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Abstract— We propose a multimodal speech driven approach
to generate 2D upper-body gestures for virtual agents, in the
communicative style of different speakers, seen or unseen by
our model during training. Upper-body gestures of a source
speaker are generated based on the content of his/her multimodal
data - speech acoustics and text semantics. The synthesized
source speaker’s gestures are conditioned on the multimodal
style representation of the target speaker. Our approach is
zero-shot, and can generalize the style transfer to new unseen
speakers, without any additional training. An objective evaluation
is conducted to validate our approach.

I. INTRODUCTION

Human behavioral style involves the ways in which speak-
ers gesture in various situations, which can carry different
social meanings [5]. It is multimodal and present in all human
communication modalities: text semantics [7], speech prosody
[21], [23], and gestures (i.e hand, facial and body postures)
[22], [28]. Verbal and Non-verbal behavior define speaker’s
communication style behavior, which is adapted during social
interactions to the style of others [13]. Prosodic features

which are present in human voice are related to the way
specific sounds are produced [4], [6]. In this paper, we present
the first approach to generate semantically-aware and speech-
driven 2D upper-body gestures of a source speaker in the style
of different target speakers, including those unseen during
training. The source speaker’s gestures are generated based
on the content of two input modalities - Mel spectrogram
and text semantics. The generated gestures are conditioned
on a multimodal representation of a target speaker style. Our
approach is zero-shot, it allows style transfer of speakers
unseen during training without any further training or fine-
tuning. We assume that behavioral style is multimodal, could
be encoded using the three modalities: text, speech and upper-
body gestures, and that that content information is only found
in the content of text and speech modalities. We apply these
hypothesis by disentangling style from content while relying
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on the fader network disentangling approach [20]. We validate
our approach by conducting an objective evaluation.

II. RELATED WORK AND OUR CONTRIBUTIONS

Many gesture generative models have been previously
proposed. Long-Short Term Memories (LSTMs) [31], [30],
Generative Adversarial Networks (GANs) [26], [25], [12],
and Convolutional Neural Networks (CNNs) combined with
GANs [16] were used to pblackict speech-driven head motion,
facial, hand and body gestures. Other works driven by both
speech and text semantics were proposed for upper-facial
[11], [9], [10] and hand [19] gesture generation, however they
cannot be used for style modelling and control. Synthesizing
expressive gestures while controlling their style is recently
receiving more attention [3], [17], [8], [14]. However, none
of the works consider the multimodal aspect of style in their
models.The only works that model and transfer speakers style
using a multi-speakers database have been proposed by Ahuja
et al. in [2] and [1]. They propose [2] a speech-driven style-
transfer model trained on PATS - a database for studying
unique styles of gestures for a large number of speakers. In
their proposed architecture, they assume that style is only
present in speakers gestures, and do not consider its presence
in speech and text. Their model is limited to PATS speakers,
and is not zero-shot since it cannot generalize the style transfer
to new unseen speakers. They propose another approach[1]
based on a few-shot style transfer strategy that uses domain
adaptation between source speaker and target speaker style.
Nonetheless, this adaptation needs 2 minutes of training to
perform the style transfer. Our contributions can be listed
as follows: (1) We propose the first approach for zero-shot
multimodal style transfer. At inference, a style vector can
be inferblack from multimodal data of any target speaker,
and is used to condition the synthesis of 2D upper body
gestures of a source speaker. Our model is trained on PATS
dataset, but the style transfer is not limited to PATS speakers.
It can generalize to new unseen speakers. (2) Behavioral style



is encoded using the three modalities: text, speech and 2D
upper-body gestures. Content is encoded only by speech and
text content of source speakers.

III. PROPOSED ARCHITECTURE

Fig. 1: ZS-MSTM model architecture.

We propose ZS-MSTM (Zero-Shot Multimodal Style
Transfer Model), a transformer-based architecture for syn-
thesizing 2D upper-body gestures of a source speaker in the
style of a target speaker. Gestures are generated based on the
content of the source speaker’s speech - text semantics (BERT
embeddings) and audio (Mel spectrogram) -, and conditioned
on the target speaker’s multimodal style embedding generated
by the target speaker’s Mel spectrogram, BERT embeddings,
and 2D upper-body gestures, which are represented by a
sequence of (X, Y) joints positions. The generated animations

correspond to the style of target speakers seen or unseen

during training. The network operates on an utterance-level.
The input features - text and speech - corresponds to an
utterance U with a length of 64 timesteps, as provided by
PATS. The model synthesizes a sequence of gestures that
correspond to the given U input features. As depicted in Fig.1,
the model is composed of: (1) a content encoder, (2) a style
encoder, and (3) an adversarial component. During inference,
the adversarial component is removed, and the model can
synthesize various styles of gestures when fed with different
style embeddings. Gesture styles for the same input speech
can be controlled by changing the style embedding vector

hstyle or by computing this embedding from a target speaker’s
multimodal data given as input to the Style Encoder.

A. Content Encoder

The content encoder takes as inputs a sequence of BERT
embeddings Xtext and an audio Mel spectrograms Yspeech

corresponding to each utterance U. Yspeech is encoded using
AST pre-trained model [15], from which we removed the final
linear layer with sigmoid activation function, since we do not
aim to classify audio. The encoded Mel spectrogram is then
concatenated with the BERT embeddings of U. Self attention
is applied on the resulting vector. The output is hcontent, a
representation of the content of the source speaker’s speech
and text semantics corresponding to U.

B. Style Encoder

The style encoder Estyle takes as input the target speaker’s
Mel spectrogram Yspeech, BERT embedding Xtext, and a
sequence of (X, Y) joints positions corresponding to U. The
modified AST is used to encode Yspeech. A self-attention is
then applied on the resulting vector. 3 layers of LSTMs with
a hidden-size equal to 768 are used to encode the 2D poses.
The last hidden layer is then concatenated with the audio
representation. The output embedding hstyle is the target

speaker style embedding that serves to condition the network
with the speaker style.

C. Sequence to sequence gesture synthesis

This network is a generator G, that generates the sequence
of poses Ẑpose from the sequence of hcontent and hstyle.
To decode the stylized 2D-poses, hcontent and hstyle are
concatenated, and passed through a dense layer. The resulting
vector is then given as input to a transformer decoder [27]
with 1 decoding layer and 2 attention heads. The resulting
vector Ẑpose is the sequence of stylized 2D-poses.

D. Adversarial Component

An adversarial component in the form of a fader network

[20] is used to disentangle style and content. The goal is
to constrain the latent space of hcontent to be independent
of hstyle, such that the distribution over hcontent doesn’t
contain style information. We formulate this problem as a
regression on the conditional variable hstyle: the discriminator
D learns to pblackict hstyle from hcontent. While optimizing
D, the discriminator loss Ldis must be as low as possible.
While optimizing the generator loss, D must not be able to
predict correctly hstyle from hcontent conducting to a high D



error and thus a low fader loss. D and G are then optimized
alternatively as described in [20].

IV. OBJECTIVE EVALUATION

A. Objective Evaluation

We conduct an objective evaluation to assess our model
in transferring the style of seen and unseen speakers. Style
corresponds to the quality of behavioral expressivity. Follow-
ing works on behavior expressivity by [29], [24], we use 4
objective behavior dynamics metrics: acceleration, jerk and
velocity and the speaker’s Bounding Box (BB) perimeter. To
obtain information on the arms movements expressivity, we
compute the acceleration, jerk and velocity of the left and
right wrists ([29], [18]).
B. Objective Evaluation Results and Discussion

(a) Style transfer from seen speakers

(b) Style transfer from unseen speakers

Fig. 2: Average distance between source and target styles
compablack to the one between our model’s pblackictions
and target styles

Objective evaluation experiments are conducted for evalu-
ating the performance of our model in two conditions: Seen

and Unseen conditions. For Seen condition, experiments are
conducted on a test set that includes the 16 speakers seen by
our model during training. For Unseen condition, experiments
are conducted on another test set with 6 unseen speakers.
We define two sets of distances: Dist.(Source, Target) -
average distance between the source and target styles -,
and Dist.(ZS-MSTM, Target) - average distance between our
model’s pblackictions and the target styles. Fig. 2 (a) reports
the experimental results on the Seen test set. It illustrates
the results of Dist.(Source, Target) in terms of behaviors
dynamics and speaker BB perimeter between the target and
the source speakers styles. The Dist.(Source, Target) is higher
than 70% of the total distance for all behavior dynamics
metrics; thus Dist.(ZS-MSTM, Target) is less than 30% of
the total distance for all behavior dynamics metrics. Wrists
velocity, jerk and acceleration results reveal that the virtual
agent’s arms movements show the same expressivity dynamics
as the target style (Dist.(ZS-MSTM, Target) < 22%). The
perimeter of the pblackiction’s BB is closer (dist < 30 %)
to the target speaker’s BB perimeter than the source. The
closeness between pblackictions dynamics behavior metrics
values are shown for all speakers in the Seen condition.
Results for the Unseen test set are shown in Fig. 2 (b)For
all behavior dynamics metrics, as well as the BB perimeter,
Dist.(Source, Target) is higher than 50% of the total distances
for all metrics. Results show that for wrists velocity, jerk
and acceleration, Dist.(ZS-MSTM, Target) is less than 33%.
Thus, arm movement’s expressivity produced by ZS-MSTM

is closer to the target speaker than the source one. The
BB perimeter of ZS-MSTM’s pblackiction’s is close to the
target speaker’s BB perimeter(dist. < 30 %), while there is a
larger distance (dist. > 70 %) between the source and target
speakers’ BB perimeter. Wrists acceleration and jerk values
of our model’s produced gestures are very close to those of
the target speakers for the 6 unseen speakers. We additionally
found significant results (p < 0.003) for all distances in both
conditions, seen and unseen, after conducting a Fisher’s LSD
Test. We conclude that our model is capable of transferring
behavior expressivity style of all seen and unseen target

speakers to source speakers.

V. CONCLUSION AND FUTURE WORK

We presented the first approach for zero-shot multimodal
style transfer for 2D upper-body gestures synthesis. We plan to
conduct subjective evaluations on virtual agents, and expand
our model to consider dialog acts, and cover facial gestures.
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