Zero-Shot Style Transfer for Multimodal Data-Driven Gesture Synthesis

Mireille Fares, Nicolas Obin, Catherine Pelachaud

To cite this version:

Mireille Fares, Nicolas Obin, Catherine Pelachaud. Zero-Shot Style Transfer for Multimodal Data-Driven Gesture Synthesis. International Conference on Automatic Face and Gesture Recognition 2023, Workshop on Socially Interactive Human-like Virtual Agents, Jan 2023, WAIKOLOA (Hawaii), United States. hal-03972560

HAL Id: hal-03972560
https://hal.science/hal-03972560
Submitted on 3 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Zero-Shot Style Transfer for Multimodal Data-Driven Gesture Synthesis

Mireille Fares1,2, Catherine Pelachaud2, and Nicolas Obin1
1 STMS Lab, IRCAM, Sorbonne Universit\'e, France
2 ISIR Lab, Sorbonne Universit\'e, France

Abstract—We propose a multimodal speech driven approach to generate 2D upper-body gestures for virtual agents, in the communicative style of different speakers, seen or unseen by our model during training. Upper-body gestures of a source speaker are generated based on the content of his/her multimodal data - speech acoustics and text semantics. The synthesized source speaker’s gestures are conditioned on the multimodal style representation of the target speaker. Our approach is zero-shot, and can generalize the style transfer to new unseen speakers, without any additional training. An objective evaluation is conducted to validate our approach.

I. INTRODUCTION

Human behavioral style involves the ways in which speakers gesture in various situations, which can carry different social meanings [5]. It is multimodal and present in all human communication modalities: text semantics [7], speech prosody [21], [23], and gestures (i.e. hand, facial and body postures) [22], [28]. Verbal and Non-verbal behavior define speaker’s communication style behavior, which is adapted during social interactions to the style of others [13]. Prosodic features which are present in human voice are related to the way specific sounds are produced [4], [6]. In this paper, we present the first approach to generate semantically-aware and speech-driven 2D upper-body gestures of a source speaker in the style of different target speakers, including those unseen during training. The source speaker’s gestures are generated based on the content of two input modalities - Mel spectrogram and text semantics. The generated gestures are conditioned on a multimodal representation of a target speaker style. Our approach is zero-shot, it allows style transfer of speakers unseen during training without any further training or fine-tuning. We assume that behavioral style is multimodal, could be encoded using the three modalities: text, speech and upper-body gestures, and that the content information is only found in the content of text and speech modalities. We apply these hypothesis by disentangling style from content while relying on the fader network disentangling approach [20]. We validate our approach by conducting an objective evaluation.

II. RELATED WORK AND OUR CONTRIBUTIONS

Many gesture generative models have been previously proposed. Long-Short Term Memories (LSTMs) [31], [30], Generative Adversarial Networks (GANs) [26], [25], [12], and Convolutional Neural Networks (CNNs) combined with GANs [16] were used to predict speech-driven head motion, facial, hand and body gestures. Other works driven by both speech and text semantics were proposed for upper-facial [11], [9], [10] and hand [19] gesture generation, however they cannot be used for style modelling and control. Synthesizing expressive gestures while controlling their style is recently receiving more attention [3], [17], [8], [14]. However, none of the works consider the multimodal aspect of style in their models. The only works that model and transfer speakers style using a multi-speakers database have been proposed by Ahuja et al. in [2] and [1]. They propose [2] a speech-driven style-transfer model trained on PATS - a database for studying unique styles of gestures for a large number of speakers. In their proposed architecture, they assume that style is only present in speakers gestures, and do not consider its presence in speech and text. Their model is limited to PATS speakers, and is not zero-shot since it cannot generalize the style transfer to new unseen speakers. They propose another approach[1] based on a few-shot style transfer strategy that uses domain adaptation between source speaker and target speaker style. Nonetheless, this adaptation needs 2 minutes of training to perform the style transfer. Our contributions can be listed as follows: (1) We propose the first approach for zero-shot multimodal style transfer. At inference, a style vector can be inferblack from multimodal data of any target speaker, and is used to condition the synthesis of 2D upper body gestures of a source speaker. Our model is trained on PATS dataset, but the style transfer is not limited to PATS speakers. It can generalize to new unseen speakers. (2) Behavioral style
is encoded using the three modalities: text, speech and 2D upper-body gestures. Content is encoded only by speech and text content of source speakers.

III. PROPOSED ARCHITECTURE

![ZS-MSTM Model Architecture](image)

We propose **ZS-MSTM** (Zero-Shot Multimodal Style Transfer Model), a transformer-based architecture for synthesizing 2D upper-body gestures of a source speaker in the style of a target speaker. Gestures are generated based on the content of the source speaker’s speech - text semantics (BERT embeddings) and audio (Mel spectrogram) - and conditioned on the target speaker’s multimodal style embedding generated by the target speaker’s Mel spectrogram, BERT embeddings, and 2D upper-body gestures, which are represented by a sequence of (X, Y) joints positions. The generated animations correspond to the style of target speakers seen or unseen during training. The network operates on an utterance-level. The input features - text and speech - corresponds to an utterance \(U\) with a length of 64 timesteps, as provided by PATS. The model synthesizes a sequence of gestures that correspond to the given \(U\) input features. As depicted in Fig. 1, the model is composed of: (1) a content encoder, (2) a style encoder, and (3) an adversarial component. During inference, the adversarial component is removed, and the model can synthesize various styles of gestures when fed with different style embeddings. Gesture styles for the same input speech can be controlled by changing the style embedding vector \(h_{style}\) or by computing this embedding from a target speaker’s multimodal data given as input to the Style Encoder.

A. Content Encoder

The content encoder takes as inputs a sequence of BERT embeddings \(X_{text}\) and an audio Mel spectrograms \(Y_{speech}\) corresponding to each utterance \(U\). \(Y_{speech}\) is encoded using AST pre-trained model [15], from which we removed the final linear layer with sigmoid activation function, since we do not aim to classify audio. The encoded Mel spectrogram is then concatenated with the BERT embeddings of \(U\). Self attention is applied on the resulting vector. The output is \(h_{content}\), a representation of the content of the source speaker’s speech and text semantics corresponding to \(U\).

B. Style Encoder

The style encoder \(E_{style}\) takes as input the target speaker’s Mel spectrogram \(Y_{speech}\), BERT embedding \(X_{text}\), and a sequence of (X, Y) joints positions corresponding to \(U\). The modified AST is used to encode \(Y_{speech}\). A self-attention is then applied on the resulting vector. 3 layers of LSTMs with a hidden-size equal to 768 are used to encode the 2D poses. The last hidden layer is then concatenated with the audio representation. The output embedding \(h_{style}\) is the target speaker style embedding that serves to condition the network with the speaker style.

C. Sequence to sequence gesture synthesis

This network is a generator \(G\), that generates the sequence of poses \(\tilde{Z}_{pose}\) from the sequence of \(h_{content}\) and \(h_{style}\). To decode the stylized 2D-poses, \(h_{content}\) and \(h_{style}\) are concatenated, and passed through a dense layer. The resulting vector is then given as input to a transformer decoder [27] with 1 decoding layer and 2 attention heads. The resulting vector \(\tilde{Z}_{pose}\) is the sequence of stylized 2D-poses.

D. Adversarial Component

An adversarial component in the form of a fader network [20] is used to disentangle style and content. The goal is to constrain the latent space of \(h_{content}\) to be independent of \(h_{style}\), such that the distribution over \(h_{content}\) doesn’t contain style information. We formulate this problem as a regression on the conditional variable \(h_{style}\): the discriminator \(D\) learns to predict \(h_{style}\) from \(h_{content}\). While optimizing \(D\), the discriminator loss \(L_{dis}\) must be as low as possible. While optimizing the generator loss, \(D\) must not be able to predict correctly \(h_{style}\) from \(h_{content}\) conducting to a high \(D\).
error and thus a low fader loss. D and G are then optimized alternatively as described in [20].

IV. OBJECTIVE EVALUATION

A. Objective Evaluation

We conduct an objective evaluation to assess our model in transferring the style of seen and unseen speakers. Style corresponds to the quality of behavioral expressivity. Following works on behavior expressivity by [29], [24], we use 4 objective behavior dynamics metrics: acceleration, jerk and velocity and the speaker’s Bounding Box (BB) perimeter. To obtain information on the arms movements expressivity, we compute the acceleration, jerk and velocity of the left and right wrists ([29], [18]).

B. Objective Evaluation Results and Discussion

(a) Style transfer from seen speakers

![Graph showing distances with respect to target style for seen speakers.]

(b) Style transfer from unseen speakers

![Graph showing distances with respect to target style for unseen speakers.]

Fig. 2: Average distance between source and target styles comparable to the one between our model’s predictions and target styles.

Objective evaluation experiments are conducted for evaluating the performance of our model in two conditions: Seen and Unseen conditions. For Seen condition, experiments are conducted on a test set that includes the 16 speakers seen by our model during training. For Unseen condition, experiments are conducted on another test set with 6 unseen speakers. We define two sets of distances: \(\text{Dist.}(\text{Source, Target}) \) - average distance between the source and target styles, and \(\text{Dist.}(\text{ZS-MSTM, Target}) \) - average distance between our model’s predictions and the target styles. Fig. 2(a) reports the experimental results on the Seen test set. It illustrates the results of \(\text{Dist.}(\text{Source, Target}) \) in terms of behaviors dynamics and speaker BB perimeter between the target and the source speakers styles. The \(\text{Dist.}(\text{Source, Target}) \) is higher than 70% of the total distance for all behavior dynamics metrics; thus \(\text{Dist.}(\text{ZS-MSTM, Target}) \) is less than 30% of the total distance for all behavior dynamics metrics. Wrist velocity, jerk and acceleration results reveal that the virtual agent’s arms movements show the same expressivity dynamics as the target style (\(\text{Dist.}(\text{ZS-MSTM, Target}) < 22\% \)). The perimeter of the model’s BB is closer (dist < 30 %) to the target speaker’s BB perimeter than the source. The closeness between predictions dynamics behavior metrics values are shown for all speakers in the Seen condition. Results for the Unseen test set are shown in Fig. 2(b) For all behavior dynamics metrics, as well as for the BB perimeter, \(\text{Dist.}(\text{Source, Target}) \) is higher than 50% of the total distances for all metrics. Results show that for wrists velocity, jerk and acceleration, \(\text{Dist.}(\text{ZS-MSTM, Target}) \) is less than 33%. Thus, arm movement’s expressivity produced by ZS-MSTM is closer to the target speaker than the source one. The BB perimeter of ZS-MSTM’s predictions is close to the target speaker’s BB perimeter (dist. < 30 %), while there is a larger distance (dist. > 70 %) between the source and target speakers’ BB perimeter. Wrists acceleration and jerk values of our model’s produced gestures are very close to those of the target speakers for the 6 unseen speakers. We additionally found significant results (\(p < 0.003 \)) for all distances in both conditions, seen and unseen, after conducting a Fisher’s LSD Test. We conclude that our model is capable of transferring behavior expressivity style of all seen and unseen target speakers to source speakers.

V. CONCLUSION AND FUTURE WORK

We presented the first approach for zero-shot multimodal style transfer for 2D upper-body gestures synthesis. We plan to conduct subjective evaluations on virtual agents, and expand our model to consider dialog acts, and cover facial gestures.