
HAL Id: hal-03972660
https://hal.science/hal-03972660v2

Preprint submitted on 24 May 2023 (v2), last revised 2 Apr 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reimagining Demand-Side Management with Mean
Field Learning

Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard, Nadia Oudjane

To cite this version:
Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard, Nadia Oudjane. Reimagining Demand-Side
Management with Mean Field Learning. 2023. �hal-03972660v2�

https://hal.science/hal-03972660v2
https://hal.archives-ouvertes.fr


Reimagining Demand-Side Management with Mean
Field Learning

Bianca Marin Moreno
Inria∗, EDF R&D†

Margaux Brégère
Sorbonne Université‡, EDF R&D†

Pierre Gaillard
Inria∗

Nadia Oudjane
EDF R&D†

Abstract

Integrating renewable energy into the power grid while balancing supply and
demand is a complex issue, given its intermittent nature. Demand side management
(DSM) offers solutions to this challenge. We propose a new method for DSM, in
particular the problem of controlling a large population of electrical devices to
follow a desired consumption signal. We model it as a finite horizon Markovian
mean field control problem. We develop a new algorithm, MD-MFC, which
provides theoretical guarantees for convex and Lipschitz objective functions. What
distinguishes MD-MFC from the existing load control literature is its effectiveness
in directly solving the target tracking problem without resorting to regularization
techniques on the main problem. A non-standard Bregman divergence on a mirror
descent scheme allows dynamic programming to be used to obtain simple closed-
form solutions. In addition, we show that general mean-field game algorithms can
be applied to this problem, which expands the possibilities for addressing load
control problems. We illustrate our claims with experiments on a realistic data set.

1 Introduction

Climate change is a complex problem, for which action takes many forms. Of the top 20 solutions
identified by Foley et al. [2020] to reverse global warming, six are related to the energy sector,
including integrating renewables into the electricity system and increasing the number of electric
vehicles as a primary mode of transportation. In addition, the study managed by RTE [2022] showed
that achieving carbon neutrality by 2050 in the French electricity scenario requires a decrease in final
energy consumption and strong growth in renewable energy.

However, it is extremely difficult to make these solutions economically viable while also scaling them
up. The intermittent nature of renewable energy sources can cause significant fluctuations in energy
demand and supply, which may impact the balance of the power grid. Current solutions to keep the
system in balance rely heavily on fossil fuel power plants, which have significant environmental costs,
or on energy imports, which have capital and operating costs. Demand Side Management (DSM) are
strategies to reduce energy acquisition costs and associated penalties by continuously monitoring
energy consumption and managing devices [Bakare et al., 2023], which provides flexibility and
improves the reliability of energy systems. Yet, implementing DSM solutions is challenging, as it
involves large-scale data processing and near real-time scenarios. For this reason, machine learning
solutions have recently emerged to solve DSM problems [Antonopoulos et al., 2020] with examples
ranging from using multi-armed bandits to develop pricing solutions [Brégère et al., 2019], to deep
learning models for smart charging of electric vehicles [López et al., 2019].
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The goal of this paper is to make a new contribution to this field by proposing a new solution to a
DSM problem concerning the control of thermostatically controled loads (TCLs: flexible appliances
such as water heaters, air conditioners, refrigerators, etc). The aim is to control the aggregate power
consumption of a large population of water heaters in order to follow a target consumption profile.
To this end, we consider a finite time horizon Markovian mean field control (MFC) problem, and we
propose a new algorithm based on mirror descent. We also adapt other mean field learning algorithms
from the literature for this purpose.

Contributions In this paper, we propose and compare two new approaches to solve a DSM problem:
a new algorithm, MD-MFC, for general Markovian MFC problems, and an adaptation of existing
algorithms in the mean field learning literature for game problems. First we provide a modeling of
the management system in question as a Markov decision process (MDP) in Section 2. The literature
review of previous modeling and solutions to the load control problem, as well as a discussion of the
main ingredient of our algorithms, mean field learning, are postponed to Subection 2.3. Our main
results are stated in Section 3: we introduce the MD-MFC algorithm for a Markovian MFC problem,
and we prove a convergence rate of order 1/

√
K, where K is the number of iterations, by linking it

to a mirror descent [Nemirovski and Yudin, 1983] scheme. This implies a non-trivial reformulation
of a non-convex problem in a measure space into a convex problem. A good choice of non-standard
regularization allows dynamic programming [Bertsekas, 2005]. This results in the first algorithm
that efficiently and directly solves the target tracking problem without resorting to regularization
techniques in the main problem. Section 4 illustrates the results with simulations based on a realistic
data set [Albouys et al., 2019]. A series of future works concludes the paper.

2 Setting and model

Our framework consists in modeling the random dynamics of a population of water heaters in order
to control their average consumption to follow a target signal. From now on, for a finite set S, we
define ∆S to be the simplex of dimension |S|, the cardinal of S.

2.1 Randomized controlled dynamics for one water heater

Let us consider a discretisation of the time for n = 1, ..., N . At each time step n, the state of a
water heater is described by a variable xn = (mn, θn) ∈ X := {0, 1} ×Θ, where mn indicates the
operating state of the heater (ON if 1, OFF if 0), and θn represents the average temperature of the
water in the tank. For the sake of simplification we consider only temperatures inside a finite set Θ.

We call the uncontrolled dynamics the nominal dynamics. A water heater that follows the nominal
dynamics [Bušić and Meyn, 2016] obeys a cyclic ON/OFF decision rule with a deadband to ensure
that the temperature is between a lower limit Tmin and an upper limit Tmax. Thus, if the water heater
is turned on, it heats water with the maximum power until its temperature exceeds Tmax. Then, the
heater turns off and the water temperature decreases until it reaches Tmin, where the heater turns on
again and a new cycle begins. The nominal dynamics at a discretized time is illustrated in Figure 1.
The temperature at each time step is calculated by approximating an ordinary differential equation
(ODE) depending on the current operating state of the heater and the hot water drawn at each time
step (see Appendix D.1). We assume that the event of a water withdrawn is random and independent
at each time step with a known probability distribution.

water draining

heating
(ON)

heat loss
(OFF)

50

55

60

65

Time t

Te
m

pe
ra

tu
re

(◦
C
)

Tmax

Tmin

Figure 1: Temperature evolution of a water heater following the nominal dynamics.
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In order to have a controllable model, we fit the nominal dynamics of a water heater to a Markov
decision process. The finite state space is given by X , and we consider an action space given by
A := {0, 1}. At time step n, choosing action 1 means turning the heater on except when θn ≥ Tmax.
Conversely, choosing action 0 means turning the heater off except when θn ≤ Tmin. The nominal
dynamics deterministically chooses action 0 if the heater is off and 1 if it is on, independent of
the heater’s temperature. Unlike the nominal dynamics, we want to consider stochastic strategies
for choosing actions. If the heater is in state xn = (mn, θn), the next temperature is computed
by θn+1 := T (mn, θn, ϵn) where T is a function defined as the solution of Equation (16) of
Appendix D.1 and ϵn is the random variable corresponding to a water-withdraw event at time step n.
The action an is sampled with probability πn(·|xn) ∈ ∆A, and the next operating state is given by
mn+1 :=M(an, θn+1), where

M(an, θn+1) := an1θn+1∈[Tmin,Tmax] + 1θn+1<Tmin .

Hence, the probability kernel for each time step n is given by

pn+1(xn+1|xn, an) := P
(
θn+1 = T (mn, θn, ϵn)|θn,mn

)
P
(
mn+1 =M(an, θn+1)|an, θn+1

)
.

Moreover if θn+1 ∈ [Tmin, Tmax], the action an ∼ πn(·|xn) defines the next operating state of the
heater. For more details on our modeling of the dynamics of a water heater, see Appendix D.1.

2.2 Optimisation problem

Consider a population of M water heaters indexed by i and described at time step n by Xi
n =

(mi
n, θ

i
n) following the randomized dynamics described in Subsection 2.1. We suppose all water

heaters to be homogeneous, i.e. they have the same dynamics, and follow the same policy π. Let
m̄n := 1

M

∑M
i=1m

i
n denote the average consumption. We assume for simplicity that the maximum

power of each water heater is pmax = 1 so that the average consumption is equal to the proportion of
heaters at state ON. Note that m̄n depends on the policy π that the water heaters follow, thus we can
denote it as m̄n(π). Let γ = (γn)1≤n≤N ∈ [0, 1]N be our target consumption profile (for example,
the energy production at each time step divided by the number of devices). Our goal is to solve the
problem

min
π∈(∆A)X×N

E

[
N∑

n=1

(m̄n(π)− γn)
2

]
, (1)

where we have chosen to work with a quadratic loss.

Let µ := (µn)n∈[0,...,N ] such that µn is the state-action distribution of the entire population of heaters
at time n. We denote by µπ a state-action distribution sequence induced by a policy sequence π such
as in Definition 2.1.
Definition 2.1 (Distribution induced by a policy π). Given an initial distribution µ0 fixed, the
state-action distributions sequence induced by the policy sequence π = (πn)1≤n≤N is denoted
µπ := (µπ

n)1≤n≤N and is defined recursively by

µπ
0 (x

′, a′) := µ0(x
′, a′)

µπ
n+1(x

′, a′) :=
∑
x∈X

∑
a∈A

µπ
n(x, a)pn+1(x

′|x, a)πn+1(a
′|x′).

For a function φ : X → R, we define µn(φ) :=
∑

x φ(x)µn(x, a) for all 1 ≤ n ≤ N . We are
particularly interested in a function φ such that µn(φ) gives us the average consumption of our water
heater’s population. Thus, we consider from now on

φ : X → R
(m, θ) 7→ m.

(2)

For such a function φ, when M → ∞, the mean field approximation [Jabin and Wang, 2017] of
Problem (1) consists in the main mean field control problem considered in the paper, and is given by

min
π
F (µπ) :=

N∑
n=1

fn(µ
π
n), (3)
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where fn(µπ
n) := (µπ

n(φ)− γn)
2.

It is important to mention that the algorithms and results presented in Section 3 for solving Problem (3)
remain valid for any general finite horizon Markovian MFC problem with finite state and action
spaces, where the cost functions fn are convex and Lipschitz with respect to the ∥ · ∥1 norm.

2.3 Literature discussion

Decision-making problems formulated as such mean-field models are a popular framework for
stochastic optimization problems in many applications, ranging from robotics Shiri et al. [2019],
Elamvazhuthi and Berman [2019] to finance Achdou et al. [2014], Casgrain and Jaimungal [2018],
energy management De Paola et al. [2019], Bušić and Meyn [2019], epidemic modeling Lee et al.
[2021], and more recently, machine learning E et al. [2018], Ruthotto et al. [2020], Fouque and Zhang
[2020], Lin et al. [2021]. Thus, although this paper focuses on a demand management problem, our
results also provide a new approach to solving problems in many other areas.

Load control Controlling the sum of the consumption of a large number of TCLs started being
investigated around 1980 by Ihara and Schweppe [1981], Malhame and Chong [1985], Mortensen
and Haggerty [1988] establishing the first physically based modeling for a TCL population. In the
works of Kizilkale and Malhame [2013, 2014], the difficulty due to the large number of devices is
circumvented by a mean field approximation.

For water heater control, Cammardella et al. [2019] use a quadratic objective and a Kullback-
Leibler (KL) penalty allowing a Lagrangian approach that learns both the control and the probability
transition kernel, but cannot handle uncontrolled state parts, so uncertainties like water withdrawals
must be modeled as deterministic. More recently, Cammardella et al. [2021] takes into account the
uncontrolled stochastic environment in the KL quadratic control framework by adding constraints
on the probability transition kernel. It is the KL penalty on the main problem that allows them to
obtain their main results. However, there is a trade-off between adding the KL and obtaining a good
target tracking curve. We therefore propose to solve directly the same quadratic control framework
but without the KL penalty. We have successfully provided the first algorithm for direclty solving the
target tracking problem.

Mean field learning Mean field games (MFG) have been introduced by Lasry and Lions [2007] and
Huang et al. [2006] to tackle the issue of games with a large number of symmetric and anonymous
players, by passing to the limit of an infinite number of players interacting through the population
distribution. Although MFG focuses on finding Nash equilibria (NE), social optima on cooperative
setting have also been studied under the term of mean field control (MFC) [Bensoussan et al., 2013].

Lately, iterative learning methods such as fictitious play and online mirror descent have been adapted
to the MFG scenario in Perrin et al. [2020] and Pérolat et al. [2022]. Geist et al. [2022] show an
equivalence between Frank Wolfe’s classical optimization algorithm [Frank and Wolfe, 1956] and the
fictitious play for potential structured games. Similarly, we show an equivalence between our MFC
problem and potential games, that open up a new range of solutions to the DSM problem considered
using the above studies.

3 Main results: algorithmic approaches

3.1 Building a new algorithm

Consider the set of state-action distributions sequences initialized at µ0 ∈ ∆X×A and satisfying a
specific constrained evolution given by

Mµ0 :=

{
µ ∈ (∆X×A)

N
∣∣ ∑

a′∈A
µn+1(x

′, a′)

=
∑

x∈X ,a∈A
pn+1(x

′|x, a)µn(x, a) ,∀x′ ∈ X ,∀n ∈ [0, ..., N ]

}
.

(4)

The set Mµ0
describes the sequences of state-action distribution respecting the dynamics of the

Markov model. Furthermore, this set is convex [Cammardella et al., 2021].
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Proposition 3.1. Let µ0 ∈ ∆X×A. The application π 7→ µπ is a surjection from (∆A)
X×N to Mµ0 .

The idea of the proof of Proposition 3.1, reported to Appendix A, is that one can retrieve the policy
sequence π inducing the state-action distribution sequence µ by taking πn(a|x) = µn(x,a)

ρn(x)
, where

ρn(x) :=
∑

a∈A µn(x, a). Let M∗
µ0

denotes the subset of Mµ0 where the corresponding policies
π are such that πn(a|x) ̸= 0 for all (x, a) ∈ X ×A and 1 ≤ n ≤ N . We define the regularization
function Γ : Mµ0

×M∗
µ0

→ R as

Γ(µπ, µπ′
) :=

N∑
n=1

E(x,a)∼µπ
n(·)

[
log

(
πn(a|x)
π′
n(a|x)

)]
. (5)

Before giving a solution to Problem (3), we consider the following auxiliary optimization problem,
which will later help us build the new algorithm. This iterative scheme is possible thanks to
Proposition 3.1 which guarantees the existence of a strategy π for any µ ∈ Mµ0

. Here, k represents
an iteration:

µk+1 ∈ argmin
µπ∈Mµ0

{
⟨∇F (µk), µπ⟩+ 1

τk
Γ(µπ, µk)

}
. (6)

We consider τk > 0 and ⟨∇F (µk), µπ⟩ :=
∑N

n=1⟨∇fn(µk
n), µ

π
n⟩. At iteration k+1, we want to find

µπ by minimizing a linearization of F around µk, the distribution sequence found at the previous
iteration, and at the same time penalizing the distance between π generating µπ and πk generating µk.
Choosing this non-standard regularization Γ in Equation (5) instead of the traditional KL divergence
on marginal state-action distributions is what enables us to obtain a simple closed-form solution for
the iterative scheme. Later we show that Γ is a Bregman divergence. Thus, the use of Γ brings a
significant improvement to the solution of MFC problems because it allows to obtain low complexity
solutions with theoretical bounds, as we will prove later.

Let for all (xn, an, µn) ∈ X × A × ∆X×A, rn(xn, an, µn) := −∇fn(µn)(xn, an). We show in
Theorem 3.2 that, due to the choice of penalizing strategies, the iterative scheme in Equation (6) can
be solved through dynamic programming [Bertsekas, 2005] by building a Bellman recursion:

Theorem 3.2. Let k ≥ 0. The solution of Problem (6) is µk+1 = µπk+1

(as in Definition 2.1), where
for all 1 ≤ n ≤ N , and (x, a) ∈ X ×A,

πk+1
n (a|x) :=

πk
n(a|x) exp

(
τkQ̃

k
n(x, a)

)
∑

a′∈A π
k
n(a

′|x) exp
(
τkQ̃k

n(x, a
′)
) , (7)

where Q̃ is a regularized Q-function satisfying the following recursion

Q̃k
N (x, a) = rN (x, a, µk

N )

Q̃k
n(x, a) = max

πn+1∈(∆A)X

{
rn(x, a, µ

k
n) +

∑
x′

pn+1(x
′|x, a)

∑
a′

πn+1(a
′|x′)

[
− 1

τk
log

(
πn+1(a

′|x′)
πk
n+1(a

′|x′)

)
+ Q̃k

n+1(x
′, a′)

]}
, ∀1 ≤ n ≤ N.

(8)

Proof. See Appendix B.1.

Notice that the value πn+1 ∈ (∆A)
X maximizing the equation to find Q̃k

n in the Recursion (8) is
given by πk+1

n+1. We can then build the MD-MFC method in Algorithm 1. Note that Algorithm 1 is
well defined because the policy update in Equation (7) ensures that each iteration remains in M∗

µ0
.

3.2 Convergence properties of the algorithm

We present a result on the convergence rate of Algorithm 1.
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Algorithm 1 MD-MFC

Input: number of iterations K, initial sequence of policies π0 ∈ (∆A)
X×N such that

µ0 := µπ0 ∈ M∗
µ0

, initial state-action distribution µ0 (always fixed), sequence of non-negative
learning rates (τk)k≤K .
for k = 0, ...,K − 1 do
µk = µπk

as in Definition 2.1.
Q̃k

N (x, a) = rN (x, a, µk
N ) for all (x, a) ∈ X ×A.

for n = N, ..., 1 do
∀(x, a) ∈ X ×A :

πk+1
n (a|x) = πk

n(a|x) exp(τkQ̃
k
n(x,a))∑

a′ πk
n(a

′|x) exp(τkQ̃k
n(x,a

′))
.

Q̃k
n−1(x, a) using the recursion in Equation (8).

end for
end for
return πK

Theorem 3.3. Let π∗ be a minimizer of Problem (3). Applying K iterations of Algorithm 1 to this
problem, with, for each 1 ≤ k ≤ K,

τk :=

√
2Γ(µπ∗ , µ0)

L

1√
K
,

gives the following convergence rate

min
0≤s≤K

F (µπs

)− F (µπ∗
) ≤ L

√
2Γ(µπ∗ , µ0)√

K
.

Proof. The proof consists in showing that Algorithm 1 is a mirror descent scheme applied to

min
µ∈Mµ0

F (µ), (9)

that is equivalent to Problem (3) as a direct consequence of Proposition (3.1), and that the new
Problem (9) does satisfy the necessary hypothesis for mirror descent convergence [Beck and Teboulle,
2003] with a non-standard Bregman divergence. The strength of this result is showing that the
complex non-convex Problem (3) can be solved using a classical optimization algorithm, which, with
the right choice of regularizer, has an efficient solution thanks to dynamic programming.

Let us start by showing that Γ is indeed a Bregman divergence. For ease of notation, for any
probability measure η ∈ ∆E , whatever the (finite) space E, we introduce the neg-entropy function,
with the convention that 0 log(0) = 0,

ϕ(η) :=
∑
x∈E

η(x) log η(x).

Proposition 3.4. Let µ, µ′ ∈ Mµ0
with marginals given by ρ, ρ′ ∈ (∆X )N , induced by the policy

sequences π, π′ respectively. The divergence Γ is a Bregman divergence induced by the function

ψ(µ) :=

N∑
n=1

ϕ(µn)−
N∑

n=1

ϕ(ρn).

Also, Γ is 1-strongly convex with respect to the sup1≤n≤N ∥ · ∥1 norm.

The proof is in Appendix B.2 and consists in showing and exploring that the Γ divergence taking
values on the marginal state-action distributions is in fact the KL divergence on the joint distribution.

Next, if fn is convex and ln Lipschitz with respect to the norm ∥ · ∥1 for any 1 ≤ n ≤ N , then F is
also convex and Lipschitz with constant L := (

∑N
n=1 l

2
n)

1/2 (see Appendix B.3). The proof that our
cost functions for the DSM model satisfy these assumptions is given in Appendix D.2. Since the set
Mµ0 is convex, we also satisfy the convexity assumptions for the convergence of the mirror descent.
The rate of convergence is thus a direct consequence of the application of the proof of convergence of
mirror descent for Problem (9).

6



3.3 Potential games

In Appendix E we provide an equivalence between the MFC problem considered and a MFG
by considering a game whose reward is given by rn(xn, an, µn) := −∇fn(µn)(xn, an) for all
(xn, an, µn) ∈ X ×A×∆X×A. We call this type of game a potential game. The work done in Geist
et al. [2022] and Bonnans et al. [2021] relates the optimality conditions of optimization problems to
the concept of Nash equilibrium in game problems. We do not go into details here, and leave more
in-depth discussions to the Appendix section. The main purpose of this section is the realization
that we can apply MFG algorithms to the DSM problem, which is a major breakthrough in this area
because it opens up a new range of algorithms to this type of management system problems.

4 Experiments

4.1 Simulating the nominal dynamics

To simulate the nominal dynamics, we use the nominal model presented in Appendix D.1 and data
from the SMACH (Simulation Multi-Agents des Comportements Humains) platform [Albouys et al.,
2019] to approximate the probability of having a water withdrawal for each time step. In addition,
we take a time frequency δt = 10 minutes, and a temperature deadband with Tmin = 50◦C and
Tmax = 65◦C. For more details on how the simulations are performed, see Appendix D.3. Figure 2
shows the simulation of the average drain and power consumption of 104 water heaters following
the nominal dynamics over the period of one week day respectively. The states (operating state and
temperature) are randomly initialized for each water heater.
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Figure 2: Average drain and power consumption for a simulation of 104 water heaters over a period
of one day.

The target signal γ = (γn)1≤n≤N is built as a sum of a baseline b = (bn)n≤N and a deviation signal
λ = (λn)n, γ = λ+ b(w), where b(w) is the nominal dynamics obtained by simulating the water
heaters (as in Figure 2), and w represents a random initialization of their states. If the deviation is
zero, the average consumption is equal to the baseline. The deviation signal should have zero energy
on the time considered for the simulations, i.e.

∑N
n=0 λn = 0, in order to ensure a stationary process.

We consider the two deviation signals illustrated in Figure 3.
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Figure 3: Deviation signals (λn)n≤N
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Figure 4: Simulation of the power consumption of 104 water heaters for the optimal policy computed
through different algorithms, for targets constructed with the deviations of one hour [left] and eight
hours [right]. We compare with the nominal consumption (without deviation).

(a) Policy FP-MFG. (b) Policy MD-MFC.

Figure 5: [top] Target, average consumption obtained by the nominal policy and by the policy
computed by FP-MFG (left) and MD-MFC (right). [middle] Probability of choosing the ON action
when in the ON state. [bottom] Probability of choosing the ON action when in the OFF state. For all
temperatures between Tmin = 50 and Tmax = 65 [y axis], over the course of a day with a time step of
10 minutes [x axis], for a target with a deviation step of eight hours.

4.2 Results

For a population of water heaters following the randomized dynamics we compare the optimal policy
sequence obtained after 100 iterations of MD-MFC, and two mean field game algorithms: Fictitious
Play for MFG (FP-MFG) from Perrin et al. [2020] and Online Mirror Descent for MFG (OMD-MFG)
from Pérolat et al. [2022] (see Algorithms 2 and 4 respectively in Appendix C). At each iteration,
we compute a policy sequence of size 144 (number of time steps). The heater’s state space X is of
size 2 ∗ 41 (two ON/OFF operating states times 41 possible temperatures - integers from the ambient
temperature Tamb = 25 to Tmax = 65), and its action space A is of size 2. We simulate each policy
on 104 water heaters and analyze the average consumption curve. The water heater’s initial state
distribution is equal to the initial distribution of the nominal consumption. The distribution of actions
is initialized uniformly. The three algorithms have a memory complexity of order N × |X | × |A|,
and a computational complexity of order K ×N × (|X | × |A|)2.

In Figure 4, the consumption simulated by the best policies for all three algorithms appears to track
the target better than the nominal consumption. This is not a surprise because all algorithms are
supposed to converge to the same minima. However, they do so by finding different strategies and
with different convergence rates. Figure 6 shows the logarithm of the objective function per iteration,
and to visualize the policies obtained we plot in Figure 5, at each time step [x axis], the probability of
choosing the action 1 (ON) [colors] for all possible temperatures between Tmin = 50 and Tmax = 65
[y axis], when the current state is ON [up] or OFF [down]. The policies plots show that MD-MFC
returns a more regular policy than FP-MFG.
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Figure 6: Log-log plot of the objective function per iteration for each method when using a target
with an one hour step [left] and eight hours step [right] deviations.

(a) Nominal policy deviation. (b) Policy MD-MFC with nominal policy deviation.

Figure 7: [left] Initial policy sequence π0 with a deviation of 0.1 from the nominal policy. [right]
Output policy sequence of Algorithm 1 initialized with the policy at left.

Different initialisations impact the number of switches We noticed that different initialisations of
MD-MFC lead to different policies. Given a state distribution sequence ρ, the policy generating this
distribution is not necessarily unique. In particular, these policies, while providing the same ρ, may
differ in terms of the average number of ON/OFF switches induced over the time horizon considered.
In our model, no switching limit is assumed, but a large number of switches can be detrimental to the
device. This non-uniqueness helps us reduce switch count without adding new constraints by finding
multiple policies that achieve the right consumption and selecting the one with the fewest switches.
This can also be useful for MFC problems in other areas, e.g. transaction costs in finance.

In the case illustrated here the average number of daily switches is 33, while the nominal dynamic
averages only 3 switches per day. By initializing the MD-MFC algorithm with a policy that is a 0.1
deviation from the nominal policy as in Figure 7a, we find that the number of switches decreases to a
daily average of 9.2 while still following the target curve, see Figure 7b. The same does not happen
with FP-MFG, which makes it less interesting for the real-world scenarios we consider here.

Finally, Table 1 gives a global comparison between the three algorithms. FP-MFG converges faster
but is not suitable for controlling switch count, being less interesting for the considered DSM problem,
and needs a smooth objective function assumption. OMD-MFG is empirically as good as MD-MFC
but lacks convergence proof for discrete cases.

5 Future work

Future work involves adapting existing algorithms to real-time algorithms, proposing schemes where
each iteration corresponds to a time step. We further aim to generalize to a model-free scenario,
learning user behavior on the fly while preserving privacy with partially observable states. Moreover,
we believe we can extend our approach to the accelerated version of mirror descent [Krichene et al.,
2015] providing a better theoretical convergence rate of order 1/K2.
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Table 1: Comparing MD-MFC, OMD-MFG and FP-MFG

Algorithm Convergence
rate

Flexibility on
applications

Convergence
hypothesis

MD-MFC K−1/2 Yes (switches) convex + Lispschitz
OMD-MFG no proof Yes (switches) convex + Lispschitz
FP-MFG K−1 No convex + Lipschitz + smooth
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A Missing proofs

A.1 Proof of Proposition 3.1

Proof. Consider a fixed initial state-action distribution µ0 ∈ ∆X×A. Let µ ∈ Mµ0
and define

ρ = (ρn)1≤n≤N such that for all x ∈ X , ρn(x) =
∑

a µn(x, a) (the associated state distribution).
First, let us deal with the case where ρn(x) ̸= 0. Define a policy sequence π ∈ (∆A)

X×N such
that πn(a|x) = µn(x,a)

ρn(x)
for all (x, a) ∈ X ×A. We want to show that µπ = µ for this policy π. We

reason by induction. For n = 0, µπ
0 = µ0 by definition. Suppose µπ

n = µn, thus for n+ 1 and for all
(x′, a′) ∈ X ×A

µπ
n+1(x

′, a′) =
∑
x,a

pn+1(x
′|x, a)µπ

n(x, a)πn+1(a
′|x′)

=
∑
x,a

pn+1(x
′|x, a)µn(x, a)

µn+1(x
′, a′)

ρn+1(x′)

=
∑
a

µn+1(x
′, a)

µn+1(x
′, a′)

ρn+1(x′)

= ρn+1(x
′)
µn+1(x

′, a′)

ρn+1(x′)

= µn+1(x
′, a′),

where the first equality comes from Definition 2.1, the second equality comes from the induction
assumption and the way we defined the strategy π, and the third comes from the assumption that
µ ∈ Mµ0 .

In the case ρn(x) = 0, we therefore have µn(x, a) = 0 for all a ∈ A, so any choice of πn(a|x)
would work.

B Missing proofs: algorithm 1 scheme and convergence rate

By abuse of notations, for any probability measure η ∈ ∆E whatever the finite space E on which it
is defined we introduce the neg-entropy function, with the convention 0 log(0) = 0,

ϕ(η) :=
∑
x∈E

η(x) log η(x),

to which we associate the Bregman divergence D, also known as the KL divergence, such that for
any pair (η, ν) ∈ ∆E ×∆E ,

D(η, ν) := ϕ(η)− ϕ(ν)− ⟨ϕ′(ν), η − ν⟩.

Let ρn denote the marginal probability distribution on X associated with µn i.e., for all x ∈ X

ρn(x) :=
∑
a∈A

µn(x, a) .

Observe that to any µ = (µn)1≤n≤N ∈ Mµ0
one can associate a unique probability mass function on

P(X ×A)N denoted by µ1:N such that µ1:N is generated by the strategy π = (πn)1≤n≤N associated
with µ which is determined by

πn(a|x) =
µn(x, a)

ρn(x)
,

when ρn(x) ̸= 0, otherwise we fix an arbitrary strategy πn(a|x) = 1
|A| .

Before proving Theorems (3.2) and (3.3) we state and prove a Lemma which is key to proving both
theorems.
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Lemma B.1. For any µ ∈ Mµ0 and µ′ ∈ M∗
µ0

, with associated probability mass functions
µ1:N , µ

′
1:N ∈ P

(
(X × A)N

)
generated by π, π′ respectively with the same initial state-action

distribution, i.e. µ0 = µ′
0, we have

D(µ1:N , µ
′
1:N ) =

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a|x)
π′
n(a|x)

)]

=

N∑
n=1

D(µn, µ
′
n)−

N∑
n=0

D(ρn, ρ
′
n)

(10)

Proof. For each 1 ≤ n ≤ N , let us define a transition matrix Pπn for all x, x′ ∈ X and a, a′ ∈ A,

Pπn(x′, a′|x, a) := pn(x
′|x, a)πn(a′|x′).

Given Definition 2.1, for any randomized policy the state-action distributions evolve according to
linear dynamics

µn(x
′, a′) = ⟨µn−1(·), Pπn(x′, a′|·)⟩.

Any randomized policy π gives a probability mass function µ1:N that is Markovian:

µ1:N (y⃗) = µ0(y0)P
π1(y1|y0)...PπN (yN |yN−1), (11)

where y⃗ represents the elements of (X ×A)N+1 such that yi = (xi, ai) for all 0 ≤ i ≤ N . Note that
µn(yn) is the marginal probability mass function.

Consider µ, µ′ ∈ Mµ0
the state-action distribution sequences induced by π, π′ respectively (i.e,

µ = µπ and µ′ = µπ′
). Thus, computing the relative entropy between the probability mass functions

µ1:N , µ
′
1:N gives

D(µ1:N , µ
′
1:N ) =

∑
y⃗

µ1:N (y⃗) log

(
µ1:N (y⃗)

µ′
1:N (y⃗)

)

=
∑

y0,...,yN

µ1:N (y⃗) log

(
µ0(y0)P

π1(y1|y0)...PπN (yN |yN−1)

µ′
0(y0)P

π′
1(y1|y0)...Pπ′

N (yN |yN−1)

)

=
∑

y0,...,yN

µ1:N (y⃗)

N∑
i=1

log

(
Pπi(yi|yi−1)

Pπ′
i(yi|yi−1)

)
.

Where
N∑
i=1

log

(
Pπi(yi|yi−1)

Pπ′
i(yi|yi−1)

)
=

N∑
i=1

log

(
pi(xi|xi−1, ai−1)πi(ai|xi)
pi(xi|xi−1, ai−1)π′

i(ai|xi)

)

=

N∑
i=1

log

(
πi(ai|xi)
π′
i(ai|xi)

)
.

Thus,

D(µ1:N , µ
′
1:N ) =

∑
y⃗

µ1:N (y⃗)

N∑
i=1

log

(
πi(ai|xi)
π′
i(ai|xi)

)

=
∑
y⃗

µ0(y0)P
π1(y1|y0)...PπN (yN |yN−1)

N∑
i=1

log

(
πi(ai|xi)
π′
i(ai|xi)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
πi(a|x)
π′
i(a|x)

)
.

Where for the last equality we used that∑
y0,...,yi−1

µ0(y0)P
π1(y1|y0)...Pπi(yi|yi−1) =

∑
yi

µi(yi)
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and for a fixed yi,

∑
yi+1,...,yN

Pπi+1(yi+1|yi)...PπN (yN |yN−1) = 1.

This proves the first equality of the Lemma. We now prove the second. For this, we recall that
Proposition 3.1 gives a unique relation between a state-action distribution sequence µ ∈ Mµ0

and
the policy sequence π ∈ (∆A)

X×N inducing it by taking for all 1 ≤ i ≤ N , (x, a) ∈ X ×A,

πi(a|x) =
µi(x, a)

ρi(x)
,

where ρ is the marginal on the states of µ. Using this relation, we have then that

D(µ1:N , µ
′
1:N ) =

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
πi(a|x)
π′
i(a|x)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
µi(a|x)
ρi(x)

ρ′i(x)

µ′
i(a|x)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
µi(a|x)
µ′
i(a|x)

)
−

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
ρi(x)

ρ′i(x)

)

=

N∑
i=1

∑
x∈X

∑
a∈A

µi(x, a) log

(
µi(a|x)
µ′
i(a|x)

)
−

N∑
i=1

∑
x∈X

ρi(x) log

(
ρi(x)

ρ′i(x)

)

=

N∑
i=1

D(µi, µ
′
i)−

i∑
i=1

D(ρi, ρ
′
i)

which concludes the proof.

B.1 Proof of Theorem 3.2: formulation of Algorithm 1

Proof. At each iteration we seek to solve

µk+1 ∈ argmin
µπ∈Mµ0

{
⟨∇F (µk), µπ⟩+ 1

τk

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a|x)
πk
n(a|x)

)]}
(12)

where recall that ⟨∇F (µk), µπ⟩ :=
∑N

n=1⟨∇fn(µk
n), µ

π
n⟩. We further use that

rn(xn, an, µn) := −∇fn(µn)(xn, an).

Now, we use the optimality principle to solve this optimization problem with an algorithm backward
in time. Remember that the initial distribution µ0 is always fixed. The equivalence between solving a
minimization problem on sequences of state-action distributions in Mµ0

and on sequences of policies
in (∆A)

X×N (see Proposition 3.1), allows us to reformulate Problem (12) on Mµ0 into a problem
on (∆A)

X×N , thus
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(12) = max
π∈(∆A)X×N

{ N∑
n=0

∑
x,a

µπ
n(x, a)rn(x, a, µ

k
n)

− 1

τk

N∑
n=1

∑
x,a

µπ
n−1(x, a)

∑
x′,a′

pn(x
′|x, a)πn(a′|x′) log

(
πn(a

′|x′)
πk
n(a

′|x′)

)}

= max
π∈(∆A)X×N

{ N∑
n=0

∑
x,a

µπ
n(x, a)

[
rn(x, a, µ

k
n)

− 1

τk

∑
x′,a′

pn+1(x
′|x, a)πn+1(a

′|x′) log
(
πn+1(a

′|x′)
πk
n+1(a

′|x′)

)]}

= max
π∈(∆A)X×N

{
Eπ

[
rN (xN , aN , µ

k
N ) +

N−1∑
n=0

rn(xn, an, µ
k
n)

− 1

τk

∑
x′,a′

pn+1(x
′|xn, an)πn+1(a

′|x′) log
(
πn+1(a

′|x′)
πk
n+1(a

′|x′)

)]}
.

Let us define a regularized version of the state-action value function that we denote by Q̃k, such that
for all 1 ≤ i ≤ N , (x, a) ∈ X ×A,

Q̃k
i (x, a) = max

πi+1:N∈(∆A)X×N−i
Eπ

[
rN (xN , aN , µ

k
N ) +

N−1∑
n=i

{
rn(xn, an, µ

k
n)

− 1

τk

∑
x′,a′

pn+1(x
′|xn, an)πn+1(a

′|x′) log
(
πn+1(a

′|x′)
πk
n+1(a

′|x′)

)}∣∣∣∣(xi, ai) = (x, a)

]
,

(13)

where πi+1:N = {πi+1, ..., πN}.

First, note that E(x,a)∼µ0(·)[Q̃
k
0(x, a)] = (12). Moreover, the optimality principle states that this

regularized state-action value function satisfies the following recursion

Q̃N (x, a) = rN (x, a, µk
N )

Q̃i(x, a) = max
πi+1∈(∆A)X

{
ri(x, a, µ

k
i )+∑

x′

pi+1(x
′|x, a)

∑
a′

πi+1(a
′|x′)

[
− 1

τk
log

(
πi+1(a

′|x′)
πk
i+1(a

′|x′)

)
+ Q̃i+1(x

′, a′)

]}
.

Thus, to solve (12) we compute backwards in time, i.e. for i = N − 1, ..., 0, for all x ∈ X ,

πk+1
i+1 (·|x) ∈ argmax

π(·|x)∈∆A

{〈
π(·|x), Q̃k

i+1(x, ·)
〉
− 1

τk
D
(
π(·|x), πk

i+1(·|x)
)}

,

where D is the KL divergence.

The solution of this optimisation problem for each time step i can be found by writing the Lagrangian
function L associated. Let λ be the Lagrangian multiplier associated to the simplex constraint. For
simplicity, let πx := π(·|x), πk

x := πk
i+1(·|x) and Q̃k

x := Q̃k
i+1(x, ·). Thus,

L(πx, λ) = ⟨πx, Q̃k
x⟩ −

1

τk
D(πx, π

k
x)− λ

(∑
a∈A

πx(a)− 1

)
.

Taking the gradient of the Lagrangian with respect to πx(a) for each a ∈ A gives

∂L
∂πx(a)

= Q̃k
x(a)−

1

τk
log

(
πx(a)

πk
x(a)

)
− 1

τk
− λ,
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and thus

∂L
∂πx(a)

= 0 =⇒ πx(a) = πk
x(a) exp

(
τkQ̃

k
x(a)− 1− τkλ

)
.

Applying the simplex constraint,
∑

a∈A πx(a) = 1, we find the value of the Lagrangian multipler λ,
and we get for all a ∈ A

πx(a) =
πk
x(a) exp

(
τkQ̃

k
x(a)

)
∑

a′∈A π
k
x(a

′) exp
(
τkQ̃k

x(a
′)
)
,

which proves the theorem.

B.2 Proof of Proposition 3.4

Proof. Lemma B.1 states that

Γ(µ, µ′) :=

N∑
n=1

E(x,a)∼µn(·)

[
log

(
πn(a

′|x′)
πk
n(a

′|x′)

)]
=

n∑
t=0

D(µ′
t, µt)−

n∑
t=0

D(ρ′t, ρt).

Recall that ϕ is the negentropy and that D is the Bregman divergence induced by the negentropy.
Define the function ψ : (∆X×A)

N → R such that

ψ(µ) :=

N∑
n=0

ϕ(µn)−
N∑

n=0

ϕ(ρn).

Note that for µ, µ′ ∈ (∆X×A)
N with marginals given by ρ, ρ′ ∈ (∆X )N , using the second equality

of Lemma B.1,

ψ(µ)− ψ(µ′)− ⟨∇ψ(µ′), µ− µ′⟩ = Γ(µ, µ′).

Thus, for Γ to be a Bregman divergence it is sufficient to show that ψ is a convex function. Recall that
the marginal ρ is such that for each 1 ≤ n ≤ N , and for all x ∈ X , ρn(x) =

∑
a∈A µn(x, a). Thus,

ψ(µ) =
∑
n

[∑
x,a

µn(x, a) log(µn(x, a))−
∑
x

ρn(x) log(ρn(x))

]

=
∑
n

∑
x,a

µn(x, a) log

(
µn(x, a)∑
a′ µn(x, a′)

)
.

Computing the first order partial derivative of ψ with respect to µn(x, a) for any (x, a) ∈ X ×A and
1 ≤ n ≤ N , we get

∂ψ

∂µn(x, a)
(µ) = log

(
µn(x, a)∑
a′ µn(x, a′)

)
+ µn(x, a)

1

µn(x, a)
−
∑
a′

µn(x, a
′)

1∑
a′ µn(x, a′)

= log

(
µn(x, a)∑
a′ µn(x, a′)

)
= log

(
µn(x, a)

ρn(x)

)
.
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Now we apply the following convexity property [Boyd and Vandenberghe, 2004]: ψ is convex if and
only if for all µ, µ′ ∈ (∆X×A)

N , ⟨ψ′(µ)− ψ′(µ′), µ− µ′⟩ ≥ 0. Indeed,

⟨ψ′(µ)− ψ′(µ′), µ− µ′⟩ =
∑
n

∑
x,a

[
∂ψ

∂µn(x, a)
(µ)− ∂ψ

∂µn(x, a)
(µ′)

] (
µn(x, a)− µ′

n(x, a)
)

=
∑
n

∑
x,a

[
log

(
µn(x, a)

ρn(x)

)
− log

(
µ′
n(x, a)

ρ′n(x)

)] (
µn(x, a)− µ′

n(x, a)
)

(a)
=
∑
n

D(µn, µ
′
n) +D(µn, µ

′
n)−D(ρn, ρ

′
n)−D(ρ′n, ρn)

(b)
= Γ(µ, µ′) + Γ(µ′, µ)

(c)
= D(µ1:N , µ

′
1:N ) +D(µ′

1:N , µ1:N )
(d)

≥ 0,

where (a) comes from the definition of the KL divergence D, (b) comes from the definition of Γ,
(c) comes from Lemma B.1 and (d) comes from a property of Bregman divergences that they are
always positive. As ψ is convex and induces the divergence Γ then Γ is a Bregman divergence. After
writing this proof, we came across a different strategy to prove that Γ is a Bregman divergence that is
presented in Appendix A of Neu et al. [2017].

Now we prove that Γ is 1-strongly convex with respect to the sup1≤n≤N ∥ · ∥1 norm. By Lemma B.1,

Γ(µ, µ′) =

N∑
n=1

D(µn, µ
′
n)−

N∑
n=1

D(ρn, ρ
′
n)

= D(µ1:N , µ
′
1:N )

≥ 2∥µ1:N − µ1:N∥2TV

=
1

2
∥µ1:N − µ′

1:N∥21,

the last inequality being a consequence of Pinsker’s inequality. The norm ∥ · ∥TV stands for the total
variation norm. Let y represent an element of (X ×A)N+1 such that yi ∈ X ×A for all 1 ≤ i ≤ N .
Observe that

∥µ1:N − µ′
1:N∥1 =

∑
y∈(X×A)N+1

|µ1:N (y)− µ′
1:N (y)|

≥
∑

yn∈X×A

∣∣∣∣ ∑
ys∈X×A , s ̸=n

(
µ1:N (y)− µ′

1:N (y)
)∣∣∣∣

=
∑

yn∈X×A
|µn(yn)− µ′

n(yn)| for all n ∈ {1, · · · , N}.

In particular,

∥µ1:N − µ′
1:N∥1 ≥ sup

1≤n≤N
∥µn − µ′

n∥1 .

This implies that

Γ(µ, µ′) ≥ 1

2
sup

1≤n≤N
∥µn − µ′

n∥21 ,

proving that Γ is 1-strongly convex with respect to the sup1≤n≤N ∥ · ∥1 norm.

B.3 Complements of the proof of Theorem 3.3

Proof. Here we prove that if (fn)1≤n≤N are convex and Lipschitz with respect to the L1-norm, then
so is F . Convexity: F is convex as the sum of convex functions.
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Lipschitz: Let µ, µ′ ∈ (X ×A)N . As fn is Lipschitz with respect to ∥ · ∥1 with constant ln, then
|fn(µn)− fn(µ

′
n)| ≤ ln∥µn − µn∥1 for all 1 ≤ n ≤ N . Therefore,

|F (µ)− F (µ′)| =
∣∣∣∣ N∑
n=1

fn(µn)− fn(µ
′
n)

∣∣∣∣
≤

N∑
n=1

|fn(µn)− fn(µ
′
n)|

≤
N∑

n=1

ln∥µn − µ′
n∥1

≤
( N∑

n=1

l2n

)1/2( N∑
n=1

∥µn − µ′
n∥21
)1/2

≤ L∥µ− µ′∥1,
where we use Cauchy-Schwarz in the second to last inequality. Therefore, F is Lipschitz with respect
to the L1-norm with constant L :=

(∑N
n=1 l

2
n)

1/2.

C Algorithms

Algorithm 2 Fictitious play for MFG (FP)

Input: number of iterations K, initial policy π0.
Initialization: µ̄0 = µπ0

as in Definition 2.1.
for k = 0, ...,K do
πk+1 ∈ argmaxπ J(π, µ̄

k), best response against µ̄k.
µ̄k+1 = 1

k+1µ
πk+1

+ k
k+1 µ̄

k.
end for
Return: µ̄K and π̄K s.t. π̄K

n (a|x) :=
∑K

k=0
ρπk

n (x)πk
n(a|x)∑K

k=0 ρπk
n (x)

,
(
ρπ

k

n (x) :=
∑

a∈A µ
πk

n (x, a) for all

k ≤ K
)
.

Algorithm 3 Frank Wolfe

Input: number of iterations K, initial distribution µ0, sequence (ηk)k.
for k = 0, ...,K do
µk ∈ argminµ∈M

〈
µ,∇F (µ̄k)

〉
|X×A|.

µ̄k+1 = (1− ηk+1)µ̄
k + ηk+1µ

k.
end for
Return: µ̄K

The Online Mirror Descent for MFG algorithm uses the regular state-value function (or Q-function)
at each iteration. It’s definition is given by

Qπ,µ
n (x, a) := Eπ

[
N∑
i=n

ri(xi, ai, µi)

∣∣∣∣xn = x, an = a

]
. (14)

Note that, considering an initial state-action distribution µ0, Jµ0(π, µ) = E(x,a)∼µ0
[Qπ,µ

0 (x, a)].
Furthermore, Qπ,µ is the solution of the backward equation, for all n < N , (x, a) ∈ X ×A:Q

π,µ
N (x, a) = rN (x, a, µN )

Qπ,µ
n (x, a) = rn(x, a, µn) +

∑
x′

p(x′|x, a)
∑
a′

πn+1(a
′|x′)Qπ,µ

n+1(x
′, a′). (15)
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Algorithm 4 OMD for MFG

Input: number of iterations K, π0 ∈ (∆A)
X×N .

for k = 0, ...,K do
µk := µπk

, as in Definition 2.1.
Qk := Qπk,µk

as in Equation (15).
πk+1
n (·|x) := argmaxπ(·|x)∈∆A

⟨Qk
n(x, ·), π(·|x)⟩+ τD

(
π(·|x), πk

n(·|x)
)
, ∀x ∈ X ,∀n ≤ N .

end for
Return: µK , πK

D Water heater application

D.1 Standard cycling behavior of one water heater

Let us consider a time window [t0, t0 + T ], and consider a discretisation of the time such that
tn = t0 + nδt for n = 0, ..., N , and δt = T/N the time frequency. At each time step tn (that for
short we call n), the state of a water heater is described by a variable Xn = (mn, θn) ∈ {0, 1}×R+,
wheremn indicates the operating state of the heater (ON if 1, OFF if 0), and θn represents the average
temperature of the water in the tank.

The evolution of the temperature in the next time step tn+1 is given by θn+1 = T̄ tn,mn,θn
tn+1

, where
t 7→ T̄ tn,mn,θn

t is the solution of the ordinary differential equation (ODE) in Equation (16) on the
interval [tn, tn+1]. This ODE models the impact of the heat loss to the environment temperature
(Tamb), the Joule effect (heating) and water drains (hot water being withdrawn from the tanks for
showers, taps, etc),

dT (t)
dt = − ρ(T (t)− Tamb)︸ ︷︷ ︸

heat loss

+σmnpmax︸ ︷︷ ︸
Joule effect

− τ(T (t)− Tin)f(t)︸ ︷︷ ︸
water drain

T (tn) = θn.

(16)

The parameters ρ, σ, τ are technical parameters of the water heater, pmax is the maximum power, Tin
denotes the temperature of the cold water entering the tank, and f(t) denotes the drain function.

The dynamics follow a cyclic ON/OFF decision rule with a deadband to ensure that the temperature
is between a lower limit Tmin and an upper limit Tmax. Thus, if the water heater is turned on, it heats
water with the maximum capacity until its temperature exceeds Tmax. Then, the heater turns off.
The water temperature then decreases until it reaches Tmin, then the heater turns on again and a new
cycle begins. Therefore, the nominal dynamics at a discretized time is given by Equation (17) and is
illustrated at Figure 1. 

θn+1 = T̄ tn,mn,θn
tn+1

mn+1 =


mn, if θn+1 ∈ [Tmin, Tmax]

0, if θn+1 ≥ Tmax

1, if θn+1 ≤ Tmin.

(17)

Note that assuming the temperature set is finite prevents us from using the ODE on Equation (16)
to compute the evolution of the mean temperature. In addition, we also have trouble computing the
drain function f(t), which in practice is not deterministic. Instead, we adapt this ODE to simplify our
system. We start by making an Euler discretization of the ODE. We define a sequence (dn)n denoting
the amount of draining in liters at each time step. To decide whether hot water is drawn at each time
step, we also consider a sequence (ϵn)n of independent random variables following Bernoulli’s laws
of parameters (qn)n respectively. The interest of having different parameters for each time step is to
take into account the moments of the day when people are more inclined to use hot water (for taking
a shower, doing the dishes, etc.). Assuming the existence of an independent water discharge at each
time step is justified by assuming that the time frequency δt is large enough to contain all the time
when hot water will be drawn from the water heater tank for a single use. In the interest of more
realistic dynamics, we intend to weaken this assumption in future work. Therefore, we define

θ′n+1 = θn + δt
(
− ρ (θn − Tamb) + σmnpmax − ϵnτ (θn − Tin) dn

)
. (18)
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To tackle the finite-temperature state space problem, we assume that the space of possible temperatures
Θ contains only integers from Tamb (the room temperature) up to Tmax, assuming that Tamb < Tmin (it
is reasonable to assume that the ambient temperature is below the minimum temperature accepted for
the heater). Given the dynamics of the operating state, θn+1 never exceeds Tmax (the heater turns off
when it reaches Tmax and when it is turned off, its temperature only decreases). On the other hand,
drain may allow a temperature to be lower than Tmin, but we assume that Tamb is small enough that
the mean temperature is never lower than it. Therefore, we can take θn+1 = Round(θ′n+1), where

Round(θ) =
{
⌊θ⌋, if B(θ) = 0

⌈θ⌉, if B(θ) = 1,

and B(θ) is a random variable following a Bernoulli of parameter θ− ⌊θ⌋. Thus, the closer θ is to its
smallest nearest integer, the greater the probability that we approximate θ by it, and vice-versa. We
perform stochastic rounding instead of deterministic to have an unbiased temperature estimator, i.e.
E[θn+1] = θ′n+1.

D.2 Complements of the proof of Theorem 3.3 for the DSM problem

We show that the cost function considered in Problem (3) concerning the water heater optimisation
problem is convex and Lipschitz with respect to the L1 norm ∥ · ∥1.

Convexity for all n ≤ N , each fn is given by

fn(µn) =

(∑
x,a

µn(x, a)φ(x)− γn

)2

.

Let g be a real function such that g(x) = (x− γn)
2. The function g is convex and non-decreasing on

R+.

Let h : R|X×A| → R, such that h(µn) =
∑

x,a µn(x, a)φ(x). Note that ∂h
∂µn(x,a)

(µn) = φ(x).
Thus, for any µn, µ

′
n ∈ ∆X×A,

h(µn)− h(µ′
n) =

(∑
x,a

(
µn(x, a)− µ′

n(x, a)
)
φ(x)

)
= ⟨∇h(µ′

n), µn − µ′
n⟩,

therefore, the function h is also convex. As fn(µn) = g(h(µn)), then fn is convex as g and h are
convex, and g is non decreasing in a univariate domain [Boyd and Vandenberghe, 2004].

Lipschitz As fn is convex for all 1 ≤ n ≤ N , to show that it is Lipschitz with respect to the ∥ · ∥1
norm, it suffices to show that the sup-norm ∥ · ∥∞ of ∇fn is bounded (the sup-norm is the dual norm
of the L1 norm). This result can be found in Lemma 2.6 of Shalev-Shwartz [2012].

For any µn ∈ ∆X×A,

∥∇fn(µ)∥ = sup
(x,a)∈X×A

|∇fn(µn)(x, a)|

= 2 sup
(x,a)∈X×A

|µn(φ)− γn||φ(x)|

= 2 sup
(x,a)∈X×A

∣∣∣∣ ∑
x′,a′

µn(x
′, a′)φ(x′)− γn

∣∣∣∣|φ(x)|
= 2 sup

x∈X
|⟨ρn, φ⟩||φ(x)|

≤ 2∥φ∥2∞.

Thus, fn is Lipschitz with respect to the L1 norm with Lipschitz constant ln = 2∥φ∥2∞. In our
particular case φ is bounded by 1 (see its definition in Equation (2)), hence ln = 2 for all 1 ≤ n ≤ N .
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D.3 Simulation of the nominal behavior of a water heater

Here we explain in details how the nominal dynamics are simulated in order to obtain the results in
Section 4.2.

To simulate the nominal dynamics we use the nominal model presented in Equation (17) with the av-
erage temperature evolution introduced in Equation (18). To compute the sequences (dn)n and (qn)n
regarding the amount of draining in liters and the probability of having a water withdrawal for each
time step, respectively, we use data from the SMACH (Simulation Multi-Agents des Comportements
Humains) platform [Albouys et al., 2019], which simulates power consumption of people in their
homes separated by appliance. The data we use simulates the consumption of 5132 water heaters at a
time step of one minute over a week in the summer of 2018.

Since we want a time step large enough to contain all the time that hot water will be drawn from
the water heater tank for a single use, we take δt = 10 minutes instead of one minute (as initially
provided by the data). Therefore we transform the data to contain for each water heater the average
discharge over each 10 minute interval. To compute dn, we take the average discharge in liters over
all water heaters with a water withdrawal during this time step. To calculate (qn)n, we calculate
the percentage of water heaters with a water withdrawal over the entire population for each time
step. The values of the parameters ρ, σ, τ and pmax are computed in Equation (19) using the variables
introduced in Tables 2 and 3. We take Tmin = 50◦C, Tmax = 65◦C, Tamb = 25◦C and Tin = 18◦C.

Table 2: Water heater intrinsic parameters.

Volume 0.2m3

Height 1.37m
EI (thickness of isolation) 0.035

4
m

pmax 3600 ∗ 2200W (in one hour)

Table 3: Other parameters specifications to compute Equation 19.

denWater (water density) 1000 kg m−3

capWater (water capacity) 4185 J kg−1 K−1

CI (heat conductivity) 0.033 W/(m K)

coefLoss (loss coeff.) CI
EI ∗ 2 ∗ 3.14

√
vol∗3.14

height

ρ =
coefLoss ∗ 3600

capWater ∗ denWater ∗ vol/height
(fraction of heat loss by hour)

σ = (vol ∗ denWater ∗ capWater)−1

τ = (vol ∗ denWater)−1.

(19)

E Potential games discussion

In Subsection 3.3 we mention an equivalence between the control Problem (3) and a game problem
in order to be able to compare Algorithm 1 with learning algorithms for MFG in the literature. For
this, we use results similar to those of Geist et al. [2022] and we refer to it for further definitions on a
MFG structure and the notion of Nash equilibrium (NE).

In a mean field game problem, the goal of a representative player is to find a sequence of policies π
that maximises the expected sum of rewards when the population distributions sequence is given by
µ := (µn)1≤n≤N and the initial state-action pair is sampled from a fixed distribution µ0,

Jµ0(π, µ) := Eπ

[
N∑

n=1

rn(xn, an, µn)

]
. (20)

23



Let us define a game with the same transition probability p, and with reward defined as

rn(xn, an, µn) := −∇fn(µn)(xn, an) (21)

for all (xn, an, µn) ∈ X ×A×∆X×A.

Proposition E.1. The strategy π∗ is a minimizer of Problem (3) if and only if, (µπ∗
, π∗) is a NE of

the MFG defined with reward as in Equation (21). Furthermore, this game is monotone (and strictly
monotone if fn is strictly convex for all 1 ≤ n ≤ N . See Definition E.2).

This Proposition connects the optimality conditions of Problem (3) and a NE, and shows that convexity
and monotonicity are equivalent. If the optimization problem is (strictly) convex, the (unique)
existence of an optimizer implies the (unique) existence of a NE. Thus, the notion of monotonicity
when the reward depends on the state-action distribution provides the (unique) existence of a NE in
the case of a potential game.

Proof. The convexity of each fn for 1 ≤ n ≤ N , and the convexity of the set Mµ0
ensure the

existence of a minimizer of Problem (3) satisfying the optimality conditions. Also, Proposition 3.1
shows, for a fixed initial state-action distribution µ0, a surjection between the sets (∆A)

X×N and
Mµ0

.

Let (µ∗, π∗), where µ∗ = µπ∗
, be a Nash equilibrium.

By definition, a Nash equilibrium (µ∗, π∗) satisfies π∗ = argmaxπ J(π, µ
∗). In other words,

J(π∗, µπ∗
) ≥ J(π, µπ∗

) ∀π ∈ (∆A)
X×N . (22)

Expanding the terms of the sum of expected rewards and using the definition of reward in a potential
game, we obtain that

J(π, µπ∗
) = Eπ

[
N∑

n=1

rn(xn, an, µ
π∗

n )

]

=

N∑
n=1

∑
x∈X ,a∈A

rn(x, a, µ
π∗

n )µπ
n(x, a)

=

N∑
n=1

−
〈
∇fn(µπ∗

n ), µπ
n

〉
.

Similarly,

J(π∗, µπ∗
) =

N∑
n=1

−
〈
∇fn(µπ∗

n ), µπ∗

n

〉
.

Thus, the Nash equilibrium condition in Inequality (22) entails
N∑

n=1

〈
∇fn(µπ∗

n ), µπ∗

n − µπ
n

〉
≤ 0. (23)

As fn is convex for all n ∈ {1, ..., N}, this yields
N∑

n=1

fn(µ
π∗

n )− fn(µ
π
n) ≤ 0. (24)

Thus, π∗ satisfies the optimality conditions of Problem (3). We then proved that if (π∗, µ∗) is a NE
with µ∗ = µπ∗

, then π∗ is an optimum of Problem (3).

On the other way around, if π∗ is a minimizer of Problem (3) then it satisfies Inequality (24) for all
π ∈ (∆A)

X×N . Again, by convexity of (fn)1≤n≤N , π∗ also satisfies Inequality (23). Following the
same calculations backwards, we obtain that π∗ then satisfies Inequality (22), and by definition is
then a NE. This concludes the first part of the proof.

The second part concerns the monotonicity of the game, defined below for the mean field game
framework.
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Definition E.2 (Monotonicity). According to Lasry and Lions [2007], a game where the reward
depends on the population’s state-action distribution (sometimes called “extended MFG” in the
literature, see Gomes and Voskanyan [2016]) is (strictly) monotone if for any state-action distributions
ν, ν′ ∈ ∆X×A with ν ̸= ν′,∫

X ,A
[r(x, a, ν)− r(x, a, ν′)]d(ν − ν′)(x, a) ≤ 0, (< 0).

Back to the proof, consider µ, µ′ two distributions over X × A. As the result should be true to
all n, we omit the time step index for the computations. Recall that the reward is of the form
r(x, a, µ) = −∇f(µ)(x, a) for all (x, a) ∈ X ×A, with f a convex function. Then,∫
X×A

[r(x, a, µ)− r(x, a, µ′)]d(µ− µ′)(x, a) =

∫
X×A

[∇f(µ′)(x, a)−∇f(µ)(x, a)]d(µ− µ′)(x, a)

= ⟨∇f(µ′)−∇f(µ), µ− µ′⟩ ≤ 0

where the last inequality comes from the convexity of f .
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