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Summary

The major goal of this work is to develop a robust modelling strategy for the

simulation of ductile damage development including crack initiation and sub-

sequent propagation. For that purpose, a Gurson‐type model is used. This

model class, as many other damage models, leads to significant material soften-

ing and must be used within a large deformation framework due to the ductile

character of the materials. This leads to 2 main difficulties that should be dealt

with carefully: mesh dependency and volumetric locking. In this work, a loga-

rithmic finite strain framework is adopted in which the Gurson‐Tvergaard‐

Needleman constitutive law is reformulated. Then a nonlocal formulation with

regularisation of hardening variable is applied so as to solve mesh dependency

and strain localization problem. In addition, the nonlocal model is combined

with mixed “displacement‐pressure‐volume variation” elements to avoid volu-

metric locking. Thereby, a mesh‐independent and locking‐free finite strain

framework suitable for the modelling of ductile rupture is established. Atten-

tion is paid to mathematical properties and numerical performance of the

model. Finally, the model parameters are identified on an experimental data-

base for a nuclear piping steel. Simulations of standard test specimens (notched

tensile bars and compact tension and single edge notched tensile cracked spec-

imens) are performed and compared to experimental results.
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ductile damage, GTN model, mesh dependency, mixed finite element, nonlocal regularisation,

volumetric locking

1 | INTRODUCTION

Ductile fracture is characterised by large plastic deformation so that plastic energy dissipation cannot be neglected as in

brittle fracture. Material deterioration accompanied by this high level of energy dissipation before fracture is considered

as ductile damage. In the last decades, numerical models based on micromechanical analyses have been found appealing

to represent ductile damage. In accordance with experimental observations, models are usually based on the description of

the evolution of cavities/voids leading to the initiation of a macroscopic crack. It involves 3 distinct steps: (i) cavity nucle-

ation, (ii) cavity growth, and (iii) cavity coalescence.1 Among ductile damage models, micromechanical models based on

the seminal work of Gurson2 are the most widely used. The model introduces the void volume fraction as a damage vari-

able, which is used to describe the effect of damage on the material yield surface. The resulting yield surface is pressure

sensitive. This dependence together with the use of the normality rule allows deriving the evolution of the void volume
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fraction in absence of void nucleation. The initial Gurson model was derived from rigorous mechanical analysis of the

growth of a spherical void in a rigid perfectly plastic material. The model was then extended phenomenologically by

Tvergaard and Needleman3 in order to (i) introduce elastic strain, (ii) introduce work hardening, (iii) cover the cavity evo-

lution up to coalescence, and (4) get a better agreement with experiments. In recent years, studies based on Gurson‐type

models have led to numerous extensions principally aiming at a better physical description of ductile damage (see review

in Besson4 and Benzerga and Leblond5). The use of these extensions allows simulating laboratory size specimens for which

a good agreement is found with experiments on several specimens such as notched axisymmetric tensile bar and cracked

tensile specimen (see, eg, Springman and Kuna6 and Enakoutsa and Leblond7). Despite the fact that themost recent exten-

sions of the Gurson model greatly improve the description of the physics of damage, these models are still clearly facing

several severe numerical difficulties when used in finite element (FE) softwares, which should be dealt carefully.

Fracture simulations based on local continuum damage models are generally faced with mesh dependency: The

numerical results may strongly depend on the FE discretization: element type, element size, element orientation, etc.

This well‐known numerical problem results from the ill‐posedness in the damage governing differential equation,8

and regularisation techniques are often proposed to solve the problem. Several regularisation techniques based on non-

local models are found in the literature. The 2 most popular methods are the convolution method9 and gradient

method.10,11 The principle of these approaches is to introduce a spatial coupling term in the constitutive equation so

as to redistribute the strain and damage fields and to avoid pathological localization. Different variables can be chosen

as regularised variable; this includes the plastic strain tensor,7 the volume variation,12 the hydrostatic plastic strain,13 the

equivalent plastic strain,12,14 and the damage variable.15

Another problem observed in ductile damage simulation is the volumetric locking, which results from plastic quasi‐

incompressibility. Volumetric locking leads to strong oscillations of the pressure field and alters the convergence of the

computation. Since traditional (ie, displacement based) FEs are not capable of accurately calculating stress fields for a

quasi‐incompressible behaviour at Gauss point level, some enhanced elements have been developed over the last years

and perform well in quasi‐incompressible situations. The work of Al‐Akhrass et al16 based on Taylor17 proposes a mixed

element where volume variation and pressure are introduced as 2 additional nodal variables in addition to the

displacements.

In the present paper, a nonlocal Gurson‐Tvergaard‐Needleman (GTN) model based on a logarithmic finite strain for-

mulation18 is chosen to model ductile damage. To avoid mesh dependency, a regularisation method using the gradient of

equivalent plastic strain is introduced. Besides, the mixed element formulation is coupled with the nonlocal model to

solve the volumetric locking. The paper proceeds as follows: In Section 2, the theoretical part of the proposed model

including the logarithmic finite strain formulation, the nonlocal version of GTN model, and the mixed element are pre-

sented. In Section 3, the FE algorithm to solve the governing equations is explained, and its robustness is also demon-

strated. Finally, the proposed simulation strategy is applied to represent an existing experimental database for a

nuclear piping steel in Section 4.

2 | KINEMATIC FORMULATION AND GTN CONSTITUTION EQUATIONS

2.1 | A logarithmic finite strain formulation for standard J2 plasticity

A finite strain formulation is required for ductile damage modelling because of the large deformation. Here, a logarith-

mic formulation based on the work of Miehe et al18 is applied. The main steps are recalled in the following. The logarith-

mic strain tensor is defined as

E ¼ 1

2
ln FT⋅F
� �

¼ 1

2
ln Cð Þ: (1)

The stress tensor T is defined by duality with respect to the logarithmic strain rate:

Pi ¼ ∫
Ω0

τ:DdΩ0 ¼ ∫
Ω0

T: _EdΩ0: (2)

This gives the relation between the Kirchhoff stress tensor τ and T. Indeed, differentiating (1) leads to

δE ¼ ∂E

∂C
:δC ¼P : FT⋅δF

� �
with P ¼ 2∂E

∂C
Cð Þ: (3)
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Then, equating both sides of (2) for any _F results in

τ ¼ F T :PÞFT:
�

(4)

Note that thanks to the stress definition (2), the variational formulation of the equilibrium equations reads

∀ δu ∫
Ω0

T :P : FT⋅∇δu
� �

dΩ0 ¼ δWext; (5)

where Wext stands for the potential of external forces and δu is classically subjected to the constraint of kinematical

admissibility.

In the context of isotropic plasticity, the material state is described by the current strain, the hardening variable κ,

and the plastic strain Ep, where the logarithmic strain is additively split into an elastic part and a plastic part:

E ¼ Ee þ Ep: (6)

The Helmholtz free energy density, ie, the energy per unit volume in the reference configuration, is classically split

into the elastic strain energy Φe and the stored energy due to work hardening Φp without state coupling:

Φ ¼ Φ E;Ep; κð Þ ¼ Φe E−Epð Þ þ Φp κð Þ: (7)

Thanks to the duality introduced in (2), the dissipation rate reads

D ¼ T:E ̇− _Φ ¼ T−
∂Φ

∂E

� �
:Ė−

∂Φ

∂Ep:E
̇ p
−

∂Φ

∂κ
_κ: (8)

The first term should be equal to zero for any reversible evolution, which provides the definition of the stress:

T ¼ ∂Φ

∂E
¼ ∂Φe

∂Ee: (9)

Thus, the stress‐strain relation is of hyperelastic type and does not require the introduction of an objective stress rate.

The dissipation rate reduces to the following expression, with A being the driving force for the hardening mechanisms:

D ¼ T:Ė
p þ A _κ where A ¼ −

∂Φ

∂κ
¼ −

∂Φp

∂κ
: (10)

Regarding the evolution equations, the generalised standard material framework19 is used. It corresponds here to

the principle of maximal dissipation with respect to a yield surface, which depends on T and A through a threshold

function F(T,A). This leads to the following normal flow rules and consistency condition, with λ being the plastic

multiplier:
_Ep ¼ λ

∂F

∂T
; _κ ¼ λ

∂F

∂A
λF T;Að Þ ¼ 0; F T;Að Þ≤ 0; λ≥0:

(11)

Note that the time derivative in _Ep is objective since the strain E (hence, the plastic strain Ep) refers to the reference

configuration.

Finally, the elastoplastic constitutive relation is characterised by the elastic strain energy Φe, the hardening strain

energy Φp, and the threshold function F. Note that for metallic materials, the elastic part of the strain remains small

so that the elastic strain energy may retain its usual quadratic expression:

Φe Eeð Þ ¼ 1

2
Ee :E :Ee: (12)

In particular, in the case of isotropic materials as considered in this presentation, the Hooke tensor reads, with K the

bulk modulus and μ the shear modulus,

E:Ee ¼Ktr Eeð ÞIþ 2μdev Eeð Þ: (13)
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2.2 | The local GTN constitutive equations

The purpose of this part is to cast the GTN constitutive law into the previous logarithmic setting for plasticity. Two points

will need a specific attention:

• In the GTN model, the porosity (the void volume fraction) shrinks the elasticity domain; this is responsible for the

softening character. Therefore, the yield surface depends on the porosity, a characteristic that should be taken into

account in the evolution law (11). Moreover, the porosity evolution is governed by an additional equation, which

accounts for the plastic incompressibility of the matrix and possible nucleation (as detailed in the following).

• The hardening mechanism in the GTN model does not follow a flow rule in the same way as in (11). Hence, it will

require a reformulation.

In the original presentation of the GTN model,3 the yield surface relies on the porosity f and on the hardening

parameter κ through the following threshold function:

FGTN σð Þ ¼ σeq

σ κð Þ

� �2

þ 2q1 f
� cosh

q2
2
tr

σ

σ κð Þ

� �� �
−1− q1 f

�ð Þ2 ≤ 0: (14)

In the former expression, q1 and q2 are material parameters, σ is the Cauchy stress tensor, andσ κð Þ is the current flow
stress. Besides, f* denotes an effective porosity, which models the coalescence phenomenon in a coarse way by increasing

the effect of porosity on the yield surface above a critical coalescence porosity fc:

f � ¼
f if f≤f c

f c þ δ f−f cð Þ if f>f c

�
where δ ¼ 1=q1−f c

f f−f c
: (15)

Here, ff denotes the fracture porosity. When it is reached, only σ= 0 is admissible according to (14).

An alternative but strictly equivalent expression of (14) is proposed in Besson et al.20 It relies on the introduction of a

scalar stress measure σ*=N(σ), which is a positive homogeneous function of degree 1 of the stress tensor; it plays the

same role as the equivalent stress for the von Mises criterion. This measure N, which also depends on f*, is implicitly

defined as follows as long as q1 f
*<1:

Find σ� ¼ N σð Þ such that G σ; σ�; f
�ð Þ ¼ 0

with G σ; σ�; f
�ð Þ¼

def

σeq

σ�

� �2

þ 2q1 f
� cosh

q2
2
tr

σ

σ�

� �� �
−1− q1f

�ð Þ2:

�������
(16)

For the sake of completeness, the extension to the case q1 f
*=1 corresponds to

N σð Þ ¼
0 if σ ¼ 0

þ∞ if σ≠0
:

�
(17)

As the function G is convex with respect to σ, it can be shown that N is also a convex function. Thanks to this def-

inition, the elasticity domain is then simply characterised by

σ�−σ κð Þ≤0: (18)

The next step consists in expressing the yield surface as a function of the dual stress T rather than the Cauchy

stress σ. Replacing rigorously σ by its expression as a function of T and F is a straightforward approach, but it would

lead to a poorly practical threshold function. One however notices that (i) the dual stress T and the Kirchhoff

stress τ= Jσ always admit the same trace and (ii) if the local evolution is such that _E remains coaxial to E, then T

and τ admit the same invariants (hence, Teq= τeq). Therefore, (18) can be expressed as a function of τ, leading to

an expression strictly equivalent to (18):
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N τð Þ
J

− σ κð Þ≤0: (19)

This expression is then approximated by using T instead of τ, which results in a yield surface close to the original

GTN one:

N Tð Þ
J

− σ κð Þ≤0: (20)

In that way, only the Jacobian of the deformation J is involved in the expression of the yield surface and not all the

components of F in a cumbersome way. In agreement with the logarithmic strain setting, the normality with respect to

the yield surface then provides the plastic strain rate direction and the consistency condition:

_Ep ¼ λ

J

∂N

∂T
; (21)

λ≥0 ;
N Tð Þ
J

− σ κð Þ≤0 ; λ
N Tð Þ
J

− σ κð Þ
� 	

¼ 0: (22)

Concerning the evolution of the hardening variable, the original GTN law provides the following evolution

equation:

σ:Dp ¼ 1− fð Þσ κð Þ _κ: (23)

Following the definition of T in (2), this can be rewritten as:

1

J
T:Ė

p ¼ 1− fð Þσ κð Þ _κ (24)

Thanks to the flow rule (21), the consistency condition (22) and the fact that N is positive homogeneous of degree 1,

one has by means of the Euler identity:

T:Ė
p ¼ λ

J
T:
∂N

∂T
¼ λ

J
N Tð Þ ¼ λσ κð Þ: (25)

From (24) and (25), one deduces the evolution law for the hardening variable:

_κ ¼ λ
1

1− fð ÞJ: (26)

When considering the evolution of the porosity, it will be shown that (1− f)J≈ 1, provided that the nucleation part of

the porosity and the initial porosity are small. In that case, (26) reduces to

_κ ¼ λ: (27)

Note that the error resulting from this approximation leads to a small error on the hardening variable and on the flow

stress, with minimal impact on the model response (in particular, when the hardening function is identified so as to fit

an experimental result). At this stage, the threshold function F(T,A) can be derived from (11), (21), and (27) through

_Ep ¼ λ
∂F

∂T
¼ λ

J

∂N

∂T
⇒

∂F

∂T
¼ 1

J

∂N

∂T

_κ ¼ λ
∂F

∂A
¼ λ ⇒

∂F

∂A
¼ 1

9
>>=
>>;

⇒ F T;Að Þ ¼ N Tð Þ
J

þ A−σ0; (28)

with σ0 being the initial yield stress. Moreover, comparing the consistency conditions (11) and (22) provides the expres-

sion of the hardening driving force A:
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A ¼ − σ κð Þ−σ0
� �

: (29)

Thanks to the choice of σ0 as the integration constant in (28), the hardening driving force is initially equal to zero.

Then the stored energy Φ p can be calculated, thanks to the expression of A:

Φp κð Þ ¼ − ∫
κ

0
A dκ ¼ ∫

κ

0
σ sð Þ−σ0
� �

ds: (30)

The yield threshold and the flow rules have been cast into the framework of generalised standard materials for a

given porosity. It now remains to explicate the evolution equation for the latter. The original proposal for the GTN model

takes into account 2 components, one related to nucleation of cavity, the other resulting from cavity growth:

_f ¼ _f n þ _f g with _f n ¼ Bn κð Þ _κ and _f g ¼ 1− fð ÞtrDp: (31)

The initial condition takes care of the initial porosity f0 through, for instance, fg(0)= f0 and fn(0)=0. Regarding the

nucleation part, a usual choice is

Bn κð Þ ¼ f N

sN
ffiffiffiffiffiffi
2π

p exp −

1

2

κ−κN
sN

� �2
" #

; (32)

where 3 additional material parameters fN, sN, κN are introduced. The differential equation for fn admits an explicit

solution by integrating _f n of (31), where erf denotes the error function:

f n κð Þ ¼ f N
2

erf
κN

sN
ffiffiffi
2

p
� �

þ erf
κ−κN

sN
ffiffiffi
2

p
� �� 	

: (33)

This integrated expression is advantageous because it avoids numerical errors, which could otherwise occur for small

values of sN. The evolution of the second part of the porosity, related to the cavity growth, can be reformulated with the

plastic strain Ep. Indeed, one can notice that

trDp ¼ d

dt
lnJpð Þ ¼ tr _E p; (34)

where Jp is the part of the Jacobian related to plastic volumetric variation. Therefore, the evolution of fg simply reads

_f g ¼ 1− fð Þ tr _E p: (35)

Note that thanks to the plasticity flow rules (28), the porosity evolution is hence related to the evolution of the hard-

ening variable:

_f g ¼ _κ 1− fð Þ ∂F

∂T
: I: (36)

This concludes the equations of the GTN model cast into the logarithmic setting for plasticity. One can notice that the

evolution equation for the porosity does not follow a normality flow rule with respect to the yield threshold. Therefore,

the whole model does not belong to the framework of generalised standard materials. Nevertheless, one should remind

that it does belong to the framework for a fixed porosity, a property that will be used below for its interesting numerical

implications.

At last, for the sake of completeness, one can now justify the approximation (1− f)J≈ 1 used in (27). Indeed, the evo-

lution equation (31) can be rewritten as

_f

1− f
¼ d

dt
lnJpð Þ þ

_f n
1− f

: (37)
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Integrating with respect to time and introducing the multiplicative split J= JeJp leads to

1− fð ÞJ ¼ Je 1−f 0ð Þ exp − ∫
t

0

_f n τð Þ dτ

1− f τð Þ

" #
: (38)

Finally, a Taylor expansion allows justifying the approximation since

1− fð ÞJ ¼ 1þ O f 0ð Þ þ O
f n
1− f

� �
þ O Je−1j jð Þ: (39)

2.3 | A nonlocal GTN model with gradient constitutive relations

It can be noticed that the elasticity domain in the Cauchy stress space as defined in (18) decreases with increasing

porosity. This shrinkage enters progressively in competition with the hardening mechanism related to the increase

of the flow stress σ κð Þ and finally prevails, leading to the softening of the constitutive law after an initial hardening

phase. As recalled in the introduction, softening constitutive laws lead to ill‐posed boundary value problems so that

a nonlocal formulation is required for physical as well as mathematical reasons. Here, it is proposed to introduce

the nonlocality through the gradient of the hardening variable. Indeed, this choice is thought to control simulta-

neously (i) the plastic localization, which may result from geometrical considerations (necking) or numerical ones

(spurious artefacts related to the FEs used to relax the volumetric locking due to plastic incompressibility), and

(ii) the porosity localization, which results from strain softening since the porosity evolution is related to _κ through

(33) and (36).

More precisely, the gradient of the hardening variable ∇κ is introduced into the Helmholtz free energy density (7).

Φnl E;Ep; κ;∇
¯
κ

� �
¼ Φe E−Epð Þ þ Φp κð Þ þ c

2
∇
¯
κ⋅∇
¯
κ: (40)

The strictly positive parameter c, which has the dimension of a force, weights the nonlocal interactions between

neighbour material points. The latter precludes uncontrolled localisation of the hardening variable since they would

result in an infinite free energy: The larger the parameter c, the smoother the spatial distribution of the hardening

variable.

A framework for constitutive laws with gradient of internal variables has been proposed in Lorentz.21 It suggests that

the appropriate scale for handling such constitutive relations is the scale of the structure. Therefore, the global Helm-

holtz free energy is introduced, as in Nguyen et al22:

F u; κ;Epð Þ ¼ ∫
Ω0

Φnl E uð Þ;Ep; κ;∇
¯
κ

� �
dΩ0: (41)

The global dissipation retains its usual definition:

D ¼ ∫
Ω0

T:Ė dΩ0−
_F: (42)

After differentiation and application of the Green formula, it reads

D ¼ ∫
Ω0

T−
∂Φnl

∂E

� �
:Ė−

∂Φnl

∂Ep : Ė
p þ −

∂Φnl

∂κ
þ div

∂Φnl

∂∇κ

� �� �
_κ

� 	
dΩ0

þ ∫
∂Ω0

−

∂Φnl

∂∇
¯
κ
⋅n

0
@

1
A _κ dS:

(43)

Again, for reversible evolution, the dissipation should be zero. This implies that the stress‐strain relation retains its

former hyperelastic definition, thanks to the fact that no derivative of the strain tensor is introduced into the constitutive

law, and according to (9), (12), and (40):
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T ¼ ∂Φnl

∂E
¼ ∂Φe

∂Ee ¼ E: E−Epð Þ: (44)

Then, the dissipation can be rewritten as

D ¼ ∫
Ω0

T : Ė
p þ −

∂Φp

∂κ
þ div c∇

¯
κ

� �� �
_κ

� 	
dΩ0 þ ∫

∂Ω0

− c∇
¯
κ ⋅n

� �
_κ dS: (45)

In particular, one can notice that the driving force associated with the plastic strain tensor is still the stress tensor

while the driving force associated with the hardening variable involves now a nonlocal term in addition to its former

expression (10):

Anl ¼ −

∂Φp

∂κ
þ div c∇

¯
κ

� �
¼ σ0−σ κð Þ þ div c∇

¯
κ

� �
: (46)

It is chosen to preserve the evolution equations as in the local GTN model (11) but with the new expressions of the

driving forces:

_Ep ¼ λ

J

∂N

∂T
; _κ ¼ λ; (47)

λ≥0 ;
N Tð Þ
J

− σ κð Þ þ div c∇
¯
κ

� �
≤0 ; λ

N Tð Þ
J

− σ κð Þ þ div c∇
¯
κ

� �� 	
¼ 0: (48)

One can notice that for a homogeneous parameter c, a Laplacian term emerges in the yield condition, as intro-

duced in gradient plasticity.23,24 Besides, the evolution of the porosity is modelled as in the local GTN law presented

above.

Moreover, it is assumed that no dissipation stems from the boundary (this is a constitutive assumption corre-

sponding to no surface energy), an assumption already stated for brittle materials, see Sicsic et al.25 In that case,

the boundary term in the dissipation (45) should be equal to zero whatever the admissible evolution of the hard-

ening variable, which results in the following boundary condition (assuming that the initial hardening variable κ

is equal to zero everywhere):

c ∇
¯
κ⋅n ¼ 0 on ∂Ω0: (49)

This defines finally the proposed nonlocal GTN model. The constitutive equations are gathered in box 1, where the

former local model can be retrieved by setting c=0. A relaxed version of this model, which is more suitable for FE imple-

mentation, is detailed in the next section.

Box 1 – Nonlocal GTN constitutive relation (original and relaxed versions)

Stress‐strain relation

T ¼ E: E−Epð Þ
Implicit definition of the GTN equivalent stress T*

G T;T�; f
�ð Þ ¼ Teq

T�

� �2
þ 2q1 f

� cosh
q2
2
tr

T

T�

� �� �
−1− q1f

�ð Þ2 ¼ 0

Definition of the relaxed yield surface

F T;Anlð Þ ¼ T�
J
−σ κð Þ þ div c ∇κð Þ (original version, Section 2.3)

F T;Arlxð Þ ¼ T�
J
−σ κð Þ þ lþ r a−κð Þ (relaxed version, Section 3.1)
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Flow rules

_Ep ¼ λ

J

∂T�
∂T

; _κ ¼ λ

Consistency condition

λ≥ 0 ; F≤ 0 ; λF=0

Porosity evolution

f ¼ f n κð Þ þ f g ; _f g ¼ 1− fð Þ tr _Ep

Coalescence

f � ¼
f if f≤f c

f c þ δ f−f cð Þ if f>f c

�
where δ ¼ 1=q1−f c

f f−f c

3 | GOVERNING EQUATIONS AND NUMERICAL IMPLEMENTATION

3.1 | Treatment of nonlocality

In the previous section, a nonlocal formulation has been proposed for the GTN model. In practice, the nonlocality stems

from the Laplacian term that has been introduced into the consistency equation (48). On a numerical ground, the con-

sequences are immediate. Indeed, in the case of a local constitutive relation, the treatment of the constitutive law is gen-

erally pointwise, which means that it can be done independently from one integration point to another: the output

variables (stress and internal variables) are sampled at the integration points. The spatial coupling (the strain‐displace-

ment relation and the equilibrium equation) is dealt on a global level, where the displacement is a nodal variable. Such a

split is a priori precluded here since the nonlocality involves the constitutive law itself: the nonlinearity resulting from

the constitutive law (in particular, because of the plasticity threshold) is mingled with the spatial nonlocality. Fortin and

Glowinski26 proposed a numerical method they named decomposition‐coordination to deal with such a coupling in the

case of optimisation problems. The idea is based on a relaxation, which consists in duplicating the variable of interest:

One instance of the variable is dedicated to nonlocality and the other one to nonlinearity. A Lagrangian multiplier is

introduced to enforce the equality between both instances. In addition a penalty term may also be introduced so as to

enforce the former relation and to provide additional coercivity.

Consider now the application of this method to the nonlocal GTN model. The starting point is the global Helmholtz

free energy where the local and nonlocal parts are highlighted:

F u; κ;Epð Þ ¼ Floc u; κ;Epð Þ þ Fgdt κð Þ

Floc u; κ;Epð Þ ¼ ∫
Ω0

Φe E uð Þ−Epð Þ þ Φp κð Þ dΩ0 ; Fgdt κð Þ ¼ ∫
Ω0

c

2
∇
¯
κ⋅∇
¯
κ dΩ0:

(50)

The hardening variable κ is duplicated: the local instance is still denoted κ while the nonlocal one is denoted a. To

enforce the equality a= κ, a Lagrangian term and a penalty term are introduced into the energy, where the Lagrange

multiplier is denoted l and the penalty coefficient is r>0. The relaxed Helmholtz free energy, which is denoted L (it

is a Lagrangian), is the following:

L u; a; l; κ;Epð Þ ¼ Floc E uð Þ;Ep; κð Þ þFgdt að Þ þFrlx a; l; κð Þ

with Frlx a; l; κð Þ ¼ ∫
Ω0

l a−κð Þ dΩ0 þ ∫
Ω0

r

2
a−κð Þ2dΩ0:

(51)

A close relation with micromorphic models27 can be noticed, except for the Lagrangian term. Indeed, κ plays the role

of the micromorphic counterpart of the variable a. But here, an equality between both variables is (weakly) enforced. The

evolution of the new variables a and l results from the fact that they do not contribute to the dissipation. The latter

retains its usual definition:
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D ¼ ∫
Ω0

T:Ė dΩ0−
_L ¼ ∫

Ω0

T−
∂Φe

∂Ee

� �
:Ė dΩ0

þ ∫
Ω0

−c∇a∇ _a− lþ r a−κð Þð Þ _a− a−κð Þ_l
 �

dΩ0

þ ∫
Ω0

∂Φe

∂Ee:Ė
p þ lþ r a−κð Þ−∂Φp

∂κ
Þ _κ

� 	
dΩ0:

�

(52)

In the case of a reversible evolution, for which _Ep ¼ 0 and _κ ¼ 0, the dissipation rate D remains equal to zero. This

provides the stress‐strain relation (44) as previously and the additional equations that govern the evolution of a and l:

∀ _a
∂L

∂a
⋅ _a ¼ −∫

Ω0

c∇a∇ _aþ lþ r a−κð Þð Þ _a½ � dΩ0 ¼ 0; (53)

∀ _l
∂L

∂l
⋅_l ¼ −∫

Ω0

a−κð Þ_l dΩ0 ¼ 0: (54)

The dissipation rate hence reduces to

D ¼ ∫
Ω0

T:Ė
p þ lþ r a−κð Þ−∂Φp

∂κ

� �
_κ

� 	
dΩ0: (55)

The driving force associated with the plastic strain is still the stress tensor. Besides, as expected with the decomposi-

tion‐coordination method, the driving force associated with the hardening variable κ now involves the new variables but

no more a nonlocal term, in contrast to (46):

Arlx ¼ −

∂Φp

∂κ
þ lþ r a−κð Þ: (56)

Finally, the evolution of Ep and κ are governed by the evolution equations of the local GTN model (11) with the new

expression of the driving force (56).

It can be shown that before spatial discretisation, the relaxed problem is equivalent to the original one. Indeed, sat-

isfying (54) implies that a= κ as expected. Moreover, integrating (53) by parts results in

∀ _a − ∫
∂Ω0

c∇a⋅nð Þ _a ds þ ∫
Ω0

div c∇að Þ− lþ r a−κð Þð Þ½ � _a dΩ0 ¼ 0: (57)

This variational formulation corresponds to the following strong form and boundary condition (where a= κ):

div c∇að Þ ¼ l ; ∇a⋅n ¼ 0 on ∂Ω: (58)

Inserting (58) into (56) shows that the relaxed driving force Arlx coincides with the original driving force Anl defined

in (46). This holds also true for the stress‐strain relation, the definition of the driving force associated with the plastic

strain (the stress tensor), and the boundary condition on the hardening variable. The relaxed problem is indeed equiv-

alent to the original nonlocal one.

Even though both problems are equivalent on a continuum level, this is no more the case after spatial discretisation;

here lies the interest of the decomposition‐coordination method. Indeed, on one hand, the displacement u, the nonlocal

instance of the hardening variable a, and the Lagrange multiplier l are discretised on the basis of Lagrange shape func-

tions. They correspond to the nodal unknowns of the discretised problem. On the other hand, the strain E, the stress T,

the plastic strain Ep, the local instance of the hardening variable κ, and the porosity are sampled at the integration points.

The stress and the internal variables Ep, κ, and f are thus obtained by integration of the constitutive equations at

the integration point level. Sections 3.2 and 3.3 detail this integration step while Sections 3.4 and 3.5 are focused on

the spatial discretisation by FEs.
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3.2 | Constitutive integration: solution algorithm at the integration point level

The relaxed problem detailed above gives rise to a set of constitutive equations, which differ from the original nonlocal

ones only in the definition of the yield surface, see box 1. The equations hold for each integration point; the history of the

strain, the nonlocal instance of the hardening variable, and the Lagrange multiplier are given at this level. To solve this

set of ordinary differential equations, a time‐discretisation based on a staggered scheme is applied: the plastic strain, the

local instance of the hardening variable, and the stress are computed for a given porosity value by means of an implicit

Euler scheme. Then, the porosity is updated on the basis of the computed plastic increment through a first‐order implicit

scheme again.

More precisely, let us denote, respectively, q− (or q
−
), q, and Δq the value of a quantity at the beginning of the current

time step, at the end of the time step, and its increment during the time step. The integration of the constitutive relations

can be stated as follows. The input data consist of E, a, l,Ep
−

, κ−, and f
−
. The discretisation of the equations related to the

plastic evolution by the implicit Euler scheme leads to the following algebraic system, the unknown of which are ΔEp

and Δκ:

T ¼ E: E−Ep
−

−ΔEp
� �

; (59)

G T;T�; f
−ð Þ ¼ Teq

T�

� �2

þ 2q1 f
�
−

cosh
3q2TH

2T�

� �
−1− q1 f

�
−

� �2 ¼ 0; (60)

ΔEp ¼ λ

J

∂T�
∂T

; Δκ ¼ λ; (61)

λ≥0 ; bF≤0 ; λbF ¼ 0; (62)

with bF T�; κ
− þ Δκð Þ ≡ F T;Arlx κð Þð Þ ¼ T�

J
−σ κ− þ Δκð Þ þ r a−κð Þ þ l: (63)

Then, the implicit discretisation of the porosity evolution equation provides

Δf g ¼ 1−f −−Δfð Þ trΔEp

Δf ¼ Δf g þ Δf n

(
: (64)

The latter system is linear with respect to the porosity and does not raise any difficulty:

f ¼ f − þ trΔEp þ f n κ− þ Δκð Þ−f n κ−ð Þ
1þ trΔEp : (65)

On the contrary, a robust algorithm is required to solve the plastic evolution (59‐63). In this section, we restrict tem-

porarily our attention to the case T*≠ 0 (hence, T≠ 0) and q1 f
�
−

<1. First, the elastic trial stress tensor Te is classically

introduced:

Te ¼ E: E−Ep
−

� �
⇒ T ¼ Te

−E:ΔEp ¼Te
−3KΔE

p
H I−2μΔE

p
D: (66)

If the elastic trial lies in the elasticity domain, ie, bF Te
�; κ

−

� �
≤0, then the solution corresponds to the elastic branch

characterised by λ=0. Consider now the case bF Te
�; κ

−

� �
>0. The consistency condition (62) and the definition of the

threshold function (63) allow expressing the GTN equivalent stress T* as a function of the hardening variable increment:

bT� Δκð Þ≡T� ¼ J σ κ− þ Δκð Þ−r a−κð Þ−l½ �: (67)
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Moreover, the differentiation of (60) provides the plastic flow direction:

∂T�
∂T

¼ −

∂G

∂T�

� �
−1 ∂G

∂T

� �
¼ Θ

TH

T�
;
Teq

T�

� �
3

2

TD

T�
þ Λ

TH

T�

� �
I

� 	
; (68)

where the following notations are introduced to simplify the expressions:

Λ xð Þ ¼ 1

2
q1q2 f

�
−

sinh
3q2
2

x

� �
; (69)

Θ x; yð Þ ¼ y2 þ 3x Λ xð Þ
 �

−1
: (70)

This gives the expression of the mean and deviatoric parts of the plastic strain increment:

ΔE
p
H ¼ λ

J
Θ

TH

T�
;
Teq

T�

� �
Λ

TH

T�

� �
; ΔE

p
D ¼ 3

2

λ

J
Θ

TH

T�
;
Teq

T�

� �
TD

T�
: (71)

Substituting the former expressions into the stress‐strain relation (59) results in

Te
H−TH

3K
¼ λ

J
Θ

TH

T�
;
Teq

T�

� �
Λ

TH

T�

� �
; TD ¼ 1þ 3μ

λ

J
Θ

TH

T�
;
Teq

T�

� �
1

T�

� 	
−1

Te
D: (72)

The second equation provides the direction of the stress deviator. Besides, Θ may be eliminated so that Teq can be

expressed as a function of TH and Δκ:

Teq ¼ Te
eq 1þ μ

K

Te
H−TH

bT� Δκð Þ Λ TH

bT� Δκð Þ

� �

2
664

3
775

−1

≡ bTeq TH ;Δκð Þ: (73)

After gathering the equations 67, 71, 72, and 73, the initial algebraic system reduces to

bG TH ;Δκð Þ ¼ 0

bλ TH ;Δκð Þ−Δκ ¼ 0

(
; (74)

with

bG TH ;Δκð Þ ¼
bTeq TH ;Δκð Þ
bT� Δκð Þ

!2

þ 2q1 f
�
−

cosh
3q2
2

TH

bT� Δκð Þ

!
−1− q1 f

�
−

� �2
; (75)

bλ TH ;Δκð Þ ¼ J
Te
H−TH

3K Λ
TH

T�

� �
bTeq TH ;Δκð Þ
bT� Δκð Þ

!2

þ 3
TH

bT� Δκð Þ
Λ

TH

bT� Δκð Þ

!" #
: (76)

The nonlinear system (74) is solved by means of an iterative nested algorithm. The inner loop provides TH for a given

iterate Δκ by solving the equation (74)1: The result of this inner iterative process is denoted bTH Δκð Þ. The outer loop con-

sists in finding Δκ as the root of the equation (74)2. The robustness and the efficiency of the algorithm relies on deriving

admissibility intervals for both unknowns. Regarding TH, the positivity of λ required by (62) limits the admissible range

when considering (76). Indeed, Λ is an odd function and xΛ(x)≥ 0 for any value x so that TH andTe
H−TH should have the

same sign. Therefore,
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if Te
H≥0 0≤TH≤T

e
H

if Te
H<0 Te

H≤TH≤0:

�
(77)

We can now show that (74)1 admits a unique solution bTH Δκð Þ. Consider Δκ so that bT� Δκð Þ>0 and bT� Δκð Þ≤Te
�. The

former inequality is consistent with the assumption of the present section, that is, T*>0. The latter inequality is a general

property of the return‐mapping algorithm; it will be demonstrated in the next section with a focus on the bounds for Δκ.

For any Δκ that fulfils both inequalities, it can be noticed that

bG 0;Δκð Þ ¼ − 1−q1f
�
−

� �2
<0; (78)

bG Te
H;Δκ

� �
¼ G Te; bT� Δκð Þ; f �

−

� �
≥G Te;Te

�; f
�
−

� �
¼ 0: (79)

In addition, bG TH;Δκð Þ is a strictly monotonic function with respect to TH in the interval (77), increasing if Te
H≥0 and

decreasing if Te
H≤0. Therefore, the equation (74)1 admits a unique solution bTH Δκð Þ in the interval (77).

This concludes the presentation of the algorithm used to solve the nonlinear algebraic system resulting from the

integration of the constitutive relations in regular cases (T*≠ 0). The existence and uniqueness of the solution Δκ to

(74)2 is demonstrated in the next section, where the case T*=0 is also considered.

3.3 | Singular points: generalised flow rule

The solution algorithm described in the previous section relies on the assumption that T*≠ 0, an assumption explic-

itly used in the derivation of the flow rule (61). This assumption holds generally with local models. But here, the

elastic domain may reduce to a single point because of the term l+ r a in the yield function (63), or equivalently the

term div(c∇κ) in (48), the sign of which is not prescribed nor controlled. In that case, the flow rule can no more be

expressed as in (61). The proper extension of the associative flow rule (11) to singular cases is provided by the

principle of maximum dissipation, which encompasses (11) as a special case. It states that the driving forces

(T,A) are admissible, ie, F(T,A)≤ 0, and that the evolution _Ep; _κ
� �

fulfils

∀ T′;A′
� �

such as F T′;A′
� �

≤0 : T−T′
� �

:Ė
p þ A−A′

� �
_κ≥0: (80)

As (T,A) should be admissible and T*≥ 0, a necessary condition is A≤σ0. In the case A<σ0, the flow rule (11)

holds, and the results of the previous section are valid. Consider now the singular case corresponding to A=σ0. The

admissibility of (T,A) implies that T*=0; hence, T=0 (as long as q1 f
*<1). In that case, (80) reads

∀ T′;A′
� �

such as
N T′
� �

J
þ A′

−σ0≤0 : T′:Ė
p þ A′ _κ≤σ0 _κ: (81)

It is shown in Zhang28 that this inequality is fulfilled if and only if

πN
_Ep
� �

≡ sup
σ ;N σð Þ≤1

σ:Ė
p� �
≤
_κ

J
: (82)

In the case of the GTN equivalent stress function N introduced in (16), the support function πN can be obtained after

some calculations: [Correction added on 13 February 2018, after first online publication: the square root in equation (83)

has been corrected]

πN
_Ep
� �

¼ 2

q2
arc cosh 1þ C�ð Þ _E

p
H

�� �� þ 2

3
1−q1 f

�ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γC�p

_Ep
eq

C� ¼ −χ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 2

γ
χ−1ð Þ

r
; χ ¼ 1þ 1

q1 f
�

3 _E
p
H

�� ��
q2

_Ep
eq

 !2

; γ ¼ 2q1 f
�

1−q1 f
�ð Þ2

:

(83)
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In particular, one can notice that πN≥ 0, πN is positive homogeneous of degree 1, and πN
_Ep
� �

¼ 0 ⇔ _Ep ¼ 0.

Finally, the discrete equations corresponding to the singular plastic flow regime are the following:

T� ¼ 0 ⇒ T ¼ 0 ⇒
ΔE

p
H ¼ Te

H=3K

ΔE
p
D ¼ Te

D=2μ

(
; (84)

A ¼ σ0 ⇒ σ κ− þ Δκð Þ ¼ r a−κð Þ þ l; (85)

πN ΔEpð Þ≤Δκ
J
: (86)

Besides, the GTN model as introduced in box 1 for a given porosity belongs to the class of generalised standard

materials. The algebraic system of equations that results from the discretisation with an implicit Euler scheme can

be interpreted as the minimisation of a potential, see Mialon.29 This allows asserting the existence and the unique-

ness of the incremental solution under conditions that are indeed fulfilled with the GTN model: convexity of the

yield function F with respect to (T,A), strict convexity and coercivity of the Helmholtz free energy with respect

to (Ep, κ). Thus, despite the 3 possible regimes for the constitutive law (zero plastic flow, regular plastic flow,

and singular plastic flow), there exists a unique solution. Therefore, we propose to follow the following scheme

to integrate the constitutive relation:

1. Compute the solution under the assumption of singular plastic flow and check whether the condition (86) is fulfilled.

2. If (86) is not fulfilled, compute the solution under the assumption of zero plastic flow and check whether
bF Te

�; κ
−

� �
≤0.

3. If (86) is not fulfilled and bF Te
�; κ

−

� �
>0, then the solution corresponds to a regular plastic flow. It can be obtained as

presented in the previous section.

In the last case (regular plastic flow), it is interesting to express the interval of admissible values Δκ. First, we can

show that necessarily T�≤T
e
�, a general property of return‐mapping algorithm. Indeed, thanks to the convexity of the

function N defined in (16), the following inequality holds true:

Te
� ¼ N Teð Þ≥N Tð Þ þ ∂N

∂T
Tð Þ: Te

−Tð Þ ¼ T� þ
λ

J

∂T�
∂T

:E:
∂T�
∂T

� �
: (87)

Thanks to the positive definiteness of E, this implies that T�≤T
e
�. According to (67), T� ¼ bT� Δκð Þ and bT� is a strictly

increasing function. Hence, the upper bound on T* leads to an upper bound on Δκ, with bT�
−1
the inverse function of bT�

(which is always defined thanks to r>0):

Δκ≤ΔκM ≡ bT�
−1

Te
�

� �
: (88)

A lower bound Δκm is provided by 2 conditions. First, Δκ>0 because of (61), (62), and the fact that the solution does

not correspond to a zero plastic flow (hence, Δκ≠ 0). In addition, the regular plastic flow regime is characterised by

A<σ0; hence, bT� Δ; κð Þ>0. As the function bT� is strictly increasing, Δκm is

if bT� 0ð Þ≥0 Δκm ¼ 0

if bT� 0ð Þ<0 Δκm is the positiveð Þ root of bT�:

(
(89)

Therefore, for any Δκ such as Δκm<Δκ≤ΔκM, 0<bT� Δκð Þ≤Te
�: This is the condition explicitly used in the previous sec-

tion. As expected, a solution exists in the interval ]Δκm ΔκM] since the values of the function to solve bλ Δκð Þ−Δκ at the

bounds of the interval are of opposite signs. Indeed, for the upper bound, bT� ΔκMð Þ ¼ Te
� so that bTH ΔκMð Þ ¼ Te

H because

the inequality in (79) becomes an equality; hence, bλ ΔκMð Þ ¼ 0 and
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bλ ΔκMð Þ−ΔκM ¼ −ΔκM<0: (90)

Regarding the lower bound, both cases should be analysed. If Δκm=0, then

bλ Δκmð Þ−Δκm ¼ bλ Δκmð Þ≥0; (91)

since bTH Δκmð Þ belongs to the interval (77), which has been derived so as to satisfy bλ≥0. If Δκm≠ 0, then bT� Δκmð Þ ¼ 0 by

definition (89). Straightforward (but cumbersome) calculations show that in this case,

bλ Δκmð Þ ¼ J πN E
−1:TeÞ:

�
(92)

Because of the fact that the solution does not correspond to a singular plastic flow, (86) is not fulfilled so that

πN E
−1:TeÞ>Δκm

J
;

�
(93)

see also (84) and (85). The former inequality allows the conclusion:

bλ Δκmð Þ−Δκm ¼ J πN E
−1:TeÞ−Δκm>0:

�
(94)

In both cases of lower bound Δκm, bλ Δκmð Þ−Δκm≥0.
Finally, on the basis of a staggered scheme for the porosity and the plastic increment, a solution algorithm has

been proposed for the nonlocal (relaxed) GTN constitutive equations. It allows the computation of the unique solution

in a robust way, since it relies on the solution of scalar equations with controlled bounds and unique solution. Note

that similar solution approaches can be found in the work of Enakoutsa and Leblond,7 where the authors use

different iteration variables and are also able to prove the solution uniqueness. At last, for the sake of completeness,

the corresponding consistent tangent matrices are expressed in the Appendices A3 (regular plastic flow regime) and

A4 (singular plastic flow regime).

3.4 | Finite element formulation

In Sections 3.2 and 3.3, the integration of the constitutive relation has been detailed in the case of the relaxed formulation

described in Section 3.1. It is based on the assumption that the Lagrange multiplier l and the nonlocal instance of the

hardening variable a are given at this stage, in addition to the strain E(u). Let us denote bT E; a; lð Þ andbκ E; a; lð Þ the result
of the constitutive integration. Then the principal unknown (u,a, l) are governed by the 3 variational equations (5), (53),

and (54), that is,

∀ δu δuL ¼ ∫
Ω0

bT E uð Þ; a; lð Þ:δE dΩ0 ¼δWext

∀ δa δaL ¼ ∫
Ω0

c∇a∇δaþ lþ r að Þδa−rbκ E uð Þ; a; lð Þδa½ � dΩ0 ¼ 0

∀ δl δlL ¼ ∫
Ω0

a−bκ E uð Þ; a; lð Þð Þδl dΩ0 ¼ 0:

8
>>>>><
>>>>>:

(95)

A spatial discretisation by FEs is introduced for these unknowns where Nu∈Rn×dim, Na∈Rn, and Nl∈Rn are arrays of

Lagrange polynomial basis functions, Bu∈Rdim×Rdim×Rn×dim and Ba∈Rdim×Rn×dim are the spatial derivatives of Nu and

Na, U∈Rn×dim, A∈Rn, andL∈Rn are the arrays of nodal unknowns, n the number of nodes, and dim the space dimension:
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u xð Þ ¼ Nu xð Þ⋅U ; a xð Þ ¼ Na xð Þ⋅A ; l xð Þ ¼ Nl xð Þ⋅L

∇u xð Þ ¼ B¼
u xð Þ⋅U ; ∇a xð Þ ¼ B¼

a xð Þ⋅A:
(96)

In this work, Nu is piecewise quadratic while Na andNl are piecewise linear. As a result, the FE associated with the 3

variables U;A;Lð Þ is a P2P1P1‐type element, where P2 stands for quadratic interpolation and P1 stands for linear inter-

polation, see Figure 1. After spatial discretisation, the variational equations (96) result in the following nonlinear alge-

braic system, where R corresponds to residuals and F
ext

denotes the nodal vector of the external load (δWext ¼ F
ext
⋅δU):

Ru ≡∑
g

wg Tg:Pg: FT
g ⋅B¼

u

g

� �
−F

ext
¼ 0

Ra ≡∑
g

wg r ag−κg
� �

þ lg
� �

Na
g
þ wg c∇ag⋅B¼

a

g

� 	
¼ 0

Rl ≡∑
g

wg ag−κg
� �

Nl
g
¼ 0:

8
>>>>>>>><
>>>>>>>>:

(97)

The integrals have been approximated in each element by a Gaussian quadrature rule where the index g refers to a

given integration point and wg denotes its weight. The unknowns at the Gauss points are obtained by interpolation:

Fg ¼ Iþ B¼
u

g
⋅U ; Eg ¼

1

2
ln FT

g Fg

� �
; ag ¼ Na

g
⋅A ; ∇ag ¼ B¼

a

g
⋅A ; lg ¼ Nl

g
⋅L: (98)

The stress and the local instance of the hardening variable are obtained by integration of the constitutive law at each

Gauss point:

Tg ¼ bT Eg; ag; lg
� �

; κg ¼ bκ Eg; ag; lg
� �

: (99)

The system (97) is solved classically by an iterative Newton‐Raphson method with respect to the nodal unknowns

U;A;Lð Þ. The expression of the elementary stiffness matrices can be found in Appendix.

3.5 | Locking‐free element

Volumetric locking is another issue often observed in ductile damage simulation. It arises from plastic quasi‐

incompressibility in the early stage of damage and leads to strong oscillations in the stress field and interferes with con-

vergence. This is because traditional FEs are not able to account for the incompressibility kinematic relation while pre-

serving enough degrees of freedom at the same time.26 Some enhanced elements have been developed over the last years

and perform well in quasi‐incompressible situations, at least in the case of infinitesimal strain. Al‐Akhrass et al16 pro-

posed a Hu‐Washizu type mixed FE30,31 where the volume variation θ and the pressure P are introduced as 2 additional

variables. With this relaxed kinematic formulation, deformation and the strain tensors are defined on the basis of a

deviatoric/volumetric split as follows:

F u; θð Þ≡ expθ

J

� �1
3

F ; eE u; θð Þ≡ 1

2
ln eFT⋅eF
� �

¼ Eþ 1

3
θ−trEð ÞI; (100)

and the pressure variable P plays the role of a Lagrangemultiplier to weakly ensure the relation θ=trE. TheHelmholtz free

energy is relaxed again by incorporating the new variables (θ,P) and the control termFinco into the former expression (51):

FIGURE 1 Triangle element for the nonlocal formulation
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L u; θ;P; a; l; κ;Epð Þ ¼ Floc
eE u; θð Þ;Ep; κ
� �

þFinco u; θ;Pð Þ þFgdt að Þ þ Frlx a; l; κð Þ
with Finco u; θ;Pð Þ ¼ ∫

Ω0

P trE−θð Þ dΩ0:
(101)

Now, the saddle‐point (u, θ,P,a, l) of this Lagrangian is characterised by the following variational equations, where

the integration of the constitutive relation has been introduced:

∀ δu δuL ¼ ∫
Ω0

bTD
eE u; θð Þ; a; l
� �

þ P I
h i

:δE dΩ0 ¼δWext

∀ δθ δθL ¼ ∫
Ω0

bTH
eE u; θð Þ; a; l
� �

−P
h i

δθ dΩ0 ¼ 0

∀ δP δPL ¼ ∫
Ω0

trE−θ½ � δP dΩ0 ¼ 0

∀ δa δaL ¼ ∫
Ω0

c∇a∇δaþ lþ r að Þδa−rbκ eE u; θð Þ; a; l
� �

δa
h i

dΩ0 ¼ 0

∀ δl δlL ¼ ∫
Ω0

a−bκ eE u; θð Þ; a; l
� �� �

δl dΩ0 ¼ 0

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(102)

Compared to (95), it can be noticed that the constitutive relation now depends on the relaxed strain tensor eE instead

of the original one E. Nevertheless, the problem (102) is equivalent to (95) since (102)3 results in θ=trE while (102)2
leads to P=TH. The interest of the relaxation appears when discretising the variational formulation by FEs.

The spatial discretisation for the variables (u,a, l) is the same as previously in (96). The new variables (θ,P) are also

discretised on the basis of Lagrange shape functions Nθ∈Rn and NP∈Rn, resulting in the arrays of nodal unknowns

Θ∈Rn and P∈Rn:

θ xð Þ ¼ Nθ xð Þ⋅Θ ; P xð Þ ¼ NP xð Þ⋅P: (103)

In this work, Nθ and NP are piecewise linear interpolation function. The FE associated with the 5 variables

U;Θ; P;A;Lð Þ is a P2P1P1P1P1‐type element, see Figure 2. The formulation for incompressibility treatment is directly

based on the Taylor‐Hood element, which is known to fulfil the LBB condition.32 A linear interpolation for a is chosen

to be “consistent” with the linear strain field.

After spatial discretisation, the variational equations 102 result in the following nonlinear algebraic system:

Ru ≡∑
g

wg TDg þ Pg I
� �

:Pg: FT
g ⋅B¼

u

g

� �
−F

ext
¼ 0

Rθ ≡∑
g

wg THg−Pg

� �
Nθ

g
¼ 0

RP ≡∑
g

wg trEg−θg
� �

Nθ
g
¼ 0

Ra ≡∑
g

wg r ag−κg
� �

þ lg
� �

Na
g
þ wg c∇ag⋅B¼

a

g

� 	
¼ 0

Rl ≡∑
g

wg ag−κg
� �

Nl
g
¼ 0:

8
>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(104)

FIGURE 2 Five‐field locking‐free element in the nonlocal model
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The stress and the local instance of the hardening variable are obtained by integration of the constitutive law at each

Gauss point:

eTg ¼ bT eEg; ag; lg

� �
; eκg ¼ bκ eEg; ag; lg

� �
; (105)

where the tilde is introduced as a reminder to the fact that the constitutive law now depends on the relaxed strain eE. The
system (104) is solved classically by an iterative Newton‐Raphson method with respect to the nodal unknowns

U;Θ; P;A;Lð Þ. The expression of the elementary stiffness matrices can be found in Appendix. It can be noticed

that the volume variation θ could be eliminated in the case of J2 plasticity since it is then proportional to the pressure

P (the plasticity nonlinearity only involves the deviatoric terms). This is no more the case with the GTN constitutive

relation where the hydrostatic and deviatoric terms are coupled. Therefore, the volume variation θ keeps its status of

independent variable.

Even though the efficiency of such mixed FEs with respect to the volumetric locking has been shown in the literature

for infinitesimal strain problems, see again Taylor,17 for instance, it has been observed in Lorentz12 and Auricchio et al33

that spurious (ie, purely numerical) plastic localisation bands may occur in finite strain simulations with U;Pð Þ an

U;Θ; Pð Þmixed FEs. Here, thanks to the regularisation brought by the introduction of the nonlocal term in ∇a, such spu-

rious localisation seems to be precluded, as checked in the numerous computations performed in Zhang.28 The 5‐field

mixed FE introduced here hence appears as an adequate choice to deal with volumetric locking and damage localisation

that appear in ductile material simulations. The physical relevance of the present formulation in association with the

GTN constitutive law is studied in the next section through several comparisons with experimental results.

4 | APPLICATION AND SIMULATION

In the frame of the European project STYLE (structural integrity for lifetime management), fracture tests were

performed on several specimens. This includes various notched axisymmetric tensile bars (NT), compact tension

(CT), and single edge notched tensile (SENT) precracked specimens. The geometries of the specimens are presented

in Appendix together with the corresponding FE meshes. In this section, attention is first focused on the role of model

parameters on fracture prediction. Then the parameters are identified according to fracture tests on NT4 and CT20

specimens. Finally, simulations using the identified parameters are confronted to the experimental observations for

the entire set of specimens.

4.1 | Parametric study

In this part, a parametric study using a NT4 specimen (see Appendix Figure A1 for the geometry and meshes) is per-

formed to show the impact of some important parameters of the model on fracture predictions. This kind of study will

be helpful for parameter identification when it comes to compare simulation with experiments. In the GTN model, 3 sets

of parameters can be distinguished (see Table 1). The first one deals with the description of plasticity, the second with

damage, and the last one with the nonlocal model formulation.

In this study, an exponential function is adopted to describe the hardening law:

σ κð Þ ¼ σ0 þ A1 1−e−B1κ
� �

þ A2 1−e−B2κ
� �

: (106)

Focus is paid on the nonlocal and damage parameters. The initial porosity can be determined from material micro-

graphs or chemical composition. In the following simulations, its value is fixed to f0=0.0002, which is estimated accord-

ing to the chemical composition of the studied steel. Then q1 is fixed at its usual value 1.5, same as what is used in Besson

et al.20 As mentioned before,
r

2
a−κð Þ2 is a penalty term in the nonlocal Lagrangian to force a to be close to κ. Its role is

hence purely numerical to preclude micro instabilities. The penalty parameter r should not be too small to control the

difference between the local instance and nonlocal instance of hardening variable. On the other hand, it cannot be

too large either because that may considerably slacken convergence rate during the computation. Usually, one takes a

value between [10σ0,E].
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The role of the other parameters will be studied here. In the absence of contrary indications, the parameters take the

default values as follows:

E ¼ 190000MPa; ν ¼ 0:3; σ0 ¼ 488MPa

R κð Þ ¼ 488þ 57× 1−e−8613κð Þ þ 239× 1−e−10κð Þ
f 0 ¼ 2×10−4; f c ¼ 5×10−2; f N ¼ 0

q1 ¼ 1:5; q2 ¼ 1; δ ¼ 1

c ¼ 0N; r ¼ 5000MPa

(107)

In the following, the normalised force F/S0(MPa) vs diameter reduction ΔR/R0 curves will be examined for the NT4

geometry type. These curves exhibit a sharp load drop, which corresponds to crack initiation at the centre of the speci-

men and subsequent crack propagation.

Simulations show that the “fracture point” (ie, the point where the sharp load drop begins) strongly depends on the

values of q1 and q2. The higher their values, the earlier the fracture takes place, cf Figure 3.

Figure 4 presents impact of δ on simulation results for 2 different coalescence porosities fc=0.05 and fc=0.001,

respectively. It can be observed that at a low fc=0.001, both the fracture point and the “fracture slope,” which corre-

sponds to fracture propagation rate, depend on δ: Larger δ gives earlier fracture point and steeper fracture slope. How-

ever, it appears that for a high value for fc=0.05, the fracture point is no longer sensible to δ while the fracture slope is

still influenced by δ.

Various values of c were also used in the simulation to study its influence on the force‐displacement curve. As is

shown in Figure 5, c has very little impact on the hardening stage but plays a role during crack propagation in the

NT4 specimen. High values of c tend to delay fracture initiation, which eventually almost disappears (see c=25N in

Figure 5). For c=1N, the mesh size (60 μm at damaged zone) is enough to obtained converged results so that the same

is true for c=4N and c=25N.

TABLE 1 Parameters in a complete nonlocal Gurson‐Tvergaard‐Needleman (GTN) model

Plasticity parameters E Young modulus

ν Poisson coefficient

σ0 Yield stress

A1,A2, B1, B2 Hardening parameters

Damage parameters f0 Initial porosity

q1, q2 GTN parameters

fc Coalescence porosity

δ Acceleration coefficient

fN, pN, sN Nucleation parameters

Nonlocal parameters c Nonlocal parameter

r Penalty parameter
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FIGURE 3 Force‐diameter reduction curves for an NT4 specimen with various values for q1 and q2
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The role of nucleation is studied in Figure 6. Fixed values for fN=0.018, sN=0.05, and c=1N are prescribed while

κN=0.2 and κN=0.4 are used. In absence of nucleation, a flat crack path perpendicular to the main loading direction

is obtained. For κN=0.2, a clear cup‐cone fracture profile is obtained. For κN=0.4, the effect is less pronounced. Finally,

for κN=0.8 not shown in Figure 6, cup‐cone fracture disappears as fracture by void growth occurs before nucleation can

play a role. Note that cup‐cone fracture is often observed in the experiments using tensile smooth and notched bars.34

4.2 | Effect of nonlocal regularisation

The aforementioned regularisation method has been proved efficient to regularise a damage field.35,36 In case of ductile

damage, one should also verify whether the localization of damage is also regularised. Simulations have also been per-

formed on the NT4 specimen with various values of the nonlocal parameter c, cf Figure 7.

0 0.1 0.2 0.3 0.4 0.5
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0

200
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800

F
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0
 (

M
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c = 0 N
c =1 N
c = 4 N
c = 25 N

FIGURE 5 Force‐diameter reduction curves for NT4 specimen with various values for c
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FIGURE 4 Force‐diameter reduction curves for an NT4 specimen with various values for. Left, fc=0.05; right, fc= 0.001

0.4=0.2=No nucleation

FIGURE 6 Effect of damage nucleation on crack propagation in an NT4 specimen (values at Gauss points are shown in the undeformed

configuration)
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It can be observed that the nonlocal parameter c is able to control the localization bandwidth for both the hardening

variable κ and the porosity. It is also important to relate the bandwidth lb to the nonlocal parameter. In the following, the

band is defined as the zone where porosity is between 2fc and the fracture porosity ff. Several simulations were performed

varying both c and the yield stress σ0. An empirical relation was deduced from this parametric study, which reads

lb≈
3

2

ffiffiffiffiffi
c

σ0

r
: (108)

Note that other nonlocal models use parameters that directly represent a length (see, eg, Huetter et al37). In that

case, this length does not directly correspond to the bandwidth so that a correlation between these 2 quantities must

also be established. In practice, the bandwidth is related to material characteristics such as the average distance

between cavities. It can be estimated from microscopic observations. Once the characteristic length is known, one

can use (108) to estimate c.

Nonlocal models become mesh independent when the mesh size is small enough. This property is also verified in this

work by simulations with different meshes for a fixed value of c. For c=1N, Figure 8 exhibits convergence for a mesh size

smaller than 120 μm, which is of the same order as 3=2
ffiffiffiffiffiffiffiffiffi
c=σ0

p
≈70 μm. That implies that equation (108) gives an approx-

imation of a mesh size below which simulation results are mesh independent.

To prove the robustness of the proposed nonlocal formulation, 2 additional meshes were generated. The first one con-

sists of an irregular mesh using triangles (see Figure 9). The second one is intentionally oriented and uses quadrangles.

Using the local model, a zigzagging crack is obtained in the first case while an inclined crack following the oriented mesh

is obtained in the second case. Using the regular mesh (see Appendix Figure A1), a flat crack is obtained. These results

Hardening variable field. From left to right: c=1N, c=10N, c=25N, c=100N

Porosity field. From left to right: c=1N, c=10N, c=25N, c=100N

FIGURE 7 Simulation results for different values of c
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FIGURE 8 Simulation on NT4 with different mesh size (μm). Solution converged
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clearly show that the crack path (eg, cup‐cone fracture) can be prescribed for a given material model by using an ad hoc

mesh in the standard local case. On the other hand, the nonlocal model leads to a reliable result, which does not depend

on the FE discretization provided the mesh size is small enough.

4.3 | Identification procedure

In this section, parameter identification will be presented in details. As shown in Table 1, there are more than 10 param-

eters in the proposed nonlocal GTN model. They are identified according to the force‐displacement curves obtained from

tearing tests of NT4 and CT20 specimens (see Appendix for their geometries and meshes). The following procedure using

several fixed parameters is adopted so as to simplify the identification work.

• Simulations are performed with axisymmetric modelling for NT4 specimens and with 3D modelling for CT20

specimens.

• Plasticity parameters are identified using tensile tests on NT specimens NT4. The hardening law is chosen following

(106), and an inverse method is used to match the simulated force‐displacement curve with the experiment. Due to

the low value of the initial porosity, coupling between plasticity and damage may be neglected at this stage.

• Initial porosity f0 can be determined by microscopic observation or chemical analysis. Some authors, such as, Xue

et al38 and Cao et al39 consider f0 as a parameter to be adjusted. Due to lack of microscopic observation in this work,

Franklin formula40 is used to evaluate the volume fraction of MnS inclusions, which easily detach from the matrix so

that they can be considered as initial voids. Therefore, f 0 ¼ 0:54 %S−
0:001

%Mn

� �
is used to estimate the initial porosity.

One obtains 10−4 as an order of magnitude, and it is reasonable to set f0=2×10−4, a value commonly used in some

other works20,41,42 dealing with modern steels.

• Parameter q1 is fixed to 1.5, and the coalescence porosity is chosen as fc=0.05, which is consistent with results of unit

cell calculations by Koplik and Neddleman43 and Shinohara et al.44

• Nucleation term in (31) is not used here. As shown before, it can be used to reproduce cup‐cone fracture. However,

crack initiation in notched bars and crack propagation in precracked specimens is essentially controlled by void

FIGURE 9 Damage field in an NT4

specimen using an irregular and an

intentionally oriented mesh. Left, local.

Right, nonlocal (each dot in the figures

corresponds to an integration point)
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growth and coalescence due to the relative high stress triaxiality. Simulation of notched bars up to cup‐cone forma-

tion is outside the scope of this work.

• The only remaining damage parameters q2 and δ are fitted according to the force‐displacement curve of NT speci-

mens. As mentioned before, q2 determinates the fracture point and δ the fracture slope. Note that the nucleation term

favouring the crack propagation is not activated, and slight difference of the fracture slope is tolerated.

• Finally, the value of c is adjusted based on tests on CT20 specimens in which stable crack propagation takes place. It

was checked that the selected mesh size is small enough so that simulations are mesh independent for the adjusted

value of c.

The optimised parameters are gathered in Table 2. Figure 10 compares experiments and simulations for the tests for

which parameter determination was performed.

4.4 | Model validation on the entire test database

Specimens not used for parameter fit are simulated using values gathered in Table 2. This includes NT2, NT10, CT12.5,

and SENT20 specimens. Geometries and FE meshes are shown in Appendix. Comparison of simulated and experimental

force‐displacement diagram is presented in Figures 11–13.

Simulations show a rather good agreement between experiments and simulations for all specimens in terms of the

force‐displacement curves. In the case of CT and SENT specimens, experimental crack propagation was determined

using the unloading compliance technique. In simulations, the crack is defined as the zone where porosity is larger than

2fc. Figure 14 shows crack propagation in a 3D simulation of CT20 specimen. The ASTM‐1820 method to define crack

propagation (9‐point method) is then used to post‐process FE simulations so as to compute a mean simulated crack prop-

agation. Figures 15 (CT) and 16 (SENT) compare the experimental and simulated crack mouth opening displacement vs

crack propagation curves. A good agreement is obtained in all cases.

TABLE 2 Identification result of nonlocal Gurson‐Tvergaard‐Needleman models

Plastic parameters E 1.9 × 105MPa

ν 0.3

Hardening law R(p) R(p) = 488+ 57 × (1− e−8613p) + 239 × (1− e−10p)(MPa)

Damage parameters f0 2 × 10−4

q1, q2 1.5, 1.07

fc 0.05

δ 3

fN, pN, sN Deactivated term (fN=0)

Nonlocal parameters c c=1N (so that lb≈70 μm)

r r=5000MPa
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FIGURE 10 Comparison between simulation and experiments. Left, NT4 specimens. Right, CT20 specimens. CMOD, crack mouth opening

displacement; GTN, Gurson‐Tvergaard‐Needleman
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FIGURE 12 Comparison between the simulation and experiments: CT12.5. CMOD, crack mouth opening displacement; GTN, Gurson‐
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FIGURE 13 Comparison between the simulation and experiments: SENT20. CMOD, crack mouth opening displacement; GTN, Gurson‐

Tvergaard‐Needleman

FIGURE 14 Crack propagation at various load steps in the CT20 specimen, zoom in the circled area
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5 | SUMMARY

In this work, a locking‐free regularised FE formulation is proposed to deal with ductile fracture at large strains. The ele-

ment is based on a 5‐field formulation. The GTN model was adapted to deal with the regularisation technique. Note that

many other models for ductile fracture (including more advanced extensions of the Gurson model) could also be used

within the proposed FE framework. Algorithm and numerical implementation are detailed. The efficiency of the formu-

lation to deal with mesh dependency is verified. It is demonstrated that the proposed 5‐field formulation is robust

enough in both 2D and 3D simulations. Mesh independence is verified with respect to mesh size and mesh arrangement.

The proposed computational strategy is applied to an existing database on a nuclear piping steel. The GTN model is

calibrated on 2 types of specimens (NT4 and CT20). It is shown that the fitted model is able to reproduce the entire data-

base including force‐displacement and crack extension–crack mouth opening displacement curves.

The convergence rate of the simulations is usually very good before the cracks start to propagate. After the onset of

crack, cracked elements lose their stiffness and may become extremely distorted. This may strongly reduce the conver-

gence rate of the simulations in particular for long cracks. Further studies will concentrate on the transition from dam-

age to crack to develop a robust algorithm for the propagation stage.
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: Tensor contraction

I Second‐order identity tensor

X A scalar

X A vector

X A second‐order tensor

X A high‐order (more than 2) tensor
_X Evolution rate with respect to time

Xnl Nonlocal variable

ΔX Increment of a variable during a time step

X−,X− Variables of the last time step

X+,X+ Variables in the next time step

Xg,Xg Variables at the Gauss point level

XT Transpose of X

tr(X) Trace of tensor X

XH Hydrostatic part of tensor X defined by XH=1/3tr(X)

dev(X) or XD Deviator of tensor X defined by dev(X)=X−XHId

∇ Gradient operator

div Divergence operator

A(κ) Thermodynamic force related to plastic evolution

a Nonlocal hardening variable

C Cauchy‐Green tensor

c Nonlocal model parameter

D Dissipation rate

D Global dissipation rate

D Euler deformation rate

E Logarithmic deformation tensor

Ee Elastic part of the deformation

Ep Plastic part of the deformation

E Elastic stiffness matrix

F Transformation gradient tensor

F Yield function

F Helmholtz free energy of the system

f Porosity, void volume fraction of material

fc Porosity of coalescence

ff Fracture porosity

f* Effective porosity
_f g Porosity variation rate due to cavity growth
_f n Porosity variation rate due to cavity nucleation

fN,pN,sN Void nucleation model parameters

J Jacobian determinant of transformation gradient

L System Lagrangian

l Lagrange multiplier

Pi Internal work

P Pressure

P Fourth‐order tensor defined by P ¼ 2 ∂E= ∂C

q1,q2 Gurson model parameters

r Penalization parameter of nonlocal model

T Work conjugate to the logarithmic deformation tensor

Te Elastic trial stress tensor

T* Effective scalar stress measure associated with T in Gurson model

Wext External work

δ Acceleration factor to describe coalescence
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κ Hardening variable

μ Shear module coefficient
eλ; λ Lagrange multiplier

ν ν= ∂T*/∂T

Ω0 Volume in the initial configuration

Φ Helmholtz free energy

Φe Elastic part of free energy

Φp Plastic part of free energy

Ψ Plastic energy dissipation

ρ0 Density of material in the initial configuration

σ0 Yield stress

σ Cauchy stress tensor

σ* Effective scalar stress measure associated with σ in Gurson model

τ Kirchhoff stress tensor

θ Volume variation
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APPENDIX A

Elementary stiffness matrix for the 3‐field element (u; a; l)

To use the Newton‐Raphson method to resolve the equations (95), a stiffness matrix should be computed. Expression of

the second‐order differential of L is written as

δ2Lu ¼ ∫Ω0
δE:

∂T

∂E
:δEþ δE:

∂T

∂a
δaþ δE:

∂T

∂l
δlþ T:δ2EdΩ0

δ2La ¼ ∫Ω0
δa −r

∂κ

∂E

� �
:δEþ δa r−r

∂κ

∂a

� �
δaþ δa 1−r

∂κ

∂l

� �
δlþ c δ∇a

� �2
dΩ0

δ2Ll ¼ ∫Ω0
δl −

∂κ

∂E

� �
:δEþ δl 1−

∂κ

∂a

� �
δaþ δl −

∂κ

∂l

� �
δldΩ0

:

8
>>>>>>>><
>>>>>>>>:

(A1)

or in a concise matrix form:

δ2L ¼
δE

δa

δl

2
64

3
75

T

⋅Π⋅

δE

δa

δl

2
64

3
75þ cδ∇a:δ∇a þ T:δ2E; (A2)

where the local stiffness matrix Π issued from constitutive law is written:

Π ¼

∂T

∂E

∂T

∂a

∂T

∂l

SYM r−r
∂κ

∂a
1−r

∂κ

∂l

SYM SYM −

∂κ

∂l

2
6666664

3
7777775
: (A3)

The variation of E in A2 can be expressed in function of transformation tensor variation:

δE ¼ ∂E

∂C
:δC ¼ ∂E

∂C
: FT⋅δFþ δFT⋅F
� �

¼ 2∂E

∂C
: FT⋅δF
� �

¼ P: FT⋅δF
� �

T:δ2E ¼ δC:T:
∂2E

∂C∂C
:δCþ ∂E

∂C
:δ2C

¼ δFT⋅F
� �

:T:L: FT⋅δF
� �

þ T:P: δFT⋅δF
� �

:

8
>>>>><
>>>>>:

(A4)

Here, P; is a fourth‐order tensor defined as P ¼ 2 ∂E

∂C
. One can find its expression in Miehe et al.18

In the discretized space, the unknown nodal variables are U;A;Lð Þ. According to the definition in (96), one has the

following expressions:

δE ¼ P:FT⋅δF ¼ P: FT⋅Bu
g

� �
⋅δU

T:δ2E ¼ δUT⋅BuT
g ⋅F

� �
:T:L: FT⋅Bu

g ⋅δU
� �

þ T:P: δUT⋅BuT
g ⋅Bu

g ⋅δU
� �

8
><
>:

(A5)

δE

δa

δl

2
64

3
75 ¼

Pg: FT⋅Bu
g

� �
0 0

0 Na 0

0 0 N l

2
664

3
775⋅

δU

δA

δL

2
64

3
75 ¼ Q⋅

δU

δA

δL

2
64

3
75: (A6)
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With (A5) and (A6), the expression (A2) can be easily transformed in the discretized space:

δ2L ¼ ∑
e

∑
g

wg

δU

δA

δL

2
64

3
75

T

⋅QT⋅Πg ⋅Q⋅

δU

δA

δL

2
64

3
75

þcδAT⋅ Ba
g

� �T
⋅Ba

g ⋅δA

þ FT
g ⋅B

u
g ⋅δU

� �T
: Tg:Lg

� �
: FT

g ⋅B
u
g ⋅δU

� �

þTg:Pg: δUT⋅BuT
g ⋅Bu

g ⋅δU
� �

:

(A7)

Elementary stiffness matrix for the 5‐field element u; θ; P; a; lð Þ

The stiffness matrix for the 5‐field element can be derived from the second differential of equation (102):

δ2L ¼ ∫Ω0

δE

δθ

δP

δa

δl

2
6666664

3
7777775

T

⋅Υ⋅

δE

δθ

δP

δa

δl

2
6666664

3
7777775
þ TD þ PIð Þ:δ2Eþ c δ∇a

� �2
dΩ0 (A8)

with

Υ ¼

∂eTD

∂eE
: I−

1

3
I⊗I

� �
∂eTD

∂eE
:
I

3
I

∂eTD

∂a

∂eTD

∂l

SYM
1

9
I:
∂eT
∂eE

:I −1
1

3
I:
∂eT
∂a

1

3
I:
∂eT
∂l

SYM SYM 0 0 0

SYM SYM SYM r−r
∂κ

∂a
1−r

∂κ

∂l

SYM SYM SYM SYM −

∂κ

∂l

2
66666666666664

3
77777777777775

: (A9)

Similar to (A6) and (A7), in the discretized space, (A8) can be written as follows:

δ2L ¼ ∑
e

∑
g

wg

δU

δθ

δP

δA

δL

2
666666664

3
777777775

T

⋅ST⋅Υg⋅S⋅

δU

δθ

δP

δA

δL

2
666666664

3
777777775

þ cδAT⋅ Ba
g

� �T
⋅Ba

g ⋅δA

þ FT
g ⋅B

u
g ⋅δU

� �T
: TD þ PIð Þg:Lg

� �
: FT

g ⋅B
u
g ⋅δU

� �

þ TD þ PIð Þg:Pg: δUT⋅BuT
g ⋅Bu

g ⋅δU
� �

;

(A10)

where
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S ¼

Pg: FT⋅Bu
g

� �
0 0 0 0

0 Nθ 0 0 0

0 0 NP 0 0

0 0 0 Na 0

0 0 0 0 N l

2
66666664

3
77777775

(A11)

Stiffness matrix for the constitutive equations at Gauss points

In the expressions (A3) and (A9), the differential of T and κ with respect to (E,a, l) at the Gauss point level must be

computed.

Gather here the equations (61) and (66):

T ¼ Te
−E:ΔEp

ΔEp ¼ Δκ

J

∂T�

∂T

8
<
: (A12)

Note ν ¼ ∂T�

∂T
whose expression is given by (68), and the differential of T is

_T ¼ E: _E−
1

J
Δ _κE:νþ ΔκE: _νð Þ: (A13)

Then according to (67), one gets

Δ _κ ¼

_T�
J
þ _lþ r _a

� �

r þ A'
¼ 1

r þ A'

ν: _T

J
þ _lþ r _a

� �
; (A14)

where A' ¼ dA

dκ
.

By definition of ν, one has

_ν ¼ ∂ν

∂T
þ ∂ν

∂T�
⊗ν

� �
: _T: (A15)

Now after combining (A13‐A15) and one obtains

M: _T ¼ E: _E−
E:ν

r þ A'

_lþ r _a
� �

; (A16)

where M ¼ Iþ 1

J2 r þ A'
� �E:ν⊗νþ Δκ

J
E:

∂ν

∂T�
⊗νþ ∂ν

∂T

� �" #
is a fourth‐order tensor.

As a result,

_T ¼ M
−1: E: _E−

E:ν

J r þ A′
� � _lþ r _a

� �
" #

: (A17)

The differential of κ with respect to (E,a, l) can be obtained by substituting (A17) in (A14).
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Stiffness matrix for the constitutive equations at Gauss points for singular case

In this part, the stiffness matrix for the special case (T*=0) that was presented in Section 3.2 will be given. According to

(84) and (85), one derives

_T ¼ 0

_κ ¼ 1

A′ þ r
_lþ r _a
� �

8
<
: (A18)

From (A18), it is noted that if the case T*=0 occurs, the kinematic part in the stiffness matrix is zero:
∂T

∂E
¼ 0. Thus,

to ensure the stiffness matrix could be inversed, some arbitrary additional stiffness is added by letting
∂T

∂E
¼ ξ E, with

ξ≤ 10−5.

Specimen geometries and used FE meshes

FIGURE A1 Geometries and meshes of notched tensile (NT) specimens
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FIGURE A2 Geometries and meshes of compact tension (CT) specimens

FIGURE A3 Geometries and meshes of single edge notched tensile (SENT) specimen
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