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Partial suitable solutions for the micropolar equations and

regularity properties

Diego Chamorro∗, David Llerena∗

February 3, 2023

Abstract

The incompressible Micropolar system is given by two coupled equations: the first equation gives the
evolution of the velocity field ~u while the second equation gives the evolution of the microrotation field
~ω. In this article we will consider regularity problems for weak solutions of this system. For this we will
introduce the new notion of partial suitable solutions, which imposes a specific behavior for the velocity
field ~u only, and under some classical hypotheses over the pressure, we will obtain a hölderian gain for
both variables ~u and ~ω.

1 Introduction

We study here, under mild assumptions over only one variable, some general regularity properties for weak
solutions of the 3D incompressible Micropolar equations. This system is composed of two coupled equations:
the first one is based in the incompressible 3D Navier-Stokes problem, which gives the evolution of the
velocity field ~u with an internal pressure p, while the second one considers the evolution of a microrotation
field ~ω representing the angular velocity of the rotation of the fluid particles. These equations are given by
the following problem:

∂t~u = ∆~u− (~u · ~∇)~u− ~∇p+ 1
2
~∇∧ ~ω, div(~u) = 0,

∂t~ω = ∆~ω + ~∇div(~ω)− ~ω − (~u · ~∇)~ω + 1
2
~∇∧ ~u,

~u(0, x) = ~u0(x), ~ω(0, x) = ~ω0(x) and div(~u0) = 0, x ∈ R3,

(1.1)

here ~u : [0,+∞[×R3 −→ R3 is the velocity field of the fluid, p : [0,+∞[×R3 −→ R is the pressure and
~ω : [0,+∞[×R3 −→ R3 is the angular velocity. Micropolar equations were first introduced in 1966 by Erin-
gen [11] and they are now used in some particular cases, such as in the study of polymers, blood, muddy
fluids, nematic liquid crystals and bubly liquids. We refer to the book [20] for other applications of this
model. From the mathematical point of view, this system was studied in [9, 21, 25, 30] where a variety of
results were obtained.

Let us start with some remarks about the equations (1.1). First note that when the microrotation
field ~ω is null, we recover the usual 3D incompressible Navier-Stokes equations for irrotational fluids (i.e.
~∇ ∧ ~u = 0) which were studied for instance in [2] or in [13]. Next we observe that the angular velocity ~ω
is not a divergence free vector field and this makes the study of the properties of ~ω slightly more delicate
to handle. Finally, it is important to observe that the evolution equation for ~ω is essentially linear and
that there is a relatively mild coupling between the variables ~u and ~ω: in this article we will exploit this
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particular point to deduce our main regularity results for the system (1.1).

Existence of global weak solutions for this system were obtained in 1977 [12] and from now on we will
always assume that (~u, ~ω) ∈ L∞([0,+∞[, L2(R3)) ∩ L2([0,+∞[, Ḣ1(R3)) is a weak solution of (1.1). Note
that information over the pressure p can be easily obtained from ~u: indeed, by applying the divergence
operator in the first equation of (1.1) we obtain, since div(~u) = 0 and div(~∇ ∧ ~ω) = 0, the usual equation
for the pressure:

∆p = −div((~u · ~∇)~u). (1.2)

As said before, in this article we are interested in studying regularity issues for the micropolar system. In
the realm of fluid dynamics equations (and in particular for the Navier-Stokes equations) this topic is a
challenging and often open problem which can be solved under some different sets of hypotheses such as the
Serrin criterion (see [28], [22]), the Prodi-Serrin criterion (see [23], [29]) or in the setting of the Caffarelli-
Kohn-Nirenberg theory (see [5], [14]).

Concerning the micropolar system (1.1), some recent results were obtained in [7, 8, 19] where almost all
of the previous theories cited above were applied to obtain a regularity gain over the variables ~u and ~ω. Let
us remark that in most of these references the additional information is asked for both variables ~u and ~ω.
However, as it was pointed out in [10, 18, 24] and [31] it is possible to make a separated study of each one
of these variables.

In this article we are going one step further and in our main result (Theorem 1 below) we will show that
just some additional information over the velocity field ~u is needed in order to deduce a gain of regularity
for both variables ~u and ~ω. In this sense, when studying regularity issues for the problem (1.1), we will say
that the velocity field ~u “dominates” the angular velocity field ~ω.

To obtain a gain of regularity, we will work over small neighborhoods and for a point (t, x) ∈]0,+∞[×R3

let us consider the parabolic ball

QR(t, x) =]t−R2, t+R2[×BR(x), (1.3)

for some radius 0 < R < 1 such that t − R2 > 0. When the context is clear we will write QR instead of
QR(t, x).

We introduce now the following concept:

Definition 1 (Partial suitable solutions) Consider ~u, ~ω ∈ L∞t L2
x(QR)∩L2

t Ḣ
1
x(QR) two vector fields that

satisfy the equation (1.1) in the weak sense over the set QR. Assume moreover that we have the following

local information over the pressure: p ∈ L
3
2
t,x(QR). We will say that (~u, p, ~ω) is a partial suitable solution

for the micropolar equations (1.1) if the distribution µ given by the expression

µ = −∂t|~u|2 + ∆|~u|2 − 2|~∇⊗ ~u|2 − div
(
(|~u|2 + 2p)~u

)
+ (~∇∧ ~ω) · ~u, (1.4)

is a non-negative locally finite measure on QR.

First note that in this local setting each term of the above expression is well defined. Remark also that
the notion introduced above is only related to the evolution of the velocity field ~u and that the action of
the variable ~ω can be seen here as an external force. In a previous work [7] we considered a non-negative
measure involving the evolution of both variables ~u and ~ω, but as we only consider here the equation related
to the variable ~u (and not the equation of ~ω), this weaker notion of partial suitable solutions is needed.

With all these notions above, we can now state our main result:
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Theorem 1 Consider a parabolic ball QR given by (1.3). Let (~u, p, ~ω) be a partial suitable solution (in the
sense of Definition 1) for the micropolar system (1.1) over QR. There exists a small constant 0 < ε∗ � 1
such that if for some point (t0, x0) ∈ QR we have

lim sup
r→0

1

r

∫
]t0−r2,t0+r2[×B(x0,r)

|~∇⊗ ~u|2dxds < ε∗, (1.5)

then, the solution (~u, ~ω) is Hölder continuous in time and space for some exponent 0 < α < 1
24 in a small

neighborhood of (t0, x0).

As it was mentioned before, observe that we only impose conditions on the variable ~u (namely, the partial
suitability condition given in (1.4) and a good behavior for the gradient of the velocity field given in (1.5))
and no particular hypotheses are asked for the variable ~ω. However, and despite of this fact, we will see here
that we can deduce a hölderian gain of regularity for both variables. Of course, the strategy of the proof
of Theorem 1 is adapted to this setting: indeed, we will first perform a detailed study for the variable ~u
using the first equation of (1.1), next we will deduce some controls for the variable ~ω by studying the second
equation of (1.1) and only then, once we have gathered enough information, we will obtain the wished gain
of regularity for both variables by studying the evolution of the whole system (1.1). Finally, let us remark
that the interval 0 < α < 1

24 for the index of hölderian regularity α given above is mainly technical and we
do not claim any optimality on it.

We can give now the plan of the article: in Section 2 we present the main tools used in this article and in
Section 3 we study the evolution of the variable ~u to obtain some information on this variable. However, this
information will not be enough and in Section 4 we will perform a more detailed analysis of the properties
of the variables ~u. Then, in Section 5 we will deduce from the previous sections some properties for the
variable ~ω. Finally, in Section 6, we will gather all these results to give a proof of Theorem 1.

2 Definitions and Useful results

Before going any further, let us be more explicit about the Hölder regularity stated in Theorem 1 above.
Indeed, we will consider the homogeneous space (R × R3, d, µ) where d is the parabolic distance given by

d
(
(t, x), (s, y)

)
= |t − s|

1
2 + |x − y| and where µ is the usual Lebesgue measure dµ = dxdt. We then define

the homogeneous (parabolic) Hölder spaces Ċα(R× R3,R3) with 0 < α < 1 by the usual condition:

‖~φ‖Ċα = sup
(t,x) 6=(s,y)

|~φ(t, x)− ~φ(s, y)|(
|t− s|

1
2 + |x− y|

)α < +∞,

and it is with respect to this functional space that we will obtain the regularity gain announced.

Let us now say few words about Morrey spaces: although completely absent in the statement of Theorem
1, they are a powerful tool when studying problems related to regularity in PDEs. This fact was particularly
underlined in [26] and in [17] for the Navier-Stokes problem since they provide a very natural framework
as we shall see later on (see the key Lemma 8 below) and in this article we will use them in a systematic
manner. Thus, for 1 < p ≤ q < +∞, the (parabolic) Morrey spaces Mp,q

t,x(R× R3) are defined as the set of

measurable functions ~φ : R× R3 −→ R3 that belong to the space (Lpt,x)loc such that ‖~φ‖Mp,q
t,x

< +∞ where

‖~φ‖Mp,q
t,x

= sup
x0∈R3,t0∈R,r>0

(
1

r
5(1− p

q
)

∫
|t−t0|<r2

∫
B(x0,r)

|~φ(t, x)|pdxdt

) 1
p

. (2.1)

We present now some well-known facts:
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Lemma 1 (Hölder inequalities)

1) If ~f,~g : R× R3 −→ R3 are two functions such that ~f ∈ Mp,q
t,x(R× R3) and ~g ∈ L∞t,x(R× R3), then for

all 1 ≤ p ≤ q < +∞ we have ‖~f · ~g‖Mp,q
t,x
≤ C‖~f‖Mp,q

t,x
‖~g‖L∞t,x.

2) Let 1 ≤ p0 ≤ q0 < +∞, 1 ≤ p1 ≤ q1 < +∞ and 1 ≤ p2 ≤ q2 < +∞. If 1
p1

+ 1
p2

= 1
p0

and
1
q1

+ 1
q2

= 1
q0

, then for two measurable functions ~f,~g : R × R3 −→ R3 such that ~f ∈ Mp1,q1
t,x (R × R3)

and ~g ∈Mp2,q2
t,x (R× R3), we have the following Hölder inequality in Morrey spaces

‖~f · ~g‖Mp0,q0
t,x

≤ ‖~f‖Mp1,q1
t,x
‖~g‖Mp2,q2

t,x
.

Lemma 2 (Localization) Let Ω be a bounded set of R×R3. If we have 1 ≤ p0 ≤ q0, 1 ≤ p1 ≤ q1 with the
condition q0 ≤ q1 < +∞ and if the function ~f : R×R3 −→ R3 belongs to the space Mp1,q1

t,x (R×R3) then we
have the following localization property

‖1Ω
~f‖Mp0,q0

t,x
≤ C‖1Ω

~f‖Mp1,q1
t,x

≤ C‖~f‖Mp1,q1
t,x

.

In our work, the notion of parabolic Riesz potential (and its properties) will be crucial and for some
index 0 < a < 5 we define the parabolic Riesz potential La of a locally integrable function ~f : R×R3 → R3

by

La(~f)(t, x) =

∫
R

∫
R3

1

(|t− s|
1
2 + |x− y|)5−a

~f(s, y)dyds. (2.2)

Then, we have the following property in Morrey spaces

Lemma 3 (Adams-Hedberg inequality) If 0 < a < 5
q , 1 < p ≤ q < +∞ and ~f ∈ Mp,q

t,x(R × R3), then

for λ = 1− aq
5 we have the following boundedness property in Morrey spaces:

‖La(~f)‖
M

p
λ
,
q
λ

t,x

≤ C‖~f‖Mp,q
t,x
.

The three lemmas above constitute our main tools in Morrey spaces. For a more detailed study of these
functional spaces we refer to the books [17] and [1].

3 A (first) partial gain of information for the variable ~u

In this section we will only focus our study in the variable ~u and its equation:

∂t~u = ∆~u− (~u · ~∇)~u− ~∇p+
1

2
~∇∧ ~ω, div(~u) = 0.

Here, the variable ~ω can be seen as an external force for which we have the information ~ω ∈ L∞t L2
x ∩L2

t Ḣ
1
x.

Note that at this stage, we will not obtain a gain of regularity for the variable ~u, instead, using the hypotheses
given in Theorem 1 above, we will obtain a gain of integrability for ~u (stated, as we shall see, in terms of
Morrey spaces). In this sense our first result is the following:

Proposition 1 Under the hypotheses of Theorem 1 consider (~u, p, ~ω) a partial suitable solution for the
micropolar equations (1.1) over the set QR given in (1.3). Then there exists a radius 0 < R1 <

R
2 and an

index τ0 > 0 with 5
1−α < τ0 <

20
3 such that we have the following local Morrey information:

1QR1
(t0,x0)~u ∈M

3,τ0
t,x (R× R3), (3.1)

where the point (t0, x0) ∈ QR is given by the hypothesis (1.5).
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Proof of the Proposition 1. The proof of this result is rather technical and our starting point is given
by the notion of partial suitable solution: indeed, from the Definition 1 and exploiting the positivity of the
quantity given in (1.4) we easily deduce the following partial local energy inequality: for all φ ∈ Dt,x(QR)
(for which we have φ(0, x) = 0) we obtain∫

R3

|~u|2φdx+ 2

∫
R

∫
R3

|~∇⊗ ~u|2φdxds ≤
∫
R3

(∂tφ+ ∆φ)|~u|2dxds+ 2

∫
R

∫
R3

p(~u · ~∇φ)dxds (3.2)

+

∫
R

∫
R3

|~u|2(~u · ~∇)φdxds+

∫
R

∫
R3

(~∇∧ ~ω) · (φ~u)dxds.

Although this estimate is fundamental, it is necessary to fix a convenient test function φ which will allows
us to perform some computations. A particular good choice has been given by Scheffer in [27]:

Lemma 4 Let 0 < r < ρ
2 < R < 1. Let φ ∈ C∞0 (R× R3) be a function such that

φ(s, y) = r2ω

(
s− t
ρ2

,
y − x
ρ

)
θ

(
s− t
r2

)
g(4r2+t−s)(x− y),

where ω ∈ C∞0 (R × R3) is positive function whose support is in Q1(0, 0) and equal to 1 in Q 1
2
(0, 0). In

addition θ is a smooth function non negative such that θ = 1 over ]−∞, 1[ and θ = 0 over ]2,+∞[ and gt(·)
is the usual heat kernel. Then, we have the following points.

1) the function φ is a bounded non-negative function, and its support is contained in the parabolic ball
Qρ, and for all (s, y) ∈ Qr(t, x) we have the lower bound φ(s, y) ≥ C

r ,

2) for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have φ(s, y) ≤ C
r ,

3) for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have ~∇φ(s, y) ≤ C
r2 ,

4) moreover, for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have |(∂s + ∆)φ(s, y)| ≤ C r2

ρ5 .

A detailed proof of this lemma can be found for instance in [6] or in [17].

The strategy is thus the following: by a convenient use of the estimate (3.2) and by the properties of
the function φ given in the previous lemma, we will obtain -by controlling the information over small balls
by the information over bigger balls- the wished Morrey information stated in Proposition 1.

To do so, it will be useful to introduce the following quantities: for a point (t, x) ∈ R×R3 and for a real
parameter r > 0 we write

Ar(t, x) = sup
t−r2<s<t+r2

1

r

∫
B(x,r)

|~u(s, y)|2dy, αr(t, x) =
1

r

∫
Qr(t,x)

|~∇⊗ ~u(s, y)|2dyds,

λr(t, x) =
1

r2

∫
Qr(t,x)

|~u(s, y)|3dyds, Pr(t, x) =
1

r2

∫
Qr(t,x)

|p(s, y)|
3
2dyds,

(3.3)

and when the context is clear we will simply write Ar = Ar(t, x). Note that the previous quantities

correspond to the information L∞t L
2
x, L2

t Ḣ
1
x, L3

t,x and L
3
2
t,x. Note also that for 0 < r < 1, we have the

relationship between λr, Ar and αr

λ
1
3
r ≤ C(Ar + αr)

1
2 . (3.4)

Indeed, using the definition of λr given in (3.3) above and by Hölder inequality we have

λ
1
3
r =

1

r
2
3

‖~u‖L3
t,x(Qr) ≤

C

r
1
2

‖~u‖
L

10
3
t,x(Qr)

.
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Since by interpolation we have ‖~u(t, ·)‖
L

10
3 (Br)

≤ ‖~u(t, ·)‖
2
5

L2(Br)
‖~u(t, ·)‖

3
5

L6(Br)
, we can easily deduce that

‖~u‖
L

10
3
t,x(Qr)

≤ ‖~u‖
2
5

L∞t L
2
x(Qr)

‖~u‖
3
5

L2
tL

6
x(Qr)

. Now, for the L2
tL

6
x norm of ~u, we use the classical Gagliardo-

Nirenberg inequality (see [3]) to obtain ‖~u‖L2
tL

6
x(Qr) ≤ C

(
‖~∇⊗~u‖L2

tL
2
x(Qr) +‖~u‖L∞t L2

x(Qr)

)
and using Young’s

inequalities we have

‖~u‖
L

10
3
t,x(Qr)

≤ C‖~u‖
2
5

L∞t L
2
x(Qr)

(
‖~∇⊗ ~u‖

3
5

L2
tL

2
x(Qr)

+ ‖~u‖
3
5

L∞t L
2
x(Qr)

)
≤ C

(
‖~u‖L∞t L2

x(Qr) + ‖~∇⊗ ~u‖L2
tL

2
x(Qr)

)
.

Noting that ‖~u‖L∞t L2
x(Qr) = r

1
2A

1
2
r and ‖~∇⊗ ~u‖L2

tL
2
x(Qr) = r

1
2α

1
2
r , we finally obtain (3.4).

We establish now a first relationship between the quantities given in (3.3) that will be helpful to deduce
by an iteration procedure the wished Morrey control.

Lemma 5 Under the hypotheses of Theorem 1 and with the notations given in (3.3) we have for any radius
0 < r < ρ

2 < 1 the inequality

Ar + αr ≤ C
r2

ρ2
Aρ +

ρ2

r2
α

1
2
ρAρ + C

ρ2

r2
P

2
3
ρ (Aρ + αρ)

1
2 + C

ρ
3
2

r
‖~∇∧ ~ω‖L2

t,x(Qρ)α
1
2
ρ . (3.5)

Proof. With the support properties of the function φ stated in the Lemma 4 and using the notations (3.3)
above we can rewrite the left hand side of the inequality (3.2) in the following manner:

Ar + αr ≤
∫
R3

(∂tφ+ ∆φ)|~u|2dxds︸ ︷︷ ︸
(1)

+2

∫
R

∫
R3

p(~u · ~∇φ)dxds︸ ︷︷ ︸
(2)

+

∫
R

∫
R3

|~u|2(~u · ~∇)φdxds︸ ︷︷ ︸
(3)

+

∫
R

∫
R3

(~∇∧ ~ω) · (φ~u)dxds︸ ︷︷ ︸
(4)

. (3.6)

The terms of the right hand side above will be studied separately. Indeed,

• For the quantity (1) in (3.6), using the properties of the function φ given in Lemma 4 and by the
definition of the quantity Aρ given in (3.3) we have∫

R3

(∂tφ+ ∆φ)|~u|2dxds ≤ C r
2

ρ5

∫
Qρ

|~u|2dxds = C
r2

ρ5

∫ t+ρ2

t−ρ2

∫
Bρ

|~u|2dxds ≤ C r
2

ρ2
Aρ.

• For the term (2) in (3.6), by the properties of the function φ given in Lemma 4 and by the Hölder
inequality, we obtain∫

R

∫
R3

p(~u · ~∇φ)dxds ≤ C

r2

∫ t+ρ2

t−ρ2

∫
Bρ

|p||~u|dxds ≤ C

r2
‖p‖

L
3
2
t,x(Qρ)

‖~u‖L3
t,x(Qρ),

noting that by (3.3) we have ‖p‖
L

3
2
t,x(Qρ)

= ρ
4
3P

2
3
ρ and ‖~u‖L3

t,x(Qρ) = ρ
2
3λ

1
3
ρ , we can thus write

∫
R

∫
R3

p(~u · ~∇φ)dxds ≤ C

r2

(
ρ

4
3P

2
3
ρ

)(
ρ

2
3λ

1
3
ρ

)
≤ Cρ

2

r2
P

2
3
ρ (Aρ + αρ)

1
2 ,

where in the last estimate we used the control (3.4).
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• For the term (3) in (3.6), let us first define the average (|~u|2)ρ =
1

|B(x, ρ)|

∫
B(x,ρ)

|~u(t, y)|2dy and since

~u is divergence free we have

∫
Bρ

(|~u|2)ρ(~u · ~∇)φdx = 0. Then, we can write by the properties of the

function φ given in Lemma 4 and by the Hölder inequality:∫
R

∫
R3

|~u|2(~u · ~∇)φdxds =

∫
Qρ

[|~u|2 − (|~u|2)ρ](~u · ~∇)φdxds ≤ C

r2

∫ t+ρ2

t−ρ2

∫
Bρ

∣∣|~u|2 − (|~u|2)ρ|
∣∣ ~u|dxds

≤ C

r2

∫ t+ρ2

t−ρ2

‖|~u|2 − (|~u|2)ρ‖
L

3
2 (Bρ)

‖~u(s, ·)‖L3(Bρ)ds.

Now, Poincare’s inequality implies

≤ C

r2

∫ t+ρ2

t−ρ2

‖~∇(|~u(s, ·)|2)‖L1(Bρ)‖~u(s, ·)‖L3(Bρ)ds

≤ C

r2

∫ t+ρ2

t−ρ2

‖~u(s, ·)‖L2(Bρ)‖~∇⊗ ~u(s, ·)‖L2(Bρ)‖~u(s, ·)‖L3(Bρ)ds

≤ C

r2
‖~u‖L6

tL
2
x(Qρ)‖~∇⊗ ~u‖L2

t,x(Qρ)‖~u‖L3
t,x(Qρ),

where in the last inequality we used the Hölder inequality in the time variable. We observe now that
by the notations given in (3.3) we can write

‖~u‖L6
tL

2
x(Qρ) ≤ Cρ

1
3 ‖~u‖L∞t L2

x(Qρ) ≤ Cρ
5
6A

1
2
ρ , ‖~∇⊗ ~u‖L2

t,x(Qρ) = ρ
1
2α

1
2
ρ , ‖~u‖L3

t,x(Qρ) = ρ
2
3λ

1
3
ρ ,

and we obtain, by (3.4):∫
R

∫
R3

|~u|2(~u · ~∇)φdxds ≤ Cρ
2

r2
A

1
2
ρ α

1
2
ρ λ

1
3
ρ ≤ C

ρ2

r2
A

1
2
ρ α

1
2
ρ (Aρ + αρ)

1
2 ≤ Cρ

2

r2
α

1
2
ρ (Aρ + αρ).

• Finally, for the term (4) in (3.6), by the Hölder inequality and by the properties of the function φ
given in Lemma 4 we write∫

R

∫
R3

(~∇∧ ~ω) · (φ~u)dxds ≤
∫ t+ρ2

t−ρ2

‖φ(s, ·)‖L3
x(Bρ)‖~∇∧ ~ω(s, ·)‖L2

x(Bρ)‖~u(s, ·)‖L6
x(Bρ)ds

≤ C
ρ

r

∫ t+ρ2

t−ρ2

‖~∇∧ ~ω(s, ·)‖L2
x(Qρ)‖~u(s, ·)‖Ḣ1

x(Qρ)ds

≤ C
ρ

r
‖~∇∧ ~ω‖L2

t,x(Qρ)‖~u‖L2
t Ḣ

1
x(Qρ),

where we applied the Sobolev inequalities (see Corollary 9.14 of [4]) and the Cauchy-Schwartz inequal-

ity in the time variable. Since by (3.3) we have ‖~u‖L2
t Ḣ

1
x(Qρ) = ρ

1
2α

1
2
ρ , we conclude

∫
R

∫
R3

(~∇∧ ~ω) · (φ~u)dxds ≤ Cρ
3
2

r
‖~∇∧ ~ω‖L2

t,x(Qρ)α
1
2
ρ .

Gathering all these estimates we obtain the inequality (3.5) and this ends the proof of the Lemma 5. �

The inequality (3.5) is important, but it will not be enough for our purposes as we need to study more in
detail the pressure p. This variable only appears in the first equation of the system (1.1) and since we have
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the condition div(~u) = 0 and the vectorial identity div(~∇ ∧ ~ω) ≡ 0, by applying the divergence operator to
the equation of ~u in (1.1), we can write

div(∂t~u) = div(∆~u)− div((~u · ~∇)~u)− div(~∇p) +
1

2
div(~∇∧ ~ω)

0 = −div((~u · ~∇)~u)−∆p,

from which we obtain the following equation for the pressure (see also (1.2) above):

−∆p = div((~u · ~∇)~u) = div
(
div(~u⊗ ~u)

)
=

3∑
i,j=1

∂i∂j(uiuj). (3.7)

Note that this previous equation for the pressure p is exactly the same for the system (1.1) than for the
classical Navier-Stokes equation. Thus, by the same ideas given in Proposition 4.3 of our previous work [7]
(see also Proposition 4.2 of [6] or Lemma 13.3 of [17]) we obtain the following result for the pressure:

Lemma 6 Under the hypotheses of Theorem 1 and with the notations given in (3.3) for any 0 < r < ρ
2 < R

we have the inequality

P
2
3
r ≤ C

((ρ
r

)
(Aραρ)

1
2 +

(
r

ρ

) 2
3

P
2
3
ρ

)
. (3.8)

For the sake of completeness we give the proof of this result.

Proof. We will start by proving the following estimate

‖p‖
L

3
2
t,x(Qσ)

≤ C
(
σ

1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1) + σ2‖p‖

L
3
2
t,x(Q1)

)
, (3.9)

where Qσ and Q1 are parabolic balls of radius σ and 1 respectively (the definition of such balls given in
(1.3)). To obtain this inequality we introduce η : R3 −→ [0, 1] a smooth function supported in the ball B1

such that η ≡ 1 on the ball B 3
5

and η ≡ 0 outside the ball B 4
5
. Note in particular that on Qσ we have the

identity p = ηp. Now a straightforward calculation shows that we have the identity

−∆(ηp) = −η∆p+ (∆η)p− 2

3∑
i=1

∂i((∂iη)p),

from which we deduce the inequality

‖p‖
L

3
2
t,x(Qσ)

= ‖ηp‖
L

3
2
t,x(Qσ)

≤

∥∥∥∥∥
(
− η∆p

)
(−∆)

∥∥∥∥∥
L

3
2
t,x(Qσ)︸ ︷︷ ︸

(p1)

+

∥∥∥∥(∆η)p

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)︸ ︷︷ ︸

(p2)

+2
3∑
i=1

∥∥∥∥∂i((∂iη)p)

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)︸ ︷︷ ︸

(p3)

. (3.10)

For the first term of (3.10), since we have the equation (3.7) ∆p = −
3∑

i,j=1

∂i∂j(uiuj) on Qσ, if we denote by

Ni,j = ui(uj − (uj)1) where (uj)1 is the average of uj over the ball of radius 1, since ~u is divergence free we

have
3∑

i,j=1

∂i∂j(uiuj) =
3∑

i,j=1

∂i∂jNi,j and thus we can write

(p1) =

∥∥∥∥∥
(
− η∆p

)
(−∆)

∥∥∥∥∥
L

3
2
t,x(Qσ)

≤ C

∥∥∥∥∥∥ 1

(−∆)

(
η

3∑
i,j=1

∂i∂jNi,j

)∥∥∥∥∥∥
L

3
2
t,x(Qσ)

≤ C

3∑
i,j=1

∥∥∥∥ 1

(−∆)

(
∂i∂j(ηNi,j)− ∂i

(
(∂jη)Ni,j

)
− ∂j

(
(∂iη)Ni,j

)
+ 2(∂i∂jη)Ni,j

)∥∥∥∥
L

3
2
t,x(Qσ)

(3.11)
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Denoting byRi = ∂i√
−∆

the usual Riesz transforms on R3, by the boundedness of these operators in Lebesgue

spaces and using the support properties of the auxiliary function η, we have for the first term above:∥∥∥∥ ∂i∂j(−∆)
ηNi,j(t, ·)

∥∥∥∥
L

3
2 (Bσ)

≤ ‖RiRj(ηNi,j)(t, ·)‖
L

3
2 (R3)

≤ C‖ηNi,j(t, ·)‖
L

3
2 (B1)

≤ C‖ui(t, ·)‖L2(B1)‖uj(t, ·)− (uj)1‖L6(B1)

≤ C‖~u(t, ·)‖L2(B1)‖~∇⊗ ~u(t, ·)‖L2(B1),

where we used Hölder and Poincaré inequalities in the last line. Now taking the L
3
2 -norm in the time variable

of the previous inequality we obtain∥∥∥∥ ∂i∂j(−∆)
ηNi,j

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1). (3.12)

The remaining terms of (3.11) can all be studied in a similar manner. Indeed, noting that ∂iη vanishes on
B 3

5
∪Bc

4
5

and since Bσ ⊂ B 1
2
⊂ B 3

5
, using the integral representation for the operator ∂i

(−∆) we have for the

second term of (3.11) the estimate∥∥∥∥ ∂i
(−∆)

(
(∂jη)Ni,j

)
(t, ·)

∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2

∥∥∥∥ ∂i
(−∆)

(
(∂jη)Ni,j

)
(t, ·)

∥∥∥∥
L∞(Bσ)

≤ C σ2

∥∥∥∥∥
∫
{ 3

5
<|y|< 4

5
}

xi − yi
|x− y|3

(
(∂jη)Ni,j

)
(t, y) dy

∥∥∥∥∥
L∞(Bσ)

≤ C σ2‖Ni,j(t, ·)‖L1(B1) (3.13)

≤ C σ2‖ui(t, ·)‖L2(B1)‖uj(t, ·)− (uj)1‖L2(B1)

≤ C ‖~u(t, ·)‖L2(B1)‖~∇⊗ ~u(t, ·)‖L2(B1),

where we used the same ideas as previously and the fact that 0 < σ < 1, and with the same arguments as
in (3.12) before, taking the L

3
2 -norm in the time variable, we obtain∥∥∥∥ ∂i

(−∆)

(
(∂jη)Ni,j

)∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1). (3.14)

A symmetric argument gives∥∥∥∥ ∂j
(−∆)

(
(∂iη)Ni,j

)∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1), (3.15)

and observing that the convolution kernel associated to the operator 1
(−∆) is C

|x| , following the same ideas

we have for the last term of (3.11) the inequality∥∥∥∥(∂i∂jη)Ni,j

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1). (3.16)

Therefore, combining the estimates (3.12), (3.14), (3.15) and (3.16) and getting back to (3.11) we finally
have:

(p1) =

∥∥∥∥∥
(
− η∆p

)
(−∆)

∥∥∥∥∥
L

3
2
t,x(Qσ)

≤ C
(
σ

1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1)

)
. (3.17)
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We continue our study of expression (3.10) and for the term (p2) we first treat the space variable. Recalling
the support properties of the auxiliary function η and properties of the convolution kernel associated to the
operator 1

(−∆) , we can write as before (see (3.13)):∥∥∥∥(∆η)p(t, ·)
(−∆)

∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2‖p(t, ·)‖L1(B1) ≤ Cσ2‖p(t, ·)‖
L

3
2 (B1)

,

and thus, taking the L
3
2 -norm in the time variable we obtain:

(p2) =

∥∥∥∥(∆η)p

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ2‖p‖Lq0t,x(Q1). (3.18)

For the last term of expression (3.10), following the same ideas developed in (3.13) we can write∥∥∥∥ ∂i
(−∆)

(∂iη)p(t, ·)
∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2‖p(t, ·)‖L1(B1) ≤ Cσ2‖p(t, ·)‖
L

3
2 (B1)

,

and we obtain

(p3) =

∥∥∥∥∂i((∂iη)p)

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ2‖p‖
L

3
2
t,x(Q1)

. (3.19)

Now, gathering the estimates (3.17), (3.18) and (3.19) we obtain the inequality

‖p‖
L

3
2
t,x(Qσ)

≤ C
(
σ

1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1) + σ2‖p‖

L
3
2
t,x(Q1)

)
,

which is (3.9). With estimate at hand, it is quite simple to deduce inequality (3.8). Indeed, if we fix
σ = r

ρ ≤
1
2 and if we introduce the functions pρ(t, x) = p(ρ2t, ρx) and ~uρ(t, x) = ~u(ρ2t, ρx) then from (3.9)

we have

‖pρ‖
L

3
2
t,x(Q r

ρ
)
≤ C

((
r

ρ

) 1
3

‖~uρ‖L∞t L2
x(Q1)‖~∇⊗ bρ‖L2

t,x(Q1) +

(
r

ρ

)2

‖pρ‖
L

3
2
t,x(Q1)

)
,

and by a convenient change of variable we obtain

‖p‖
L

3
2
t,x(Qr)

ρ−
10
3 ≤ C

((
r

ρ

) 1
3

ρ−
3
2 ‖~u‖L∞t L2

x(Qρ)ρ
− 3

2 ‖~∇⊗ ~u‖L2
t,x(Qρ) +

(
r

ρ

)2

ρ−
10
3 ‖p‖

L
3
2
t,x(Qρ)

)
.

Now, recalling that by (3.3) we have the identities

r
4
3P

2
3
r = ‖p‖

L
3
2
t,x(Qr)

, ρ
1
2A

1
2
ρ = ‖~u‖L∞t L2

x(Qρ) and ρ
1
2α

1
2
ρ = ‖~∇⊗ ~u‖L2

t,x(Qρ),

we obtain

P
2
3
r ≤ C

((ρ
r

)
(Aρβρ)

1
2 +

(
r

ρ

) 2
3

P
2
3
ρ

)
,

and this finishes the proof of Lemma 6. �

Now, with the estimates (3.5) and (3.8) obtained in the previous lines, we will set up a general inequality
that will help us to deduce the gain of integrability stated in Proposition 1. For this, we introduce the
notations

Ar =
1

r
2(1− 5

τ0
)

(Ar + αr) , Pr =
1

r
3
2

(1− 5
τ0

)
Pr and Or = Ar +

((
r

ρ

) 15
τ0
− 15

2

Pr

) 4
3

, (3.20)

and we have the following result:

10



Lemma 7 Under the hypotheses of Theorem 1, for 0 < r < ρ
2 < R there exists a constant ε > 0 such that

Or(t0, x0) ≤ 1

2
Oρ(t0, x0) + ε, (3.21)

where the point (t0, x0) ∈ QR is given by the hypothesis (1.5).

Note that this result allows us to control the information over smaller parabolic balls by the information
over bigger parabolic balls and this will be the key to obtain the whished gain of integrability.

Proof. First, by the estimate (3.5) we can write

Ar =
1

r
2(1− 5

τ0
)

(Ar + αr)

≤ C

r
2(1− 5

τ0
)

(r2

ρ2
Aρ +

ρ2

r2
α

1
2
ρAρ +

ρ2

r2
P

2
3
ρ (Aρ + αρ)

1
2 +

ρ
3
2

r
‖~∇∧ ~ω‖L2

t,x(Qρ)α
1
2
ρ

)
, (3.22)

and we will treat each one of the previous terms separately. Indeed,

• For the first term of (3.22) we have

1

r
2(1− 5

τ0
)

(
r2

ρ2
Aρ
)
≤ 1

r
2(1− 5

τ0
)

r2

ρ2
ρ

2(1− 5
τ0

)Aρ =

(
r

ρ

) 10
τ0

Aρ.

• For the second term of (3.22), using the definition of Aρ given in (3.20), we obtain

1

r
2(1− 5

τ0
)

(
ρ2

r2
α

1
2
ρAρ

)
≤ 1

r
2(1− 5

τ0
)

(
ρ2

r2
α

1
2
ρ ρ

2(1− 5
τ0

)Aρ
)

=
(ρ
r

)4− 10
τ0 Aρα

1
2
ρ .

• The third term of (3.22) follows essentially the same arguments as above and by the definition of the
quantities Aρ and Pρ given in (3.20) we can write

1

r
2(1− 5

τ0
)

(
ρ2

r2
P

2
3
ρ (Aρ + αρ)

1
2

)
≤
(ρ
r

)4− 10
τ0 P

2
3
ρA

1
2
ρ .

• Finally, for the last term of (3.22), we have

1

r
2(1− 5

τ0
)

(
ρ

3
2

r
‖~∇∧ ~ω‖L2

t,x(Qρ)α
1
2
ρ

)
≤
(ρ
r

)3− 10
τ0 ρ

10
τ0
− 3

2α
1
2
ρ ‖~∇∧ ~ω‖L2

t,x(Qρ).

Thus, gathering all these estimates, we have

Ar ≤ C

((
r

ρ

) 10
τ0

Aρ +
(ρ
r

)4− 10
τ0 Aρα

1
2
ρ +

(ρ
r

)4− 10
τ0 P

2
3
ρA

1
2
ρ +

(ρ
r

)3− 10
τ0 ρ

10
τ0
− 3

2α
1
2
ρ ‖~∇∧ ~ω‖L2

t,x(Qρ)

)
. (3.23)

Now, for the pressure, from the inequality (3.8) we can write

Pr =
1

r
3
2

(1− 5
τ0

)
Pr ≤

C

r
3
2

(1− 5
τ0

)

((ρ
r

) 3
2 A

3
4
ρ α

3
4
ρ +

(
r

ρ

)
Pρ
)
,

and by the Young inequality and using the definition of Aρ given in (3.20) we obtain for the first term of
the right-hand side above:

1

r
3
2

(1− 5
τ0

)

(ρ
r

) 3
2 A

3
4
ρ α

3
4
ρ ≤

1

r
3
2

(1− 5
τ0

)

(ρ
r

) 3
2
ρ

3
2

(1− 5
τ0

)
(Aραρ)

3
4 =

(ρ
r

)3− 15
2τ0 (Aραρ)

3
4 ,
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and using the fact that 1

r
3
2 (1− 5

τ0
)

(
r
ρ

)
Pρ =

(ρ
r

) 1
2
− 15

2τ0 Pρ (by the definition of Pρ given in (3.20)), we conclude

that

Pr ≤ C
((ρ

r

)3− 15
2τ0 (Aραρ)

3
4 +

(ρ
r

) 1
2
− 15

2τ0 Pρ
)
. (3.24)

With the estimates (3.23) and (3.24) at hand, we will now introduce a relationship between the parameters
r and ρ: indeed, let us fix 0 < κ � 1

2 a real number and consider r = κρ, then, by the definition of the
quantity Or given in (3.20) we obtain:

Or = Ar +
(
κ

15
τ0
− 15

2 Pr
) 4

3 ≤ C

(
κ

10
τ0 Aρ + κ

10
τ0
−4Aρα

1
2
ρ︸ ︷︷ ︸

(1)

+κ
10
τ0
−4P

2
3
ρA

1
2
ρ︸ ︷︷ ︸

(2)

+κ
10
τ0
−3
ρ

10
τ0
− 3

2α
1
2
ρ ‖~∇∧ ~ω‖L2

t,x(Qρ)︸ ︷︷ ︸
(3)

)

+C

(
κ

45
2τ0
− 21

2 (Aραρ)
3
4 + κ

45
2τ0
−8Pρ

) 4
3

︸ ︷︷ ︸
(4)

. (3.25)

We will rewrite now each one of the previous terms:

• Since by (3.20) we have Aρ ≤ Oρ, it is then easy to see that the term (1) above can be controlled in
the following manner:

κ
10
τ0 Aρ + κ

10
τ0
−4Aρα

1
2
ρ ≤

(
κ

10
τ0 + κ

10
τ0
−4
α

1
2
ρ

)
Oρ.

• For the quantity (2) in (3.25), using Young’s inequality and the relationships given in (3.20), we observe
that

κ
10
τ0
−4P

2
3
ρA

1
2
ρ = κ

10
τ0
−4
(
κ

5( 1
τ0
− 1

2
)P

2
3
ρ × κ

5( 1
2
− 1
τ0

)A
1
2
ρ

)
≤ κ

10
τ0
−4
(
κ

10( 1
2
− 1
τ0

)Aρ + κ
10( 1

τ0
− 1

2
)P

4
3
ρ

)
≤ κ

(
Aρ +

(
κ

15
τ0
− 15

2 Pρ
) 4

3

)
≤ κOρ.

• For the term (3) of (3.25), using the fact that 10
τ0
> 3

2 (recall the hypothesis of Proposition 1: we have

5
1−α < τ0 <

20
3 ) and that 0 < ρ < R < 1, we obtain ρ

10
τ0
− 3

2 < 1, and thus

κ
10
τ0
−3
ρ

10
τ0
− 3

2α
1
2
ρ ‖~∇∧ ~ω‖L2

t,x(Qρ) ≤ κ
10
τ0
−3
α

1
2
ρ ‖~∇∧ ~ω‖L2

t,x(Qρ).

• For the last term of (3.25), since
(
κ

15
τ0
− 15

2 Pρ
) 4

3 ≤ Oρ and Aρ ≤ Oρ, we have

(
κ

45
2τ0
− 21

2 (Aραρ)
3
4 + κ

45
2τ0
−8Pρ

) 4
3

≤ C
(
κ

30
τ0
−14Aραρ + (κ

45
2τ0
−8Pρ)

4
3

)
≤ C

(
κ

30
τ0
−14

αρ + κ
10
τ0
− 2

3

)
Oρ.

Gathering these estimates we finally obtain

Or ≤

(
κ

10
τ0 + κ

10
τ0
−4
α

1
2
ρ + κ+ κ

30
τ0
−14

αρ + κ
10
τ0
− 2

3

)
Oρ + κ

10
τ0
−3
α

1
2
ρ ‖~∇∧ ~ω‖L2

t,x(Qρ). (3.26)

Futhermore, we claim that we have(
κ

10
τ0 + κ

10
τ0
−4
α

1
2
ρ + κ+ κ

30
τ0
−14

αρ + κ
10
τ0
− 2

3

)
≤ 1

2
. (3.27)
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Indeed, since κ = r
ρ �

1
2 is a fixed small parameter and since 10

τ0
− 2

3 > 0 (recall again that 5
1−α < τ0 <

20
3 ),

then the quantities κ
10
τ0 , κ and κ

10
τ0
− 2

3 in the previous formula are small. Now, using the fact that we have
the control αρ ≤ ε∗ which is given in the hypothesis (1.5) where ε∗ > 0 is small enough, then the terms

κ
10
τ0
−4
α

1
2
ρ and κ

30
τ0
−14

αρ can be made small enough and thus we obtain (3.27). To continue, noting that the

quantity ‖~∇ ∧ ~ω‖L2
t,x(Qρ) is bounded since ~ω ∈ L∞t L2

x(QR) ∩ L2
t Ḣ

1
x(QR), we can apply the same ideas used

previously (i.e. αρ ≤ ε∗ � 1) to obtain

κ
10
τ0
−3
α

1
2
ρ ‖~∇∧ ~ω‖L2

t,x(Qρ) < ε.

Then, with these estimates at hand and coming back to (3.26) we conclude that Or ≤ 1
2Oρ + ε and Lemma

7 is proven. �

Lemma 7 paved the way to obtain some Morrey information for the velocity ~u that will be crucial.
Indeed, from the definition of Morrey spaces given in (2.1) we only need to prove that for all radius r > 0
such that r < R1 ≤ R

2 and (t, x) ∈ QR1(t0, x0), we have∫
Qr(t,x)

|~u|3dyds ≤ Cr5(1− 3
τ0

)
, (3.28)

and this will imply that 1QR1
~u ∈ M3,τ0(R × R3). In order to obtain the control (3.28), by the definitions

given in (3.3) and by the estimate (3.4), we observe that∫
Qr(t,x)

|~u|3dyds = r2λr(t, x) ≤ r2(Ar(t, x) + αr(t, x))
3
2 .

Hence, it is then enough to prove for all 0 < r < R1 <
R
2 < R < 1 and (t, x) ∈ QR1 that one has the control

Ar(t, x) + αr(t, x) ≤ Cr2(1− 5
τ0

)
.

Recalling the definition of the quantity Ar given in (3.20), we easily see that the condition (3.28) above is
equivalent to prove that there exists some R1 and 0 < κ� 1

2 such that for all n ∈ N and (t, x) ∈ QR1(t0, x0),
we have estimates:

AκnR1(t, x) ≤ C. (3.29)

Note that, for any radius r such that 0 < r < R1 < min{R2 , dist(∂QR, (t0, x0))} (and since we have
QR1(t0, x0) ⊂ QR) by the hypotheses of the Theorem 1, we have the bounds

‖~u‖L∞t L2
x(Qr(t0,x0)) ≤ ‖~u‖L∞t L2

x(QR) < +∞, ‖~∇⊗ ~u‖L2
t,x(Qr(t0,x0)) ≤ ‖~∇⊗ ~u‖L2

t,x(QR) < +∞,

and ‖p‖
L

3
2
t,x(Qr(t0,x0))

≤ ‖p‖
L

3
2
t,x(QR)

< +∞. Then, by the notations introduced in (3.3), we have the uniform

bounds sup
0<r<R

{
rAr, rαr, r2Pr

}
< +∞ from which we can deduce by the definition of the quantities Aρ(t0, x0)

and Pρ(t0, x0) given in (3.20), the uniform bounds

sup
0<r<R

r
3− 10

τ0 Ar(t0, x0) < +∞, and sup
0<r<R

r
5− 3

2
(1+ 5

τ0
)Pr(t0, x0) < +∞.

Thus, there exists a radius 0 < r0 < R small such that, by the estimates above, the quantities Ar0 and Pr0
are bounded: indeed, recall that we have τ0 >

5
1−α > 5 (where 0 < α � 1) and this implies that all the

powers of r in the expression above are positive. As a consequence of this fact, by (3.20) the quantity Or0

13



is itself bounded. Remark also that, if r0 is small enough, then the inequality (3.21) holds true and we can
write Oκr0(t0, x0) ≤ 1

2Or0(t0, x0) + ε. We can iterate this process and we obtain for all n > 1,

Oκnr0(t0, x0) ≤ 1

2n
Or0(t0, x0) + ε

n−1∑
j=0

2−j ,

and therefore there exists N ≥ 1 such that for all n ≥ N we have Oκnr0(t0, x0) ≤ 4ε from which we obtain
(using the definition of Or given in (3.20)) that

AκNr0(t0, x0) ≤ 1

8
C and PκNr0(t0, x0) ≤ 1

32
C.

This information is centered at the point (t0, x0), in order to treat the uncentered bound, we can let 1
2κ

Nr0

to be the radius R1 we want to find, thus for all points (t, x) ∈ QR1(t0, x0) we have that QR1 ⊂ Q2R1(t0, x0),
which implies

AR1(t, x) ≤ 2
3− 10

τ0 A2R1(t0, x0) ≤ 8A2R1(t0, x0) ≤ 8AκNρ(t0, x0) < C,

and PR1(t, x) ≤ 2
5− 3

2
(1+ 5

τ0
)P2R1(t0, x0) ≤ 32P2R1(t0, x0) ≤ 8PκNr(t0, x0) < C. Having obtained these

bounds, by the definition of OR1 , we thus get OR1(t, x) ≤ C. Applying the Lemma 7 and iterating once
more, we find that the same will be true for κR1 and then, for all κnR1, n ∈ N. Since by definition we have
AκnR1(t, x) ≤ OκnR1(t, x) we have finally obtained the estimate AκnR1(t, x) ≤ C and the inequality (3.29) is
proven which implies the Proposition 1. �

Corollary 1 Under the hypotheses of Proposition 1, we also have the following local control:

1QR1
(t0,x0)

~∇⊗ ~u ∈M2,τ1
t,x (R× R3), with

1

τ1
=

1

τ0
+

1

5
. (3.30)

Proof. In the previous results we have proved the estimate (3.29). Let us recall now that, by the definition
of the quantity Ar given in (3.20), we can easily deduce for all 0 < r ≤ R1 and (t, x) ∈ QR1 the control

αr ≤ Cr
2(1− 5

τ0
)

which can we rewritten as

1

r

(∫
Qr(t,x)

|~∇⊗ ~u|2dyds
)
≤ Cr2(1− 5

τ0
)
.

Thus, since 1
τ1

= 1
τ0

+ 1
5 , for all 0 < r ≤ R1 and (t, x) ∈ QR1(t0, x0), we have the estimate∫

Qr

|~∇⊗ ~u|2dyds ≤ Cr3− 10
τ0 = Cr

5(1− 2
τ1

)
,

and by the definition of Morrey spaces given in (2.1), we obtain that 1QR1
(t0,x0)

~∇⊗ ~u ∈M2,τ1
t,x (R× R3). �

4 A (second) partial gain of information for the variable ~u

This first gain of integrability information stated in Proposition 1 is fundamental for our theory to work,
however it is not enough since we only obtain a “small” control1 for the variable ~u and without any infor-
mation on the variable ~ω we can not go very far: now we will see how to obtain some further control on
~ω and how it is possible to reinject this information in the study of the variable ~u. Indeed, in our recent
article [8] we proved the following result which gives some mild control over the variable ~ω:

1In terms of the indexes of the Morrey spaces involved in Proposition 1.
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Theorem 2 Let (~u, p, ~ω) be a weak solution of the micropolar equations (1.1) over a parabolic ball QR of
the form (1.3) for some fixed radius R > 0. Assume that ~u, ~ω ∈ L∞t L

2
x ∩ L2

t Ḣ
1
x(QR) and p ∈ D′t,x(QR).

Suppose in addition that for some 0 < R1 < R we have

1QR1
~u ∈Mp0,q0

t,x (R× R3) with 2 < p0 ≤ q0, 5 < q0 ≤ 6, (4.1)

then

1) for a parabolic ball Qr1, with 0 < r1 < R1 we have

1Qr1
~u ∈ Lq0t,x(R× R3), 5 < q0 ≤ 6,

2) for a parabolic ball Qr2, with 0 < r2 < r1 < R1 we have

1Qr2
~ω ∈ Lq0t,x(R× R3),

for 5 < q0 ≤ 6.

As we can see, this result gives an interesting improvement of integrability for both variables ~u and ~ω as long
as we have the hypothesis (4.1), but this is precisely the conclusion of Proposition 1: indeed, over a small
parabolic ball QR1(t0, x0) we do have 1QR1

(t0,x0)~u ∈M
3,τ0
t,x (R×R3) and it is enough to remark that we have

here p0 = 3 and q0 = τ0 with 5
1−α < τ0 <

20
3 and this last parameter can be chosen such that τ0 = 6 < 20

3 .
Thus, we deduce that

1Qr1 (t0,x0)~u ∈ L6
t,x(R× R3) and 1Qr2 (t0,x0)~ω ∈ L6

t,x(R× R3), (4.2)

where r2 < r1 < R1 < R < 1.

Note that from the initial setting ~u, ~ω ∈ L∞t L
2
x ∩ L2

t Ḣ
1
x, the controls stated in (4.2) provide a better

integrability information and we will see now how to improve the Morrey information given in Proposition
1 for the variable ~u:

Proposition 2 Under the hypotheses of Theorem 1 and within the framework of Proposition 1, there exists
a radius R2 with 0 < R2 < r2 < r1 < R1 < R < 1 such that

1QR2
(t0,x0)~u ∈M

3,σ
t,x (R× R3),

for some σ close to τ0 = 6 such that τ0 < σ.

Proof of the Proposition 2. In order to obtain this small additional gain of integrability we will first
localize the variable ~u in a suitable manner and then we will study its evolution: the wished result will then
be deduced from the Duhamel formula and from all the available information over ~u. Let us start fixing the
parameters Rc,Rb,Ra such that

0 < R2 < Rc < Rb < Ra < r2 < r1 < R1,

with the associated parabolic balls QR2 ⊂ QRc ⊂ QRb ⊂ QRa ⊂ QR1 (all centered in the point (t0, x0)).
Consider now φ, ψ : R× R3 −→ R two non-negative functions such that φ, ψ ∈ C∞0 (R× R3) and such that

φ ≡ 1 over QRc , supp(φ) ⊂ QRb and ψ ≡ 1 over QRa , supp(ψ) ⊂ Qr2 . (4.3)

Using these auxiliar functions we will study the evolution of the variable ~v = φ~u given by the system∂t~v = ∆~v + ~V ,

~v(0, x) = 0,
(4.4)
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where we have

~V = (∂tφ−∆φ)~u− 2

3∑
i=1

(∂iφ)(∂i~u)− φ(~u · ~∇)~u− 2φ~∇p+ φ(~∇∧ ~ω). (4.5)

We will now rewrite the term φ~∇p above in order to avoid a direct derivative over the pressure. Indeed, as
we have the identity p = ψp over QRa , then over the smaller ball QR2 (recalling that ψ = 1 over QR2 by

(4.3) since QR2 ⊂ QRa), we can write −∆(ψp) = −ψ∆p + (∆ψ)p − 2
3∑
i=1

∂i((∂iψ)p) from which we deduce

the identity

φ~∇p = φ
~∇(−ψ∆p)

(−∆)
+ φ

~∇((∆ψ)p)

(−∆)
− 2

3∑
i=1

φ
~∇(∂i((∂iψ)p))

(−∆)
. (4.6)

At this point we recall that we have by (1.2) the following equation for the pressure ∆p = −
3∑

i,j=1

∂i∂j (uiuj)

and thus, the first term of the right-hand side of the previous formula can be written in the following manner:

φ
~∇(−ψ∆p)

(−∆)
= φ

~∇
(−∆)

 3∑
i,j=1

ψ
(
∂i∂juiuj

)
=

3∑
i,j=1

φ
~∇

(−∆)

(
∂i∂j(ψuiuj)

)
−

3∑
i,j=1

φ
~∇

(−∆)

(
∂i((∂jψ)uiuj) + ∂j((∂iψ)uiuj)− (∂i∂jψ)(uiuj)

)
,

Recalling that by construction of the auxiliar functions φ, ψ given in (4.3) we have the identity φψ = φ, we
can write for the first term above:

φ
~∇

(−∆)
∂i∂j(ψuiuj) =

[
φ,
~∇∂i∂j
(−∆)

]
(ψuiuj) +

~∇∂i∂j
(−∆)

(φuiuj),

and we finally obtain the following expression for (4.6):

φ~∇p =

3∑
i,j=1

[
φ,
~∇∂i∂j
(−∆)

]
(ψuiuj) +

3∑
i,j=1

~∇∂i∂j
(−∆)

(φuiuj)

−
3∑

i,j=1

φ
~∇

(−∆)

(
∂i((∂jψ)uiuj) + ∂j((∂iψ)uiuj)− (∂i∂jψ)(uiuj)

)

+φ
~∇((∆ψ)p)

(−∆)
− 2

3∑
i=1

φ
~∇(∂i((∂iψ)p))

(−∆)
.

With this expression for the term that contains the pressure p, we obtain the (lengthy) formula for (4.5):

~V = (∂tφ−∆φ)~u︸ ︷︷ ︸
(1)

−2
3∑
i=1

(∂iφ)(∂i~u)︸ ︷︷ ︸
(2)

−φ(~u · ~∇)~u︸ ︷︷ ︸
3

−
3∑

i,j=1

[
φ,
~∇∂i∂j
(−∆)

]
(ψuiuj)︸ ︷︷ ︸

(4)

+
3∑

i,j=1

~∇∂i∂j
(−∆)

(φuiuj)︸ ︷︷ ︸
(5)

−
3∑

i,j=1

φ~∇
(−∆)

[
∂i((∂jψ)uiuj)︸ ︷︷ ︸

(6)

+ ∂j((∂iψ)uiuj)︸ ︷︷ ︸
(7)

− (∂i∂jψ)(uiuj)︸ ︷︷ ︸
(8)

]
(4.7)

+ 2φ
~∇((∆ψ)p)

(−∆)︸ ︷︷ ︸
(9)

−2

3∑
i=1

φ
~∇(∂i((∂iψ)p))

(−∆)︸ ︷︷ ︸
(10)

+φ(~∇∧ ~ω)︸ ︷︷ ︸
(11)

.
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Thus, by the Duhamel formula, the solution ~v of the equation (4.4) is given by

~v =

∫ t

0
e(t−s)∆~V (s, ·)ds =

11∑
k=1

∫ t

0
e(t−s)∆~Vk(s, ·)ds =

11∑
k=1

~Vk.

Since ~v = φ~u, and due to the support properties of φ (see (4.3)), we have 1QR2
~v = 1QR2

~u and to conclude

that 1QR2
~u ∈M3,σ

t,x (R× R3) we will study 1QR2

~Vk for all 1 ≤ k ≤ 11.

• For ~V1, by the term (1) in (4.7) we have

|1QR2

~V1(t, x)| =
∣∣∣∣1QR2

∫ t

0
e(t−s)∆[(∂tφ−∆φ)~u](s, x)ds

∣∣∣∣ , (4.8)

since the convolution kernel of the semi-group e(t−s)∆ is the usual 3D heat kernel gt, we can write by
the decay properties of the heat kernel as well as the properties of the test function φ (see (4.3)), the
estimate

|1QR2

~V1(t, x)| ≤ C1QR2

∫
R

∫
R3

1

(|t− s|
1
2 + |x− y|)3

∣∣∣1QRb
~u(s, y)

∣∣∣ dy ds,
Now, recalling the definition of the parabolic Riesz potential given in (2.2) and since QR2 ⊂ QRb we
obtain the pointwise estimate

|1QR2

~V1(t, x)| ≤ C1QRb
L2(|1QRb

~u|)(t, x), (4.9)

and taking Morrey M3,σ
t,x norm we obtain

‖1QR2

~V1(t, x)‖M3,σ
t,x
≤ C‖1QRb

L2(|1QRb
~u|)‖M3,σ

t,x
.

Now, for some 2 < q < 5
2 we set λ = 1− 2q

5 . Then, we have 3 ≤ 3
λ and σ ≤ q

λ . Thus, by Lemma 2 and
by Lemma 3 we can write:

‖1QRb
L2(|1QRb

~u|)‖M3,σ
t,x
≤ C‖L2(|1QRb

~u|)‖
M

3
λ
,
q
λ

t,x

≤ C‖1QRb
~u‖M3,q

t,x
≤ C‖1QR1

~u‖M3,τ0
t,x

< +∞,

where in the last estimate we applied again Lemma 2 (noting that q < τ0 = 6) and we used the
estimates over ~u available in (3.1).

• For ~V2, using the expression (2) in (4.7) we write (∂iφ)(∂i~u) = ∂i((∂iφ)~u)− (∂2
i φ)~u and we have

|1QR2

~V2(t, x)| ≤
3∑
i=1

∣∣∣∣1QR2

∫ t

0
e(t−s)∆∂i

(
(∂iφ)~u

)
ds

∣∣∣∣+

∣∣∣∣1QR2

∫ t

0
e(t−s)∆[(∂2

i φ)~u]ds

∣∣∣∣ . (4.10)

Remark that the second term of the right-hand side of (4.10) can be treated in the same manner as the
term ~V1 so we will only study the first term: by the properties of the heat kernel and by the definition
of the Riesz potential L1 (see (2.2)), we obtain

A2 :=

∣∣∣∣1QR2

∫ t

0
e(t−s)∆∂i

(
(∂iφ)~u

)
ds

∣∣∣∣ =

∣∣∣∣1QR2

∫ t

0

∫
R3

∂igt−s(x− y)(∂iφ)~u(s, y)dyds

∣∣∣∣
≤ C1QR2

∫
R

∫
R3

|1QRb
~u(s, y)|

(|t− s|
1
2 + |x− y|)4

dyds ≤ C1QR2
(L1(|1QRb

~u|))(t, x). (4.11)
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Taking the Morrey M3,σ
t,x norm we obtain ‖A2‖M3,σ

t,x
≤ C‖1QR2

(L1(|1QRb
~u|))‖M3,σ

t,x
. Now, for some

4 ≤ q < 5 < τ0 = 6 we define λ = 1− q
5 , noting that 3 ≤ 3

λ and σ ≤ q
λ , by Lemma 3, we can write

‖1QR2
(L1(|1QRb

~u|))‖M3,σ
t,x
≤ C‖L1(|1QRb

~u|)‖
M

3
λ
,
q
λ

t,x

≤ C‖1QRb
~u‖M3,q

t,x

≤ C‖1QR1
~u‖M3,τ0

t,x
< +∞,

from which we deduce that ‖1QR2

~V2‖M3,σ
t,x

< +∞.

• For the term ~V3, by the same arguments given to obtain the pointwise estimate (4.9), we have

|1QR2

~V3(t, x)| =

∣∣∣∣1QR2

∫ t

0

∫
R3

gt−s(x− y)
[
φ
(

(~u · ~∇)~u
)]

(s, y)dyds

∣∣∣∣
≤ C1QR2

L2

(∣∣∣1QRb

(
(~u · ~∇)~u

)∣∣∣) (t, x),

(recall (4.3)) from which we deduce

‖1QR2

~V3‖M3,σ
t,x
≤ C

∥∥∥1QR2
L2

(
|1QRb

(~u · ~∇)~u|
)∥∥∥
M3,σ

t,x

. (4.12)

We set now 5
3−α < q < 5

2 and λ = 1 − 2q
5 . Since 3 ≤ 6

5λ and τ0 = 6 < σ ≤ q
λ , applying Lemma 2 and

Lemma 3 we have∥∥∥1QR2
L2

(
|1QRb

(~u · ~∇)~u|
)∥∥∥
M3,σ

t,x

≤ C
∥∥∥1QR2

L2

(
|1QRb

(~u · ~∇)~u|
)∥∥∥
M

6
5λ
,
q
λ

t,x

≤ C
∥∥∥1QRb

(~u · ~∇)~u
∥∥∥
M

6
5 ,q

t,x

.

Recall that we have τ0 = 6 < σ and by the Hölder inequality in Morrey spaces (see Lemma 1) we
obtain ∥∥∥1QRb

(~u · ~∇)~u
∥∥∥
M

6
5 ,q

t,x

≤
∥∥∥1QR1

~u
∥∥∥
M3,τ0

t,x

∥∥∥1QR1

~∇⊗ ~u
∥∥∥
M2,τ1

t,x

< +∞,

where 1
q = 1

τ0
+ 1

τ1
= 2

τ0
+ 1

5 . These two last quantities are bounded by (3.1) and (3.30). Note that the

condition τ0 = 6 < σ and the relationship 1
q = 2

τ0
+ 1

5 are compatible with the fact that 5
3−α < q < 5

2

(recall that 0 < α < 1
24).

• The term ~V4 is the most technical one. Indeed, by the expression of ~V4 given in (4.7), we write

|1QR2

~V4| ≤
3∑

i,j=1

1QR2

∫
R

∫
R3

∣∣∣[φ, ~∇∂i∂j(−∆)

]
(ψuiuj)(s, y)

∣∣∣
(|t− s|

1
2 + |x− y|)3

dyds ≤
3∑

i,j=1

1QR2
L2

(∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
)
,

and taking the M3,σ
t,x -norm we have ‖1QR2

~V4‖M3,σ
t,x
≤
∑3

i,j=1

∥∥∥1QR2
L2

(∣∣∣[φ, ~∇∂i∂j(−∆)

]
(ψuiuj)

∣∣∣)∥∥∥
M3,σ

t,x

. If

we set 1
q = 2

τ0
+ 1

5 and λ = 1− 2q
5 then we have 3 ≤ 3

2λ and for

σ ≤ q

λ
=

5τ0

10− τ0
, (4.13)

by Lemmas 2 and 3 we obtain:∥∥∥∥∥1QR2
L2

(∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2
L2

(∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
)∥∥∥∥∥
M

3
2λ
,
q
λ

t,x

≤ C

∥∥∥∥∥
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
M

3
2 ,q

t,x

,
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We will study this norm and by the definition of Morrey spaces (2.1), if we introduce a threshold
r = Rb−R2

2 , we have

∥∥∥∥∥
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
3
2

M
3
2 ,q

t,x

≤ sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
3
2

dxdt

+ sup
(t,x̄)
r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
3
2

dxdt.

(4.14)

Now, we study the second term of the right-hand side above, which is easy to handle as we have r < r
and we can write

sup
(t,x̄)∈R×R3

r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ Cr

∥∥∥∥∥
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
3
2

L
3
2
t,x

,

and since φ̄ is a regular function and
~∇∂i∂j
(−∆) is a Calderón-Zydmund operator, by the Calderón commu-

tator theorem (see the book [16]), we have that the operator
[
φ,

~∇∂i∂j
(−∆)

]
is bounded in the space L

3
2
t,x

and we can write (using the support properties of ψ given in (4.3) and the information given in (3.1)):∥∥∥∥∥
[
φ̄,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
L

3
2
t,x

≤ C ‖ψuiuj‖
L

3
2
t,x

≤ C‖1QR1
uiuj‖

M
3
2 ,

3
2

t,x

≤ C‖1QR1
~u‖M3,3

t,x
‖1QR1

~u‖M3,3
t,x
≤ C‖1QR1

~u‖M3,τ0
t,x
‖1QR1

~u‖M3,τ0
t,x

< +∞,

where in the last line we used Hölder inequalities in Morrey spaces and we applied Lemma 2.

The first term of the right-hand side of (4.14) requires some extra computations: indeed, as we are
interested to obtain information over the parabolic ball Qr(t, x̄) we can write for some 0 < r < r:

1Qr

[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)) = 1Qr

[
φ,

~∇∂i∂j
(−∆)

]
(1Q2rψuiuj)+1Qr

[
φ,

~∇∂i∂j
(−∆)

]
((I−1Q2r)ψuiuj), (4.15)

and as before we will study the L
3
2
t,x norm of these two terms. For the first quantity in the right-hand

side of (4.15), by the Calderón commutator theorem, by the definition of Morrey spaces and by the
Hölder inequalities we have∥∥∥∥∥1Qr

[
φ,

~∇∂i∂j
(−∆)

]
(1Q2rψuiuj)

∥∥∥∥∥
3
2

L
3
2
t,x

≤ C‖1Q2rψuiuj‖
3
2

L
3
2
t,x

≤ Cr5(1− 3
τ0

)‖1QR1
uiuj‖

3
2

M
3
2 ,
τ0
2

t,x

≤ Cr
5(1− 3

τ0
)‖1QR1

~u‖
3
2

M3,τ0
t,x

‖1QR1
~u‖

3
2

M3,τ0
t,x

,

for all 0 < r < r, from which we deduce that

sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ,

~∇∂i∂j
(−∆)

]
(1Q2rψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ C‖1QR1
~u‖

3
2

M3,τ0
t,x

‖1QR1
~u‖

3
2

M3,τ0
t,x

< +∞.
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We study now the second term of the right-hand side of (4.15) and for this we consider the following
operator:

T : f 7→

(
1Qr

[
φ,

~∇∂i∂j
−∆

]
(I− 1Q2r)ψ

)
f,

and by the properties of the convolution kernel of the operator 1
(−∆) we obtain

|T (f)(x)| ≤ C1Qr(x)

∫
R3

(I− 1Q2r)(y)1QR1
(y)|f(y)||φ(x)− φ(y)|
|x− y|4

dy.

Recalling that 0 < r < r = Rb−R2
2 , by the support properties of the test function φ (see (4.3)), the

integral above is meaningful if |x− y| > r and thus we can write∥∥∥∥∥1Qr
[
φ,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ψuiuj)

∥∥∥∥∥
3
2

L
3
2
t,x

≤ C
∥∥∥∥1Qr ∫

R3

1|x−y|>r

|x− y|4
(I− 1Q2r)(y)1QR1

(y)|uiuj |dy
∥∥∥∥ 3

2

L
3
2
t,x

≤ C

(∫
|y|>r

1

|y|4
‖1QR1

|uiuj |(· − y)‖
L

3
2
t,x(Qr)

dy

) 3
2

≤ Cr−
3
2 ‖1QR1

uiuj‖
3
2

L
3
2
t,x(Qr)

,

with this estimate at hand and using the definition of Morrey spaces, we can write∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ Cr−
3
2 r

5(1− 3
τ0

)‖1QR1
uiuj‖

3
2

M
3
2 ,
τ0
2

t,x

≤ Cr
5(1− 3

2q
)‖1QR1

uiuj‖
3
2

M
3
2 ,
τ0
2

t,x

,

where in the last inequality we used the fact that 1
q = 2

τ0
+ 1

5 , which implies r−
3
2 r

5(1− 3
τ0

)
= r

5(1− 3
2q

)
.

Thus we finally obtain

sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ C‖1QR1
~u‖

3
2

M3,τ0
t,x

‖1QR1
~u‖

3
2

M3,τ0
t,x

< +∞.

We have proven that all the term in (4.14) are bounded and we can conclude that ‖1QR2

~V4‖M3,σ
t,x

< +∞.

Remark 1 The condition (4.13) implies an upper bound for σ depending on the current Morrey
information of ~u, which a priori is close to τ0 = 6. Nevertheless it is clear that whether we obtain a
better Morrey information on integrability for ~u, the value of σ can increase.

• For the quantity ~V5, based in the expression (4.7) we write

|1QR2

~V5(t, x)| ≤ C

3∑
i,j=1

1QR2

∫
R

∫
R3

|RiRj(φuiuj)(s, y)|
(|t− s|

1
2 + |x− y|)4

dyds ≤ C
3∑

i,j=1

1QR2
L1 (|RiRj(φuiuj)|) (t, x),

where we used the decaying properties of the heat kernel (recall that Ri = ∂i√
−∆

are the Riesz trans-

forms). Now taking the MorreyM3,σ
t,x norm and by Lemma 2 (with ν = 4τ0+5

5τ0
, p = 3, q = τ0 such that

p
ν > 3 and q

ν > σ which is compatible with the condition τ0 < σ) we have

‖1QR2

~V5‖M3,σ
t,x
≤ C

3∑
i,j=1

‖1QR2
L1 (|RiRj(φuiuj)|) ‖

M
p
ν ,
q
ν

t,x
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Then by Lemma 3 with λ = 1 − τ0/2
5 (recall τ0 = 6 < 10 so that ν > 2λ) and by the boundedness of

Riesz transforms in Morrey spaces we obtain:

‖1QR2
L1 (|RiRj(φuiuj)|) ‖

M
p
ν ,
q
ν

t,x

≤ C‖L1 (|RiRj(φuiuj)|) ‖
M

p
2λ
,
q

2λ
t,x

≤ C‖RiRj(φuiuj)‖
M

3
2 ,
τ0
2

t,x

≤ ‖1QR1
uiuj‖

M
3
2 ,
τ0
2

t,x

≤ C‖1QR1
~u‖M3,τ0

t,x
‖1QR1

~u‖M3,τ0
t,x

< +∞,

and we obtain ‖1QR2

~V5‖M3,σ
t,x

< +∞.

• For the term ~V6 and following the same ideas we have

|1QR2

~V6| ≤ C
3∑

i,j=1

1QR2

∫
R

∫
R3

∣∣∣φ~∇∂i(−∆)(∂jψ)uiuj(s, y)
∣∣∣

(|t− s|
1
2 + |x− y|)3

dyds = C

3∑
i,j=1

1QR2
L2

(∣∣∣∣∣φ~∇∂i(−∆)
(∂jψ)uiuj

∣∣∣∣∣
)
.

For 2 < q < 5
2 , define λ = 1− 2q

5 , we thus have 3 ≤ 3
2λ and σ ≤ q

λ . Then, by Lemma 2 and Lemma 3
we can write∥∥∥∥∥1QR2

L2

∣∣∣∣∣φ~∇∂i(−∆)
(∂jψ)uiuj

∣∣∣∣∣
∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2
L2

∣∣∣∣∣φ~∇∂i(−∆)
(∂jψ)uiuj

∣∣∣∣∣
∥∥∥∥∥
M

3
2λ
,
q
λ

t,x

≤ C

∥∥∥∥∥φ~∇∂i(−∆)
(∂jψ)uiuj

∥∥∥∥∥
M

3
2 ,q

t,x

,

but since the operator φ~∇∂i
(−∆) is bounded in Morrey spaces and since 2 < q < 5

2 <
τ0
2 = 3 (since τ0 = 6),

one has by Lemma 2 and by the Hölder inequalities∥∥∥∥∥φ~∇∂i(−∆)
(∂jψ)uiuj

∥∥∥∥∥
M

3
2 ,q

t,x

≤ C
∥∥∥1QR1

uiuj

∥∥∥
M

3
2 ,q

t,x

≤ C‖1QR1
uiuj‖

M
3
2 ,
τ0
2

t,x

≤ C‖1QR1
~u‖M3,τ0

t,x
‖1QR1

~u‖M3,τ0
t,x

,

from which we deduce ‖1QR2

~V6‖M3,σ
t,x

< +∞. Note that the same computations can be performed to

obtain that ‖1QR2

~V7‖M3,σ
t,x

< +∞.

• The quantity ~V8 based in the term (8) of (4.7) is treated in the following manner: we first write

‖1QR2

~V8‖M3,σ
t,x
≤ C

3∑
i,j=1

∥∥∥∥∥1QR2

(
L2

∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

.

We set 1 < ν < 3
2 , 2ν < q < 5ν

2 and λ = 1 − 2q
5ν , thus we have 3 ≤ ν

λ and σ ≤ q
λ , then, by Lemma 2

and by Lemma 3 we can write∥∥∥∥∥1QR2

(
L2

∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2

(
L2

∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣
)∥∥∥∥∥
M

ν
λ
,
q
λ

t,x

≤ C

∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
Mν,q

t,x

≤ C

∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
M

ν, 5ν2
t,x

≤ C

∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
Lνt L

∞
x

(4.16)

where in the last estimate we used the space inclusion LνtL
∞
x ⊂M

ν, 5ν
2

t,x .
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Remark 2 Note that if the parameter q above is close to the value 5ν
2 , then λ = 1− 2q

5ν is close to 0
and thus the value q

λ can be made very big: in the estimates (4.16) we can consider a Morrey space

M3,σ
t,x with σ � 1.

Let us focus now in the L∞ norm above (i.e. without considering the time variable). Remark that due
to the support properties of the auxiliary function ψ given in (4.3) we have supp(∂i∂jψ) ⊂ QR1 \QRa

and recall by (4.3) we have supp φ = QRb where Rb < Ra < R1, thus by the properties of the kernel

of the operator
~∇

(−∆) we can write∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣ ≤ C
∣∣∣∣∫

R3

1

|x− y|2
1QRb

(x)1QR1
\QRa

(y)(∂i∂jψ)(uiuj)(·, y)dy

∣∣∣∣
≤ C

∣∣∣∣∫
R3

1|x−y|>(Ra−Rb)

|x− y|2
1QRb

(x)1QR1
\QRa

(y)(∂i∂jψ)(uiuj)(·, y)dy

∣∣∣∣ , (4.17)

and the previous expression is nothing but the convolution between the function (∂i∂jψ)(uiuj) and a
L∞-function, thus we have∥∥∥∥∥φ ~∇

(−∆)
(∂i∂jψ)(uiuj)(t, ·)

∥∥∥∥∥
L∞

≤ C‖(∂i∂jψ)(uiuj)(t, ·)‖L1 ≤ C‖1QR1
(uiuj)(t, ·)‖Lν , (4.18)

and taking the Lν-norm in the time variable we obtain∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR1
uiuj‖Lνt,x ≤ C‖1QR1

~u‖M3,τ0
t,x
‖1QR1

~u‖M3,τ0
t,x

< +∞,

where we used the fact that 1 < ν < 3
2 <

τ0
2 and we applied Hölder’s inequality. Gathering together

all these estimates we obtain ‖1QR2

~V8‖M3,σ
t,x

< +∞.

• The quantity ~V9 based in the term (9) of (4.7) can be treated in a similar manner. Indeed, by the
same arguments displayed to deduce (4.16), we can write (recall that 1 < ν < 3

2):

‖1QR2

~V9‖M3,σ
t,x
≤ C

∥∥∥∥∥φ ~∇
(−∆)

((∆ψ)p)

∥∥∥∥∥
Lνt L

∞
x

,

and if we study the L∞-norm in the space variable of this term, by the same ideas used in (4.17)-(4.18)

we obtain
∥∥∥φ ~∇

(−∆)((∆ψ)p)(t, ·)
∥∥∥
L∞
≤ C‖(∆ψ)p(t, ·)‖L1 ≤ C‖1QR1

p(t, ·)‖Lν . Thus, taking the Lν-norm

in the time variable we have

‖1QR2

~V9‖M3,σ
t,x
≤ C

∥∥∥∥∥φ ~∇
(−∆)

((∆ψ)p)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR1
p‖Lνt,x ≤ C‖1QR1

p‖
L

3
2
t,x

< +∞.

• The study of the quantity ~V10 follows almost the same lines as the terms ~V8 and ~V9. However instead
of (4.17) we have∣∣∣∣∣φ ~∇∂i

(−∆)
((∂iψ)p)

∣∣∣∣∣ ≤ C
∣∣∣∣∫

R3

1|x−y|>(Ra−Rb)

|x− y|3
1QRb

(x)1QR1
\QRa

(y)(∂iψ)p(t, y)dy

∣∣∣∣ ,
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and thus we can write:

‖1QR2

~V10‖M3,σ
t,x
≤

∥∥∥∥∥φ ~∇∂i
(−∆)

((∂iψ)p)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR1
p‖Lνt,x ≤ C‖1QR1

p‖
L

3
2
t,x

< +∞.

Note that, by the same reason given in the Remark 2, in the study of the terms that contain the
pressure (i.e. ~V9 and ~V10) we can consider a Morrey spaceM3,σ

t,x with σ � 1. But this is not the case
anymore for the last term below.

• Finally, for the term ~V11 based in the term (11) of (4.7) we write:

|1QR2

~V11| =

∣∣∣∣1QR2

∫ t

0
e(t−s)∆[φ(~∇∧ ~ω)](s, x)ds

∣∣∣∣
≤

∣∣∣∣1QR2

∫ t

0
e(t−s)∆~∇∧ (φ~ω)(s, x)ds

∣∣∣∣+

∣∣∣∣1QR2

∫ t

0
e(t−s)∆(~∇φ) ∧ ~ω(s, x)ds

∣∣∣∣
≤ Va + Vb,

for the first term above, and following the ideas given in (4.11), we have the following estimate with
the Riesz potential L1, and by Lemma 2 we can write

‖Va‖M3,σ
t,x
≤ C‖1QR2

(L1(|1QRb
~ω|))‖M3,σ

t,x
≤ C‖L1(|1QRb

~ω|)‖M120,120
t,x

= ‖L1(|1QRb
~ω|)‖

M
q
λ
,
q
λ

t,x

,

where q = 24
5 and λ = 1

25 . Thus, since 1 < 5
q and since λ = 1− q

5 we can apply the Lemma 3 to obtain
that

‖L1(|1QRb
~ω|)‖

M
q
λ
,
q
λ

t,x

≤ C‖1QRb
~ω‖Mq,q

t,x
= C‖1QRb

~ω‖
M

24
5 , 24

5
t,x

≤ C‖1QRb
~ω‖M6,6

t,x
= C‖1QRb

~ω‖L6
t,x
< +∞.

Now, for the term Vb above, using the same ideas as in (4.8)-(4.9) and applying again the Lemma 2,
we obtain

‖Vb‖M3,σ
t,x
≤ C‖1QR2

(L2(|1QRb
~ω|))‖M3,σ

t,x

≤ C‖1QR2
(L2(|1QRb

~ω|))‖M60,60
t,x

(4.19)

≤ C‖L2(|1QRb
~ω|)‖

M
q
λ
,
q
λ

t,x

,

where this time q = 12
5 and λ = 1

25 . Since we have 2 < 5
q and λ = 1− 2q

5 , we apply Lemma 3 and we
have

C‖L2(|1QRb
~ω|)‖

M
q
λ
,
q
λ

t,x

≤ C‖1QRb
~ω‖Mq,q

t,x
= C‖1QRb

~ω‖
M

12
5 , 12

5
t,x

≤ ‖1QRb
~ω‖M6,6

t,x
= ‖1QRb

~ω‖L6
t,x
< +∞.

We can thus conclude that
‖1QR2

~V11‖M3,σ
t,x

< +∞.

With all these estimates Proposition 2 is now proven. �

Remark 3 Note that the value of the index σ of the Morrey space M3,σ
t,x (R× R3) is potentially bounded by

the information available over ~ω and the maximal possible value for this parameter is close to σ = 60 (see
the expression (4.19) above).

This result gives a small gain of integrability as we pass from an information on the Morrey space M3,τ0
t,x

to a control over the space M3,σ
t,x with τ0 < σ with σ close to τ0. This is of course not enough and we

need to repeat the arguments above in order to obtain a better control. In this sense we have the following
proposition:
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Proposition 3 Under the hypotheses of Theorem 1 and within the framework of Proposition 1, there exists
a radius R̄2 with 0 < R̄2 < R2 such that

1QR̄2
(t0,x0)~u ∈M

3,60
t,x (R× R3), (4.20)

Proof. By the Proposition 2 above it follows that 1QR2
~u ∈ M3,σ

t,x (R × R3) with σ very close to τ0 (say

σ = τ0 + ε). Hence, with the information 1QR2
~u ∈M3,τ0+ε

t,x (R×R3) at hand, we can reapply the Proposition

2 to obtain for some smaller radius R̄2 < R2 that 1QR̄2
~u ∈ M3,σ1

t,x (R × R3) where σ1 = σ + ε = τ0 + 2ε.

Iterating these arguments as long as necessary, we obtain the information 1QR2
~u ∈ M3,60

t,x (R × R3) where
the value σ = 60 is fixed by the information available for the quantity ~ω which is the only term that is
fixed: see the computation leading to the estimate (4.19) and Remark 3. Let us note that a slight abuse of
language has been used for the radius R̄2: at each iteration this radius is smaller and smaller, but in order
to maintain the notations we still denote the final radius by R̄2. �

5 A first gain of information for the variable ~ω

Note that the Proposition 3 and the Corollary 1 give interesting control (on a small neighborhood of a point
(t0, x0)) for the variable ~u. Remark also that Theorem 2 gives some information for the variable ~ω:

1QR̄2
(t0,x0)~u ∈M

3,60
t,x (R× R3), 1Qr1 (t0,x0)~u ∈ L6

t,x(R× R3), 1QR1
(t0,x0)

~∇⊗ ~u ∈M2,τ1
t,x (R× R3),

1Qr2 (t0,x0)~ω ∈ L6
t,x(R× R3),

(5.1)

where
0 < R̄2 < R2 < r2 < r1 < R1 < R < 1, (5.2)

with τ0 = 6 and τ1 = 30
11 (which is given by the condition 1

τ1
= 1

τ0
+ 1

5 , see the Corollary 1). Note that we

have 120
45 < τ1 = 30

11 .

We will exploit all this information in order to derive some Morrey control for the variable div(~ω), indeed,
we have:

Proposition 4 Under the general hypotheses of Theorem 1, if we have the controls (5.1) over ~u and ~ω then
we have, for some radius 0 < R3 < R̄2, we have

1QR3
(t0,x0)div(~ω) ∈M

6
5
, 60
11

t,x (R× R3).

Proof. We first apply the divergence operator to the equation satisfied by ~ω (see the system (1.1)) and
since we have the identities div(~∇div(~ω)) = ∆~ω and div(~∇∧ ~u) ≡ 0, we obtain

∂tdiv(~ω) = 2∆div(~ω)− div(~ω)− div((~u · ~∇)~ω).

Consider now φ̄ : R× R3 −→ R a non-negative function such that φ̄ ∈ C∞0 (R× R3) and such that

φ̄ ≡ 1 over Qρb(t0, x0), supp(φ̄) ⊂ Qρa(t0, x0), (5.3)

where we have
0 < R3 < ρb < ρa < R̄2, (5.4)

where the radius R̄2 is fixed in (5.2). With the help of this auxiliar function we define the variable W by

W = φ̄div(~ω),
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note that, due to the support properties of the function φ̄ we have 1QR3
W = 1QR3

div(~ω). If we study the
evolution of W we obtain:

∂tW = (∂tφ̄)div(~ω) + φ̄

(
2∆div(~ω)− div(~ω)− div((~u · ~∇)~ω)

)
= 2∆W + (∂tφ̄+ 2∆φ̄− φ̄)div(~ω)− 4

3∑
i=1

∂i
(
(∂iφ̄)div(~ω)

)
− φ̄div((~u · ~∇)~ω),

where we used the identity φ̄∆div(~ω) = ∆(φ̄div(~ω)) + ∆φ̄div(~ω)− 2
3∑
i=1

∂i
(
(∂iφ̄)div(~ω)

)
. Recall now that

we also have the identity (since div(~u) = 0):

φ̄div((~u · ~∇)~ω) = φ̄div
(
div(~ω ⊗ ~u)

)
= div

(
div(φ̄~ω ⊗ ~u)

)
− div(~ω ⊗ ~u · ~∇φ̄)− ~∇φ̄ · div(~ω ⊗ ~u),

and we obtain

∂tW = 2∆W + (∂tφ̄+ 2∆φ̄− φ̄)div(~ω)− 4
3∑
i=1

∂i
(
(∂iφ̄)div(~ω)

)
− div

(
div(φ̄~ω ⊗ ~u)

)
+div(~ω ⊗ ~u · ~∇φ̄) + ~∇φ̄ · div(~ω ⊗ ~u).

Thus, since we have W(0, ·) = 0 (by the properties of the localizing function φ̄ given in (5.3)), applying the
Duhamel formula we can write:

W(t, x) =

∫ t

0
e2(t−s)∆(∂tφ̄+ 2∆φ̄− φ̄)div(~ω)ds︸ ︷︷ ︸

W1

−4
3∑
i=1

∫ t

0
e2(t−s)∆∂i

(
(∂iφ̄)div(~ω)

)
ds︸ ︷︷ ︸

W2

(5.5)

−
∫ t

0
e2(t−s)∆div

(
div(φ̄~ω ⊗ ~u)

)
ds︸ ︷︷ ︸

W3

+

∫ t

0
e2(t−s)∆div(~ω ⊗ ~u · ~∇φ̄)ds︸ ︷︷ ︸

W4

+

∫ t

0
e2(t−s)∆~∇φ̄ · div(~ω ⊗ ~u)ds︸ ︷︷ ︸

W5

,

and we will estimate each one of the terms above.

• For the first term W1 we write,

|1QR3
W1| =

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆div

(
(∂tφ̄+ 2∆φ̄− φ̄)~ω

)
ds

∣∣∣∣ (5.6)

+

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆(~∇(∂tφ̄+ 2∆φ̄− φ̄

))
· ~ωds

∣∣∣∣ ,
since the convolution kernel of the semi-group e2(t−s)∆ is the usual 3D heat kernel g2t, thus by the
decay properties of the heat kernel, by the properties of the test function φ̄ (see (5.3)) and by the
definition of the parabolic Riesz potentials L1 and L2 given in (2.2), we can write the estimate

|1QR3
W1| ≤ C1QR3

∫
R

∫
R3

|1Qρa~ω(s, y)|
(|t− s|

1
2 + |x− y|)4

dyds+ C1QR3

∫
R

∫
R3

|1Qρa~ω(s, y)|
(|t− s|

1
2 + |x− y|)3

dyds

≤ C1QR3
(L1(|1Qρa~ω|))(t, x) + C1QR3

(L2(|1Qρa~ω|))(t, x), (5.7)

and we have

‖1QR3
W1‖

M
6
5 ,

60
11

t,x

≤ C
∥∥∥1QR3

(L1(|1Qρa~ω|))
∥∥∥
M

6
5 ,

60
11

t,x

+ C
∥∥∥1QR3

(L2(|1Qρa~ω|))
∥∥∥
M

6
5 ,

60
11

t,x

.
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For the first term above, since 60
11 ≤

15
2 , we set p = 6

5 , q = 9
2 and λ = 1

10 and by Lemma 2 we obtain∥∥∥1QR3
(L1(|1Qρa~ω|))

∥∥∥
M

6
5 ,

60
11

t,x

≤ C‖1QR3
L1(|1Qρa~ω|)‖M

6
5 ,

15
2

t,x

≤ C‖L1(|1Qρa~ω|)‖M
6
λ5
, 9
2λ

t,x

,

since 6
5 <

6
λ5 and 15

2 < 9
2λ . Thus, applying Lemma 3 (and Lemma 2), we have

‖L1(|1Qρa~ω|)‖M
6
λ5
, 9
2λ

t,x

≤ C‖1Qρa~ω‖M
6
5 ,

9
2

t,x

≤ C‖1Qρa~ω‖L6
t,x
< +∞,

since we have the control 1Qr2
~ω ∈ L6

t,x(R × R3) given in (5.1) and we have by (5.2) and (5.4) that
ρa < R̄2 < r2.

For the second term that we need to study, we fix p = 6
5 , q = 12

5 and λ = 1
25 , by applying Lemma 2

and Lemma 3 we obtain∥∥∥1QR3
(L2(|1Qρa~ω|))

∥∥∥
M

6
5 ,

60
11

t,x

≤ C‖1QR3
L2(|1Qρa~ω|)‖M

6
5 ,

15
2

t,x

≤ ‖L2(|1Qρa~ω|)‖M
6
λ5
, 12
λ5

t,x

≤ C‖1Qρa~ω‖M
6
5 ,

12
5

t,x

≤ C‖1Qρa~ω‖L6
t,x
≤ C‖1Qr2

~ω‖L6
t,x
< +∞,

where we used the information (5.1) and the relationships (5.2)-(5.4). With these two estimates at
hand we conclude that ‖1QR3

W1‖
M

6
5 ,

15
2

t,x

< +∞.

• For the term W2 of (5.5) we need to study, for all 1 ≤ i ≤ 3, the quantities

Ii =

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆∂i

(
(∂iφ̄)div(~ω)

)
ds

∣∣∣∣ ,
and we write

Ii ≤
∣∣∣∣1QR3

∫ t

0
e2(t−s)∆∂i

(
div((∂iφ̄)~ω)

)
ds

∣∣∣∣+

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆∂i

(
[~∇(∂iφ̄)] · ~ω

)
ds

∣∣∣∣ . (5.8)

We study the first term above and by the support properties of the function φ̄ given in (5.3), we have
for 1 ≤ i, j ≤ 3:∣∣∣∣1QR3

∫ t

0
e2(t−s)∆∂i∂j

(
(∂iφ̄)~ω)

)
ds

∣∣∣∣ ≤ C ∫
R

∫
R3

1QR3
(t, x)1C(ρb,ρa)(s, y)|~ω(s, y)|

(|t− s|
1
2 + |x− y|)5

dyds, (5.9)

where the set C(ρb, ρa) is the corona defined by Qρa \Qρb . Noting that (t, x) ∈ QR3 and that (s, y) ∈

C(ρb, ρa), since we have R3 < ρb by (5.4), the convolution kernel
1QR3

(t,x)1C(ρb,ρa)(s,y)

(|t−s|
1
2 +|x−y|)5

is bounded and

we can write∥∥∥∥1QR3

∫ t

0
e2(t−s)∆∂i∂j

(
(∂iφ̄)~ω)

)
ds

∥∥∥∥
L∞t,x

≤ C‖1C(ρb,ρa)~ω‖L1
t,x
≤ C‖1Qr2

~ω‖L6
t,x
< +∞, (5.10)

(recall (5.2)-(5.4)), from which we deduce that∥∥∥∥1QR3

∫ t

0
e2(t−s)∆∂i

(
div((∂iφ̄)~ω)

)
ds

∥∥∥∥
M

6
5 ,

60
11

t,x

≤ C‖1Qr2
~ω‖L6

t,x
< +∞.

The second term of (5.8) has the same structure as the first term in (5.6), and thus by the same
arguments we can write∥∥∥∥1QR3

∫ t

0
e2(t−s)∆∂i

(
[~∇(∂iφ̄)] · ~ω

)
ds

∥∥∥∥
M

6
5 ,

60
11

t,x

≤ C‖1Qr2
~ω‖L6

t,x
< +∞.
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• We study now the term W3 defined in (5.5) and we write

‖1QR3
W3‖

M
6
5 ,

60
11

t,x

=

∥∥∥∥1QR3

∫ t

0
e2(t−s)∆div

(
div(φ̄~ω ⊗ ~u)

)
ds

∥∥∥∥
M

6
5 ,

60
11

t,x

,

and by the maximal regularity of the heat kernel in Morrey spaces (the Theorem 7.3 of [16] can be
generalized to parabolic Morrey spaces), we have

‖1QR3
W3‖

M
6
5 ,

60
11

t,x

≤ C
∥∥φ̄~ω ⊗ ~u∥∥

M
6
5 ,

60
11

t,x

,

now, using the Hölder inequalities for Morrey spaces stated in Lemma 1 (with 5
6 = 1

2+1
3 and 11

60 = 1
6+ 1

60)
and the properties of the localizing function φ̄, we obtain

‖1QR3
W3‖

M
6
5 ,

60
11

t,x

≤ C‖1Qρa~ω‖M2,6
t,x
‖1Qρa~u‖M6,60

t,x

≤ C‖1Qr2
~ω‖M6,6

t,x
‖1QR̄2

~u‖M6,60
t,x
≤ C‖1Qr2

~ω‖L6
t,x
‖1QR̄2

~u‖M6,60
t,x

< +∞,

where in the last estimate above we used Lemma 2, the information available in (5.1) and the rela-
tionships (5.2)-(5.4).

• For the term W4 given in (5.5) we have, following the same arguments given in (5.9):

|1QR3
W4| =

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆div(~ω ⊗ ~u · ~∇φ̄)ds

∣∣∣∣ ≤ C ∫
R

∫
R3

1QR3
(t, x)1C(ρb,ρa)(s, y)|~ω ⊗ ~u(s, y)|

(|t− s|
1
2 + |x− y|)4

dyds,

and thus, by the ideas given in (5.9)-(5.10) we can write∥∥∥∥∥
∫
R

∫
R3

1QR3
(t, x)1C(ρb,ρa)|~ω ⊗ ~u(s, y)|

(|t− s|
1
2 + |x− y|)4

dyds

∥∥∥∥∥
L∞t,x

≤ C‖1C(ρb,ρa)~ω ⊗ ~u‖L1
t,x
≤ C‖1Qr2

~ω ⊗ ~u‖L3
t,x

≤ C‖1Qr2
~ω‖L6

t,x
‖1Qr1

~u‖L6
t,x
< +∞,

where we applied the Hölder inequalities, Lemma 2 (in the Lebesgue space setting) and the relationships
(5.2)-(5.4). With these estimates at hand, we easily deduce that

‖1QR3
W4‖M6,60

t,x
< +∞.

• For the last term W5 of (5.5) we have

|1QR3
W5| =

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆~∇φ̄ · div(~ω ⊗ ~u)ds

∣∣∣∣ .
Thus, for 1 ≤ i, j, k, l ≤ 3 we need to study the quantities

Ji,j,k,l =

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆(∂iφ̄)∂j(wkul)ds

∣∣∣∣
≤

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆∂j

(
(∂iφ̄)(wkul)

)
ds

∣∣∣∣+

∣∣∣∣1QR3

∫ t

0
e2(t−s)∆(∂j∂iφ̄)(wkul)ds

∣∣∣∣ ,
where we used the identity (∂iφ̄)∂j(wkul) = ∂j

(
(∂iφ̄)(wkul)

)
− (∂j∂iφ̄)(wkul). Now, due to the

properties of the heat kernel and the support properties of the function φ̄, we obtain the inequality

Ji,j,k,l ≤ C

∫
R

∫
R3

1QR3
(t, x)1C(ρb,ρa)|wkul(s, y)|

(|t− s|
1
2 + |x− y|)4

dyds

+C

∫
R

∫
R3

1QR3
(t, x)1C(ρb,ρa)|wkul(s, y)|

(|t− s|
1
2 + |x− y|)3

dyds.
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Now, by the same arguments given in (5.9)-(5.10) we obtain∥∥∥∥∥
∫
R

∫
R3

1QR3
(t, x)1C(ρb,ρa)|wkul(s, y)|

(|t− s|
1
2 + |x− y|)4

dyds

∥∥∥∥∥
L∞t,x

+

∥∥∥∥∥
∫
R

∫
R3

1QR3
(t, x)1C(ρb,ρa)|wkul(s, y)|

(|t− s|
1
2 + |x− y|)3

dyds

∥∥∥∥∥
L∞t,x

≤ C‖1Qr2
wkul‖L1

t,x
+ C‖1Qr2

wkul‖L1
t,x

≤ C‖1Qr2
~ω‖L6

t,x
‖1Qr1

~u‖L6
t,x
< +∞,

and with these estimates for 1 ≤ i, j, k, l ≤ 3, we easily deduce that

‖1QR3
W5‖M6,60

t,x
< +∞.

With all these controls, Proposition 4 is proven. �

6 The end of the proof of Theorem 1

The key result for obtaining a gain of regularity is the following lemma coming from the theory of parabolic
equations (see [15, 17]).

Lemma 8 Let σ be a smooth homogeneous function over R3 \ {0}, of exponent 1 with σ(D) the Fourier
multiplier associated. Consider a vector field ~Φ ∈Mp0,q0

t,x (R×R3) and a scalar function h ∈Mp0,q1
t,x (R×R3)

such that 1 ≤ p0 ≤ q0, with 1
q0

= 2−α
5 , 1

q1
= 1−α

5 , for 0 < α < 1. Then, the function ~v equal to 0 for t ≤ 0
and

~v(t, x) =

∫ t

0
e(t−s)∆(~Φ(s, ·) + σ(D)h(s, ·))ds,

for t > 0, is Hölder continuous of exponent α with respect to the parabolic distance.

In order to apply this lemma to the proof of Theorem 1, we will first localize the full micropolar equations
(1.1) and then we will show that each term of the corresponding Duhamel formula belongs either to the
space Mp0,q0

t,x (R× R3) or to the space Mp0,q1
t,x (R× R3).

We start by localizing the problem and for this we consider φ : R× R3 −→ R a test function such that
supp(φ) ⊂]− 1

4 ,
1
4 [×B(0, 1

2) and φ ≡ 1 over ]− 1
16 ,

1
16 [×B(0, 1

4). We consider next a radius R > 0 such that

4R < R3 < R̄2 < r2 < r1 < R1 < R < 1, (6.1)

where R3 is the radius of Proposition 4, R̄2 is the radius of Proposition 3, r1, r2 are the radii from Theorem
2 and R1 is the radius obtained in Proposition 1. We then write

η(t, x) = φ

(
t− t0
R2

,
x− x0

R

)
, (6.2)

and we consider the variable ~U defined by the formula

~U = η(~u+ ~ω), (6.3)

then, by the properties of the auxiliar function η, we have the identity ~U = ~u+ ~ω over a small neighborhood
of the point (t0, x0), the support of the variable ~U is contained in the parabolic ball QR and moreover we
also have ~U(0, x) = 0. Thus, if we study the evolution of this variable, following the system (1.1), we have

∂t ~U = (∂tη)(~u+ ~ω) + η∆(~u+ ~ω)− η((~u · ~∇)~u)− η~∇p+
1

2
η~∇∧ ~ω + η~∇div(~ω)

−η~ω − η((~u · ~∇)~ω) +
1

2
η~∇∧ ~u.
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We use now the identity η∆(~u+ ~ω) = ∆~U −∆η(~u+ ~ω)− 2
3∑
i=1

(∂iη)(∂i(~u+ ~ω)) to obtain the equation

∂t ~U = ∆~U + (∂tη −∆η)(~u+ ~ω)− 2

3∑
i=1

(∂iη)(∂i(~u+ ~ω))− η((~u · ~∇)~u)− η~∇p+
1

2
η~∇∧ ~ω

+η~∇div(~ω)− η~ω − η((~u · ~∇)~ω) +
1

2
η~∇∧ ~u.

In the expression above, we need to rewrite six particular terms, indeed, since we have the identities

η~∇div(~ω) = ~∇(ηdiv(~ω))− (~∇η)div(~ω),
3∑
i=1

(∂iη)(∂i(~u+ ~ω)) =
3∑
i=1

∂i((∂iη)(~u+ ~ω))−
3∑
i=1

(∂i∂iη)(~u+ ~ω),

η((~u · ~∇)~u) = div(η~u⊗ ~u)− ~u⊗ ~u · ~∇η,
η~∇∧ ~ω = ~∇∧ (η~ω)− (~∇η) ∧ ~ω, and η~∇∧ ~u = ~∇∧ (η~u)− (~∇η) ∧ ~u,

and η((~u · ~∇)~ω) = ηdiv(~ω ⊗ ~u) = div(η~ω ⊗ ~u)− ~ω ⊗ ~u · ~∇η,

we obtain

∂t ~U = ∆~U + (∂tη + ∆η)(~u+ ~ω)− 2

3∑
i=1

∂i((∂iη)(~u+ ~ω))− div(η~u⊗ ~u) + ~u⊗ ~u · ~∇η

−η~∇p+
1

2
~∇∧ (η~ω)− 1

2
(~∇η) ∧ ~ω + ~∇(ηdiv(~ω))− (~∇η)div(~ω)

−η~ω − div(η~ω ⊗ ~u) + ~ω ⊗ ~u · ~∇η +
1

2
~∇∧ (η~u)− 1

2
(~∇η) ∧ ~u.

We rewrite this equation in the following form:∂t
~U = ∆~U + ~A+

3∑
i=1

∂i ~Bi + ~∇C + ~∇∧ ~D + divE,

~U(0, x) = 0,

(6.4)

where the vector ~A is given by

~A = (∂tη + ∆η)(~u+ ~ω) + ~u⊗ ~u · ~∇η − η~∇p− 1

2
(~∇η) ∧ ~ω (6.5)

−(~∇η)div(~ω)− η~ω + ~ω ⊗ ~u · ~∇η,

the vector ~Bi (for 1 ≤ i ≤ 3) is given by

~Bi = 2(∂iη)(~u+ ~ω), (6.6)

the scalar function C is given by
C = ηdiv(~ω), (6.7)

the vector ~D is given by

~D =
1

2
η(~ω + ~u), (6.8)

and finally, the tensor E is defined by the expression

E = −η(~u⊗ ~u+ ~ω ⊗ ~u). (6.9)
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Thus, by the Duhamel formula, the solution of the equation (6.4) can be written in the following manner:

~U(t, x) =

∫ t

0
e(t−s)∆

(
~A+

3∑
i=1

∂i ~Bi + ~∇C + ~∇∧ ~D + divE
)
ds, (6.10)

thus, in order to apply Lemma 8 to this system and obtain a parabolic gain of regularity, we only need to
prove that the quantities ~A, ~Bi, C, ~D and E, defined in (6.5)-(6.9) respectively, satisfy:

~A ∈Mp0,q0
t,x (R× R3) and ~Bi, C, ~D,E ∈Mp0,q1

t,x (R× R3), (6.11)

where 1 ≤ p0 ≤ 6
5 ≤ q0, with 1

q0
= 2−α

5 , 1
q1

= 1−α
5 , for some 0 < α < 1

24 .

Let us start with the quantity ~A and we have

Lemma 9 For the term ~A defined in (6.5) we have

‖ ~A‖Mp0,q0
t,x

< +∞.

Proof. By definition we have

‖ ~A‖Mp0,q0
t,x
≤ ‖(∂tη + ∆η)(~u+ ~ω)‖Mp0,q0

t,x︸ ︷︷ ︸
(1)

+ ‖~u⊗ ~u · ~∇η‖Mp0,q0
t,x︸ ︷︷ ︸

(2)

+ ‖η~∇p‖Mp0,q0
t,x︸ ︷︷ ︸

(3)

+C ‖(~∇η) ∧ ~ω‖Mp0,q0
t,x︸ ︷︷ ︸

(4)

+ ‖(~∇η)div(~ω)‖Mp0,q0
t,x︸ ︷︷ ︸

(5)

+ ‖η~ω‖Mp0,q0
t,x︸ ︷︷ ︸

(6)

+ ‖~ω ⊗ ~u · ~∇η‖Mp0,q0
t,x︸ ︷︷ ︸

(7)

. (6.12)

Each term above is studied separately:

• For the first term of (6.12), we note that since p0 ≤ q0 = 5
2−α and since 0 < α < 1

24 , we have
p0 ≤ q0 < 3 < 6, and thus by the support properties of the function η as well as by the properties of
Morrey spaces given in the Lemma 2, we obtain

‖(∂tη+∆η)(~u+~ω)‖Mp0,q0
t,x
≤ C‖1QR

(~u+~ω)‖Mp0,q0
t,x
≤ C‖1Qr2

(~u+~ω)‖M6,6
t,x

= C‖1Qr2
(~u+~ω)‖L6

t,x
< +∞,

since we have the controls (5.1) and the relationships (6.1).

• The terms (2) and (7) of (6.12) can be treated in a similar manner. Indeed, since 0 < α < 1
24 we have

p0 ≤ q0 < 3 and by the same arguments as above we write for (2):

‖~u⊗ ~u · ~∇η‖Mp0,q0
t,x

≤ C‖1QR
~u⊗ ~u‖Mp0,q0

t,x
≤ C‖1Qr1

~u⊗ ~u‖M3,3
t,x

≤ C‖1Qr1
~u⊗ ~u‖L3

t,x
≤ C‖1Qr1

~u‖L6
t,x
‖1Qr1

~u‖L6
t,x
< +∞,

where we used the Hölder inequality in the last estimate as well as the controls (5.1) and the relation-
ships (6.1). The same ideas apply for (7).

• For the term (3) of (6.12), we recall that by the equation (1.2) over the pressure we have the expression

p =

3∑
i,j=1

∂i∂j
(−∆)

(uiuj). We consider now two auxiliary functions φ̃ and ψ̃ satisfying the same properties

stated in (4.3) and such that

φ̃ ≡ 1 over Qrb(t0, x0), supp(φ̃) ⊂ Qrb(t0, x0) and ψ̃ ≡ 1 over Qra(t0, x0), supp(ψ̃) ⊂ QR3(t0, x0),
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where R < rb < ra < R3.
Thus, by definition of the auxiliary function φ̃ we have the identity 1QR3

= φ̃1QR3
(recall the relation-

ships 6.1). Thus the term φ̃~∇p = φ̃
3∑

i,j=1

~∇
(−∆)

∂i∂j(uiuj) can be rewritten in the following manner

φ̃~∇p =
3∑

i,j=1

φ̃
~∇∂i∂j
(−∆)

(ψ̃uiuj)︸ ︷︷ ︸
(a)

−
3∑

i,j=1

φ̃~∇∂i
(−∆)

(∂jψ̃)uiuj︸ ︷︷ ︸
(b)

−
3∑

i,j=1

φ̃~∇∂j
(−∆)

(∂iψ̃)uiuj︸ ︷︷ ︸
(c)

+ 2

3∑
i,j=1

φ̃
~∇

(−∆)
(∂i∂jψ̃)(uiuj)︸ ︷︷ ︸
(d)

+ φ̃
~∇
(
(∆ψ̃)p

)
(−∆)︸ ︷︷ ︸
(e)

−2

3∑
i=1

φ̃
~∇
(
∂i((∂iψ̃)p)

)
(−∆)︸ ︷︷ ︸

(f)

(6.13)

and since 0 < α < 1
24 we have p0 ≤ q0 = 5

2−α <
120
47 < 3 and we only need to prove that each one of

these terms belong to the Morrey space M
6
5
, 120

47
t,x (R× R3).

∗ The term (a) in (6.13) is treated as follows: since the Riesz transforms are bounded in Morrey
spaces we obtain∥∥∥∥∥φ̃ ~∇∂i∂j(−∆)

(ψ̃uiuj)

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C

∥∥∥∥∥∂i∂j ~∇(−∆)
(ψ̃uiuj)

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C
∥∥∥~∇(ψ̃uiuj)

∥∥∥
M

6
5 ,

120
47

t,x

,

now, for 1 ≤ k ≤ 3, using all the information available over ~u (see (5.1)), by Lemma 2 and by the
Hölder inequality in Morrey spaces, we have∥∥∥(∂kψ̃)uiuj

∥∥∥
M

6
5 ,

120
47

t,x

≤ C
∥∥∥1QR̄2

uiuj

∥∥∥
M

3
2 ,30

t,x

≤ C‖1QR̄2
ui‖M3,60

t,x
‖1QR̄2

uj‖M3,60
t,x

< +∞,

since 6
5 <

3
2 , 120

47 < 30 and 2
3 = 1

3 + 1
3 , 1

30 = 1
60 + 1

60 . By the same arguments (recall the informations
over ~u given in (5.1)) we have

‖ψ̃(∂kui)uj‖
M

6
5 ,

120
47

t,x

≤ C‖1QR1

~∇⊗ ~u‖
M

2, 120
45

t,x

‖1QR3
uj‖M3,60

t,x

≤ C‖1QR1

~∇⊗ ~u‖M2,τ1
t,x
‖1QR3

uj‖M3,60
t,x

< +∞,

‖ψ̃ui(∂kuj)‖
M

6
5 ,

120
47

t,x

≤ C‖1QR3
ui‖M3,60

t,x
‖1QR1

~∇⊗ ~u‖
M

2, 120
45

t,x

≤ C‖1QR3
ui‖M3,60

t,x
‖1QR1

~∇⊗ ~u‖M2,τ1
t,x

< +∞,

since 5
6 = 1

2 + 1
3 and 47

120 = 45
120 + 1

60 and 120
45 < τ1 = 30

11 <
20
7 . Thus we can deduce that we have

the estimate ∥∥∥∥∥φ̃ ~∇∂i∂j(−∆)
(ψ̃uiuj)

∥∥∥∥∥
M

6
5 ,

120
47

t,x

< +∞.

∗ The terms (b) and (c) of (6.13) can be treated in a similar manner and using the information
available in (5.1) we have:∥∥∥∥∥ φ̃~∇∂i(−∆)

(∂jψ̃)uiuj

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C

∥∥∥∥∥ ~∇∂i
(−∆)

(∂jψ̃)uiuj

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C
∥∥∥(∂jψ̃)uiuj

∥∥∥
M

6
5 ,

120
47

t,x

≤ C‖1QR̄2
uiuj‖

M
3
2 ,30

t,x

≤ C‖1QR̄2
ui‖M3,60

t,x
‖1QR̄2

uj‖M3,60
t,x

< +∞.
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∗ The term (d) is treated as follows. By Lemma 2, since 6
5 <

3
2 and 120

47 < 15
4 , we have∥∥∥∥∥φ̃ ~∇

(−∆)
(∂i∂jψ̃)(uiuj)

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(−∆)

(∂i∂jψ̃)(uiuj)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

.

Now, by the space inclusion L
3
2
t L
∞
x ⊂M

3
2
, 15

4
t,x we obtain∥∥∥∥∥φ̃ ~∇

(−∆)
(∂i∂jψ̃)(uiuj)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(−∆)

(∂i∂jψ̃)(uiuj)

∥∥∥∥∥
L

3
2
t L
∞
x

Following the same ideas displayed in formulas (4.16)-(4.18), due to the support properties of the
auxiliary functions we obtain∥∥∥∥∥φ̃ ~∇

(−∆)
(∂i∂jψ̃)(uiuj)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QR̄2
uiuj‖

L
3
2
t,x

≤ C‖1QR̄2
~u‖M3,30

t,x
‖1QR̄2

~u‖M3,30
t,x

< +∞.

∗ The term (e) of (6.13) follows the same ideas as previous one, and we have∥∥∥∥∥φ̃ ~∇
(
(∆ψ̃)p

)
(−∆)

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(
(∆ψ̃)p

)
(−∆)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QRp‖
L

3
2
t,x

< +∞,

since we have by hypothesis that 1QRp ∈ L
3
2
t,x(R× R3).

∗ The last term of (6.13) is estimated in a very similar manner:∥∥∥∥∥φ̃ ~∇
(
∂i((∂iψ̃)p)

)
(−∆)

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C

∥∥∥∥∥φ̃ ~∇
(
∂i((∂iψ̃)p)

)
(−∆)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QRp‖
L

3
2
t,x

< +∞.

We have proven that all the terms of (6.13) belong to the Morrey spaceMp0,q0
t,x and thus, the term (3)

of (6.12) too.

• The terms (4) and (6) of (6.12) are very similar. Indeed, for (4), using the properties of the auxiliar
function η and with the Lemma 2 we write (recall that p0 ≤ q0 < 6 and that we have the controls
(5.1))

‖(~∇η) ∧ ~ω‖Mp0,q0
t,x
≤ C‖1QR

~ω‖Mp0,q0
t,x
≤ C‖1Qr2

~ω‖L6
t,x
< +∞.

For (6) we have by the same arguments:

‖η~ω‖Mp0,q0
t,x
≤ C‖1QR

~ω‖Mp0,q0
t,x
≤ C‖1Qr2

~ω‖L6
t,x
< +∞.

• For the term (5) of (6.12), we need to study the quantity ‖(~∇η)div(~ω)‖Mp0,q0
t,x

, but by the Proposition

4 we know that 1QR3
div(~ω) ∈ M

6
5
, 60
11

t,x (R × R3). Since 0 < α < 1
24 , we have p0 ≤ 6

5 ≤ q0 = 5
2−α <

60
11 ,

and by the support properties of the function η (recall (6.1) and (6.2)) we have (by Lemma 2)

‖(~∇η)div(~ω)‖Mp0,q0
t,x
≤ C‖1QR3

div(~ω)‖
M

6
5 ,

60
11

t,x

< +∞.

With all these estimates, we can conclude that ~A ∈Mp0,q0
t,x (R× R3), and Lemma 9 is proven. �
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We study now the quantity ~Bi defined in (6.6). Following (6.11), we shall obtain that ~Bi ∈ Mp0,q1
t,x (R× R3)

where 1 ≤ p0 ≤ q0, with 1
q0

= 2−α
5 , 1

q1
= 1−α

5 , for some 0 < α < 1. Since 0 < α < 1
24 , we have q1 = 5

1−α < 6
and we thus write

‖ ~Bi‖Mp0,q1
t,x

= ‖2(∂iη)(~u+ ~ω)‖Mp0,q1
t,x
≤ C‖1Qr2

(~u+ ~ω)‖Mp0,q1
t,x
≤ C‖1Qr2

(~u+ ~ω)‖L6
t,x
< +∞,

where we used the support properties of the test function η, the Lemma 2 and the controls (5.1).
We thus obtain that ~Bi ∈Mp0,q1

t,x (R× R3).

For the term C given in (6.7) we have ‖C‖Mp0,q1
t,x

= ‖ηdiv(~ω)‖Mp0,q1
t,x

. Since 1 ≤ p0 ≤ 6
5 and q1 = 5

1−α <
60
11

(since 0 < α < 1
24), by the support properties of the function η and by Lemma 2 we obtain

‖ηdiv(~ω)‖Mp0,q1
t,x
≤ C‖1QR3

div(~ω)‖
M

6
5 ,

60
11

t,x

< +∞.

With this estimate we obtain C ∈ Mp0,q1
t,x (R× R3).

The term ~D given in (6.8) can be treated just as the terms ~Bi above. Indeed, using the controls (5.1) we
write:

‖ ~D‖Mp0,q1
t,x

= ‖1

2
η(~ω + ~u)‖Mp0,q1

t,x
≤ C‖1Qr2

(~u+ ~ω)‖Mp0,q1
t,x
≤ C‖1Qr2

(~u+ ~ω)‖L6
t,x
< +∞.

We have ~D ∈Mp0,q1
t,x (R× R3).

For the tensor E defined in (6.9), since 1 ≤ p0 ≤ 6
5 and q1 = 5

1−α <
60
11 we obtain, by Lemma 2:

‖E‖Mp0,q1
t,x

= ‖η(~u⊗ ~u+ ~ω ⊗ ~u)‖Mp0,q1
t,x
≤ ‖η~u⊗ ~u‖Mp0,q1

t,x
+ ‖η~ω ⊗ ~u‖Mp0,q1

t,x

≤ C‖η~u⊗ ~u‖
M

6
5 ,

60
11

t,x

+ C‖η~ω ⊗ ~u‖
M

6
5 ,

60
11

t,x

and by the Hölder inequalities in Morrey spaces (see Lemma 1) with 5
6 = 1

2 + 1
3 and 11

60 = 1
6 + 1

60 , we can
write :

‖E‖Mp0,q1
t,x

≤ C‖η~u‖M2,6
t,x
‖η~u‖M3,60

t,x
+ C‖η~ω‖M2,6

t,x
‖η~u‖M3,60

t,x

≤ C‖1QR̄2
~u‖L6

t,x
‖1QR̄2

~u‖M3,60
t,x

+ C‖1QR̄2
~ω‖L6

t,x
‖1QR̄2

~u‖M3,60
t,x

< +∞.

We thus have E ∈Mp0,q1
t,x (R× R3).

With all the previous computations we have proven all the information stated in (6.11), which applied
in the integral representation formula (6.10) allows us, with Lemma 8, to conclude that ~U ∈ Ċα(R × R3)
with 0 < α < 1

24 , and since by (6.3) we have ~U = (~u + ~ω) over a small neighborhood of the point (t0, x0),
we deduce that ~u and ~ω are also Hölder regular and this finishes the proof of Theorem 1. �
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