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Drop train flow in a microtube

Introduction

The paper studies a 3D-axisymmetric annular flow in a microtube driven by a force in the tube axis. This type of problem is found in many contexts, whether industrial such as oil recovery by water injection [START_REF] Olbricht | Pore-scale prototypes of multiphase flow in porous media[END_REF] or physiological such as flow in human pulmonary capillaries [START_REF] Grotberg | Respiratory fluid mechanics[END_REF] or agronomic such as water transfer in earthworm galleries [START_REF]Identifying the functional macropore network related to preferential flow in structured soils[END_REF]. A lot of work was devoted to the analogous problem of a film flowing down a vertical fiber [START_REF] Duprat | Spatial evolution of a film flowing down a fiber[END_REF][START_REF] Frenkel | Annular flows can keep unstable films from breakup: Nonlinear saturation of capillary instability[END_REF][START_REF] Ruyer-Quil | Modelling film flows down a fibre[END_REF]. Due to azimuthal free-surface curvature, the Plateau-Rayleigh (PR) instability destabilizes an annular film. Contrary to the plane case, the surface instability does not necessary lead to film break-up but instead to an unduloid [START_REF] Kalliadasis | Drop formation during coating of vertical fibres[END_REF] or to an annular ridge separated by a thick film [START_REF] Duprat | Spatial evolution of a film flowing down a fiber[END_REF]. Moreover, for tubes with a sufficient large radius and thick enough films, the inertia terms play a relevant role in the dynamics and a rich scenario of traveling waves occurs [START_REF] Kerchman | Strongly nonlinear interfacial dynamics in core annular flows[END_REF]. In the context of inner flow in a microtubre, most of recent literature have studied the resulting flow, focussing especially on the formation of liquid bridges (plugs) [START_REF] Camassa | Viscous film flow coating the interior of a vertical tube. part 1. gravity-driven flow[END_REF][START_REF] Dietze | Films in narrow tubes[END_REF][START_REF] Jensen | Draining collars and lenses in liquid-lined vertical tubes[END_REF]. Therefore, the wettability plays a negligible role in the framework.

Recently, we focused on the wettability effect by studying microtube with thin film in inertialess limit [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF]. We have highlighted two specificities of the annular flow compared to the one-dimensional ridge flow on a plane. First, for tube radius small enough a periodic emission of pearls in the tail drop may occur. This dynamics dynamics does not occur for a ridge on a plane but it is reminiscent of pearls in the tail of a 3D drop [START_REF] Podgorski | Corners, Cusps, and Pearls in Running Drops[END_REF]. The second specificity of annular flow is a dynamical complete wetting regime for large enough driving force and for small tube radius: A sliding ridge coexists with a thick film (compared to the precursor film). This regime is referred to coating complete wetting in [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF] and the thick film is the analogue of the Landau-Levich film when a plate is removed from a liquid bath [START_REF] Galvagno | Continuous and discontinuous dynamic unbinding transitions in drawn film flow[END_REF]. The latter regime becomes unstable if the mean water height is small. Then other attractors appear as train of annular drops. The objective of this article is the study of drop train in the state of progressive waves: their emergences and the different branches of solution in the parameter space. In the next section, we present our model of a thin film governed by a lubrication equation that includes wettability. The dynamics of the traveling waves are explored using the continuation method by varying the geometric parameters and the driving force while the wettability properties remain fixed.

Modeling

Governing equations

We consider an axisymmetric thin film flow inside a cylindrical tube of radius R driven by the force µ, e.g. the weight µ = ρg e x (Fig. 1). We note h(x, t) the film height and we impose a -periodic boundary condition of the inlet and outlet flow.

The effective interaction energy combines destabilizing short-range and stabilizing long-range interactions [START_REF] Pismen | Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics[END_REF][START_REF] Thiele | Film rupture in the diffuse interface model coupled to hydrodynamics[END_REF]. Results from the literature use many forms of the potential. The results suggest that the specific form of the potential has little effect on the qualitative results [START_REF]Thin films of soft matter[END_REF][START_REF] Thiele | On the importance of nucleation solutions for the rupture of thin liquid films[END_REF]. We have chosen an expression with exponentials first proposed by Pismen and Pomeau [START_REF] Pismen | Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics[END_REF]. As in [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF], we expressed it with powers of two:

Π(h) = Π 0 -2 -h hp + 2 • 2 -2h hp , (1) 
where h p is the precursor film height for a planar geometry, i.e. the ultra-thin film where short-and long-range interactions annihilate, and Π 0 is pressure term chosen positive in order to obtain a stable precursor film. The model is based on the inertialess lubrication approximation [START_REF] Beltrame | Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates[END_REF] applied to the cylindrical geometry [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF][START_REF] Kalliadasis | Drop formation during coating of vertical fibres[END_REF]:

∂ t h = -∂ x (m(h)∂ x [γ (κ + κ a ) + Π(h) + µx]) , (2) 
where γ is the surface tension. The mobility m(h) for a free surface Stokes flow with viscosity η and no-slip boundary condition is given by m(h) = h 3 3η [START_REF] Kalliadasis | Drop formation during coating of vertical fibres[END_REF]. The terms κ = ∂xxh √ 1+(∂xh) 2 and κ a = 1 R-h are the longitudinal and azimuthal free surface curvatures and then γ (κ + κ a ) is the Laplace pressure. In the context of the longwave approximation, the longitudinal curvature is approximated by κ ∂ xx h. Moreover, we assume that the film height h is small compared to the radius R, then κ a 1 R + h R 2 . Note that we can skip the term 1 R in the κ a expression, since it vanishes when applying the differential operator ∂ x in Eq. (2). We scale the x axis by λ, the height by h 0 = 20h p and the pressure by γh0 λ 2 . The dimensionless parameters are: the azimuthal curvature of the tube κ = λ 2 R 2 and the Bond number representing the adimensional driving force μ = µ λ 3 γh0 . The typical length of the problem is related to the instability of the Nusselt flow. In the limiting case κ = 0 (planar geometry) λ is scaled by the dewetting instability wavelength [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF] while for narrow tubes, λ is scaled approximatively by R [START_REF] Kalliadasis | Drop formation during coating of vertical fibres[END_REF]. Dropping the tilde over the variables and parameters, the dimensionless evolution equation then reads

∂ t h = -∂ x h 3 ∂ x ∂ 2 xx h + κh + Π(h) + µx = F (h, µ, κ) (3) 
Thus, if wettability is fixed, i.e. Π 0 and h p , the dimensionless pressure Π(h) is unchanged. The value Π 0 = 20 is fixed therefore thorough the paper. Note that the order of magnitude of the height h is about 20h p and then we have h R and h λ which justifies the longwave approximation and the linearized expression κh of the azimuthal curvature. In the context of the gravity driven flow in a vertical flow of a narrow tube, µ = ρg R 3 γh0 . Thus, considering the density and surface tension of water and h p 10nm, the adimensional driving force µ varies between 0.0015 and 1.5 if R varies between 30 and 300µm.

Instability of the Nusselt flow

The uniform film flow h ≡ h m , called Nusselt flow, can be unstable because of dewetting instability but also because of the Plateau-Rayleigh instability. The latter results from the competition between the longitudinal (stabilizing) and the azimuthal (destabilitzing) Laplace pressure. On a planar substrate (κ = 0), only the dewetting instability occurs and the Nusselt flow is unstable if and only if dΠ dh is positive. For the chosen disjoining pressure given by Eq. ( 1), this condition is realized for dimensionless thickness h m superior to h c = 0.1. According to [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF] this condition is slightly modified in a narrow tube with a curvature κ > 0: the instability occurs for thickness superior to h c (κ) 0.1(1 -0.01κ). When the film is unstable, i.e. h m > h c , all harmonic perturbations with wavenumbers k inferior to k c = κ + Π (h m ) are unstable. Thus, all wavelengths superior to 2π/k c are unstable. A well-known result shows that the typical wavelength λ 0 is about 2π √ 2/k c . Throughout the paper, we fix h m = 0.5 and κ = 0.8, then k c 0.91 and the typical pattern wavelength is about of λ 0 = 9.78. Note that all these results are independent of the driving force µ. The instability gives rise to drop patterns that we calculate numerically.

Numerical method

If µ = 0 there exists an equilibrium which minimises the free energy of the system. This solution consists in a single ridge, noted R 1 . This solution is an attractor since it is the energy minimum. If µ > 0, i.e. a driving force is present, the drops slide and may travel at a constant, then speed because of the translation invariance. Then, traveling waves are expected. Due to the lateral force µ, there is no longer any minimal energy, which implies that R 1 is no longer necessarily an attractor. In this paper, we study the different traveling waves solutions in the parameter space and their stability. Using periodic boundary conditions, the traveling waves are stationary states in the comoving frame and solutions of

G(h, µ, κ, c) = F (h, µ, κ) + c ∂ x h = 0, ( 4 
)
where c is the wave velocity. The branches of stationary states are computed using a continuation algorithm similar to [START_REF] Beltrame | Time integration and steady-state continuation for 2d lubrication equations[END_REF]. In the bifurcation diagram, we represent the norm δh as the L 2 -norm of (h -h m ), where h m is the mean height. The stability of the traveling waves is studied by computing the eigenvalues of the linear operator DG Dh for a stationary state. Hereafter, the eigenmodes refers to the eigenvectors of DG Dh . The numerical method to compute the spectrum of DG Dh is detailed in [START_REF] Beltrame | Time integration and steady-state continuation for 2d lubrication equations[END_REF]. With periodic boundary the mean volume remain invariant, then the mean height h m is constant during the dynamics. For this study, the mean height is fixed to h m = 0.5.

Drop train 3.1 Single sliding drop

The R 1 solution, corresponding to a single sliding drop, is not necessary stable when µ > 0 contrary to µ = 0. It may be unstable via Hopf bifurcation leading to the emission of pearls in the tail of the drop or it can ends via a saddle-node (see [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF]). The continuation of the ridge R 1 exemplifies these different transitions in the bifurcation diagram of Fig. 2. The R 1 branch is stable till a saddle node. The profile of the solution shows a drop shape coexisting with a thin film. Beyond the first saddle-node, the solution profiles changes qualitatively. After five saddle-nodes the drop profile disappears and instead a wavy profile takes place. The branch ends at µ = µ 2 = 0.2164 via a reverse symmetry-breaking bifurcation with a branch invariant by the /2 translation. The latter branch is called R 2 branch in the next section. The presence of saddle-nodes depends on the forced -periodicity. If we study R 1 branch for the same parameters but with a larger we find out that for large enough µ the profile is almost flat except a small peak as shows Fig. 3 for = 30. We found that the solution is unstable. Subsequently, we show that drop trains can be a stable stationary solution for large domain lengths.

Emergence of Drop train

Coarsening modes

Depending on the periodicity , i.e. on the domain size, there may exist states of n-drops that are periodically spaced, noted R n . Note τ n , the translation of length /n acting on h such as

(τ n .h)(x) = h(x -/n). (5) 
Then, the R n solution branch is invariant with respect to the translations kτ n with k an integer. If µ = 0, the R n solution is unstable and the n drops merge into a single drop R 1 solution through the so-called coarsening dynamics [START_REF] Beltrame | Time integration and steady-state continuation for 2d lubrication equations[END_REF][START_REF]Thin films of soft matter[END_REF]. The coarsening dynamics involve two processes. On one hand, any perturbation of drop volume implies that the smaller one is 'swallowed' by the larger one. On the other hand, if the distance between drops is not exactly the same, the nearest drop moves slowly towards one another until they collapse in a larger drop (see coarsening dynamics in e.g. [START_REF] Beltrame | Time integration and steady-state continuation for 2d lubrication equations[END_REF]). Each processus can be associated to a eigenvector responsible of the instability, called translation coarsening eigenmode if the drops gets closer or volume coarsening eigenmode otherwise [START_REF]Thin films of soft matter[END_REF]. Both eigenmodes are associated to a positive eigenvalue since the R n stationary state is unstable. Note that if the n drops of the R n solution are fairly separated, the interaction between drops is weak and then the eigenvalues are close to zero. If µ > 0, the coarsening modes still exist for the n sliding drops of R n stationary state . To study these eigenmodes, let us consider the simple case of two identical drops separated by the length /2, i.e. the R 2 stationary state. The profile of R 2 branch has the τ 2 invariance implying that their eigenmodes ξ(x) are symmetric (6a) or anti-symmetric (6b):

τ 2 .ξ(x) = ξ(x -/2) = ξ(x) (6a) or τ 2 .ξ(x) = ξ(x -/2) = -ξ(x). (6b) 
The coarsening modes are anti-symmetric. Figure 4 depicts the profile of the R 2 solution at µ = µ t = 0.001915 and the associated coarsening eigenmodes.

The other physical parameters are the same as for R 1 in the bifurcation diagram Fig. 2, i.e. = 9, κ = 0.8, h m = 0.5. The translation coarsening eigemode ξ t has exactly a zero mean value in contrast to the volume coarsening mode ξ v .

If we perturb the R 2 stationary profile by the eigenvector ξ t , the left drop is shifted to right while the rightmost drop is shifted to the left. Then, the coarsening via translation appears. In the same way, if we perturb the R 2 profile by adding the eigenvector ξ v , the volume of the leftmost drop increases while the rightmost drop volume decreases. The coarsening occurs by mass transfer. In contrast to the case µ = 0, the eigenvalues of the coarsening eigenmodes are not necessary positive. Indeed µ = µ t in Fig. 4 corresponds to a zero eigenvalue of the translation coarsening eigenmode. Likewise, the volume coarsening eigenvalue can change its sign. We show Section 3.2.2 that the bifurcated branches arising from these critical points are responsible of the drop train structure emergence.

Stabilization of the coarsening modes

To study the bifurcated branch, we employ the continuation of the R 2 stationary branch by increasing the driving force µ. The R 2 branch and bifurcated branches are shown in bifurcation diagram Fig. 5. The R 2 branch ends at a saddle-node µ r2 sn 1.0386. The solution profile of the branch with the largest norm is depicted in Fig. 4: two identical drops translated by an spatial halfperiod. The returning branch after the saddle node is linked to profiles similar to a wavy film with two holes. On the R 2 branch, for the small critical value µ t , the translation coarsening mode becomes negative and it implies the emergence of a new branch, noted D 2 . The solution profiles near the bifurcation show that the two drops are closer together and the front drop is larger than the back drop. By increasing µ, the distance between the drop decreases while the height difference increases (Fig. 6). Thus, the T 2 branch is referred to as a duck train. This equilibrium results from the competition between the translation coarsening modes which tend to bring the drops closer together and the drop weight difference which tends to draw away the downstream drop which is bigger and therefore faster. The branch D 2 becomes stable at a Hopf bifurcation at µ h 0.3553 which is responsible to pearl emission as explained in [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF]. When the branch is stable, the two drops coalesced as shows the right panel of Fig. 6. The single drop spreads over the domain by increasing µ till a saddle-node. For this case the 

Drop train branches

If the domain size is larger, T n branches may exist for n > 2. We study the drop train branches by increasing the domain size with the same parameters as in Fig. 5 and we fix the driving force to µ = 0.45. To display the norm of the drop train branches, we use a norm related to their translation symmetry. We define the τ n -norm h τ n such as

h τ n = h -τ n .h . (7) 
Therefore, the τ n -norm . emerge from the abscissa line showing that they result from a symmetry breaking of the R n branches as explained in the previous section.

All the branches T n emerge supercritically from R n and are stable near the bifurcation. The stability ends at a Hopf bifurcation leading to a time dependent dynamics that we do not study in this section. In the following, we analyze each of the solution branches in more detail.

Different profiles of the T 2 branch are depicted in Fig. 9. The length of the thin flat film separating the train drop T 2 increases when increasing till the first saddle-node at 13.13. For this profile, the relative length of the flat film is maximum and is about one third of the domain length. On the turning branch, the upstream drop has a long tail and the flat film vanishes (see the profile for = 12.5 in Fig. 9). After two additional saddle-node bifurcations, the solution profile is an almost flat film except two localized pics (see the profile for = 59 in Fig. 9). This branch seems to exist for large value of length but it is unstable. Indeed the stability of the T 2 occurs only near the bifurcation.

Regarding the T 3 branch, two branches emerge from periodic branches R 3 . Their bifurcated profiles are slightly different for = 17. For the branch called T a 3 the drop train is constituted of three drops almost identical with separated by an equal distance (Fig. 9). The profile of the second branch T b 3 differs only by the downstream drop that is slightly detached from the other two , of the T a 4 branch when = 30 are displayed Fig. 10. All drop train profiles are constituted of four drops almost identical separated by an equal distance (Fig. 10). The main quantitative difference is the length of the thin flat film that connects the consecutive drop trains. This distance decreases when the norm h τ n of solution decreases. For T a1 4 there is a net separation about /4 between the periodic drop trains. For T a2 4 , this distance is smaller and for T a3 4 , the different trains are no longer separated. This solution branch is close to the 4-periodic solution R 4 . According to the bifurcation diagram Fig. 8, all the drop train branches are unstable via a Hopf bifurcation. In [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF], it is shown that the Hopf bifurcation of the R 1 leads to a two frequency dynamics with a quasi-periodic pearls (i.e. very small drops) emission in the tail of the drop. In the present study, the Hopf instability of the drop train branches leads to a time dependent and complex dynamics. Starting from one of these branches for = 30 , the numerical simulation shows a complex and time dependent dynamics. There is not only a pearl emission, but the drop location in the drop train is moving, inducing a variable number of drops in an aperiodic way. Unfortunately, this complex dynamics always converges to a stable stationary state after a long duration. These new stationary states are 4-drops trains that we did not detect by the numerical bifurcation analysis. The time integration provides two stationary 4drops train, denoted T b 4 and T c 4 . Their profile is different from the T a 4 branches. For the T b 4 solution, we recognize the concatenation of the two 2-drops trains (Fig. 10)a nd for for the T c 4 solution, we recognize the concatenation of a 3drops train and a single drop. Since we did not find their emergence from the R 4 branch, we believe that they emerge from T n as secondary bifurcations.

In particular, we argue that the T b 4 branch defined on a domain of length 2 results from a coarsening bifurcation involving two identical T 2 patterns defined on subdomains of length . As describing in Section 3.2, this transition corresponds to the breaking of the translation symmetry. It is noteworthy that is the less symmetric pattern that is stable.

Concluding remarks

We have highlighted a flow regime by train of drops that consists of a clustering of drops without coalescence. This regime is in contrast to 1D flows on a flat substrate where the flow takes place as a single very spread out drop, called pancake. [START_REF] Thiele | Sliding drops on an inclined plane[END_REF]. The drop train solution branch emerges from a periodic distribution of drops via the symmetry-breaking of the translation invariance. The coarsening modes are responsible of the clustering of drops. Contrary to the case without driving force, coalescence does not necessarily take place. We focused on drop trains where the constituent drops have similar heights because they are generally stable for large enough driving force µ. This result differs from [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF] where the stable solution for a sufficiently large driving force was the single drop coexisting with a thick film. In the latter reference, the mean height is double that in the present study. This shows that drop trains are expected solutions only for low water content. There is a rich variety of solutions: the drops of the train may have identical shapes or in contrary not. For sufficiently large domain lengths, a large number of arrangements of these drops is possible giving rise to a large number of solution branches. Moreover, the droplet trains group into new clusters giving rise to hierarchical structures breaking all translational symmetries. Therefore, for thin films in a long microtube, we do not expect a single coarse drop dynamic that would cause a liquid bridge, but rather an aperiodic spatial distribution of drops of equivalent height. Apart from the quasi-periodic dynamics with pearl emission in the tail of the drop as presented in [START_REF] Beltrame | Partial and complete wetting in micro-tube[END_REF], the dynamics converge to stable stationary states, i.e. traveling waves. However, the transient dynamics reveal quite complex dynamics. We believe that this convergence may be related to the periodic boundary conditions. Further simulations with different boundary conditions closer to the experimental setup, such as an imposed flux at the inlet, might reveal complex dynamics.

Fig. 1

 1 Fig. 1 Sketch of the geometry of the problem. Trains of annular ridges slide along the inner tube driven by µ. The problem is -periodic, R is the tube radius and h(x, t) the film height.
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 23 Fig. 2 [left] Bifurcation diagram of the R 1 branch w.r.t. µ for hm = 0.5, κ = 0.8, = 9. The dots indicate the stationary solutions for which their profile is shown in the right panel. The end dot corresponds to a bifurcation with the R 2 branch (See Fig. 5). [right] Profiles of the stationary states of the bifurcation diagram for different values of the driving force µ.
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 4 Fig. 4 [above] Profile of the R 2 branch solution for µ = µt = 0.001915 at the first coarsening bifurcation. [Below] Volume and translation coarsening modes associated to the R 2 solution.
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 5 Fig. 5 Continuation of the (black) D 2 branch and (red) T 2 bifurcated from the (dashed black) R 2 branch. The bold lines indicate stability while the thin line instability. Circles indicate bifurcation points. The dot R 2 branch indicates the bifurcation with the R 1 branch at µ = µ 2 (see Fig.2)
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 6 Fig. 6 [left] Profiles of the D 2 branch of Fig. 5 for different values of µ before the saddlenodes bifurcation. [right] Profiles of the D 2 branch for different values of µ after the saddlenodes bifurcation.
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 839 Fig. 8 Continuation of T 2 , T 3 and T 4 branches w.r.t. the domain size . The code color is as fllows: red line for T 2 , resp. black, green, blue lines for T a,b,c 3 and magenta line for T 4 . The bold lines indicate stability while the thin lines indicate instability.

Fig. 10

 10 Fig. 10 Profiles of the branches (black dashed) T 3 and T 4 branches of the bifurcation diagram of Fig. 8 for = 30 and µ = 0.45.
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drop width reaches the limits of the domain. This scenario is reminiscent of the one presented for drops sliding on an inclined plane. This study shows that the elongated shape of the single drop called pancake in [START_REF] Thiele | Sliding drops on an inclined plane[END_REF] results from the coalescence of two drops via the translation coarsening mode. The stable branch ends at a saddle-node at µ = µ sn1 0.9889. The a second saddle-node at µ sn2 0.5605 leads to a stable solution. The profile is then a wavy film, that is the unique stable solution for µ > µ sn1 .

On the R 2 branch, the eigenvalue of the volume coarsening mode becomes negative at µ v 0.3542. The bifurcated branch, denoted T 2 , breaks the τ 2 translation symmetry and as for the D 2 branch, the drops get closer when the force increases. Nevertheless, the drop height difference remains small and the back drop is the larger contrary to the D 2 branch. Thus, the T 2 branch is referred to as a drop train. The equilibrium is possible by a slightly difference of the drop shape as showed in Fig. 7. The branch T 2 is always unstable. The branch ends by a reverse bifurcation from the R 2 'hole' branch at µ v2 = 1.026. The bifurcation is also due to the volume mode ξ v associated to the bifurcation. The T 2 branch is always unstable for = 9. however, in the next section, we show that it can be stable.

We showed that two-periodic drops solutions branches may break the translation invariance τ 2 via a symmetry breaking bifurcation. This bifurcation can be interpreted as a pitchfork bifurcation in the comoving frame or a perioddoubling in the laboratory frame. We distinguish two types of branches according to the eigenmode responsible of the bifurcation. For the volume coarsening eigenmode, the resulting branch is the so-called drop train or T 2 and for the translation coarsening mode, the resulting branch is the so-called duck branch or D 2 . The duck branch leads to a coarsening drops by increasing the driving force. Then, in the following, we focus mainly on the drop train branches T n . drops (Fig. 9). A secondary bifurcation occurs at c 29.15 from T a 3 leading to a third branch T c 3 for > c . All these branches continue to exist for > c . Stability changes occur at Hopf bifurcations. Thus, there are different ranges of stability. The stability ranges of the three branches differ. Thus, there are ranges where two drop trains are stable and ranges where all three solutions are unstable as in the vicinity of = 30. The continuation for > 45 suggests that all these three branches become unstable for sufficiently large . We depict the three branches for = 30 in Fig. 10. The three drops are no longer identical for the branch T a 3 . The two downstream drops are larger than the upstream drop and look like the so-called pancake drop. For the new branch T c 3 only the drop downstream is larger. For the T b 3 , it is the middle drop which is the pancake drop. In addition, the profile is always characterized by the downstream drop slightly detached from the rest of the upstream train.

Finally, according to the bifurcation analysis we found one branch 4-drop train branch T a 4 emerging for the R 4 branch. The branch emerges supercritically and it is stable near bifurcation as the other branches. However, in contrast to other branches, its existing domain is finite. The branch reconnects at 33.99 the R 4 branch after 5 saddle-node bifurcations. This scenario is similar as the one for the T 2 branch when = 9 shown in the bifurcation diagram of Fig. 5. The profiles of the three solutions, noted T a1,2,3