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Abstract: The epidemic of obesity, type 2 diabetes and nonalcoholic liver disease (NAFLD) favors
drug consumption, which augments the risk of adverse events including liver injury. For more than
30 years, a series of experimental and clinical investigations reported or suggested that the common
pain reliever acetaminophen (APAP) could be more hepatotoxic in obesity and related metabolic
diseases, at least after an overdose. Nonetheless, several investigations did not reproduce these
data. This discrepancy might come from the extent of obesity and steatosis, accumulation of specific
lipid species, mitochondrial dysfunction and diabetes-related parameters such as ketonemia and
hyperglycemia. Among these factors, some of them seem pivotal for the induction of cytochrome P450
2E1 (CYP2E1), which favors the conversion of APAP to the toxic metabolite N-acetyl-p-benzoquinone
imine (NAPQI). In contrast, other factors might explain why obesity and NAFLD are not always
associated with more frequent or more severe APAP-induced acute hepatotoxicity, such as increased
volume of distribution in the body, higher hepatic glucuronidation and reduced CYP3A4 activity.
Accordingly, the occurrence and outcome of APAP-induced liver injury in an obese individual with
NAFLD would depend on a delicate balance between metabolic factors that augment the generation
of NAPQI and others that can mitigate hepatotoxicity.

Keywords: acetaminophen; drug-induced liver injury; obesity; nonalcoholic fatty liver disease;
steatosis; nonalcoholic steatohepatitis; diabetes; cytochrome P450 2E1; fatty acids; mitochondria

1. Introduction

The epidemic of obesity is associated with a steady rise in drug consumption in order
to treat several associated diseases such as type 2 diabetes mellitus (T2DM), hypertension,
atherosclerosis, dyslipidemia and osteoarthritis [1,2]. In addition, numerous drugs are
currently being developed in order to specifically treat nonalcoholic fatty liver disease
(NAFLD), which is frequently associated with obesity and overweight [3,4]. This implies in-
creased polypharmacy among obese patients, which can augment the risk of adverse events
including drug-induced liver injury (DILI) [5,6]. In line with this, recent investigations
reported a higher frequency of DILI in patients with NAFLD [7,8]. More specifically, the
common pain reliever acetaminophen (APAP) is one of the identified drugs that could be
more hepatotoxic in obesity and NAFLD, at least after an overdose [9]. The present article
reviews the clinical and experimental investigations published on APAP-induced liver
injury in the context of these metabolic diseases and also discusses the possible reasons that
might explain why some studies are discrepant from others. Because our previous review
on this matter was published in 2014 [9], many recent investigations are now discussed in
this updated review.

2. APAP Hepatotoxicity
2.1. General Overview

APAP, also referred to as paracetamol, is one of the most widely prescribed drugs
for the management of pain and hyperthermia. The current maximum recommended
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dosage of APAP is 4 g/day in adults even though the Food and Drug Administration (FDA)
advises doses below 3.25 g/day for chronic use [10]. Although therapeutic doses of APAP
can induce hepatic cytolysis in some patients [11,12], most cases of severe APAP-induced
acute liver injury occur after accidental or intentional overdoses [13,14]. Actually, APAP
is deemed to have a narrow therapeutic margin since as little as 7.5 g/day might be haz-
ardous [15]. Currently, administration of N-acetylcysteine (NAC) is the only approved ther-
apy to treat APAP overdose-induced liver injury in patients [10,14]. The rationale of NAC
administration is to restore hepatic levels of glutathione (GSH), a major endogenous antiox-
idant limiting the noxious effects of the APAP toxic metabolite N-acetyl-p-benzoquinone
imine (NAPQI) (Figure 1) [16,17]. Notably, repeated or long-term intake of APAP at thera-
peutic doses can occasionally cause acute hepatic cytolysis of different severities [11,12] but
also chronic liver injury such as granulomatous hepatitis and cirrhosis [18–20].
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Figure 1. Biotransformation and toxicity of APAP in normal liver. (A). For therapeutic dose, APAP is
mainly detoxified through sulfation and glucuronidation, while a small proportion is metabolized
to N-acetyl-p-benzoquinone imine (NAPQI) via the cytochrome P450 2E1 (CYP2E1) and to a lesser
extent CYP3A4 and CYP1A2. In normal liver, the low amounts of NAPQI are efficiently detoxified
by glutathione (GSH), a major antioxidant molecule present in different cellular compartments in-
cluding mitochondria. (B). After APAP overdoses, the sulfation and glucuronidation pathways are
overwhelmed and more APAP undergoes CYP-dependent oxidation to NAPQI. However, GSH con-
centrations in hepatocytes are not sufficient to allow the efficient detoxification of NAPQI, which then
induces major mitochondrial dysfunction, oxidative stress and acute liver injury. More information is
provided in the text.

A key player in APAP liver injury is cytochrome P450 2E1 (CYP2E1), an enzyme that
catalyzes the oxidation of APAP to NAPQI (Figure 1) [10,21,22]. Indeed, NAPQI is a highly
reactive metabolite inducing severe mitochondrial dysfunction, overproduction of reactive
oxygen species (ROS), and c-jun N-terminal kinase (JNK) activation, eventually leading to
ATP depletion and massive hepatocellular necrosis [17,22,23]. Importantly, mitochondrial
CYP2E1 could play a major role in APAP-induced cytotoxicity [24,25]. Finally, CYP3A4
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(referred to as CYP3A2 in rats and CYP3A11 in mice) and CYP1A2 might also play a role in
the conversion of APAP to NAPQI (Figure 1), although to a lesser extent than CYP2E1 in
normal physiological conditions [26,27].

2.2. Predisposing Factors

Except for APAP ingested dose, APAP-induced hepatotoxicity could be favored by
different factors such as chronic alcohol abuse, severe or chronic liver diseases, prolonged
fasting and malnutrition, older age, and some comedications such as antituberculosis and
antiepileptic drugs [12,16,28,29]. Importantly, increased activity of hepatic CYP2E1 (and
possibly other CYPs) seems to be a common mechanism whereby chronic alcohol abuse,
prolonged fasting and some comedications favor APAP-induced liver injury [16,30]. As
discussed in this review, obesity, NAFLD and both types 1 and 2 diabetes could also predis-
pose to APAP liver injury, at least in part, due to higher hepatic CYP2E1 activity [9,10,13].
Finally, the risk of APAP hepatotoxicity could be modulated by polymorphisms in different
genes [16], such as UGT1A encoding UDP-glucuronosyltransferase (UGT) 1A, which plays
a pivotal role in APAP glucuronidation and detoxification (Figure 1) [28,31].

3. APAP Hepatotoxicity in NAFLD
3.1. Main Features of NAFLD

Because of the epidemic of obesity and T2DM, NAFLD is now the most frequent
chronic liver disease worldwide with a global prevalence of 25% [32]. NAFLD comprises a
large spectrum of histologic changes including simple fatty liver, nonalcoholic steatohep-
atitis (NASH), advanced fibrosis and cirrhosis [33], which can evolve into hepatocellular
carcinoma (HCC) [34]. It is estimated that simple fatty liver progresses to NASH in about
10 to 20% of the patients [35]. NASH itself is defined by the presence of steatosis (mostly
macrovacuolar), some necrosis and apoptosis, hepatocellular ballooning and lobular in-
flammation [33]. Of note, the presence of microvesicular steatosis has been associated with
histological markers of NASH severity [36]. Although the mechanisms of progression of
fatty liver to NASH in some patients are not fully understood, mitochondrial dysfunction,
oxidative stress and lipid peroxidation are deemed to play a primary role in the occurrence
of cell death and inflammation [37–39].

3.2. Clinical Investigations on Acute APAP Hepatotoxicity in Obesity and NAFLD

There is some clinical evidence that obesity and NAFLD can predispose to APAP
hepatotoxicity in the setting of APAP overdose (Table 1). Two large retrospective studies re-
ported that APAP-induced acute liver injury was more frequent in NAFLD patients [40,41].
In these studies, patients with pre-existing NAFLD hospitalized for APAP overdose had
a four- to sevenfold higher prevalence of acute liver injury as compared to those without
NAFLD [40,41]. In another study, APAP-induced acute liver injury was more frequent
in overweight or obese patients, but NAFLD presence was not investigated [42]. Obesity
might also favor APAP hepatotoxicity when this analgesic and antipyretic drug is taken at
therapeutic doses. Indeed, mild to moderate hepatic cytolysis, as evidenced by increased
plasma transaminases (ALT and AST), was reported in some morbidly obese patients but
not in nonobese individuals after receiving 4–5 g of intravenous APAP [43].

In contrast to these studies, the occurrence of APAP-induced acute liver injury was
reported to be similar, or even lower, in obese patients compared to nonobese individuals
(Table 1) [44,45]. However, one of these studies showed that obese patients had significantly
poorer clinical outcomes after acute liver failure [44]. The discrepancies between the
aforementioned studies might arise from several factors including the degree of obesity, the
existence of NASH and advanced fibrosis and the presence of insulin resistance and T2DM.
Indeed, these factors could alter APAP absorption, distribution, metabolism and excretion
(ADME) but also basal antioxidant defenses and mitochondrial function, as discussed in
Section 4.
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Table 1. Summary of the clinical studies (ordered by increasing year) carried out on APAP-induced
acute liver injury in obesity and NAFLD.

Authors, Year
[References]

Design of the
Study

Presence of
NAFLD

Hepatic CYP2E1
Activity

APAP
Overdose

APAP-Induced Acute
Liver Injury

Rutherford et al.,
2006 [44] Prospective Not reported in

this study 1
Not reported in

this study Yes
Lower incidence (but
poorer outcomes) in

obese patients

Nguyen et al., 2008
[40] Retrospective Yes Not reported in

this study Yes Higher prevalence in
patients with NAFLD

Myers and Shaheen,
2009 [41] Retrospective Yes Not reported in

this study Yes Higher prevalence in
patients with NAFLD

Radosevich et al.,
2016 [45] Retrospective Not reported in

this study 1
Not reported in

this study Yes
Equal prevalence

between obese and
nonobese patients

Van Rongen et al.,
2016 [43] Prospective Not reported in

this study 1 Increased No (4 to 5 g)

Increased plasma ALT
and AST in morbidly
obese patients but not

in nonobese
individuals

Chomchai and
Chomchai, 2018 [42] Retrospective Not reported in

this study 1
Not reported in

this study Yes
Higher prevalence in
overweight and obese

patients
1 There is now ample evidence that obesity is strongly associated with NAFLD (reviewed in [32,35]).

3.3. Rodent Studies on Acute APAP Hepatotoxicity in Obesity and NAFLD

APAP-induced acute hepatotoxicity has also been investigated in different rodent
models of obesity and NAFLD (Table 2). However, while several investigations reported
greater APAP hepatotoxicity in obese rodents [9,46–53], others showed no difference or
even lower APAP-induced liver injury compared to lean rodents [9,46,54–57]. In addition to
some factors mentioned in the previous section, discrepancies between these experimental
investigations might be due to differences in the rodent model (rats vs. mice), the origin of
obesity (genetic vs. diet-induced) and the composition of the hypercaloric diet, as discussed
in Section 4.

In some aforementioned investigations, APAP not only caused more severe hepatic
cytolysis in obese mice (as evidenced by increased ALT and AST) but also worsened liver
fat accumulation through a mechanism that might involve inhibition of autophagy and
exacerbation of oxidative stress [52,53]. Interestingly, aggravation of steatosis was also ob-
served in ob/ob mice acutely intoxicated with APAP although this was not associated with
higher plasma transaminases and more severe hepatic necrosis [49]. In NAFLD, distinct
mechanisms might thus be involved in APAP-induced hepatic cytolysis and worsening of
steatosis, respectively.

Table 2. Summary of the rodent studies (ordered by increasing year) carried out on APAP-induced
hepatotoxicity in obesity and NAFLD.

Authors, Year
[References]

Rodent Models of
Obesity and NAFLD

Presence
of NAFLD

Hepatic CYP2E1
Activity

Dose of
APAP

APAP-Induced
Hepatotoxicity

Corcoran and
Wong, 1987

[47]

Male Sprague–Dawley
rats fed a high-fat diet

for 24 weeks

Not
reported in
this study 1

Not reported in
this study

710 mg/kg
(i.p.)

Higher hepatotoxicity after 48 h,
compared to rats fed a

standard diet

Blouin et al.,
1987 [58]

Male obese Zucker fa/fa
rats

Not
reported in
this study 2

Not reported in
this study 2

1300 mg
(p.o.)

Similar hepatotoxicity after 48 h,
compared to lean rats
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Table 2. Cont.

Authors, Year
[References]

Rodent Models of
Obesity and NAFLD

Presence
of NAFLD

Hepatic CYP2E1
Activity

Dose of
APAP

APAP-Induced
Hepatotoxicity

Tuntaterdtum
et al., 1993 [54].

Male obese Zucker fa/fa
rats

Not
reported in
this study 2

Not reported in
this study 2

3000
mg/kg

(p.o)

Lower hepatotoxicity after 48
h, compared to lean rats

Ito et al., 2006
[55]

Male C57Bl/6 mice fed a
Western-style diet for

16 weeks

Male ob/ob mice

Yes

Not
reported in
this study 3

Not reported in
this study

Not reported in
this study 3

300 mg/kg
(p.o.)

300 mg/kg
(p.o.)

Lower hepatotoxicity after
6 h, compared to mice fed a

standard diet
Lower hepatotoxicity after
6 h, compared to wild-type

mice

Donthamsetty
et al., 2008 [59]

Male Swiss Webster mice
fed a MCD diet for

1 month 4
Yes Unchanged 360 mg/kg

(i.p.)

Higher hepatotoxicity from 6
to 48 h after overdose,

compared to mice fed a
standard diet

Kon et al., 2010
[48] Male KK-Ay mice Yes Not reported in

this study 5

300 or 600
mg/kg
(p.o.)

Higher hepatotoxicity after
6 h, compared to
wild-type mice

Kucera et al.,
2012 [50]

Male Sprague-Dawley rats
fed a high-fat diet for

6 weeks
Yes Not reported in

this study
1 g/kg
(p.o)

Higher hepatotoxicity after
24 and 48 h, compared to rats

fed a standard diet

Aubert et al.,
2012 [49]

Female db/db mice

Female ob/ob mice

Yes

Yes

Increased

Unchanged

500 mg/kg
(p.o.)

500 mg/kg
(p.o.)

Higher hepatotoxicity after
8 h, compared to
wild-type mice

Similar hepatotoxicity after
8 h, compared to
wild-type mice

Kim et al., 2017
[56]

Male C57Bl/6 mice fed a
fast food diet for 14 weeks Yes

Not reported in
this study (but
higher CYP2E1
protein levels)

200 mg/kg
(i.p.)

Lower hepatotoxicity
compared to wild-type mice

(timing not specified)

Piccinin et al.,
2019 [51]

Male FVB/N mice fed a
high-fat diet for 1 month Yes Not reported in

this study
300 mg/kg

(i.p.)

Higher hepatotoxicity after
6 h, compared to
wild-type mice

Shi et al., 2019
[52]

Male C57Bl/6 mice fed a
high-fat diet for 8 weeks Yes Not reported in

this study

50, 100 or
200 mg/kg

(p.o.)

Significant hepatotoxicity
after 24 h but no comparison

with wild-type mice

Wang et al.,
2021 [53]

Male C57Bl/6J mice fed a
high-fat diet for 8 weeks Yes Not reported in

this study
100 mg/kg

(p.o.)

Significant hepatotoxicity
after 24 h but no comparison

with wild-type mice

Ghallab et al.,
2021 [57]

Male C57Bl/6N mice fed a
Western diet for 48 to

50 weeks
Yes

Not reported in
this study (but
lower CYP2E1

immunostaining)

300 mg/kg
(i.p.)

Lower hepatotoxicity
compared to wild-type mice

(timing not specified)

1 Numerous investigations in rodents including rats showed that long-term feeding of high-fat diets consistently
induces NAFLD (reviewed in [60–62]). 2 Other studies showed that male obese and insulin resistant Zucker fa/fa
rats present moderate fatty liver [63,64] but reduced CYP2E1 activity [63,65]. 3 Other investigations showed that
male obese and diabetic ob/ob mice present major fatty liver [66,67], with unchanged [49] or reduced [68] CYP2E1
activity. 4 Methionine and choline-deficient (MCD) diet is known to induce NASH, which is however associated
with reduced body weight and blood glycemia [9,60]. 5 Previous studies showed that hepatic CYP2E1 mRNA
expression [69] and activity [70] are unchanged in KK-Ay mice.
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3.4. In Vitro Studies on Acute APAP Hepatotoxicity in Models of Fatty Acid Exposure
and NAFLD

Several in vitro studies investigated APAP acute cytotoxicity in different models of
fatty acid exposure and NAFLD. Two studies were carried out in hepatocytes isolated from
rats fed different types of lipids. The first study reported that liver slices from rats fed a
diet rich in butter (which mainly contains saturated fatty acids) were significantly more
sensitive to APAP cytotoxicity than those from rats fed a diet enriched in polyunsaturated
fatty acids (PUFAs) [71]. Unfortunately, lipid accumulation was not evaluated in this
study nor were included liver slices from rats fed a standard diet. Nevertheless, this study
suggests that exposure to long-chain saturated fatty acids could be more detrimental than
to polyunsaturated linoleic acid (C18:2) and arachidonic acid (C20:4) [71]. In the second
study, steatotic primary hepatocytes isolated from rats fed a diet enriched in corn oil (which
mainly contains PUFAs) were more sensitive to APAP cytotoxicity than those from rats
fed a standard diet [72]. The role of n-3 PUFAs (also referred to as ω-3 PUFAs) in APAP
hepatotoxicity is discussed in Section 4.2.5.

Two other studies were performed in hepatocyte cell lines incubated with different
fatty acids. In the first study, carried out in L02 liver cells, the investigations showed that a
24 h exposure to the monounsaturated oleic acid (C18:1) exacerbated APAP cytotoxicity
whereas different medium chain fatty acids did not cause this effect [73]. Unfortunately,
this study did not determine whether these different fatty acids induced steatosis in L02
liver cells. Other investigations performed in differentiated HepaRG cells incubated 7 days
with stearic acid (C18:0) or oleic acid (which both induced steatosis) showed that only
stearate supplementation induced greater APAP-induced cytotoxicity, which was blunted
by the CYP2E1 inhibitor chlormethiazole [74]. The apparent discrepancy between these two
studies could be due to the cell lines and the duration of oleic acid exposure. Nonetheless,
these in vitro investigations clearly indicate that exposure to some fatty acids could favor
APAP hepatotoxicity. Although this might be due to their propensity to induce CYP2E1,
other possible mechanisms cannot be excluded, as briefly discussed in Section 4.1.3.

Finally, in vitro investigations also reported that APAP worsened lipid deposition in
steatotic L02 cells [52,53], thus confirming in vivo results in diet-induced and genetically
obese mice [49,52,53]. However, steatosis in L02 cells was induced by cotreating the cells
with oleic acid and ethanol, which does not reflect pure NAFLD. Nevertheless, these
investigations suggest that acute APAP could aggravate steatosis through a direct effect
on hepatocytes and not via extrahepatic pathways such as fat mobilization from adipose
tissue [75,76].

3.5. Investigations on Chronic APAP Hepatotoxicity in Obesity and NAFLD

Repeated or chronic intake of therapeutic doses of APAP can sporadically cause
different types of liver injury, as previously mentioned [18–20]. Unfortunately, there are no
clinical studies investigating the occurrence of repeated or chronic APAP hepatotoxicity
in obesity and NAFLD. In rodents, a 13-week treatment with APAP was less hepatotoxic
in leptin receptor-deficient obese (fa/fa) Zucker rats than in lean rats [77]. According to
the authors, this might be explained by lower hepatic CYP2E1 expression in obese Zucker
rats [77]. This is in line with previous studies showing downregulation of hepatic CYP2E1
in obese Zucker rats [63,68] and lower acute APAP hepatotoxicity in obese Zucker rats
compared with their lean littermates [54]. The role of the adipokine leptin in CYP2E1
expression is briefly discussed in Section 4.2.2. In another study, a 35-day treatment with
APAP caused more severe hepatic cytolysis in spontaneously diabetic torii (SDT) rats
as compared to nondiabetic rats [78]. While SDT rats are not obese, this study did not
investigate fatty liver [78]. APAP hepatotoxicity in type 1 diabetes is discussed in Section 6.

4. Factors Modulating APAP Hepatotoxicity in Obesity and NAFLD

From the abovementioned studies carried out in humans and rodents, it appears that
obesity and NAFLD do not always increase the risk or the severity of APAP-induced liver
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injury. Hence, while several factors would favor APAP hepatotoxicity in these metabolic
diseases, others might limit APAP toxicity.

4.1. Factors That Could Favor APAP Hepatotoxicity in Obesity and NAFLD
4.1.1. CYP2E1 Induction

Hepatic CYP2E1 induction could be a major mechanism associated with greater
APAP hepatotoxicity observed in most clinical and experimental studies (Figure 2A),
although other explanations can be considered as discussed below. Indeed, higher CYP2E1
activity is expected to cause an overproduction of NAPQI and deeper GSH depletion, thus
leading to more severe mitochondrial dysfunction and oxidative stress [9,13,79]. In line
with this hypothesis, the study by van Rongen et al. reported higher CYP2E1 activity in
morbidly obese patients, which was associated with mild to moderate hepatic cytolysis
after administration of 4–5 g of APAP [43]. However, CYP2E1 activity was not determined
in the other investigations reporting a higher risk of APAP-induced liver injury in patients
with obesity and NAFLD [40–42]. Experimentally, investigations in ob/ob and db/db
obese mice showed that APAP hepatotoxicity correlated with hepatic CYP2E1 activity but
not with liver fat accumulation [49]. Unfortunately, most other rodent studies showing
higher APAP hepatotoxicity in obese animals did not investigate CYP2E1 expression, or
activity [47,48,50–53].
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could favor liver injury induced by APAP overdose, for instance by increasing cytochrome P450 2E1
(CYP2E1) activity, reducing basal concentrations of glutathione (GSH) and promoting preexisting
mitochondrial dysfunction. In addition, the accumulation of cholesterol could sensitize the liver
to APAP-induced hepatotoxicity by favoring mitochondrial GSH depletion. Lobular inflammation
might also favor APAP hepatotoxicity via several cytokines such as tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β) and IL-6. (B). On the contrary, some factors in obesity and NAFLD could
mitigate APAP-induced liver injury, for instance by increasing APAP glucuronidation and reducing
CYP3A4 and CYP1A2 activity. Moreover, CYP2E1 induction could be absent or lost in some metabolic
and pathological conditions. The absence of preexisting mitochondrial dysfunction in some patients
might also mitigate APAP-induced hepatotoxicity. Consequently, obese people with one or several
of these mitigating factors might not have a higher risk of severe APAP-induced liver injury. More
information is provided in the text.
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In a study carried out in mice fed a fast food diet enriched in saturated fatty acids,
cholesterol and fructose, less severe APAP liver injury was observed despite enhanced
hepatic CYP2E1 protein expression but CYP2E1 activity was not measured [56]. Adaptive
responses in different antioxidant and anti-inflammatory pathways might explain this
protective effect in this mouse model of obesity [56]. Conversely, higher APAP hepatotoxi-
city was observed in a mouse model of NASH despite unchanged CYP2E1 activity [59].
Although the reasons for the lack of CYP2E1 induction are unclear, it should be underlined
that NASH was induced in this work with a methionine and choline-deficient (MCD)
diet [59], which significantly reduces body weight and blood glycemia and does not cause
systemic insulin resistance [9,60]. Hence, this peculiar metabolic profile might have re-
moved some cues that otherwise might have led to CYP2E1 induction, as discussed in
Section 4.2.2.

Hepatic CYP2E1 induction is a salient feature of obesity and NAFLD. Indeed, many
clinical investigations consistently reported higher hepatic CYP2E1 expression and activity
in patients with these metabolic diseases [9,43,80–85]. Hepatic CYP2E1 induction has
also been found in many studies performed in different rodent models of obesity and
NAFLD [49,57,82,86–91], although there are some exceptions as mentioned in Section 4.2.2.

Hepatic CYP2E1 induction in obese patients would not only cause more frequent
or more severe APAP hepatotoxicity but may also favor the transition of fatty liver to
NASH [82,89,92–94]. In steatotic hepatocytes, ROS overproduction secondary to CYP2E1
induction is indeed deemed to cause lipid peroxidation and the generation of noxious
reactive aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE),
which then promote necroinflammation and fibrosis [82,92–95]. Accordingly, the key role
of CYP2E1 in NASH pathophysiology makes CYP2E1 inhibition or downregulation a
promising therapeutic strategy in NAFLD [92,96,97].

The mechanisms of CYP2E1 induction in NAFLD are poorly understood. Accumula-
tion of some fatty acids such as palmitic acid (C16:0) and stearic acid (C18:0) might play a
role [74,98,99]. In keeping with the role of some fatty acids or lipids, a recent interventional
study in healthy individuals showed that a short-term regular diet supplemented with
whipped cream induced hepatic steatosis and significantly enhanced CYP2E1 activity [100].
Other mechanisms might involve hyperleptinemia, hyperglucagonemia and insulin resis-
tance [10,25,82]. The exact downstream signaling pathways involved in CYP2E1 induction
in NAFLD are still unknown.

4.1.2. Low Basal Levels of GSH

Low basal levels of liver GSH might also favor APAP hepatotoxicity in NAFLD as
this is expected to hasten and even promote the profound GSH depletion taking place
after APAP overdose (Figure 2A). Consequently, less NAPQI can be detoxified by hepatic
GSH thus allowing the APAP reactive metabolite to covalently bind to different proteins
and other cellular components, especially in mitochondria [16,17,23]. Significant reduction
of basal levels of liver GSH has been reported in NAFLD, either in patients [101,102] or
in some rodent models [103,104]. However, other animal investigations did not find any
significant decrease in hepatic GSH content [49,50,105,106], although this was sometimes
associated with higher levels of oxidized GSH (GSSG) [105].

The mechanisms that can cause low basal levels of liver GSH in NAFLD might be
complex. Several factors might be involved including the extent of ROS overproduction via
mitochondrial dysfunction, reduced synthesis of GSH and impairment of other antioxidant
defenses, which can occur during the progression of NAFLD [37,105,107,108].

4.1.3. Extent of Steatosis and Accumulation of Deleterious Fatty Acids and Lipid Species

Investigations in genetically obese mice intoxicated with APAP showed that higher
basal levels of hepatic triglycerides did not cause more severe APAP-induced hepatic
cytolysis [49]. Hence, the extent of steatosis per se does not seem to favor APAP hepato-
toxicity in NAFLD. In contrast, the accumulation of some fatty acids might specifically
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favor liver injury. For instance, palmitic and stearic acids could be particularly harmful by
promoting hepatic CYP2E1 induction [74,98,99], as previously mentioned. Furthermore,
studies carried out in transgenic fat-1 mice, which endogenously convert n-6 PUFAs to
n-3 PUFAs, showed that male animals were more susceptible to APAP-induced acute liver
injury, possibly via a JNK-dependent mechanism and downregulation of signal transducer
and activator of transcription 3 (STAT3) [109,110].

Cholesterol accumulation might also favor APAP hepatotoxicity in NAFLD
(Figure 2A). Indeed, investigations in mice fed a high-cholesterol diet for 4 weeks showed
more severe APAP-induced acute liver injury, possibly through the Toll-like receptor 9
(TLR9)/inflammasome pathway [111]. Interestingly, mitochondrial free cholesterol loading
leads to mitochondrial GSH depletion in hepatocytes [112], which could promote mito-
chondrial dysfunction and cell death [113]. In contrast, CYP2E1 might not be involved
because hepatic CYP2E1 expression and activity were reduced in rats fed a high-cholesterol
diet for 11 weeks [114].

4.1.4. Mitochondrial Dysfunction

NAFLD is associated with complex mitochondrial alterations. In simple fatty liver,
mitochondrial oxidative metabolism is stimulated, most probably as an adaptation to the
increased levels of different substrates including fatty acids [37,38,108,115]. However, this
adaptation can be lost in NASH, which is associated with reduced expression and activity
of different mitochondrial respiratory complexes [37,38,108,115–117]. Accordingly, NASH-
associated mitochondrial dysfunction might favor APAP hepatotoxicity (Figure 2A) since
respiratory chain impairment is pivotal in APAP-induced liver injury [118–120]. However,
there are currently no available data to confirm this hypothesis but different rodent models
reproducing NAFLD progression can be useful for this [60,61,121].

4.1.5. Presence of Lobular Inflammation

Simple fatty liver can progress in some patients to NASH which is characterized by lob-
ular inflammation, hepatocellular ballooning and the presence of some necrotic hepatocytes
and apoptotic bodies, as previously mentioned. These pathological lesions are due at least
in part to the overproduction of several proinflammatory cytokines such as tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 [122,123], which could sensitize the liver
to APAP-induced hepatotoxicity (Figure 2A). Interestingly, APAP-induced acute liver injury
is exacerbated in Nlrp6-/- mice [124], a well-established mouse model of intestinal dysbiosis
associated with enhanced gut–liver inflammatory responses [125]. However, it remains
to be determined whether obesity- and NAFLD-associated gut dysbiosis [126,127] could
play a role in higher APAP hepatotoxicity in these metabolic diseases. Other investiga-
tions showed that hepatic inflammation favors liver injury induced by different drugs and
chemicals [128–130].

4.2. Factors That Could Mitigate APAP Hepatotoxicity in Obesity and NAFLD
4.2.1. Alteration in APAP Absorption and Distribution

Only a few clinical studies dealt with the impact of obesity on gastrointestinal absorp-
tion of APAP and its whole-body distribution. To our knowledge, only one study reported
a lower absorption rate of APAP in obese subjects, which was associated with a decrease
in the maximum plasma concentrations of the pain reliever [131]. Regarding whole-body
distribution, two studies reported higher APAP volume of distribution (Vd) in obese sub-
jects [43,132]. However, all these investigations were carried out in morbidly obese persons
and further investigations would be needed to confirm these data for body mass index
(BMI) below 40 kg/m2. Nevertheless, decreased APAP gastrointestinal absorption and
higher Vd could favor lower APAP plasma and liver concentrations, at least in some obese
patients [9].
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4.2.2. Lack of CYP2E1 Induction or CYP2E1 Downregulation

Although hepatic CYP2E1 activity is frequently increased in NAFLD (see Section 4.1.1),
some investigations reported a lack of CYP2E1 induction, which might not allow NAPQI
overproduction (Figure 2B). Indeed, several clinical studies showed that some obese pa-
tients had CYP2E1 activity in the range of nonobese individuals [43,46,85,133]. Experimen-
tally, hepatic CYP2E1 expression and activity are not increased in obese leptin-deficient
ob/ob mice and leptin receptor-deficient fa/fa Zucker rats [49,68,134]. Although this might
suggest that the leptin signaling pathway is needed for CYP2E1 induction in obesity and
NAFLD, hepatic CYP2E1 activity is enhanced in leptin receptor-deficient db/db mice,
especially in females [49]. The very high glycemia and ketonemia in these mice [49,66]
might play a role in CYP2E1 induction in this context of severe diabetes [10]. Because many
endogenous molecules, hormones and cytokines are deemed to regulate hepatic CYP2E1
expression and activity, sometimes with opposite effects [10,82,135–137], it is possible that
CYP2E1 induction might not always occur in obesity and NAFLD.

Another possibility could be the loss of CYP2E1 induction during NAFLD progression
(Figure 2B). Indeed, recent investigations suggested that CYP2E1 induction seems to wane
when NASH progresses toward advanced fibrosis [57], in line with clinical data reporting a
significant reduction of CYP2E1 expression with the progression of liver fibrosis [138,139].
Increased production of proinflammatory cytokines including TNF-αmight play a role in
this progressive decline of CYP2E1 expression [135,139]. In contrast, the profibrotic cytokine
transforming growth factor-beta (TGF-β) does not seem to be involved in fibrosis-associated
CYP2E1 downregulation [140,141].

4.2.3. Reduced CYP3A4 and CYP1A2 Activity

CYP3A4 (also referred to as CYP3A) and CYP1A2 are also involved in APAP bio-
transformation to NAPQI, although to a lesser extent than CYP2E1 [26,27]. Many clinical
and experimental studies consistently reported lower hepatic expression and activity of
CYP3A4 in obesity and NAFLD [83,142–150]. Hence, lower CYP3A4 activity in obesity and
NAFLD might reduce the generation of NAPQI after an APAP overdose (Figure 2B).

Several clinical studies on CYP1A2 activity reported little or no change in
obesity [83,147,149]. Interestingly, investigations in patients with NAFLD reported that
CYP1A2 expression and activity were unaltered in fatty liver but significantly reduced in
NASH [151,152]. These data seem to be in line with the investigations carried out in obese
patients since NASH occurs only in a minority of those people [35]. In rodent models of
NAFLD, CYP1A2 expression and activity were significantly decreased in most investiga-
tions [153–158], but increased or unchanged in some others [143,159]. Like CYP3A4, lower
CYP1A2 activity in NAFLD might also reduce the generation of NAPQI after an APAP
overdose (Figure 2B).

4.2.4. Increased APAP Glucuronidation

Clinical and experimental investigations consistently reported increased APAP glu-
curonidation in obesity and NAFLD [9,43,49,83,160,161], which is expected to reduce the
extent of APAP bioactivation to NAPQI (Figure 2B). Of note, UGT1A6 and UGT1A9 are the
main UGT isoforms involved in APAP glucuronidation in humans [162] but only UGT1A9
protein expression tended to be increased in patients with obesity-related fatty liver [163].

4.2.5. Exposure and Accumulation of Protective Fatty Acids

Two studies carried out in female transgenic fat-1 mice (which endogenously con-
vert n-6 PUFAs to n-3 PUFAs) showed significant protection against APAP-induced acute
liver injury [109,164]. In the study by Liu et al., the opposite effect was observed in male
mice and this gender difference was attributed to estrogens [109]. Of note, the expression
of hepatic CYP2E1 in female mice was unchanged in one study [164], whereas CYP2E1
was not investigated in the second one [109]. Other investigations in rats showed that
dietary supplementation with the n-3 polyunsaturated eicosapentaenoic and docosahex-
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aenoic acids (EPA and DHA) protected against acute APAP liver injury [165]. According
to the authors, the hepatoprotective effect of n-3 PUFAs against APAP liver injury might
be mediated via their anti-inflammatory and antioxidant properties [164,165]. Another
study in rats fed a diet with 20% fish oil (i.e., rich in n-3 PUFAs) also reported protection
against APAP-induced acute liver injury, which was deemed to be related to higher APAP
glucuronidation [166]. Interestingly, n-3 PUFAs reduced hepatic CYP2E1 activity in in-
sulinopenic diabetic rats [167] but their protective effect against APAP hepatotoxicity was
not investigated in this study.

5. APAP-Induced Liver Injury after Bariatric Surgery

Roux-en-Y gastric bypass and sleeve gastrectomy are surgical procedures increasingly
used for the treatment of morbid obesity and comorbidities including NAFLD [168,169].
A retrospective study suggested that weight loss surgery may predispose to acute liver
failure after APAP overdose and this was independent of alcohol abuse and the use of
APAP–narcotic combination drugs [170]. More recently, a case of fulminant hepatitis
was observed after laparoscopic sleeve gastrectomy in a young woman who received
therapeutic doses of APAP [171]. In addition to malnutrition and vitamin deficiency, the
authors pointed to other possible risk factors including rapid weight loss, which might have
aggravated preexisting fatty liver [171]. Notably, although CYP2E1 activity in obese patients
decreases after bariatric surgery it remains higher than in healthy volunteers [133,172].
Thus, increased CYP2E1 activity might favor APAP-induced liver injury in obese patients
even after such surgery. However, beyond CYP2E1 activity, other metabolic parameters
most probably explain the profound alterations of APAP bioavailability observed after
weight loss surgery [173,174]. Hence, further investigations would be needed to determine
the mechanisms whereby bariatric surgery might predispose to APAP hepatotoxicity.

6. APAP-Hepatotoxicity in Type 1 Diabetes Mellitus

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by insulin
deficiency and leading to severe hyperglycemia [175]. Importantly, the pathogenesis of
T1DM significantly differs from that of obesity-related T2DM [176,177]. Nonetheless, T1DM
seems to be frequently associated with fatty liver, which can progress to steatohepatitis and
cirrhosis in some patients [178,179]. Some clinical investigations disclosed that diabetes
increases the risk and the severity of DILI but these studies did not specify whether there
was a difference between T1DM and T2DM [180–182]. Moreover, these investigations did
not provide specific information on APAP.

T1DM can be induced in rats and mice by single or repeated injections of streptozo-
tocin, a pancreatic β-cell poison [10,183]. Using this experimental model, a recent study
reported that APAP-induced acute liver injury was exacerbated in diabetic mice possibly via
a hyperglycemia-induced proinflammatory response in liver Kupffer cells [184]. Although
not investigated in this study, it is possible that CYP2E1 induction might also have played
a role in liver injury aggravation [10]. Indeed, numerous studies (but not all—see below)
showed that streptozotocin-induced diabetes is associated with higher hepatic CYP2E1
protein expression and activity [10,167,185–188].

Contrasting with the study by Wang et al. [184], several investigations in streptozotocin-
treated rodents showed that T1DM protected against APAP-induced acute hepatotoxic-
ity [189–191]. The exact reasons for these discrepancies are unknown although higher APAP
glucuronidation and improved liver repair in diabetic animals might play a role [189–191].
However, it is worth mentioning that hepatic CYP2E1 activity was not increased in these
studies, thus contrasting with many other investigations reporting CYP2E1 induction in
streptozotocin-treated rodents [10,167,185–188]. Further studies would be needed in order
to determine why hepatic CYP2E1 induction is not always observed in streptozotocin-
induced experimental diabetes. The extent of insulinopenia, ketonemia and hyperglycemia
might be pivotal [10], in addition to other metabolic factors already discussed in this review.
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7. Conclusions

Although obesity and NAFLD appear to increase the risk or the severity of APAP-
induced acute liver injury, this relationship has not always been reported. As discussed in
previous reviews [9,13,46] and this one, we propose that the occurrence and outcome of
APAP-induced liver injury in these metabolic diseases might depend on a subtle balance
between metabolic factors that can be protective for the liver and others that favor the
generation of NAPQI (Figure 2). Hence, further investigations are needed in order to
understand why some obese individuals could be at risk for APAP-induced hepatotox-
icity and why some others are not. Although the absence of hepatic CYP2E1 induction
might explain the lack of increased risk, other mechanisms might be involved including
reduced APAP gastrointestinal absorption, enhanced Vd, higher hepatic glucuronidation
and lower hepatic CYP3A4 activity (Figure 2B). In contrast, robust CYP2E1 induction,
lobular inflammation, low basal concentrations of hepatic GSH and NASH-associated mito-
chondrial dysfunction might favor APAP hepatotoxicity in obesity and NAFLD (Figure 2A).
While some of these factors are difficult to investigate in patients, many rodent models
can be useful for mechanistic purposes [60,61,121]. Of note, these rodent models of obesity
and NAFLD could also be valuable in order to determine whether repeated or chronic
administration of APAP at therapeutic doses can cause more severe liver injury.

From a clinical viewpoint, physicians are encouraged to carry out regular monitoring
of liver function in obese patients treated with chronic APAP administration, in particular
in patients with pre-existing NAFLD. Finally, it should be underlined that chronic ethanol
consumption constantly causes hepatic CYP2E1 induction while recent investigations
reported that alcohol consumption and obesity (or metabolic syndrome) can synergistically
augment the risk and severity of steatohepatitis, cirrhosis and HCC [192–194]. Hence,
further investigations would be required to determine whether obese people who regularly
consume alcohol have an even higher risk of APAP-induced hepatotoxicity.

Finally, a major issue for the future is to better prevent liver failure and mortal-
ity after APAP overdose, irrespective of the patient’s body weight. Although NAC is
the only approved antidote to treat APAP-induced liver injury [10,14], other therapeutic
compounds are currently being developed to inhibit CYP2E1 activity (fomepizole), or to
prevent mitochondrial oxidative stress (MitoTEMPO) and peroxynitrite formation (calman-
gafodipir) [195]. Numerous phytochemicals with efficient antioxidant properties might
also be promising antidotes [196]. As for NAC, these compounds might be able to protect
against APAP-induced necrosis [17,197] and other possible types of cell death including
necroptosis and apoptosis [198,199]. Furthermore, targeting autophagy, mitophagy and
mitochondrial biogenesis could also be promising therapeutic strategies [22,195,200].
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