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a b s t r a c t

Spiral strands subjected to tensile force and bending loading display a nonlinear dissipative behavior due
to frictional interactions between their elementary wires. This study aims to provide an efficient method,
based on a computational homogenization procedure, to accurately characterize the nonlinear response
of such strands. By using 1D beam elements in both micro- and macro-scale, homogenization is per-
formed along the axial direction of a representative volume element (RVE), leading to expressing a
boundary value problem on RVE, driven in a mixed manner by either strains or resulting forces or
moments. The boundary value problem on the RVE is solved using an in–house implicit finite element
solver for finite strain, considering all frictional contact interactions. A method is proposed to predict
the bending moment’s evolution for any curvature variation from the simulation results of only one
bending loading test on the RVE. The nonlinear behavior of the strand in the micro-scale identified
through this offline technique can then be used in the macro-model to simulate various bending loading
tests under constant tensile load. Results obtained with the multiscale model are compared to those pro-
vided by direct numerical simulation to demonstrate the validity of the proposed approach.
� 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

A spiral strand is a multi-layer cable with a helical geometry
made of metallic wires with a circular cross-section twisted around
a core wire. The cross-section and side view of a typical spiral
strand with three layers and a core wire with radius Rc are shown
in Fig. 1. The lay angle ai or the pitch length, the helix radius qi, the
wire radius Ri, and the number of wires identify the geometry of
each layer of a spiral strand. Due to the helical geometry, the spiral
strands exhibit axial–torsional coupling and nonlinear bending
behavior, even when the wires are linear elastic, due to frictional
contact interactions between wires. In order to explain and predict
the behavior of these strands, different approaches have been con-
sidered in the literature, including analytical, full 3D finite element
simulation, 1D finite element simulation using beam elements, and
multi-scale simulation.

The analytical approaches could be broadly divided into two
categories, namely, semi-continuous and discrete formulations. In
semi-continuous formulation, each layer of a spiral strand is
replaced with an equivalent continuum medium, while in discrete
formulation, each wire is considered individually. Among many
contributions to semi-continuous formulation, the work of [1]
could be mentioned. In [2,3], the axial–torsional response of spiral
strands is investigated using discrete formulation. The effect of lay
angle on the axial–torsional response of multi-strand ropes has
been investigated in [4]. In [5,6], the structural pattern of multi-
strand ropes has been optimized to maximize the axial load-
bearing capacity and minimize the torque in the rope. The nonlin-
ear bending behavior of spiral strands, which is their most complex
and interesting mechanical property, has been studied in the
pioneering work of [7]. In this study, the bending stiffness of spiral
strands when subjected to tensile force varies between two
extremes: full stick and full slip bending stiffnesses. This theory
has been further modified in [8,9]. In [10], a model has been pro-
posed to describe the behavior of spiral strands subjected to ten-
sion, torsion and bending. Although these analytical approaches
provide helpful insight into the behavior of these cables, they can-
not address all the internal nonlinear mechanisms of complex
strands. Therefore, using numerical simulations is inevitable.

In [11–16], full 3D finite element simulations have been per-
formed to model the axial response of spiral strands. However,
due to the very high computational cost of these simulations, the
domain of application of these models is limited to very short sam-
ples of small cables. In order to reduce the computational cost of
finite element simulations, one could take advantage of the wires’
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Fig. 1. The side view, internal configuration and cross section of a spiral strand.
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slenderness and use 1D beam elements instead of 3D solid ele-
ments [17–19]. The beam element has been successfully used to
represent wires in many applications. However, in the case of spi-
ral strands, not much work has been done. In the extensive litera-
ture on finite element simulation of spiral strands, only a few
papers have used beam elements [20–24]. Although using beam
elements would reduce the computational cost compared to full
3D simulations, modeling large samples of large cables is still out
of reach. In this case, computational homogenization becomes an
option.

Several attempts have beenmade to perform homogenization of
beam-like structures [25–29,23,30–32]. In [31,32], the authors have
proposed a two-dimensional homogenization scheme by reducing
the original 3D microscopic problem to a 2D finite element simula-
tion on the cross-section. Due to the dependence of the bending
loading on the axial coordinate of the cable, only the axial and tor-
sional loading could be considered in these works. In [25], this
dependence has been accounted for, which makes the presented
model capable of modeling the bending behavior. Among different
studies, the work of [23] could be considered as the only effort to
utilize the full capacity of homogenization methods for spiral
strands. In this work, the asymptotic homogenization, previously
developed in [30] has been extended to consider contact nonlinear-
ities. Using different element types in the micro-scale model, the
authors obtain the mechanical behavior of single- and two-layer
strands. Although the results have been compared to different ana-
lytical approaches, the integration of the proposed micro-sample
analysis in an upper-scale model is missing.

The main goal of the current study is to develop a computa-
tional homogenization scheme for spiral strands by modifying
the conventional homogenization framework. In the computa-
tional homogenization technique, a heterogeneous medium is
replaced by its equivalent homogeneous medium. In this frame-
work, the constitutive behavior for each integration point of the
homogeneous medium (macro-scale model) is extracted from the
representative volume element (RVE) attached to that point, where
all the heterogeneities are explicitly modeled, while no explicit
assumption on the macroscopic constitutive behavior is necessary.
A micro-sample is called RVE upon satisfaction of two criteria: first,
it should be large enough to represent the heterogeneity’s random-
ness statistically and second, the homogenized properties should
be insensitive to the micro-sample size. In conventional homoge-
nization at finite strain, the macro-scale tangent modulus and first
Piola-Kirschoff stress are obtained for a given macroscopic defor-
mation gradient. A review of computational homogenization tech-
nique is presented in [33]. In the context of cables, the spiral strand
is the heterogeneous medium, a single beam is the macro-scale
model, and a short length of the spiral strand is the RVE.
2

As the macro-scale model is a single beam and the mechanical
properties in the longitudinal direction are dominant, the homog-
enization will be performed only in the longitudinal direction, and
no averaging condition is considered in the transverse directions.
In the proposed framework, two different beam elements are used
in the macro- and micro-scales. A kinematically enriched beam
element, which has 9 degrees of freedom and is able to capture
the deformation of the cross-section, is used in the micro-scale.
For the macro-scale model, the geometrically exact beam element,
which has 6 degrees of freedom and considers a rigid cross-section,
is used. In this study, cables are considered slender structures
whose behavior is dominated by axial, torsional, and flexural
mechanisms, and shear strains are neglected. However, it should
be emphasized that shear is accounted for on the microscopic
scale, as it plays a vital role in determining the macroscopic bend-
ing behavior of spiral strands. Consequently, the macroscopic
strains of interest are an axial extension, a twist, and two bending
curvatures. Moreover, a pure strain-driven scheme could not be
employed due to the geometric coupling of axial force and bending
curvature, which will be fully explained later. Therefore, following
[34], a mixed stress–strain driven homogenization framework is
developed. In this formulation, the macroscopic strains enter the
microscopic boundary value problem (BVP) as ”displacement”
degrees of freedom, while their conjugate stresses will be their cor-
responding dual ”forces”. This allows strain, stress, or mixed
stress–strain driven homogenization to be performed straightfor-
wardly. Furthermore, the macroscopic stresses and strains are nat-
urally obtained as the solution to the microscopic BVP, without
needing any averaging relation.

Although utilizing a computational homogenization framework
reduces the computational cost compared to direct numerical sim-
ulation (DNS), where a full-length spiral strand is modeled, the CPU
time is still high for simulating long samples of large cables. Gen-
erally, in the computational homogenization framework, if the
behavior of RVE is not known a priori (in the case of nonlinear
RVE behavior, for example), an RVE is attached to each macro-
scopic integration point. Therefore, a microscopic BVP is solved
for every iteration of every loading step of the macro-scale prob-
lem to extract the RVE behavior for each macroscopic point. In
the literature, this approach is usually referred to as an online or
FE2 homogenization [35]. Consequently, as the macro-scale mod-
el’s size increases, the computational cost would be very high. In
order to remedy this problem, the computational cost of the
micro-scale problem should be reduced. Many authors have tried
different methods to reduce the computational cost of homoge-
nization by using reduced-order modeling (see [36] for example)
or machine learning algorithms (see [37] for example) in the
micro-scale, to name a few. In the current study, it will be shown



Fig. 2. The beam kinematics in the micro-scale.
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that the nonlinear axial-bending response is the primary reason
the behavior of the RVEs under study could not be known a priori.
Therefore, if this behavior is predicted, offline homogenization can
be performed, in which instead of assigning an RVE to each macro-
scopic integration point, the nonlinear RVE response is calculated
using a simple algorithm. By using the proposed offline homoge-
nization, the bending behavior of an RVE under a constant axial
force for any given curvature history is predicted based on the
results of a monotonic axial-bending test. Therefore, the micro-
scopic BVP is solved only once and is used throughout the simula-
tion. This reduces the computational cost of performing the
homogenization by several orders of magnitude compared to the
DNS, making it possible to perform simulations of very large cables
on a laptop while running the DNS on a workstation is simply
impossible. It should be mentioned that since DNS using finite ele-
ment method has already been verified against experimental
results in the literature, it suffices only to verify the results of com-
putational homogenization against DNS.

This paper is organized as follows. First, the beam kinematics
and contact algorithm in the micro-scale, followed by the macro-
scale beam kinematics, are introduced. Next, the proposed compu-
tational homogenization algorithm will be formulated. The numer-
ical examples section illustrates the robustness of the proposed
homogenization scheme in predicting the nonlinear response of
different spiral strands and its objectivity with respect to RVE
and finite element size. Then, the offline homogenization scheme
is introduced, and the results of the multi-scale simulation are ver-
ified against DNS. Finally, some concluding remarks are given.

2. Microscopic model

The spiral strands are modeled in the micro-scale as assemblies
of wires with frictional contact interactions. A 1D kinematically
enriched finite strain beam element, which has 9 degrees of free-
dom and can capture the cross-section’s in-plane deformations, is
used to represent each wire. Frictional contact interactions, the
only dissipative mechanism considered in the micro-scale, are
modeled explicitly in this scale. The detailed description of the
approach implemented in the micro-scale could be found in [18].

The mechanical equilibrium of a sample of spiral strand com-
posed of Nw wires is determined through the minimization of the
virtual work in the micro-scale, denoted dWm, combining the con-
tributions of both internal forces in all wires and frictional contact
interactions between wires, expressed in the following way:

dWm ¼
XNw

I¼1

dWI þ
XNc

k¼1

dWk
cf ; ð1Þ

where dWI is the internal virtual work of each wire I, and dWk
cf is the

virtual work of frictional contact interactions related to the k-th dis-
crete contact element generated within the assembly of wires.
These two terms are clarified in the following paragraphs.

2.1. Beam kinematics

The beam kinematics used to represent the wires in the micro-
scale is based on the assumption that every cross-section can be
defined in any configuration using three vectors, namely the posi-
tion of its center and two unconstrained section directors. By con-
sidering the initial configuration of the beam to be straight and
aligned with the third axis of an orthonormal frame O; e1; e2; e3ð Þ,
the position x at any given time t of any particle of the beam iden-
tified by its coordinates n1; n2; n3ð Þ in the initial configuration, is
obtained using the position of the centroid of the cross-section, r,
and the two section directors ga, with a ¼ 1;2 (Fig. 2):
3

x n; tð Þ ¼ r n3; tð Þ þ naga n3; tð Þ; ð2Þ
where na are the transverse coordinates of the particle, and n3 is its
curvilinear abscissa. Since the two section directors are uncon-
strained, the beam cross-section can deform, but will remain plane.
The displacement u of any particle is obtained by subtracting its ini-
tial position, X ¼ x n;0ð Þ, from the current position, and is written as
follows:

u n; tð Þ ¼ q n3; tð Þ þ naha n3; tð Þ; ð3Þ
where q is the displacement of the centroid of the cross-section and
ha are the changes of the section directors.

Having the position vector of every particle, the deformation
gradient F can be expressed as

F nð Þ ¼ dx
dX

nð Þ ¼ ga n3ð Þ � ea þ r0 n3ð Þ þ nag0
a n3ð Þ� �� e3; ð4Þ

where :ð Þ0 represents differentiation with respect to the curvilinear
abscissa. The deformation gradient can be decomposed into a con-
stant part and a linear part with respect to transverse coordinates
as:

F nð Þ ¼ F0 n3ð Þ þ naFa n3ð Þ: ð5Þ
The Green–Lagrange strain tensor E accordingly expresses as a sec-
ond order expansion with respect to transverse coordinates:

E nð Þ ¼ 1
2

F nð ÞTF nð Þ � I
� �

¼ E0 n3ð Þ þ naEa n3ð Þ þ nanbEab n3ð Þ; ð6Þ

where a; b ¼ 1;2, and I is the second-order identity tensor.
Since no component of the Green–Lagrange strain tensor is a

priori zero, because of the planar deformations of cross-sections
accounted for through the section directors, a full 3D Hooke’s
law parameterized by the Lamé coefficients k and l can be used.
However, since transverse strain terms related to planar deforma-
tions of cross-sections are involved only in the zero order tensor E0,
while the traces of higher order tensors Ea and Eab are constituted
only by axial strains, taking into account the traces of these linear
and quadratic tensors would generate a Poisson locking. To allevi-
ate this effect, the second Piola-Kirchoff stress tensor S is expressed
as a second order expansion

S ¼ S0 þ naSa þ nanbSab; ð7Þ
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each term in this expansion being expressed as a function of the
corresponding term of the Green–Lagrange strain tensor expansion
(6), using the Hooke’s law, but considering the Lamé coefficient k
only for the constant term, as explained in [18]:

S0 ¼ 2lE0 þ kTr E0ð ÞI; ð8Þ
Sa ¼ 2lEa; ð9Þ
Sab ¼ 2lEab: ð10Þ
With the above definition of strains and stresses, the internal virtual
work for each wire I is calculated as

dWI ¼
Z
BI

0

Tr SdEð ÞdB; ð11Þ

where BI
0 represents the initial configuration of the wire. In the

finite element setting, 3-noded quadratic elements are used for
dicretization.

2.2. Frictional contact interactions

Discrete contact elements associating pairs of material particles
are used to handle frictional contact interactions occurring
between wires in the micro-model. A contact element Ec is defined
by a pair of material particles n1; n2

� �
, located on the surface of two

interacting wires, which are predicted to enter into contact. The
determination of these contact elements results from a geometrical
procedure based on the definition of intermediate geometries asso-
ciated to proximity zones between wires, as presented in [18]. The
determination of contact elements is iterated all along the evolu-
tion of the loading to ensure that contact elements are generated
at the locations of crossing between wires, even in case of large

sliding. The frictional contact interaction force Rk
cf developed at

the k-th contact element is decomposed into a normal and a tan-
gential part:

Rk
cf ¼ Rk

Nn
k þ Rk

T ; ð12Þ

where nk is a unit vector defining the normal contact direction for

the contact element. Rk
N stands for the normal contact reaction,

and RT for the frictional tangential reaction, both acting on the par-
ticles of the contact element.

A regularized penalty is implemented to compute the normal

reaction Rk
N as a function of the gap between the particles of the

element, defined as

gap Ek
c

� � ¼ x nk;1
� �

� x nk;2
� �� �

� nk; ð13Þ

where x nk;i
� �

is the current position of the particle nk;i. A quadratic

penalty is considered when the interpenetration is below a regular-
ization threshold preg as illustrated in Fig. 3. The penalty coefficient
k is regularly adjusted for each contact zone so that the maximum
interpenetration registered in this contact zone remains lower than
a maximum allowed penetration threshold, pmax, whose value is
taken as 5 times preg . A regularized Coulomb friction model is used
to compute the tangential reaction RT , considering the relative tan-
gential displacement uT½ � to be reversible as long as its norm does
not exceed a threshold denoted uT;rev (see Fig. 3).

Using the above definitions, the virtual work of frictional con-
tact interactions associated with the k-th contact element, intro-
duced in (1), can be expressed for as:

dWk
cf ¼ Rk

cf � dx nc;1
� �� dx nc;2

� �� �
: ð14Þ
4

2.3. Non-linear solving

The different non-linearities involved in this model at the
micro-scale, which are related to large displacements, contact,
and friction, are solved at each step using an iterative algorithm
whose details can be found in [18]. This algorithm is used in the
present study to carry out simulations firstly on RVEs to character-
ize their mechanical properties, and secondly on full-length sam-
ples, to validate results from the homogenized multi-scale model
against direct numerical simulation (DNS).

3. Macroscopic model

A 3D geometrically exact beam element is considered in the
macro-scale. The detailed description of the model used in the
macro-scale can be found in [38].

3.1. Kinematics

The geometrically exact beam kinematics initially introduced
by [17] differs from the one described in the previous section in
(2) by considering the beam’s cross-sections to remain rigid. In this
formulation, the beam is considered to be initially straight. More-
over, the cross-section does not deform during deformation, and
therefore its change is described by a rigid body rotation.

In line with the notation used in the previous section, and after
considering the above assumptions, the initial configuration of the
beam is expressed as (Fig. 4):

r0 ¼ r n3;0ð Þ ¼ n3e3; ð15Þ
Y ¼ naea: ð16Þ

The position of any point after deformation is written as:

x n3; tð Þ ¼ r0 þ q n3; tð Þ þ R w n3; tð Þð ÞY ; ð17Þ

where R is the rotation describing the current orientation of the
cross-section, which is calculated given a vector w, with the length
equal to the amplitude of rotation and the direction of the axis of

rotation. By defining the tilde operator, ~:ð Þ, as the skew-symmetric
representative of a vector, the rotation matrix is defined in its expo-
nential form as follows:

R wð Þ ¼ Iþ ~wþ 1
2!

~w2 þ 1
3!

~w3 þ . . . : ð18Þ

By applying the rotation matrix to the orthonormal frame
O; e1; e2; e3ð Þ, the rotated frame O; e01; e

0
2; e

0
3

� �
is obtained as:

e0
a ¼ Rea; a ¼ 1;2;3ð Þ: ð20Þ
According to this kinematics, the strain of the axial line is

defined by the vector

C ¼ RT dr0
dn3

� e01

� �
; ð21Þ

and the curvature is given by the vector

K ¼ T wð Þ dw
dn3

; ð22Þ

where the tangent operator, T wð Þ is defined in its exponential form
as:

T wð Þ ¼ I� 1
2!

~wþ 1
3!

~w2 þ . . . : ð23Þ



Fig. 3. Models for interactions: a, regularized penalty for normal reaction; b, regularized friction model.

Fig. 4. The beam kinematics in the macro-scale.

M.A. Saadat and D. Durville Computers and Structures 279 (2023) 106981
3.2. Macro-model virtual work

Following [38], the virtual work for the beam model is
expressed as

dWM ¼ N � dCþM � dK; ð24Þ

where N and M correspond respectively to the resulting force and
the resulting moment on a cross-section.

Linear 2-noded elements are used for finite element discretiza-
tion. The beam stress–strain relationship, C, which is a 6� 6
matrix, in the case of isotropic elastic behavior of the material,
takes the form:

C ¼ diag EA;GA1;GA2;GJ; EI1; EI2ð Þ; ð25Þ

where EA is the axial rigidity, GA1 and GA2 are shear rigidities along
the transverse directions, GJ is the torsional rigidity, and EI1 and EI2
are the bending rigidities.

In the following, shear strains and stresses will be assumed to
be negligible, and the constitutive model will be derived from
the behavior of the micro-model. The only four beam deformation
modes retained will be elongation, bending and torsion, handled
by the four couples of work-conjugate variables � ¼ C3;N ¼ N3ð Þ,
K1;M1ð Þ; K2;M2ð Þ, and K3;M3ð Þ. Using the following notations:
5

bSM ¼

N

M1

M2

M3

26664
37775; bEM ¼

�
K1

K2

K3

26664
37775; ð26Þ

the lineic virtual work for the beam model in the macro-scale,
restricted to the four deformation modes retained, will be expressed
as

dwM ¼ SM � dbEM: ð27Þ
The homogenization procedure presented in the following will

aim at identifying the constitutive behavior of the spiral strand
in the macro-scale, by determining the stiffness tensor CM and
the tangent stiffness tensor KM

T used to express the following
relationships:

bSM ¼ CMbEM; ð28Þ
dbSM ¼ KM

T d
bEM: ð29Þ
4. Mixed stress–strain driven computational homogenization

In the computational homogenization scheme, the aim is to
extract the homogenized material behavior of a heterogeneous
medium frommicro-scale simulations, in which all heterogeneities
are explicitly considered. Since spiral strands are slender, and their
mechanical behavior in the longitudinal direction is dominant,
beam elements are used in both micro- and macro-scales. The pre-
vious sections discuss the kinematics of the beam elements used in
the micro- and macro-scales. In order to use beam elements at
both scales, homogenization should be performed only in the lon-
gitudinal direction. In this manner, the integration in the cross-
section of the spiral strand is implicitly considered in the homoge-
nization scheme. Moreover, although shearing effects are fully con-
sidered at the micro-scale, both through the beam model for
elementary wires and through frictional interactions between
wires, shear strains are neglected at the macro-scale. Therefore,
the macroscopic strains, EM , are axial strain, �, torsional strain,
K3, and two bending curvatures K1 and K2. The macroscopic stres-
ses, SM , are also an axial force, N, torque, M3, and two bending
moments M1 and M2.

According to the literature [7,8,10], it is well known that the
spiral strands exhibit hysteretic bending behavior due to their
internal interwire frictional contact interactions, even when indi-
vidual wires behave linearly. The presence of external axial tension
on a spiral strand causes interlayer normal and, consequently, tan-
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gential contact forces. When the cable undergoes bending defor-
mation, interlayer shear forces are developed in the spiral strand.
In case these forces are greater than the friction threshold, sliding
occurs, causing the bending behavior of spiral strands to be nonlin-
ear. It should be noted that the bending stiffness for these cables
depends mainly on axial force. Moreover, a geometric coupling
between axial force and bending curvature is observed in large
deformation, which will be discussed in detail in the next section.

Due to the dependence of bending stiffness on axial stress and
the geometric coupling of axial force and bending curvature, per-
forming a purely strain-driven homogenization, where only the
macroscopic strains are imposed on an RVE, is not suitable. There-
fore, a mixed stress–strain driven homogenization framework is
presented in this study, where the strains or stresses describing
the macroscopic mechanical state are considered as input variables
of a microscopic BVP, while their work-conjugate quantities are
provided as output results. A schematic representation of the pro-
posed computational homogenization scheme is shown in Fig. 5. In
the proposed scheme, the macroscopic strains enter into the
microscopic BVP as independent ”displacement” degrees of free-
dom, while the stresses would be their corresponding ”forces”.
The degrees of freedom corresponding to macroscopic strains
and their associated resultant forces and moments are treated as
conventional displacement and forces in the finite element setting.
It should be highlighted that in the mixed strain–stress driven for-
mulation, in contrast to conventional homogenization, where the
macroscopic stresses are obtained by averaging the microscopic
stresses, the unknown macroscopic parameters are obtained natu-
rally after solving the microscopic BVP.

In the remainder of this section, :ð Þm and :ð ÞM represent variables
in the micro-scale and macro-scale domains, respectively.
Fig. 5. The computational homogenization algorithm

6

4.1. Microscopic deformation field

The current position of any particle in the micro-scale domain,
could be decomposed into a part caused by the macroscopic defor-
mation, xmM , and a fluctuation part, w, which accounts for hetero-
genities of the micro-scale, as:

xm ¼ xmM þw: ð30Þ
Regarding the homogenization procedure, the macroscopic gra-

dient FM is assumed to be constant with respect to the curvilinear
abscissa and to depend only on transverse coordinates Xa. The con-
dition that the average of the microscopic longitudinal gradient
over the considered RVE should be equal to the macroscopic longi-
tudinal gradient, FM

3 , is then expressed as:

FM
3 ¼ 1

V rve

Z
Vrve

@xm

@X3
dV ; ð31Þ

where V rve is the RVE volume. Injecting (30) in (31) we then have

FM
3 ¼ 1

V rve

Z
Vrve

@xmM
@X3

þ @w
@X3

� �
dV ; ð32Þ

and thusZ
Vrve

@w
@X3

dV ¼ 0: ð33Þ

Decomposing the volume integral into a combination of surface
and line integrals, we haveZ
Vrve

@w
@X3

dV ¼
Z
Srve

Z
Lrve

@w
@X3

dX3

� �
dS; ð34Þ

where Srve is the cross-section of the macroscopic beam. Assuming
this cross-section is constant along the RVE, we can write
for spiral strands. BVP, boundary value problem.
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Z
Srve

Z
Lrve

@w
@X3

dX3

� �
dS ¼

Z
Srve

wþ �w�ð ÞdS; ð35Þ

where wþ and w� indicate the fluctuation field on two opposing
cross-sections, with Xþ

3 and X�
3 as their curvilinear abscissa. From

(33), we can therefore conclude that the macroscopic and micro-
scopic gradients have the same average over the RVE if the fluctua-
tion field w satisfies the following condition, which states that the
integrals of the fluctuation field over both end sections of the RVE
should be equal:Z
Srve

wþdS ¼
Z
Srve

w�dS: ð36Þ

Among the fluctuations fields which satisfy the previous condi-
tion are the periodic fluctuation fields characterized by

wþ ¼ w�: ð37Þ
4.2. Boundary conditions on the borders of the RVE

The averaging conditions expressed above indicate that the
fluctuation field should be controlled on both end cross-sections
of the beam type RVE. Since the objective is to prescribe the macro-
scopic deformation gradient to the RVE, we first need to express
the displacement field prescribed at the microscopic scale due to
the macroscopic deformation gradient.

4.2.1. Microscopic displacement field caused by macroscopic
deformation

The deformations of the beam model at the macro-scale are
described by the four strain quantities �;K1;K2, and K3. � corre-
sponds to the variation of axial displacement with respect to the
abscissa along the beam axis, while other quantities correspond
to variations of the rotation. Assuming these variations to be con-
stant along the RVE’s beam axis, the macroscopic beam-type dis-
placement field is described by a longitudinal displacement uM

3

and a rotation vector wM , both varying linearly with the longitudi-
nal abscissa:

uM
3 X3ð Þ ¼ uM

3 X�
3

� �þ X3 þ Lrveð ÞDuM
3 ; ð38Þ

wM X3ð Þ ¼ wM X�
3

� �þ X3 þ Lrveð ÞDwM; ð39Þ
where DuM

3 and DwM denote the variations of the longitudinal dis-
placement and rotation vector per unit length, corresponding to
the macroscopic deformations EM . DuM

3 is simply defined by

DuM
3 ¼ �; ð40Þ

while the variation of rotation vector DwM is assumed to be given
by:

DwM ¼ K2e1 þ K1e2 þ K3e3: ð41Þ
These macroscopic beam-type displacement fields result in

both displacement and rotation applied to the enriched beam kine-
matics adopted at micro-scale to represent the wires in the RVE
and defined by the three kinematical vectors q;h1;h2ð Þ. The macro-
scopic displacement qM of a point on the centerline of a wire with
coordinates X in the initial configuration results from both uM

3 and
wM in the following way:

qM Xð Þ ¼ uM
3 X3ð Þ þ R wM X3ð Þ� �

X1e1 þ X2e2ð Þ: ð42Þ
The variations of section directors due to the macroscopic

deformations, denoted hM
a , are assumed to follow the macroscopic

rotation and to be defined by

hM
a Xð Þ ¼ R wM X3ð Þ� �� I

� 	
Ga X3ð Þ; ð43Þ
7

where Ga ¼ ga t ¼ 0ð Þ. Finally, the microscopic displacement caused
by the macroscopic deformation, um

M , expressed in terms of the kine-
matics of the beammodel representing the wires at the micro-scale,
are obtained. These displacements at all nodes of the discretized
model at micro-scale are represented by the vector bum

M defined as

bum
M ¼ q1;M ið Þ;h1;M

1 ið Þ;h1;M
2 ið Þ; . . . ;qn;M ið Þ;hn;M

1 ið Þ;hn;M
2 ið Þ

h i
9�n

; i

¼ 1;2;3 ð44Þ

where c:ð Þ indicates the vector form of a variable.

4.2.2. Periodic boundary conditions
The model at micro-scale is defined as a set of wires described

using the beam model presented in Section 2. The periodic condi-
tions expressed in (37) should be expressed using the kinematics
related to this beam model. The fluctuation field can be expressed
as a function of displacement fields as:

w ¼ um � um
M; ð45Þ

where um is the microscopic beam displacement field, and um
M is

defined in (44). In the context of spiral strands, due to their helical
geometry, each layer i is a periodic structure with a period length lpi :

lpi ¼
pi

ni
; ð46Þ

where pi and ni are the pitch length and the number of wires of
layer i, respectively.

In case the RVE is periodic, that is, the period lengths of all lay-
ers are the same, this period length is considered as the RVE length.
In this case, each end of a wire in the left cross-section corresponds
to the end of a wire in the opposite right end. Let us denote

Nþ
I ;N

�
J Ið Þ

� �
a pair of two end nodes of wires associated by these con-

siderations of periodicity, I and J Ið Þ standing for the numbers of the
wires associated by periodicity. For this pair of nodes, the periodic
condition (37) will express:

w Nþ
I

� � ¼ w N�
J Ið Þ

� �
: ð47Þ

Making use of (45), we obtain the following periodic condition:

um Nþ
I

� �� um N�
J Ið Þ

� �
þ um

M Nþ
I

� �� um
M N�

J Ið Þ
� �

¼ 0: ð48Þ

The conditions expressed for all pairs of wire ends associated by
periodicity could be expressed, using the vector form of displace-
ment fields and by means of matrix Ap, in the following way:

Ap bum � bum
M

� � ¼ 0: ð49Þ
4.2.3. Quasi-periodic boundary conditions
Among different options to satisfy the boundary conditions

(36), it has been shown that the periodic boundary condition pro-
duces reasonable results even for non-periodic RVEs [39].

In the case the RVE is not perfectly periodic, that is, when the
period lengths of all layers are not the same, the highest period
length is considered as the RVE length, and exact periodic condi-
tions can not be set. In this case, as it can be seen in Fig. 6, the pro-
jections of end cross-sections of a generic layer in the x� y plane
do not match, and therefore, an angular interpolation is utilized
to apply the periodic boundary conditions. If the projection of
the first end of wire p is in between the projection of the second
end of wires q1 and q2, the following relation between their fluctu-
ation field vectors holds:

bw1
p ¼ /1

/
bw2

q1
þ /2

/
bw2

q2
; ð50Þ



Fig. 6. Representation of periodic boundary conditions for a single-layer non-periodic RVE.
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where bwi
n is the 9� 1 fluctuation field vector of node n at end i.

It should be noted that from the physical point of view, it
makes more sense to perform the interpolation in the polar coor-
dinate system due to the radial symmetry of the strand. However,
the interpolation must be performed in the Cartesian coordinate
system to satisfy the boundary conditions. Therefore, an error is
introduced in the micro-scale solution, which could be significant
if the non-periodicity of the RVE is so pronounced. However, if the
number of wires in a non-periodic layer is high, the difference
between interpolation in the two coordinate systems would be
negligible.

Since the boundary conditions only constrain the relative dis-
placement of the opposite faces, rigid body motions are not
restricted and should be removed from the solution. To this end,
instead of constraining an arbitrary point in the micro-scale
domain in all directions, a viscous damping force is added to the
equilibrium equation so that the rigid body modes are blocked
by viscous dissipation [23].

4.3. Hill-Mandel macrohomogeneity condition

According to the Hill-Mandel condition in its classical form, the
variation of work of a macroscopic point, dWM , should equal the
lineic average of dWm, the variation of work in the RVE. Since
homogenization is performed only in one direction in the proposed
homogenization scheme, the Hill-Mandel condition should be
modified accordingly, that is:

1
LRVE

dWm ¼ dWM : ð51Þ
4.4. BVP on the RVE

The problem to solve on the RVE is to determine the displace-
ment field at micro-scale um satisfying both the boundary condi-
tions (49) and the Hill-Mandel condition (51). Handling periodic
conditions by means of Lagrange multipliers arranged into a vectorbk, and defining the macroscopic strain and stress vectors asbEM ¼ �;K1;K2;K3½ � and bSM ¼ N;M1;M2;M3½ �, respectively, this
problem is set in the form of the minimization of the Lagrangian
L defined by:
8

L um; k;EM
� �

¼ 1
LRVE

Wm umð Þ �WM EM
� �� �

þ bkTAP bum � bum
M EM
� �� �

: ð52Þ

The stationarity conditions with respect to the different vari-
ables lead to the equations:

1
LRVE

@Wm

@um þ bkTAP ¼ 0; ð53Þ
AP bum � bum

M

� � ¼ 0; ð54Þ

� @WM

@bEM
� bkTAP

@bum
M

@bEM
¼ 0: ð55Þ

The last condition can be reformulated as

bSM ¼ �bkTAP
@bum

M

@bEM
: ð56Þ

If the homogenization process would be fully strain-driven, the
non-linear problem at micro-scale could be solved using only (53)

and (54), considering um; bk� �
as unknown variables, the strains bEM

as prescribed quantities, and the macroscopic stresses would be
obtained as results through (56). However, to be able to drive the
micro-scale boundary-value problem in a mixed way, that is, by
prescribing any component of either the macroscopic strains or

stresses, the macroscopic strain bEM should be considered as a vari-
able in the non-linear system of equations. Differentiating (53),
(54), and (56) and implementing a Newton algorithm, the problem
to solve at each iteration is to determine the increments

dum; dbk; dbEM
� �

satisfying the following system of equations:

1
LRVE

@2Wm

@um2 AT
P 0

AP 0 �AP
@bum

M

@bEM

0 � AP
@bum

M

@bEM

� �T

�bkTAP
@2bum

M

@bEM
2

0BBBBBB@

1CCCCCCA
dum

dbk
dbEM

0B@
1CA

¼
� 1

LRVE
@Wm

@um � bkTAP

�AP bum � bum
M

� �
�bSM þ bkTAP

@bum
M

@bEM

0BBB@
1CCCA:

ð57Þ
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In the boundary-value problem, as expressed in (57), the
macroscopic strains are treated as ”displacement” degrees of free-
dom, while the macroscopic stresses are their corresponding
”forces”. Therefore, one could easily impose any set of macroscopic
strains or stresses as Dirichlet or Neumann boundary conditions,
respectively.

Following [34], the tangent stiffness matrix describing the
behaviour of the model at macro-scale can be determined from this
formulation, once the convergence of the Newton algorithm is
achieved. Differentiating (56) we have

dbSM ¼ �dbkTAP
@bum

M

@bEM
� bkTAP

@2bum
M

@bEM
2 d
bEM : ð58Þ

At convergence, as the right-hand side in Eq. (57) is assumed to
be zero, we can express, using static condensation:

dum

dbk
� �

¼
1

LRVE
@2Wm

@um2 AT
P

AP 0

 !�1 0

AP
@bum

M

@bEM

0@ 1AdbEM; ð59Þ

and write:

dbkTAP
@bum

M

@bEM
¼ AP

@bum
M

@bEM

� �T

dbk ð60Þ

¼ 0 AP
@u
^m
M

@E
^
M

� �T
" #

dum

d k
^

 !
: ð61Þ

The tangent stiffness matrix of the macro-model KM
T , such that

dbSM ¼ KM
T d
bEM ; ð62Þ

can then be expressed as

KM
T ¼ 0 AP

@bum
M

@bEM

� �T
" #

1
LRVE

@2Wm

@um2 AT
P

AP 0

 !�1 0

AP
@bum

M

@bEM

0@ 1A� bkTAP
@2bum

M

@bEM
2 :

ð63Þ
As it can be seen, by neglecting shear deformation in the macro-

scale, a 4� 4 tangent modulus KM
T is obtained from Eq. (63) and is

inserted into corresponding terms of (25).
It should be noted that all geometric couplings, i.e., the axial–

torsional coupling, are explicitly included in (63) and are obtained
by solving only one step of homogenization. While the nonlinear-
ities stemming from the presence of frictional contact, e.g., the
axial-bending coupling, are implicitly included.

5. Numerical examples

The framework of mixed stress–strain driven homogenization
has been developed in the previous sections. In this section, the
robustness and capabilities of the proposed homogenization
scheme are illustrated using different numerical examples. In the
first part of this section, the homogenized responses of different
RVEs are investigated. In this part, by considering a single wire
as the RVE, the geometric coupling between axial force and bend-
ing curvature and the importance of using a mixed stress–strain
driven homogenization are highlighted. Next, by introducing more
complex RVEs, ranging from a single-layer strand composed of 6
wires to a 6-layer strand composed of 127 wires (see Fig. 7), the
nonlinear behavior of the RVEs is investigated. A comparison of
the results against different theoretical and numerical results from
the literature is also presented. From the studied cases, and within
the loading ranges considered, the dependence of the bending
moment on both the curvature and the tensile load appears as
the main nonlinear mechanism. The objectivity of the proposed
homogenization scheme regarding the finite element discretiza-
9

tion and RVE size is also investigated in this part. In the second
part, the results of the proposed homogenization scheme are veri-
fied against those obtained from DNS. First, an offline homogeniza-
tion scheme is introduced, and it is shown that the cyclic axial-
bending response of an RVE for any given curvature history and
constant axial force could be predicted using only the results of a
monotonic test. Next, by implementing this method, the multi-
scale response of different strands under coupled axial force and
bending moment is compared to that of the DNS.

In order to study the effect of frictional contact interactions on
the bending behavior of spiral strands, it is desirable to consider a
case where these interactions are the only dissipative mechanisms.
Therefore, although any constitutive behavior could be assumed
for each wire, linear elastic behavior is utilized for all wires. In
all examples, Young’s modulus is 210 GPa, Poisson’s ratio is 0:3,
and the coefficient of friction is 0:3. The contact regularization
parameters, namely the maximum allowed penetration and the
reversible tangential displacement, are 10�4 mm unless otherwise
stated.
5.1. RVE response

5.1.1. Single wire
As the first example, a single wire is considered as the RVE.

Although homogenization of a single wire seems trivial, exploring
different options and phenomena on a simple RVE is quite helpful.
To this end, a wire with a radius of 2:675 mm, with different
lengths is considered.

As it has been mentioned earlier, a 3D Hooke’s law is used as the
constitutive behavior in the micro-scale. Therefore, as the first step,
it would be interesting to explore if the homogenized constitutive
behavior is, in fact, the beam stiffness of (25). Since the RVE con-
sists of only one wire, the tangent modulus would be diagonal.

The homogenized and analytical tangent moduli are given in
Table 1. As it can be seen, by using the proposed homogenization
method, one obtains the familiar beam rigidities for a single wire.

Next, the geometric coupling of axial force and bending
moment is explored. As depicted in Fig. 8, when a beam is under
combined axial force and bending deformation, a secondary
moment, Nd, due to the deflection of the beam appears. As this
moment has the opposite sign of the applied end moment, it will
increase the bending stiffness of the beam, which would be notice-
able if the deflection or axial force is high.

In order to examine this effect for a simple single wire case, the
response of RVEs with different lengths, namely 10;50 and
100 mm, under the axial force equivalent to the axial strain of
10�3 are compared to the bending stiffness of the wire. The bend-
ing moment vs. curvature diagram of these cases is shown in Fig. 9.
For a given tension, this secondary moment is proportional to the
deflection, which increases both with the prescribed rotation at
ends (curvature) and with the length of the sample. As demon-
strated in Fig. 9, this secondary moment vanishes if the length is
small enough, independently of the curvature.

Finally, the importance of using a mixed stress–strain driven
homogenization is highlighted. To this end, the pure bending of
the RVE with the length of 100 mm and different macroscopic con-
ditions, namely without axial stress or strain, are investigated. The
bending moment vs. curvature diagram for these cases is presented
in Fig. 10. As can be observed, to satisfy the zero axial strain con-
dition, an axial force is produced in the cable, which increases
the bending stiffness due to the geometric coupling between axial
force and bending. The deflected shape of the two cases is depicted
in Fig. 10. As it can be seen, the curvature of the beam is not con-
stant in the case of zero axial strain, in contrast to the case with
zero axial stress.



Fig. 7. The representative volume elements composed of a core and one, two, three and six layers.

Table 1
Tangent modulus of the single wire RVE.

Model EA kN½ � GJ kN �mm2
� 	

EI1 kN �mm2
� 	

EI2 kN �mm2
� 	

Analytical 4720.8 6496.2 8445.1 8445.1
Homogenization 4720.8 6496.2 8445.1 8445.1

Fig. 8. The geometric coupling of axial force and bending curvature.

Fig. 9. The response of the single wire RVE with different lengths under combined
axial force and bending. The value of axial force is in N.
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5.1.2. 1-layer strand
To further investigate the proposed homogenization scheme, a

single-layer strand composed of a core wire and six helical wires
in the first layer, which has been studied by [23], is analyzed.
The geometry of the strand is presented in Table 2. The length of
the RVE, i.e., the period of the strand, is 230:1=6 ¼ 38:35 mm.

First, the linear response of the strand is studied. To study the
axial–torsional coupling of the strands, two limit cases, namely
the fixed end, where the twist at the ends is fixed, and the free
end, where the twist at one end is free, are usually considered.
The axial force vs. strain and axial force vs. torque of the strand
with the fixed end assumption is compared to the numerical and
analytical results presented in [23]. As it can be observed in
10
Fig. 11, the different results are in perfect agreement. It should
be noted that, as in the case of axial loading, the frictional contact
does not play an important role, the response of the strand could
be considered as linear elastic, and therefore, using the homoge-
nized tangent modulus of the strand and static condensation, the
response of the strand for the case of free end is obtained as:
C�� C�K3

CK3� CK3K3


 �
d�
dK3


 �
¼ dN

0


 �
! C�� � C�K3CK3�

CK3K3

� �
d� ¼ dN:

ð64Þ
The torsional response and also the free bending response of the

RVE are also shown in Fig. 12. Again, a very good agreement
between the current simulation results and other numerical and
analytical solutions is observed.

In order to assess the internal nonlinear mechanisms of the RVE,
the inter-wire frictional contact interaction, and its effect on the
behavior of the cable, a bending experiment with an axial force
is performed. To this end, the cable is subjected to an axial strain
of 10�3, and a bending curvature of 10�4 mm�1 is applied to the
RVE while maintaining the axial force constant. The moment vs.
curvature diagram of the RVE is presented in Fig. 13. As it can be
seen, the result obtained from the proposed homogenization
scheme is in very good agreement with the results of the literature.
As is expected from spiral strands, the bending behavior under
existing axial force is nonlinear. At first, all wires are in sticking
condition due to the high contact force and low curvature, and
the stiffness is very high. As the bending curvature increases, the
wires start sliding, and their contribution to the overall bending
stiffness of the strand reduces until the minimum bending stiffness
is reached. The slightly higher minimum bending stiffness
observed in Fig. 13 is attributed to the geometric coupling of axial
force and bending curvature; since referring to Fig. 12, it can be
observed that the minimum bending stiffness, which is the stiff-



Fig. 10. The bending response of the single wire RVE with zero axial strain or stress. a, Moment vs. curvature diagram; b, Deformed configuration.

Table 2
Geometric properties of the single-layer strand.

No. of wires Radius [mm] Pitch length [mm]

Core 1 2.675 -
Layer 1 6 2.590 230.1
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ness without the presence of axial force, has been predicted
correctly.

As strands’ behavior heavily depends on the contact interac-
tions, both normal and tangential, the effect of different model
parameters is explored. First, the effect of the maximum allowed
penetration for normal contact, used to adjust the penalty coeffi-
Fig. 11. The axial–torsional response of the single-layer strand. a, A

Fig. 12. The torsional and free bending responses of the single-lay

11
cient for each contact zone, will be assessed. The response of the
RVE using various maximum allowed penetrations under axial
strain is shown in Fig. 14. As it can be observed, the final axial stiff-
ness for all values is the same, but if a large parameter is used, the
initial axial stiffness would be lower, as some force would con-
tribute to the initial settlement of wires. In order to examine the
effect of the regularization parameter for the tangential contact,
the reversible tangential displacement, the bending behavior of
the RVE under combined bending and axial load will be studied.
As it can be observed in Fig. 14, increasing the reversible relative
tangential displacement would decrease the initial stiffness of
the friction law and, consequently, the initial bending stiffness of
the strand.
xial force vs. strain diagram; b, Axial torque vs. strain diagram.

er strand. a, The torsional behavior; b, The bending behavior.



Fig. 13. The behavior of the single-layer strand under combined axial force and bending curvature loading.

Fig. 14. The effect of contact regularization parameters on the response of the single-layer strand. a, The effect of maximum allowed penetration on the axial response; b, The
effect of reversible tangential displacement on the axial-bending response.
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5.1.3. 2-layer strand
As the next example, a more complex RVE, a spiral strand with a

core wire and two helical layers, is considered. The geometry of the
strand is given in Table 3, considering i ¼ 2. Since the layer period
of both layers is 230:1=6 ¼ 460:2=12 ¼ 38:35 mm, this length is
chosen as the length of the RVE. A comparison of the axial–tor-
sional response of the RVE with fixed ends with analytical and
numerical results obtained from the literature is given in Fig. 15,
which shows a very good level of agreement. Moreover, the con-
tour of the axial stress over the RVE is also presented in Fig. 16.
The effect of contact points on the local stress distribution of the
wires and also the periodic pattern of the stress is observed.

To investigate the nonlinear RVE response due to inter-wire
frictional interactions, the 2-layer RVE is subjected to an axial force
equivalent to an axial strain of 10�3 and is then subjected to a
bending curvature. The response of the RVE is presented in
Fig. 17. As it can be observed, the response is in very good agree-
ment with the results from the literature.
Table 3
Geometric properties of the i-layer strand.

No. of wires Radius [mm] Pitch length [mm]

Core 1 2.675 -
Layer i 6� i 2.590 228:44� i

12
As it can be seen, the RVE response could be divided into several
stages. The contact forces are high enough to avoid sliding at low
curvatures, and the bending stiffness is very high. As the curvature
increases, the wires of the outermost layer start sliding until all the
wires in that layer are sliding, and a drop in the bending stiffness of
the strand is observed. Finally, upon further increase in the curva-
ture, the wires in the innermost layer start sliding, and the bending
stiffness reaches its minimum value. In Fig. 18, the contour of the
axial stress caused by bending at different stages is shown. For
small curvatures, all the wires above the middle line are in com-
pression (shown by blue color), and the ones below are in tension
(shown by red color), which indicates the wires are bending
around the cross-section’s middle line. As the curvature grows,
wires in the second layer bend around their own middle line, while
the wires in the first layer still bend around the cross-section’s
middle line. Finally, all wires act individually, and individual bend-
ing stress patterns are visible for each wire.

The response of RVE under a cyclic bending curvature with an
amplitude of 2:10�4mm�1 is also depicted in Fig. 19.
5.1.4. 3-layer strand
In order to investigate the effect of the non-periodicity of RVE

on its behavior, two 3-layer strands consisting of 37 wires, with
and without periodic structure, are considered. The geometry of



Fig. 15. The axial–torsional response of the 2-layer strand. a, Axial strain vs. axial force diagram; b, Axial strain vs. torque diagram.

Fig. 16. The axial stress (MPa) contour of the 2-layer strand under tensile strain.

Fig. 17. The 2-layer strand behavior under combined axial force and bending
curvature loading.
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the non-periodic strand is given in Table 4, while the values of
Table 3 with i ¼ 3 are used for the periodic RVE. The length of
the periodic and non-periodic RVEs is 3:81 mm and 4:0 mm,
respectively. The contact regularization parameters are set equal
to 10�3 mm. Higher bending stiffness is expected for the non-
periodic RVE, as its third and second layer’s pitch length is lower
than the periodic RVE. Table 5.
13
A comparison of the moment vs. curvature response under
combined axial force and bending curvature of both RVEs is given
in Fig. 20. For both RVEs, the four lines depicting different sliding
stages could be distinguished, and the higher bending stiffness of
the non-periodic RVE is noticeable, especially in the region corre-
sponding to the sliding of the outermost layer of both RVEs.
5.1.5. 6-layer strands
As the last example of this part, to show the effectiveness of the

proposed homogenization scheme and the contact algorithm used
in the micro-scale domain, a 6-layer strand composed of 127 wires
is considered as the RVE. The axial-bending response, considering
10�3 mm for the regularization parameters, is shown in Fig. 21.
As the considered spiral strand has six layers, seven lines corre-
sponding to the sliding of different layers can be distinguished.
These lines are identified in Fig. 21 by zooming on different inter-
vals of the moment–curvature diagram.
5.1.6. Objectivity of the proposed homogenization scheme
In this section, the objectivity of the proposed homogenization

scheme with respect to the finite element discretization and RVE
size is investigated.

First, the axial tension and combined axial tension and bending
curvature experiments are performed on the single-layer RVE with
various elements per wire to show objectivity with respect to the
finite element discretization. As it can be seen from Fig. 22, the
results are independent of the micro-scale problem’s
discretization.

In order to evaluate the objectivity with respect to the RVE size,
different sizes of the single-layer RVE, with 1, 2, and 3 periods are
considered, and the axial tension, bending, and coupled axial ten-



Fig. 18. The contour of axial bending stress of the 2-layer strand under combined axial force and bending curvature loading. For each cross-section, the values have been
normalized with respect to the maximum tensile, shown in red, and compressive stresses, shown in blue.

Fig. 19. The 2-layer strand behavior under combined axial force and cyclic bending
curvature loading.

Table 4
Geometric properties of the non-periodic 3-layer strand.

No. of wires Radius [mm] Pitch length [mm]

Core 1 2.675 -
Layer 1 6 2.590 228.44
Layer 2 12 2.590 �479.72
Layer 3 18 2.590 639.63
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sion and bending moment experiments are performed. The results
for the tensile and bending cases are depicted in Fig. 23. Obviously,
the tensile and bending experiments are independent of the RVE
size. However, a size dependence is observed for the coupled axial
tension and bending experiment, as observed in Fig. 24. This differ-
ence, which is attributed to the geometric coupling of axial tension
and bending curvature, has already been discussed for a single-
wire RVE. However, as the cable becomes larger and larger, the
dependence would be less pronounced. As it can be seen, increas-
ing the size of RVE for a periodic 3-layer cable does not change the
behavior as much as it would for the single-layer RVE. Generally,
choosing the smallest possible RVE size is always preferable, as
the computational cost and the effect of geometric coupling of
axial tension and bending curvature will be minimal.

5.2. Verification of the homogenization scheme

In this section, the results of the multi-scale analysis are verified
against direct numerical simulation (DNS) carried out using the
micro-model introduced in Section 2 on full-length samples. The
geometry and boundary conditions of a bending experiment under
constant axial force are shown in Fig. 25. In order to satisfy the sep-
aration of scales, L=4 is considered equal to two pitches of the
outermost layer.

In the examples presented above, and within the loading ranges
considered, examining the tangent stiffness matrices identified on
RVEs (63), it has been noted that extra-diagonal terms can be con-
sidered as negligible, and that stiffness terms remain almost con-
stant, except the bending stiffness terms which displays the main
non-linearities. Therefore, instead of performing a FE2 homoge-
nization method, which would be computationally intensive, an
offline homogenization framework is employed, in which, assum-



Table 5
Algorithm for offline prediction of the moment vs. curvature response of an RVE.

Initialization Kmax ¼ 0;Kdir ¼ 0;dir ¼ 0
For each time step n
dK ¼ Kn � Kn�1

if sign dKð Þ– dir
dir = sign dKð Þ
Kdir ¼ Kn�1

if j Kn�1 j>j Kmax j
Kmax ¼ Kn�1

end if
end if
if j Kn j>j Kmax j
dM ¼ dir MKn �MKn�1

� �
else
dM ¼ 2dir M0:5jKdir�Kn j �M0:5jKdir�Kn�1 j

� �
end if

Fig. 20. The periodic and non-periodic 3-layer strands behavior under combined
axial force and bending curvature loading.
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ing the bending occurs only about one axis (uniaxial bending), the
bending response of the RVE is predicted numerically for any strain
history, using only the first loading curve of the moment vs. curva-
Fig. 21. The 6-layer strand behavior under combined axial force and bending curvatu
different layers.
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ture diagram. This offline identification reduces drastically the
computation cost compared to a FE2 approach.

5.2.1. Offline homogenization scheme
In the offline homogenization scheme, instead of imposing the

macroscopic variables to an RVE and solving the microscopic BVP
to obtain the unknown macroscopic variables (Fig. 5), the micro-
scopic response, namely the moment vs. curvature, is predicted
based on the results of a monotonic test. To predict the response
of an RVE, a straightforward algorithm with negligible error, even
in the case of large loading steps, is used, which is given below.

In this algorithm, Kmax;Kdir , and dir are history variables, dK is
the curvature increment, Kn is the curvature at step n, and MK is
the corresponding moment in the first loading of a given curvature
K, which is obtained using cubic-spline interpolation. In order to
illustrate the performance of the proposed algorithm, the response
of the 2-layer strand under cyclic loading with variable amplitude
is shown in Fig. 26. Although only the first loading curve (Fig. 20)
has been used as an input, the response has been predicted
accurately.

5.2.2. Comparison against DNS
As the first example, the single-layer strand is considered. The

moment vs. curvature diagram in Fig. 17 is used as the input for
the RVE response predictor algorithm. The force vs. displacement
diagram of the multi-scale and DNS models is presented in
Fig. 27, along with the responses considering the strand’s theoret-
ical maximum and minimum bending stiffnesses [7]. The maxi-
mum bending stiffness is computed as a function of the second
moment of area of the strand, assuming its cross-section remains
rigid (no sliding), while the minimum bending stiffness is taken
equal to the sum of the bending stiffnesses of all constituent wires.
As it can be observed, the response of the DNS is perfectly pre-
dicted by the multi-scale method. As expected, at low deflections,
the response is similar to the case considering the maximum bend-
ing stiffness, and the final stiffness is equal to the minimum bend-
ing stiffness. The deformed shape and curvature at the end of the
loading are also shown in Fig. 28.

In order to explore more complicated microstructures, the 2-
layer and the non-periodic 3-layer RVEs are considered as the
microstructure of the cable. The force vs. displacement diagrams
of the multi-scale and DNS models are presented in Fig. 29, consid-
ering 10�3 mm as the contact regularization parameters. This com-
parison against DNS for the non-periodic RVE, shows the
re loading, along with identification of different lines corresponding to sliding of



Fig. 22. The effect of finite element discretization on the single-strand RVE behavior. a, The axial behavior; b, The axial-bending behavior.

Fig. 23. The effect of RVE size on the single-strand RVE behavior. a, The axial behavior; b, The bending behavior.

Fig. 24. The effect of RVE size on the axial-bending behavior of different RVEs. a, The single-layer RVE; b, The 3-layer RVE.

Fig. 25. The geometry and boundary conditions of the bending under constant axial force.
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Fig. 26. Comparison of the offline behavior prediction and the actual response of the 2-layer RVE under combined axial force and cyclic bending curvature.

Fig. 27. The force–deflection response of a strand under bending with constant axial force obtained through the DNS, multi-scale analysis, and theoretical stiffnesses, for the
single-layer RVE.

Fig. 28. The response of a strand under bending with constant axial force obtained through the DNS and multi-scale analysis, for the single-layer RVE. a, Deformed
configuration; b, Curvature.

M.A. Saadat and D. Durville Computers and Structures 279 (2023) 106981

17



Fig. 29. The force–deflection responses of a strand under bending with constant axial force obtained through the DNS, multi-scale analysis, and theoretical stiffnesses. a, The
2-layer RVE; b, The non-periodic 3-layer RVE.

Fig. 30. The force–deflection response of a strand under bending with constant
axial force obtained through the DNS, multi-scale analysis, and theoretical
stiffnesses, for the 6-layer RVE.

M.A. Saadat and D. Durville Computers and Structures 279 (2023) 106981
capabilities of the proposed homogenization scheme for non-
periodic RVEs. It should be highlighted that for the case of non-
periodic 3-layer RVE, the DNS model has been discretized using
29600 quadratic elements (533133 dofs). In contrast, the RVE has
been discretized using 740 quadratic elements (13653 dofs) for
the multi-scale model, and the macro-scale model has 80 linear
elements (486 dofs).

Finally, for the 6-layer RVE, as the DNS model exceeds our avail-
able computational capacity, only a comparison against the theo-
retical minimum and maximum stiffnesses is presented in
Fig. 30. It should be noted that this example shows the robustness
of the presented offline homogenization scheme, as after obtaining
the monotonic response of the RVE, Fig. 21, the multi-scale analysis
is carried out on a personal computer in a few seconds, while run-
ning the DNS on a supercomputer is not possible.
6. Conclusions

A computational homogenization has been presented in this
study to identify the non-linear constitutive model of a beam ele-
ment able to reproduce the complex hysteretic response of spiral
strands subject to bending under tension. Various bending tests
18
on full-length samples of spiral strands can be simulated with high
accuracy and at a very low computational cost, thanks to an asso-
ciated prior offline identification procedure based on a unique
monotonic bending simulation performed on an RVE.

Following the choice of a beam model to represent the spiral
strand at the macro-scale, the homogenization is performed only
in the axial direction, leading to prescribing periodic conditions
at both ends of the RVE. Neglecting shear stresses, the local loading
at the macro-scale is defined by either resulting force/moment or
strain corresponding to elongation, bending, and twisting beam
deformation modes. By highlighting a geometric non-linear cou-
pling between axial loading and bending, it has been shown that
the BVP on the RVE should be set in a mixed stress–strain form.
This way, resulting forces or strains act respectively as forces or
displacements is a standard boundary value problem. The BVP at
the micro-scale is solved using a non-linear solver, accounting for
all wires and frictional contact interactions between them within a
large displacement and finite strain framework. It has been shown
that periodic boundary conditions could be utilized, even for non-
periodic RVEs. Several numerical examples illustrate the robust-
ness of the proposed framework in capturing the mechanical
behavior of spiral strands and are compared with results available
in the literature. Since the different cases of bending under tension
which have been examined showed that stiffness terms could be
assumed constant except the bending stiffness demonstrating a
non-linear dependence on the curvature, a procedure has been
proposed to retrieve the evolution of the bending moment as a
function of any curvature history, based on a single monotonic
bending test simulation performed on an RVE. Once this prior iden-
tification has been carried out, simulations at the macro-scale with
the homogenized beam model can be performed at very low com-
putational cost, and excellent agreement is obtained with the
results of DNS on the tested configurations.
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