true regardless of

whether g is dependent on the time step n. We omit this term in our TCL example
because the physical equation of a device remains constant throughout the day.

We assume that all devices are homogeneous, i.e. they have the same dynamics and
follow the same policy π. Let m̄n := 1

M

∑M
i=1m

i
n denote the average consumption. We

assume for simplicity that the maximum power of each electrical device is pmax = 1 so
that the average consumption is equal to the proportion of devices at state On. Note
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that m̄n depends on the policy π that the devices follow, thus we can denote it as
m̄n(π). Let γ = (γn)n∈[N ] ∈ [0, 1]N be the target consumption profile (for example, the
energy production at each time step divided by the number of devices). The control
unit’s goal is to solve

min
π∈(∆A)X×N

E

[
N∑

n=1

fn(m̄n(π); γn)

]
, (4)

where fn represents a general convex and Lipschitz loss, estimating the deviation of
the average actual consumption from the target consumption profile at time step n.

We define µπ,p := (µπ,p
n )n∈[N ] the state-action distribution sequence induced when

all devices follow a sequence of strategies π := (πn)n∈[N ] in the MDP with probability
kernel p := (pn)n∈[N ], for all (x

′, a′) ∈ X ×A and all n ∈ [N ], recursively as below:

µπ,p
0 (x′, a′) := µ0(x

′, a′)

µπ,p
n (x′, a′) :=

∑
x∈X

∑
a∈A

µπ,p
n−1(x, a)pn(x

′|x, a)πn(a′|x′). (5)

We denote the empirical state-action distribution as µ̂π,p := (µ̂π,p
n )n∈[N ], where at time

step n ∈ [N ], for all (x, a) ∈ X ×A,

µ̂π,p
n (x, a) =

1

M

M∑
i=1

1{(xi
n,a

i
n)=(x,a)}.

For a function φ : X → R, we define µπ,p
n (φ) :=

∑
x∈X

∑
a∈A µ

π,p
n (x, a)φ(x).

We are particularly interested in a function φ such that µn(φ) gives us the aver-
age consumption of our electrical devices’ population. Thus, we consider for now
φ : (m, θ) 7→ m.

The homogeneity assumption (same probability kernel p for all devices) implies
that there is convergence when M → ∞, i.e. limM→∞ µ̂π,p = µπ,p. We can there-
fore consider the mean-field approximation of Eq. (4), which brings us to the main
optimization problem in this paper already given by Eq. (1):

min
π∈(∆A)X×N

F (µπ,p; γ) :=

N∑
n=1

fn(µ
π,p
n (φ); γn).

Here are some examples of loss functions that the control unit can consider:
• Quadratic: F (µπ,p; γ) :=

∑N
n=1(µ

π,p
n (φ)− γtn)2.

• Kullback-Leibler divergence: F (µπ,p; γ) :=
∑N

n=1 µ
π,p
n (φ) log

(
µπ,p
n (φ)
γn

)
.

Offline optimization setting (Section 3):

To address the offline optimization Problem (1) where the dynamics p and the target
are known, we reformulate the problem as a convex optimization problem on the
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Control unit

Load 1

Load M

Load M + 1

Load M

...

...

γt

target
πt

+

µ̂πt,p(φ)
average

consumption

external noise ε1,t

εM,t

M observed loads

Fig. 1: Control unit’s general framework.

space of probability measures. We then propose an iterative protocol, where at each
iteration k ∈ [K] the control unit updates the policy using one iteration of a convex
optimization algorithm we denote by F , depending on the previous policy πk−1, the
model dynamics p, and the objective function F , i.e. πk := F(πk−1, p, F ). Section 3
presents examples of such algorithms, including Fictitious Play for mean-field games
[7] (equivalent to Frank-Wolfe for potential games [32]) and Mirror Descent with a
non-standard Bregman divergence [6], which are specifically tailored to our model and
provide quasi-explicit solutions at each iteration. Moreover, these algorithms guarantee

that the gap between the optimal and the current policy, mink∈[K] F (µ
πk,p)−F (µπ∗,p),

vanishes as the number of iterations K increases.

Online learning setting (Section 4):

On the online learning setting, the control unit’s problem is to compute a sequence
of policies (πt)t∈[T ] over T days, where the target reference profile γt may change
from day to day but is known beforehand at the beginning of each day. The goal
is to minimize the total loss as defined in Eq. (2). The performance is measured in
comparison to the optimal policy for each target, using the following regret:

RT :=

T∑
t=1

F (µπt,p; γt)−
T∑

t=1

min
π∈(∆A)X×N

F (µπ,p; γt). (6)

We consider the dynamics of Eq. (3). The physical dynamics of each device, repre-
sented by the function g, are assumed to be known. However, the consumer behavior,
characterized by the external noise distribution hn, is unknown. Therefore, the control
unit must simultaneously optimize the objective function and learn the noise distri-
bution through observations. The online protocol for the control unit is detailed in
Algorithm 1, and illustrated in Fig. 1.

At each day t, the control unit chooses a policy πt, sends it to all devices, observes
the external noise of a sub-population of M devices, (εi,t1 , . . . , ε

i,t
N ) for i ∈ [M ], com-

putes an estimate p̂t+1 of the probability kernel using the observations, receives the
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Algorithm 1 Control unit’s online protocol

Input: initial state-action distribution µ0, initial strategy sequence π1.
for t = 1, . . . , T do
for i = 1, . . . ,M do
the i-th device starts at (xi,t0 , a

i,t
0 ) ∼ µ0(·)

for n = 1, . . . , N do
environment draws new state xi,tn ∼ pn(·|x

i,t
n−1, a

i,t
n−1)

control unit observes device’s i external noise εi,tn
deivce i chooses an action ai,tn ∼ πt

n(·|xi,tn )
end for

end for
control unit computes, for all n ∈ [N ], new estimate p̂t+1

n from data (εi,sn )s∈[t],j∈[M ]

next day’s target γt+1 is exposed
control unit computes πt+1 = F(πt, p̂t+1, F (·; γt+1)) and send to all devices

end for
return (πt)t∈[T ]

next day’s target γt+1, and calculates the policy for the next day by applying the
auxiliary problem F on πt, F (·; γt+1), and p̂t+1. To compute a strategy sequence with
sub-linear regret the control unit faces two challenges: how to estimate p with p̂t+1

from the data and how to define the auxiliary optimization problem F. In Section 4,
we introduce the first algorithm for the online target tracking problem and we show
it achieves sub-linear regret.
Remark 2.1. In this paper, we consider the special case of a population of water-
heaters when we describe the model in Section 5 and the experiments in Section 6.
However, it should be noted that all results remain valid for other types of electri-
cal devices whose dynamics are those of the Eq. (3), e.g. all TCLs, electric vehicle
batteries, etc.

3 Offline Optimization Setting

We now turn to algorithms for solving the main Problem (1), which are further
simulated in Section 6 in the water-heater’s case using the model in Section 5.

3.1 Reformulation of the Control Unit’s Objective

Problem (1) is not convex in π. We therefore reformulate the control unit’s objective
to obtain a convex problem. For that we define

Mp
µ0

:=

{
µ ∈ (∆X×A)

N
∣∣ ∑

a′∈A

µn(x
′, a′) = (7)

∑
x∈X ,a∈A

pn(x
′|x, a)µn−1(x, a) ,∀x′ ∈ X ,∀n ∈ [N ]

}
,
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as the set of state-action distribution sequences satisfying the Bellman-flow in the
MDP with transition kernel p and initial state-action distribution µ0. For any µ ∈
Mp

µ0
, there exists a strategy π such that µπ,p = µ. It suffices to take πn(a|x) =

µn(x, a)/
∑

a∈A µn(x, a) when the normalization factor is non-zero, and arbitrarily
defined otherwise [12]. To ensure the uniqueness of π given µ, we make the convention
that πn(a|x) = 1

|A| whenever the normalization factor is zero. We therefore have the

equivalence

min
π∈(∆A)X×N

F (µπ; γ) ≡ min
µ∈Mp

µ0

F (µ; γ), (8)

for any target curve γ. Note that the optimization problem over µ is convex.

3.2 Algorithmic approaches

We now consider different auxiliary optimization problems F, as discussed in Section 2,
to solve Problem (8). We assume that the probability kernel p is known (i.e. g and
(hn)n∈[N ] are known in the dynamics of Eq. (3)) and, to minimize notations, we let
µπ := µπ,p andMµ0 :=Mp

µ0
.

MD-CURL [6]:

MD-CURL is an algorithm based on Mirror Descent to solve the general CURL prob-
lem by using a non standard Bregman divergence. For τk > 0 a positive learning rate,
MD-CURL considers as an auxiliary problem computing at iteration k + 1,

µk+1 ∈ argmin
µπ∈Mµ0

{
τk⟨∇F (µk; γ), µπ⟩+ Γ(µπ, µk)

}
, (9)

where ⟨∇F (µk; γ), µπ⟩ :=
∑N

n=1⟨∇fn(µk
n; γn), µ

π
n⟩, and the regularization function Γ

is defined as

Γ(µπ, µπ′
) :=

N∑
n=1

E(x,a)∼µπ
n(·)

[
log

(
πn(a|x)
π′
n(a|x)

)]
. (10)

Thanks to the choice of Γ as the regularization function, [6] demonstrated
that Problem (9) can be efficiently solved using dynamic programming. The

solution is given by µk+1 = µπk+1

, as shown in Eq. (5), with πk+1
n (a|x) =

ExpTwist
(
πk, Qk, τk

)
n
(x, a), where

ExpTwist
(
πk, Qk, τk

)
n
(x, a) :=

πk
n(a|x) exp

(
τkQ

k
n(x, a)

)∑
a′ πk

n(a
′|x) exp (τkQk

n(x, a
′))
. (11)

Here Qk := (Qk
n)n∈[N ] is a regularized Q-function [29] computed backwardly in time

alternating with policy updates, using the gradient of the objective function evalu-

ated at the previous policy ∇F (µπk

; γ), the previous policy πk, and the probability
transition kernel p, such that

Qk
N (x, a) = −∇fN (µk

N )(x, a)

9



Qk
n(x, a) = max

πn+1∈(∆A)X

{
−∇fn(µk

n)(x, a) +
∑
x′

pn+1(x
′|x, a)

∑
a′

πn+1(a
′|x′)

[
− 1

τk
log

(
πn+1(a

′|x′)
πk
n+1(a

′|x′)

)
+Qk

n+1(x
′, a′)

]}
. (12)

In short, we denote Qk := Q
(
∇F (µπk

; γ), πk, p
)
.

In addition, [6] proves that Γ is a Bregman divergence induced by

ψ(µ) :=

N∑
n=1

ϕ(µn)−
N∑

n=1

ϕ(ρn), (13)

where ρn(x) :=
∑

a∈A µn(x, a), and ϕ is the neg-entropy function defined for any
probability measure η ∈ ∆E , whatever the (finite) space E, with the convention that
0 log(0) = 0, by ϕ(η) :=

∑
x∈E η(x) log η(x). Therefore, if F is convex and Lipschitz,

MD-CURL has a convergence rate of O
(
1/
√
K
)
.

Optimistic MD-CURL:

Just as [10] develops the Optimistic Mirror Descent algorithm, we can also define the
Optimistic MD-CURL approach, a faster version of MD-CURL, by solving at iteration
k + 1

µk+1 ∈ argmin
µ∈Mµ0

{
τ⟨∇F (νk; γ), µ⟩+ Γ(µ, νk)

}
νk+1 ∈ argmin

ν∈Mµ0

{
τ⟨∇F (µk+1; γ), ν⟩+ Γ(ν, νk)

}
,

(14)

where Γ is defined as in Eq. (10). With the additional assumption that F is smooth
(Lipschitz gradient) for all γ targets, the convergence rate of Optimistic MD-CURL
is of the order of O(1/K).

Potential games:

The works of [32, 35] relate the optimality conditions of optimization problems to the
concept of Nash equilibrium in games. It is then possible to provide an equivalence
between Problem (1) and a mean field game (MFG) problem by considering a game
whose reward is given at each time step n by −∇fn(µn; γ)(xn, an) for all (xn, an, µn) ∈
X × A ×∆X×A. Thus, we can also consider algorithms for MFGs in episodic MDPs
as auxiliary problems for solving the target tracking task. In Section 6 we simulate
the Fictitious Play algorithm for MFG (FP-MFG) of [7] (equivalent of Frank-Wolf for
potential games), defined in Algorithm 3 at Appendix A. For F convex and smooth,
FP-MFG has a convergence rate of order O(1/K).
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4 Online Learning Setting: a Novel Approach

We consider the online variant of Problem (1) where the control unit must com-
pute a sequence of policies every day through T days while facing unknown external
noises and changing targets. We first propose two baseline algorithms with sub-linear
regret inspired by [6], but that do not fully exploit the structure of the target track-
ing problem. We then propose a new algorithm, called Online Target Tracker (OTT),
specifically designed for the online load control scenario. Unlike the methods proposed
in [6], OTT uses the concept of predictable sequences introduced in [10]. This enables
OTT to exploit the predictability of future stochastic targets, specific to the load prob-
lem, resulting in better convergence rates. We achieve this by adapting the optimistic
MD-CURL algorithm, from Section 3, to handle online scenarios with dynamically
changing targets and an unknown transition kernel.

4.1 Learning the External Noises

Since the control unit does not know the noise dynamics due to consumers’ behavior,
it has to estimate it from observation. Recall that we denote by M the number of
devices observed at each day and that the dynamics follow Eq. (3). Let δx be the
Dirac distribution centered in x. For all n ∈ [N ] and (x, a) ∈ X × A, we define
p̂1n(·|x, a) = 1

|X | , and

p̂t+1
n (·|x, a) := 1

Mt

M∑
j=1

δg(x,a,ϵj,tn )(·) +
t− 1

t
p̂tn(·|x, a), (15)

as the empirical probability transition kernel estimated on day t + 1. When g is
invertible the external noises can be determined by observing the subpopulation’s
state-action trajectory and inverting the function g.

4.2 Algorithmic Approaches

Operating under the online protocol outlined in Algorithm 1, the control unit updates
its estimate p̂t+1 based on the observed noises at the end of each day t using
Eq. (15). Upon receiving the target consumption profile signal γt+1 for the subsequent
day, the control unit calculates the corresponding policy πt+1. This section presents
novel approaches for calculating the policy under different conditions imposed on the
possible values of the target consumption profile. To ease notations, letMt

µ0
:=Mp̂t

µ0
.

Intuitive approach:

Although the target consumption profiles change daily due to variations in energy
production and flexible consumption, we assume that these profiles are known to the
control unit before the policy is calculated. Our first approach is to build an online
algorithm that, at day t ∈ [T ], runs K iterations of one of the offline methods in
Section 3 on the set Mt

µ0
, for the corresponding target γt. This approach can deal

with targets encompassing any value in RN . However, it is computationally costly. For

11



example, MD-CURL with a convergence rate of O(1/
√
K), requires K = T iterations

to achieve a regret of O(
√
T ), resulting in a computational complexity of order O(T 2).

Faster methods like FP-MFG or optimistic MD-CURL still requireK =
√
T iterations,

leading to a computational complexity of order O(T 3/2).
To improve computational complexity we consider a new framework. Assume that

the target consumption profile γ is restricted to a finite set Υ := {γ1, . . . ,γJ}, where
J denotes the total number of permissible targets. At each day t, the target can take
any value from Υ, known to the control unit before the day begins.

Classic online CURL:

A naive algorithm for this framework is to apply a classic online learning algorithm for
CURL problems, like Greedy MD-CURL from [6], for each target γj , for j ∈ [J ]. At
each day t, we perform one iteration of Greedy MD-CURL overMt

µ0
, initialized with

the best policy computed the last time target j appeared. This approach achieves a
regret of order O(

√
JT log(T )), and computational complexity of order O(T ).

Classic online learning algorithms like Greedy MD-CURL aim for sub-linear regret
when facing adversarial objective functions revealed only at each episode’s end [9].
Unlike this scenario, our framework assumes targets are known beforehand. This
allows us to achieve better results than classical online learning lower bounds [36]. We
present a novel algorithm that leverages this advantage while upholding computational
efficiency.

New algorithm: Online Target Tracker (OTT):

To achieve improved regret bounds while maintaining lower complexity, we introduce
OTT. It considers the framework with only a finite number of targets and employs an
online learning version of optimistic MD-CURL tailored to the online target tracking
problem. Optimistic methods are uncommon in traditional online learning literature
as they do not provide improved regret bounds for adversarial objective functions.
However, in the context of online target tracking, as targets are known in advance,
we can demonstrate that implementing optimistic methods enables us to improve the
bound of the regret term responsible for handling varying targets from Õ

(√
T
)
to

O
(
log(T )

)
.

Let tj mark the index of the latest day, up to day t, when target γj was observed.
If before the start of day t+ 1 the control unit observes target γj , OTT solves

µt+1 ∈ argmin
µ∈Mt+1

µ0

{τ⟨∇F (ν̃tj ;γj), µ⟩+ Γ(µ, ν̃tj )}

νt+1 ∈ argmin
ν∈Mt+1

µ0

{τ⟨∇F (µt+1;γj), ν⟩+ Γ(ν, ν̃tj )},
(16)

where, µt+1 := µπt+1,p̂t+1

, ν̃tj := ν η̃
tj ,p̂t

with

η̃s := (1− αs)η
s + αs

|A| , (17)

12



for all s ∈ [T ], where αs ∈ (0, 1/2) is an exploration parameter, and πs, ηs are the
policies inducing µs, νs respectively in the MDP Ms

µ0
for all s ∈ [T ]. A practical

implementation of OTT is given in Algorithm 2.

Algorithm 2 OTT: Online Target Tracker

Input: number of days T , initial auxiliary policy η0 ∈ (∆A)
X×N , number of devices

observed per dayM , initial state-action distribution µ0, learning rate τ , exploration
parameters (αt)t∈[T ].
Initialization: ∀(x, a), p̂1n(·|x, a) = g(x, a, 0); ∀j ∈ [J ], tj = 0
for t = 0, . . . , T − 1 do

for i = 1, . . . ,M do
i-th device starts at (xi,t0 , a

i,t
0 ) ∼ µ0(·)

for n = 1, . . . , N do
environment draws new state xi,tn ∼ pn(·|x

i,t
n−1, a

i,t
n−1)

control unit observes device i’s external noise εi,tn
device i takes an action ai,tn ∼ πt

n(·|xi,tn )
end for

end for
update probability kernel estimate for all (x, a):

p̂t+1
n (·|x, a) := 1

Mt

M∑
i=1

δg(x,a,εi,tn ) +
t− 1

t
p̂tn(·|x, a)

control unit receives next day target γt+1 ∈ Υ
if γt+1 = γj for j ∈ [J ] then
compute next policy:
Qt+1 := Q

(
∇F (ν̃tj ;γj), η̃

tj , p̂t+1
)
as in Eq. (12)

πt+1 := ExpTwist
(
η̃tj , Qt+1, τ

)
as in Eq. (11)

compute µt+1 = µπt+1,p̂t+1

as in Eq. (5)
compute next auxiliary policy:
Q̃t+1 := Q

(
∇F (µt+1;γj), η̃

tj , p̂t+1
)
as in Eq. (12)

ηt+1 := ExpTwist
(
η̃tj , Q̃t+1, τ

)
as in Eq. (11)

update count tj ← t+ 1
end if
compute η̃t+1 and ν̃t+1 as in Eq. (17)

end for
return (πt)t∈[T ]

4.3 Online Target Tracker Regret Analysis

In this section, we prove the regret bound of OTT. For that, we use results from [6, 10]
while also having to handle an online optimization problem with varying constraint
sets. Let π∗,j := minπ∈(∆A)X×N F (µπ,p;γj), for all j ∈ [J ]. Define the map v : [T ]→ [J ]
such that v(t) = j if γt = γj . We start by decomposing the regret in Eq. (6) into three

13



terms,

RT =

T∑
t=1

F (µπt,p;γv(t))− F (µπt,p̂t

;γv(t))

+

T∑
t=1

F (µπt,p̂t

;γv(t))− F (µπ∗,v(t),p̂t

;γv(t))

+

T∑
t=1

F (µπ∗,v(t),p̂t

;γv(t))− F (µπ∗,v(t),p;γv(t))

:= RMDP
T

(
(πt)t∈[T ]

)
+Rpolicy

T +RMDP
T

(
(π∗,v(t))t∈[T ]

)
.

The terms RMDP
T

(
(πt)t∈[T ]

)
and RMDP

T

(
(π∗,v(t))t∈[T ]

)
account for the error

incurred by the control unit due to its lack of knowledge of the true probability kernel.
The term Rpolicy

T represents the cost of calculating sub-optimal policies with OTT.
Subsections 4.4 and 4.5 bound each of these terms, yielding our main result:
Theorem 4.1 (Main result). Consider the target tracking problem in an episodic
MDP with finite state space X , finite action space A, episodes of length N , probability
kernel p := (pn)n∈[N ], T days, and targets γt arbitrarily chosen each day t from a
finite set Υ := {γ1, . . . ,γJ}. For all t ∈ [T ], let F t(·; γt) : (∆X×A)

N → R be convex,
L-Lipschitz and β-smooth with respect to the norm ∥ · ∥∞,1 := supn∈[N ] ∥ · ∥1. Then,
with a probability of 1− δ, for any δ ∈ (0, 1), OTT obtains, for τ = 1/β and αt = 1/T
for all t ∈ [T ],

RT ≤ 2NL

√
2T

M
log

(
N |X ||A|T

δ

)
+ β

(
2N2J log(|A|T ) log

(
T
)
+ 2N + JN log(|A|)

)
.

4.4 Bounding RMDP
T

The same analysis holds for RMDP
T

(
(π∗,v(t))t∈[T ]

)
and RMDP

T

(
(πt)t∈[T ]

)
. It uses a

concentration result from Proposition 5.5 of [6], assuring that, with probability 1− δ
for any δ ∈ (0, 1), OTT obtains

RMDP
T

(
(πt)t∈[T ]

)
≤ LN

√
2T

M
log

(
N |X ||A|T

δ

)
.

4.5 Bounding Rpolicy
T

The Rpolicy
T bound is a novel result. Despite changing costs, prior target knowledge

allows for novel improved results. The challenge lies in handling online optimization
with dynamic constraints. The result is stated in Proposition 4.2 and its proof is in
Appendix B.
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Fig. 2: Temperature evolution of a water-heater following the nominal dynamics.

Proposition 4.2. Under the same hypothesis as in Theorem 4.1, OTT obtains,

Rpolicy
T ≤ β

(
2N2J log(|A|T ) log

(
T
)
+ 2N + JN log(|A|)

)
.

The main challenge of the proof is to deal with variable constraint setsMt
µ0
. The

policy played for target γj is updated only when this target appears. However, the
probability kernel estimate is updated every day. Consequently, we need to bound
the difference between the state-action distributions induced by the probability kernel
estimate between two appearances of the same target. We must also guarantee a
limit on ∥∇ψ(µπ,p)∥∞,1, the function inducing the Bregman divergence, justifying our
construction in Eq. (17).

5 Water-Heater Model

5.1 Nominal Dynamics of a Water-Heater

We consider that a water-heater follows the dynamics described in Section 2. For
simplicity’s sake, we only consider temperatures within a finite set Θ. We call its
uncontrolled dynamics the nominal dynamics. A water-heater that follows the nominal
dynamics obeys a cyclic On-Off decision rule with a deadband to ensure that the
temperature is between a lower limit Tmin and an upper limit Tmax (also known as
quality of service constraint). Thus, if the water-heater is turned On, it heats water
with the maximum power until its temperature exceeds Tmax. Then, the heater turns
Off and the water temperature decreases until it reaches Tmin, where the heater turns
On again and a new cycle begins. The nominal dynamics are illustrated in Figure 2.

For a heater in state xn = (mn, θn) at time step n, the next temperature is com-
puted by θn+1 := T̂ (mn, θn, εn) where T̂ is an approximation of the solution of the
ordinary differential Eq. (18)

dT (t)
dt = − ρ(T (t)− Tamb)︸ ︷︷ ︸

heat loss

+σmnpmax︸ ︷︷ ︸
Joule effect

− τ(T (t)− Tin)f(t)︸ ︷︷ ︸
water drain

T (tn) = θn,

(18)
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modelling the impact of the heat loss to the environment temperature Tamb, the Joule
effect (heating), and hot water drainings (showers, dishwashing, etc). The parameters
ρ, σ, τ are technical parameters of the water-heater, pmax is the maximum power, Tin
denotes the temperature of the cold water entering the tank, and f(t) denotes the
drain function.

In order to compute T̂ , we start by making an Euler discretization as in Eq. (19).
We define a sequence of independent random variables (εn)n∈[N ] denoting the amount
of draining in liters at each time step. The independence of drains at each time step
is justified by assuming that the time δ between two steps is large enough to contain
all the time when hot water will be drawn from the water-heater tank for a single use.

T (mn, θn, εn) := θn + δ
(
− ρ (θn − Tamb) + σmnpmax − εnτ (θn − Tin)

)
(19)

Let the finite set of possible temperatures, Θ, consists of integers ranging from Tamb

to Tmax, where Tamb < Tmin. This assumption is reasonable since the ambient tem-
perature is typically lower than the minimum acceptable temperature for the heater.
Due to the dynamics of the operating state, θn+1 never exceeds Tmax (the heater turns
Off when it reaches Tmax and its temperature only decreases when it is turned Off).
Hence, we take θn+1 = T̂ (mn, θn, εn) := Round(T (mn, θn, εn)), where

Round(θ) =

{
⌊θ⌋, if B(θ) = 0

⌈θ⌉, if B(θ) = 1,

and B(θ) is a random variable following a Bernoulli of parameter θ − ⌊θ⌋. Thus, the
closer θ is to its smallest nearest integer, the greater the probability that we approxi-
mate θ by it, and vice-versa. We perform stochastic rounding instead of deterministic
to have an unbiased temperature estimator.

The full nominal dynamics at a discretized time is then given by Eq. (20),


θn+1 = T̂ (mn, θn, εn)

mn+1 =


mn, if θn+1 ∈ [Tmin, Tmax]

0, if θn+1 ≥ Tmax

1, if θn+1 ≤ Tmin.

(20)

5.2 Randomized Controlled Dynamics of a Water-Heater

The action space of the MDP is given by A := {0, 1}. At time step n, choosing
action 1 means turning the heater On except when θn ≥ Tmax. Conversely, choosing
action 0 means turning the heater Off except when θn ≤ Tmin. The nominal dynamics
deterministicaly chooses action 0 if the heater is Off and 1 if it is On, independent of
the heater’s temperature. Unlike the nominal dynamics, we want to consider stochastic
strategies for choosing actions. Hence, we define a randomized policy π := (πn)n∈[N ]

such that action an is sampled with probability πn(·|xn) ∈ ∆A, conditioned in the
current state xn. The next operating state is now given by mn+1 := M(an, θn+1),
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where

M(an, θn+1) := an1θn+1∈[Tmin,Tmax] + 1θn+1<Tmin
.

Moreover if θn+1 ∈ [Tmin, Tmax], the action an ∼ πn(·|xn) defines the next operating
state of the heater.

Casting into the general framework for TCL dynamics as in Eq. (3),

xn+1 = g(xn, an, εn) :=
(
Mn(an, T̂ (xn, εn)), T̂ (xn, εn)

)
. (21)

6 Experiments with water-heaters

6.1 Simulating the Nominal Dynamics

To simulate the nominal dynamics, we employ the nominal model presented in
Section 5 in conjunction with data obtained from the SMACH (Simulation Multi-
Agents des Comportements Humains) platform [11]. This data encompasses the
simulation of water withdrawals made by over 5,132 water-heaters over a single day
during the summer of 2018. We set a time frequency of δt = 10 minutes to cap-
ture the entire duration of single hot water withdrawal events, thereby satisfying the
independence of external noise assumption. The temperature deadband is defined as
Tmin = 50◦C and Tmax = 65◦C. The values of the parameters ρ, σ, τ and pmax used in
the temperature Eq. (19) are computed in Eq. (22) using the variables introduced in
Tables C1 and C2 in Appendix C. We take Tamb = 25◦C and Tin = 18◦C. Figure 3
shows the simulation of the average drain and power consumption of 104 water-heaters
following the nominal dynamics over the period of one week day.

ρ =
coefLoss ∗ 3600

capWater ∗ denWater ∗ vol/height
(fraction of heat loss by hour)

σ = (vol ∗ denWater ∗ capWater)−1

τ = (vol ∗ denWater)−1

(22)
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Fig. 3: Individual profile, average drain and power consumption for a simulation of
104 water-heaters over a period of one day.
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Fig. 4: Deviation signals (λn)n≤N .

The target signal γ = (γn)1≤n≤N is built as a sum of a baseline b = (bn)n≤N and
a deviation signal λ = (λn)n, γ = λ + b(w), where b(w) is the nominal dynamics,
and w represents a random initialization of their states. If the deviation is zero, the
average consumption is equal to the baseline. The deviation signal should have zero
energy on the time considered for the simulations, i.e.

∑N
n=0 λn = 0, in order to ensure

a stationary control process that can be repeated over many episodes. Electricity
consumption is then shifted in time (from one moment of the day to another), but daily
consumption remains the same. We consider the three deviation signals illustrated in
Figure 4: a one hour step deviation, an eight hours step deviation (during peak hours),
and a transmission system operator (TSO) balancing signal.

For all experiments we have N = 144, |X | = 82 (two operational states On/Off
times 41 possible temperatures - integers from the ambient temperature Tamb = 25 to
Tmax = 65), |A| = 2. On every plot the policy is simulated over 5000 heaters.

6.2 Offline Setting

We start by simulating the algorithms introduced for the offline setting in Section 3.
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Fig. 5: Average consumption profile of 104 heaters following the policy output by
each offline algorithm from Section 3 over 103 iterations.
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Fig. 6: Log plot of the objective function per iteration for each offline method in
Section 3 for each deviation.

In Figure 5, the consumption predicted by the optimal policies for all algorithms in
Section 3 closely tracks the actual target consumption, as expected. This convergence
to the same optimal solution is achieved by each algorithm through different strategies
and at varying rates. Figure 6 shows the log objective function per iteration, revealing
that MD-CURL and optimistic MD-CURL converge faster than FP-MFG.

To visualize the learned policies, Figure 7 plots the probability of choosing the
On action (represented by color intensity) at each time step (x-axis) for all possible
temperatures (y-axis), with Tmin at the top, when the current state is either On (top)
or Off (bottom). This plot focuses on optimistic MD-CURL and FP-MFG in the eight-
hour deviation scenario. Notably, optimistic MD-CURL exhibits a more smooth policy
compared to FP. Note also that the probability of switching On or Off is independent
of the current temperature.

Different initializations of the algorithm impact switch counts.

Our model does not assume a On/Off switching limit for each water-heater, but exces-
sive switches can harm the device. An advantage of optimistic MD-CURL is that
different initializations lead to distinct policies, generating the same average consump-
tion profile but differing in the average number of On/Off switches over the time
horizon considered. This allows us to reduce the number of switches without new con-
straints by discovering several policies that achieve the desired consumption profile
and selecting the one that generates the fewest switches. This is only possible thanks
to MD-CURL’s regularization term. For example, in Figure 7a, the algorithm is initial-
ized with the uniform policy, and has an average of 33 switches per day. The nominal
policy has in average only 3 switches per day. Initializing optimistic MD-CURL with
a policy deviating by 0.1 from the nominal policy significantly reduces daily switches
to an average of 9.2 while still following the target curve, see Figure 8. Note also that
for this initialization, the probabilities vary with temperature, unlike in the uniform
initialization.

6.3 Online Setting

We investigate the performance of OTT in the online setting where water withdrawal
noise is unknown and needs to be learned. Given a finite set of three possible target
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(a) Opt. MD-CURL (b) FP

Fig. 7: Optimal policies for Optimisitic MD-CURL and FP over 103 iterations for the
target with eight hours step deviation.

(a) Initial policy (b) Opt. MD-CURL

Fig. 8: [left] Initial policies π0 as a deviation of 0.1 from the nominal policy. [right]
Optimal policies for Optimistic MD-CURL initialized with π0 at left.

deviations (as shown in Figure 4), we pre-compute the target sequence for all days
uniformly at random. We use T = 103 days and a sub-population of M = 100 water-
heaters out of 5132 is observed per day to learn the external noise.

Figure 9 compares the log regret per iteration for OTT (blue), OTT with known
noise dynamics (green), and OTT with unknown noise dynamics, where the learner
never learns the noise distribution (orange), i.e. p̂tn(·|x, a) = δgn(x,a,0) for all (x, a).
Figure 10 shows the average consumption profile induced by the best policies for each
target. We see that OTT learning the dynamics quickly matches OTT with known
noise dynamics, and that never learning the noise is sub-optimal. While our model
simplifies external noise by assuming homogeneity for all water-heaters, the training
data we use does not. This data simulates realistic water consumption patterns in
diverse households. Interestingly, our experiments reveal that despite this simplifica-
tion in the model, we can still generate effective policies that meet the target even
under more realistic conditions.

20



100 101 102 103

10−1

Iterations

true
no learn
learn

Fig. 9: Log plot of the objective function per iteration for OTT [blue], OTT with
known [green] and unknown [red] noise dynamics.
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(b) Eight hours step.
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Fig. 10: Average consumption profile over 104 heaters following the policy output by
OTT [blue], OTT with known noise distribution [green], and OTT with p̂tn(·|x, a) =
δg(x,a,0) [orange].

7 Conclusion and Future Works

In this paper, we propose to model the problem of controlling a large population of
TCLs as a loop-free episodic Markov decision process. We show that this formula-
tion makes it possible to adapt classical optimization algorithms to the load problem
achieving closed-form solutions with convergence guarantees. The proposed solution
is improved over previous approaches because it requires no additional regularization
in the main problem and can be applied to any convex and Lipschitz objective func-
tions. This Markovian formulation also gives rise to more realistic settings, such as the
online learning scenario, for which we develop a new algorithm, OTT, dealing with
variable target consumption profiles and unknown consumer behavior. We prove OTT
achieves O(log(T )) regret, where T is the number of episodes. We also validate our
claims using realistic simulations of a population of water-heaters.

A future direction is to adapt our algorithm to the case where probability transi-
tions are not stationary, taking into account sudden changes in human behavior due to
abrupt temperature changes or episodes such as the Covid 19 pandemic. Furthermore,
one of the limitations of our method is that it only works in finite state spaces, forcing
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us to discretize the temperature. Future work also involves generalizing our work to
continuous state spaces, using function approximations and/or model-free algorithms.
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Appendix A Fictitious Play for MFG Algorithm

Algorithm 3 FP-MFG [7]

Input: number of iterations K, initial policy π0.
Initialization: µ̄0 = µπ0

as in Eq. 5.
for k = 0, ...,K do
πk+1 ∈ argmaxπ∈(∆A)X×N

∑N
n=1

∑
x,a µ

π
n(x, a)

(
−∇fn(µ̄k

n)(x, a)
)
, best response

against µ̄k computed backwards in time.

µ̄k+1 = 1
k+1µ

πk+1

+ k
k+1 µ̄

k.
end for

Return: µ̄K and π̄K s.t. π̄K
n (a|x) :=

∑K
k=0

ρπk

n (x)πk
n(a|x)∑K

k=0 ρπk
n (x)

,
(
ρπ

k

n (x) :=
∑

a∈A µ
πk

n (x, a)

for all k ≤ K
)
.

Appendix B Proof of Proposition 4.2: Upper
Bound of Rpolicy

T

Proof. Recall that an iteration of OTT solves Problem (16) whenever γt+1 = γj , i.e.,

µt+1 ∈ argmin
µ∈Mt+1

µ0

{τ∇F (ν̃tj ;γj), µ⟩+ Γ(µ, ν̃tj )}

νt+1 ∈ argmin
ν∈Mt+1

µ0

{τ∇F (µt+1;γj), ν⟩+ Γ(ν, ν̃tj )},
(∗)

where we let πt be the policy inducing µt and ηt be an auxiliary policy inducing νt,
both in Mt

µ0
, i.e., µt := µπt,p̂t

and νt := νη
t,p̂t

, in the sense of Eq. (5). Also, recall
that η̃t := (1− αt)η

t + αt

|A| for all t ∈ [T ], and that we assume αt ∈ (0, 1/2). We also

let ν̃t := ν η̃
t,p̂t

.
We let ∥ · ∥1 be the L1 norm, and for all v := (vn)n∈[N ], such that vn ∈ RX×A we

define ∥v∥∞,1 := supn∈[N ] ∥vn∥1. Also, for all ζ := (ζn)n∈[N ] with ζ ∈ RX×A, we define

by ∥ζ∥1,∞ := supv{|⟨ζ, v⟩|, ∥v∥∞,1 ≤ 1} =
∑N

n=1 ∥ζn∥∞ the respective dual norm.

Preliminaries

: We begin by examining Problem (16) restated in Eq. (∗). Since F is convex and the
setMt+1

µ0
is also convex, the optimality conditions imply that for all u ∈Mt+1

µ0
,

⟨τ∇F (ν̃tj ;γj) +∇ψ(µt+1)−∇ψ(ν̃tj ), u− µt+1⟩ ≥ 0

⟨τ∇F (µt+1;γj) +∇ψ(νt+1)−∇ψ(ν̃tj ), u− νt+1⟩ ≥ 0,

where ψ is the function inducing the Bregman divergence Γ defined in Eq. (13).
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Rearranging the terms and using the three points identity of Bregman divergences
(see Chapter 11.2 of [9]) we get that

τ⟨∇F (ν̃tj ;γj), µ
t+1 − u⟩ ≤ ⟨∇ψ(µt+1)−∇ψ(ν̃tj ), u− µt+1⟩

= Γ(u, ν̃tj )− Γ(u, µt+1)− Γ(µt+1, ν̃tj ),
(B1)

τ⟨∇F (µt+1;γj), ν
t+1 − u⟩ ≤ ⟨∇ψ(νt+1)−∇ψ(ν̃tj ), u− νt+1⟩

= Γ(u, ν̃tj )− Γ(u, νt+1)− Γ(νt+1, ν̃tj ).
(B2)

Rpolicy
T analysis:

We now analyse Rpolicy
T . The regret term is given by

Rpolicy
T :=

T∑
t=1

F (µπt,p̂t

;γv(t))− F (µπ∗,v(t),p̂t

;γv(t))

=

J∑
j=1

∑
t∈[T ]:γt=γj

F (µπt,p̂t

;γj)− F (µπ∗,j ,p̂t

;γj).

Assume γt+1 = γj and define rt+1 := F (µπt+1,p̂t+1

;γj)−F (µπ∗,t+1,p̂t+1

;γj) the instan-

taneous regret incurred in Rpolicy
T at day t+ 1. Using the convexity of F , and further

decomposing the instantaneous regret we get

rt+1 ≤ ⟨∇F (µt+1;γj), µ
t+1 − µπ∗,j ,p̂t+1

⟩ = ⟨∇F (ν̃tj ;γj), µ
t+1 − νt+1⟩︸ ︷︷ ︸

(i)

+ ⟨∇F (µt+1;γj), ν
t+1 − µπ∗,j ,p̂t+1

⟩︸ ︷︷ ︸
(ii)

+ ⟨∇F (µt+1;γj)−∇F (ν̃tj ), µt+1 − νt+1⟩︸ ︷︷ ︸
(iii)

.

We apply the bounds of Eq. (B1) in (i) with u = νt+1 and the bounds of Eq. (B2)

in (ii) with u = µπ∗,j ,p̂t+1

, therefore,

rt+1 ≤
1

τ

(
Γ(νt+1, ν̃tj )− Γ(νt+1, µt+1)− Γ(µt+1, ν̃tj )

)
+

1

τ

(
Γ(µπ∗,j ,p̂t+1

, ν̃tj )− Γ(µπ∗,j ,p̂t+1

, νt+1)− Γ(νt+1, ν̃tj )
)

+ ⟨∇F (µt+1;γj)−∇F (ν̃tj ;γj), µ
t+1 − νt+1⟩︸ ︷︷ ︸

(iii)

=
1

τ

(
Γ(µπ∗,j ,p̂t+1

, ν̃tj )− Γ(µπ∗,j ,p̂t+1

, νt+1)− Γ(νt+1, µt+1)− Γ(µt+1, ν̃tj )
)

+ ⟨∇F (µt+1;γj)−∇F (ν̃tj ;γj), µ
t+1 − νt+1⟩︸ ︷︷ ︸

(iii)

.
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We now analyse the term (iii). For σ > 0 to be optimized later, Young’s inequality
yields

(iii) = ⟨∇F (µt+1;γj)−∇F (ν̃tj ;γj), µ
t+1 − νt+1⟩

≤ σ

2
∥∇F (µt+1;γj)−∇F (ν̃tj ;γj)∥21,∞ +

1

2σ
∥µt+1 − νt+1∥2∞,1.

In [6], it is shown that the function ψ inducing the Bregman divergence Γ defined in
Eq. (10) is 1-strongly convex with respect to the norm ∥ · ∥∞,1, therefore,

−Γ(νt+1, µt+1) ≤ −1

2
∥µt+1 − νt+1∥2∞,1.

Thus, by taking σ = τ in the Young’s inequality we get that

(iii)− 1

τ
Γ(νt+1, µt+1) ≤ τ

2
∥∇F (µt+1;γj)−∇F (ν̃tj ;γj)∥21,∞.

Substituting this inequality in the instantaneous regret bound we get

rt+1 ≤
1

τ

(
Γ(µπ∗,j ,p̂t+1

, ν̃tj )− Γ(µπ∗,j ,p̂t+1

, νt+1)− Γ(µt+1, ν̃tj )
)

+
τ

2
∥∇F (µt+1;γj)−∇F (ν̃tj ;γj)∥21,∞.

Using that F is β-smooth with respect to ∥ · ∥∞,1, we get that

∥∇F (µt+1;γj)−∇F (ν̃tj ;γj)∥21,∞ ≤ β2∥µt+1 − ν̃tj∥21,∞.

Using again the strong convexity of the function ψ inducing the Bregamn divergence
Γ,

−Γ(µt+1, ν̃tj ) ≤ −1

2
∥µt+1 − ν̃tj∥2∞,1.

Taking τ = 1
β ,

− 1

τ
Γ(µt+1, ν̃tj ) +

τ

2
∥∇F (µt+1;γj)−∇F (ν̃tj ;γj)∥21,∞

− ≤ β

2
∥µt+1 − ν̃tj∥2∞,1 +

β

2
∥µt+1 − ν̃tj∥21,∞ = 0.

Replacing this inequality in the instantaneous regret bound we obtain that

rt+1 ≤ β
(
Γ(µπ∗,j ,p̂t+1

, ν̃tj )− Γ(µπ∗,j ,p̂t+1

, νt+1)
)
.
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Summing over all days,

Rpolicy
T ≤ β

J∑
j=1

∑
t∈[T ]:γt=γj

(
Γ(µπ∗,j ,p̂t

, ν̃(t−1)j )− Γ(µπ∗,j ,p̂t

, νt)
)

= β

J∑
j=1

T (j)∑
s=1

(
Γ(µπ∗,j ,p̂js

, ν̃js−1)− Γ(µπ∗,j ,p̂js
, νjs)

)
,

where T (j) is the number of days that target j appeared until the end of day T , and
js represents the day of the s-th occurrence of target j. In order to make this sum

telescope we add and subtract Γ(µπ∗,j ,p̂js−1
, ν̃js−1),

Rpolicy
T ≤ β

J∑
j=1

T (j)∑
s=1

(
Γ(µπ∗,j ,p̂js

, ν̃js−1)− Γ(µπ∗,j ,p̂js−1
, ν̃js−1)

)
︸ ︷︷ ︸

Aj

+ β

J∑
j=1

T (j)∑
s=1

(
Γ(µπ∗,j ,p̂js−1

, ν̃js−1)− Γ(µπ∗,j ,p̂js
, νjs)

)
︸ ︷︷ ︸

Bj

.

We analyse the sum for each j ∈ [J ].

Step 1: Upper bound on Aj

Using the definition of a Bregman divergence induced by ψ we get that

Aj =

T (j)∑
s=1

ψ(µπ∗,j ,p̂js
)− ψ(µπ∗,j ,p̂js−1

)− ⟨∇ψ(ν̃js−1), µπ∗,j ,p̂js − µπ∗,j ,p̂js−1 ⟩

≤ −ψ(µπ∗,j ,p̂0

) +

T (j)∑
s=1

∥∇ψ(ν̃js−1)∥1,∞∥µπ∗,j ,p̂js − µπ∗,j ,p̂js−1∥∞,1,

where we use that the first term telescopes, and we apply Holder’s inequality to the sec-
ond term. With the definition of Γ in Eq. (10), and given the definition of η̃ in Eq. (17),
for each n ∈ [N ], (x, a) ∈ X × A, |∇ψ(ν̃s)(n, x, a)| = | log(η̃sn(a|x))| ≤ log(|A|/αs)

for all s ∈ [T ]. From Lemma 5.6 of [6], we get that ∥µπ∗,j ,p̂js − µπ∗,j ,p̂js−1∥∞,1 ≤
2N(js−js−1)

js
. Plugging both results in the bound of Aj we get

Aj ≤ −ψ(µπ∗,j ,p̂0

) +

T (j)∑
s=1

log

(
|A|
αjs

)
∥µπ∗,j ,p̂js − µπ∗,j ,p̂js−1∥∞,1

≤ −ψ(µπ∗,j ,p̂0

) + 2N2

T (j)∑
s=1

log

(
|A|
αjs

)
(js − js−1)

js
.

(B3)
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Step 2: Upper bound on Bj

We start by adding and subtracting Γ(µπ∗,j ,p̂js−1
, νjs−1),

Bj =

T (j)∑
s=1

Γ(µπ∗,j ,p̂js−1
, ν̃js−1)− Γ(µπ∗,j ,p̂js−1

, νjs−1)︸ ︷︷ ︸
Bj

(i)

+

T (j)∑
s=1

Γ(µπ∗,j ,p̂js−1
, νjs−1)− Γ(µπ∗,j ,p̂js

, νjs)︸ ︷︷ ︸
Bj

(ii)

.

We analyse each term from B’s decomposition:
Using the definition of Γ in Eq. (10), we obtain that

Bj
(i) =

T (j)∑
s=1

Γ(µπ∗,j ,p̂js−1
, ν̃js−1)− Γ(µπ∗,j ,p̂js−1

, νjs−1)

=

T (j)∑
s=1

∑
n,x,a

µπ∗,j ,p̂js−1

n (x, a)

[
log

(
π∗,j
n (a|x)

η̃
js−1
n (a|x)

)
− log

(
π∗,j
n (a|x)

η
js−1
n (a|x)

)]

=

T (j)∑
s=1

∑
n,x,a

µπ∗,j ,p̂js−1

n (x, a) log

(
η
js−1
n (a|x)
η̃
js−1
n (a|x)

)

=

T (j)∑
s=1

∑
n,x,a

µπ∗,j ,p̂js−1

n (x, a) log

(
η
js−1
n (a|x)

(1− αjs)η
js−1
n (a|x) + αjs/|A|

)

≤ N
T (j)∑
s=1

(− log(1− αjs)) ≤ 2N

T (j)∑
s=1

αjs ,

where the last inequality is valid if 0 ≤ αjs ≤ 1/2.

It is easy to see that the term Bj
(ii) telescopes, therefore

Bj
(ii) ≤ Γ(µπ∗,j ,p̂0

, ν0).

Plugging all into Bj ’s upper bound, we obtain that

Bj ≤ 2N

T (j)∑
s=1

αjs + Γ(µπ∗,j ,p̂0

, ν0). (B4)
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Final step

By replacing the bounds on Eq.s (B3) and (B4), and using the result from Lemma

D.2 of [6] that Γ(µπ∗,j ,p̂0

, ν0)− ψ(µπ∗,j ,p̂0

) ≤ N log(|A|), we obtain that

Rpolicy
T ≤ β

J∑
j=1

(Aj +Bj)

≤ β
J∑

j=1

(
2N2

T (j)∑
s=1

log

(
|A|
αjs

)
(js − js−1)

js
+ 2N

T (j)∑
s=1

αjs +N log(|A|)
)
.

Note that

T (j)∑
s=1

js − js−1

js
=

T (j)∑
s=1

∫ js

js−1

1

js
du

≤
T (j)∑
s=2

∫ js

js−1

1

u
du+ 1

≤ log

(
jT (j)

j1

)
+ 1

≤ 1 + log(T ).

Therefore, if we further take αt = 1/T for all t ∈ [T ], we obtain that

Rpolicy
T ≤ β

J∑
j=1

(
2N2 log(|A|T ) log(T ) + 2N

T (j)

T
+N log(|A|)

)

≤ β
(
2N2 log(|A|T )J log

(
T
)
+ 2N + JN log(|A|)

)
,

where we use that
∑J

j=1 T (j) = T .
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Appendix C Numerical parameters for simulations

Table C1: water-heater intrinsic parameters.

Volume 0.2m3

Height 1.37m

EI (thickness of isolation) 0.035
4 m

pmax 3600 ∗ 2200W (in one hour)

Table C2: Other parameters specifications to com-
pute Eq. 22.

denWater (water density) 103 kg m−3

capWater (water capacity) 4185 J kg−1 K−1

CI (heat conductivity) 0.033 W/(m K)

coefLoss (loss coeff.) CI
EI ∗ 2 ∗ 3.14

√
vol∗3.14
height
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