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Partial suitable solutions for the micropolar equations and
regularity properties

Diego Chamorro} David Llerena*

February 3, 2023

Abstract

The incompressible Micropolar system is given by two coupled equations: the first equation gives the
evolution of the velocity field @ while the second equation gives the evolution of the microrotation field
. In this article we will consider regularity problems for weak solutions of this system. For this we will
introduce the new notion of partial suitable solutions, which imposes a specific behavior for the velocity
field 4 only, and under some classical hypotheses over the pressure, we will obtain a holderian gain for
both variables @ and &.

1 Introduction

We study here, under mild assumptions over only one variable, some general regularity properties for weak
solutions of the 3D incompressible Micropolar equations. This system is composed of two coupled equations:
the first one is based in the incompressible 3D Navier-Stokes problem, which gives the evolution of the
velocity field 4 with an internal pressure p, while the second one considers the evolution of a microrotation
field & representing the angular velocity of the rotation of the fluid particles. These equations are given by
the following problem:

il = AT — (@- V)i —Vp+3IVAG,  div(@) =0,
@ = AG + Vdiv(@) — & — (@ - V)& + LV A @, (1.1)
(0, ) = tip(z), &(0,7) =do(r) and div(ip) =0, =z € R3,

here i : [0, +00[xR3 — R3 is the velocity field of the fluid, p : [0, +00[xR3 — R is the pressure and
@ : [0, +00[xR3 — R3 is the angular velocity. Micropolar equations were first introduced in 1966 by Erin-
gen [I1] and they are now used in some particular cases, such as in the study of polymers, blood, muddy
fluids, nematic liquid crystals and bubly liquids. We refer to the book [20] for other applications of this
model. From the mathematical point of view, this system was studied in [9} 211, 25l 30] where a variety of
results were obtained.

Let us start with some remarks about the equations . First note that when the microrotation
field & is null, we recover the usual 3D incompressible Navier-Stokes equations for irrotational fluids (i.e.
V A @ = 0) which were studied for instance in [2] or in [I3]. Next we observe that the angular velocity &
is not a divergence free vector field and this makes the study of the properties of & slightly more delicate
to handle. Finally, it is important to observe that the evolution equation for & is essentially linear and
that there is a relatively mild coupling between the variables @ and : in this article we will exploit this
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particular point to deduce our main regularity results for the system ([1.1)).

Existence of global weak solutions for this system were obtained in 1977 [12] and from now on we will
always assume that (7,&) € L>®([0, 400, L>(R%)) N L2([0, +oo[, H*(R?)) is a weak solution of . Note
that information over the pressure p can be easily obtained from #: indeed, by applying the divergence
operator in the first equation of we obtain, since div(@) = 0 and div(V A &) = 0, the usual equation
for the pressure:

Ap = —div((@ - V)@). (1.2)

As said before, in this article we are interested in studying regularity issues for the micropolar system. In
the realm of fluid dynamics equations (and in particular for the Navier-Stokes equations) this topic is a
challenging and often open problem which can be solved under some different sets of hypotheses such as the
Serrin criterion (see [28], [22]), the Prodi-Serrin criterion (see [23], [29]) or in the setting of the Caffarelli-
Kohn-Nirenberg theory (see [5], [14]).

Concerning the micropolar system , some recent results were obtained in [7] [, 19] where almost all
of the previous theories cited above were applied to obtain a regularity gain over the variables # and . Let
us remark that in most of these references the additional information is asked for both variables 4 and &@.
However, as it was pointed out in [10} I8, 24] and [31] it is possible to make a separated study of each one
of these variables.

In this article we are going one step further and in our main result (Theorem (1| below) we will show that
just some additional information over the velocity field @ is needed in order to deduce a gain of regularity
for both variables @ and &. In this sense, when studying regularity issues for the problem , we will say
that the velocity field @ “dominates” the angular velocity field .

To obtain a gain of regularity, we will work over small neighborhoods and for a point (¢, ) €]0, +-00[xR?
let us consider the parabolic ball

Qr(t,x) =]t — R*,t + R*[xBg(z), (1.3)
for some radius 0 < R < 1 such that t — R? > 0. When the context is clear we will write Qg instead of
QR(tv :C)

We introduce now the following concept:

Definition 1 (Partial suitable solutions) Considerii,& € L L2(Qr)NLIHL(QR) two vector fields that
satisfy the equation in the weak sense over the set Qgr. Assume moreover that we have the following
3

local information over the pressure: p € Lgx(QR) We will say that (i, p,d) is a partial suitable solution
for the micropolar equations if the distribution p given by the expression

== + Ald)? - 2|V @ @* — div ((|d@]* + 2p)@) + (V AG) - 4, (1.4)
is a non-negative locally finite measure on Qg.

First note that in this local setting each term of the above expression is well defined. Remark also that
the notion introduced above is only related to the evolution of the velocity field 4 and that the action of
the variable & can be seen here as an external force. In a previous work [7] we considered a non-negative
measure involving the evolution of both variables 4 and &, but as we only consider here the equation related
to the variable @ (and not the equation of &), this weaker notion of partial suitable solutions is needed.

With all these notions above, we can now state our main result:



Theorem 1 Consider a parabolic ball Qr given by . Let (i, p,d) be a partial suitable solution (in the
sense of Definition |1|) for the micropolar system over Qgr. There exists a small constant 0 < €* < 1
such that if for some point (tg,z9) € Qr we have

1 -
lim sup — IV @ ii]*dzds < ¢, (1.5)

r—0 T AO —r2to+r2[x B(zo,r)

then, the solution (4,d) is Hélder continuous in time and space for some exponent 0 < a < 2—14 m a small
neighborhood of (to, zo).

As it was mentioned before, observe that we only impose conditions on the variable 4 (namely, the partial
suitability condition given in and a good behavior for the gradient of the velocity field given in )
and no particular hypotheses are asked for the variable . However, and despite of this fact, we will see here
that we can deduce a holderian gain of regularity for both variables. Of course, the strategy of the proof
of Theorem [I| is adapted to this setting: indeed, we will first perform a detailed study for the variable u
using the first equation of , next we will deduce some controls for the variable & by studying the second
equation of and only then, once we have gathered enough information, we will obtain the wished gain
of regularity for both variables by studying the evolution of the whole system . Finally, let us remark
that the interval 0 < a < i for the index of holderian regularity « given above is mainly technical and we
do not claim any optimality on it.

We can give now the plan of the article: in Section [2] we present the main tools used in this article and in
Section 3| we study the evolution of the variable @ to obtain some information on this variable. However, this
information will not be enough and in Section [ we will perform a more detailed analysis of the properties
of the variables @. Then, in Section [5 we will deduce from the previous sections some properties for the
variable . Finally, in Section [6], we will gather all these results to give a proof of Theorem

2 Definitions and Useful results

Before going any further, let us be more explicit about the Holder regularity stated in Theorem [I| above.
Indeed, we will consider the homogeneous space (R x R3,d, 1) where d is the parabolic distance given by
d((t,z), (s,y)) = |t — s\% + |z — y| and where pu is the usual Lebesgue measure du = dzdt. We then define
the homogeneous (parabolic) Holder spaces C*(R x R?, R?) with 0 < @ < 1 by the usual condition:

— —

|6(t, 2) — &(s, y)|

[¢llga = sup . & < +00,
(t,@)#(s,y) (\t —s|z + |z — y|>

and it is with respect to this functional space that we will obtain the regularity gain announced.

Let us now say few words about Morrey spaces: although completely absent in the statement of Theorem
they are a powerful tool when studying problems related to regularity in PDEs. This fact was particularly
underlined in [26] and in [I7] for the Navier-Stokes problem since they provide a very natural framework
as we shall see later on (see the key Lemma [§ below) and in this article we will use them in a systematic
manner. Thus, for 1 < p < ¢ < +o0, the (parabolic) Morrey spaces Mfﬁ(R x R3) are defined as the set of

measurable functions ¢ : R x R3 —s R3 that belong to the space (L} 2)i0c such that ||Q_§HM§"‘1 < 400 where

1
. 1 . P
[l pqza = sup (5(1_p)/ / |¢(t,x)|pdxdt> . (2.1)
’ 2oER3 toER,r>0 \ T q [t—to|<r? J B(zo,r)

We present now some well-known facts:



Lemma 1 (Hé6lder inequalities)

1) If f,5: R x R3 — R3 are two functions such that f € MR x R?) and g € LY, (R x R?), then for
Wl 1< p < g < +oo we have |- Glags < Ol

2) Let 1 < pg < g < +00, 1 < p1 <1 < 400 and 1 < pp < g2 < Ho0. pr%‘Fp%:p%a”d

qil + q% = q%’ then for two measurable functions f,: R x R — R3 such that f € MPLT (R x R3)

t,x

and § € MPZP (R x R?), we have the following Hélder inequality in Morrey spaces
IF - Flaoso < 1 ypyo 1] gz
Lemma 2 (Localization) Let Q be a bounded set of R x R3. If we have 1 < pg < qo, 1 < p1 < q1 with the

condition qo < q1 < +oo and if the function f: R x R3 — R3 belongs to the space Mgll,’ql (R x R3) then we
have the following localization property

1o flvesn < Cliaflypm < Ol fllyeve.

In our work, the notion of parabolic Riesz potential (and its properties) will be crucial and for some
index 0 < a < 5 we define the parabolic Riesz potential £, of a locally integrable function f: R x R?® — R3

by
. 1 .
el = [ [ o s (22

Then, we have the following property in Morrey spaces

Lemma 3 (Adams-Hedberg inequality) If0 < a < 2, 1<p<q<—+oo and f € MR x R3), then
forA=1-— u—sq we have the following boundedness property in Morrey spaces:

"Ea(f)||/\/l§% < CHfHMi’,’g

The three lemmas above constitute our main tools in Morrey spaces. For a more detailed study of these
functional spaces we refer to the books [17] and [1].

3 A (first) partial gain of information for the variable «

In this section we will only focus our study in the variable @ and its equation:
. . 1.
ol = A — (d-V)d—Vp+ §V/\u_}, div(@) = 0.

Here, the variable & can be seen as an external force for which we have the information & € L{°L2 N L2 H .
Note that at this stage, we will not obtain a gain of regularity for the variable i, instead, using the hypotheses
given in Theorem (1| above, we will obtain a gain of integrability for i (stated, as we shall see, in terms of
Morrey spaces). In this sense our first result is the following:

Proposition 1 Under the hypotheses of Theorem (1| consider (i,p,d) a partial suitable solution for the
micropolar equations over the set Qgr given in . Then there exists a radius 0 < R; < % and an
index 79 > 0 with ﬁ <1 < % such that we have the following local Morrey information:

Lo, (1000 € M3 (R x B?), (3.1)

where the point (to,xo) € Qg is given by the hypothesis .

4



Proof of the Proposition The proof of this result is rather technical and our starting point is given
by the notion of partial suitable solution: indeed, from the Definition [l| and exploiting the positivity of the
quantity given in we easily deduce the following partial local energy inequality: for all ¢ € Dy ,(QR)
(for which we have ¢(0,2) = 0) we obtain

/ ]ﬁ]2¢dx+2// V@ d*pdeds < /(at¢+A¢)\u] dacds—i—?// (i - V§)daxds (3.2)
R3 R JR3

+/]R/]R3 |i|? (i gbd;vds—I—//R3 - (pu)dxds.

Although this estimate is fundamental, it is necessary to fix a convenient test function ¢ which will allows
us to perform some computations. A particular good choice has been given by Scheffer in [27]:

Lemma 4 Let 0 <r < £ <R <1. Let ¢ € CF°(R x R3) be a function such that

s—t vy s—1

N e U LT ]

where w € C3°(R x R3) is positive function whose support is in Q1(0,0) and equal to 1 in Q1(0,0). In
2

addition 0 is a smooth function non negative such that @ =1 over ] — oo, 1] and 0 = 0 over |2, +00| and g.(-)
is the usual heat kernel. Then, we have the following points.

1) the function ¢ is a bounded non-negative function, and its support is contained in the parabolic ball
Qp, and for all (s,y) € Qr(t,x) we have the lower bound ¢(s,y) > %,

2) for all (s,y) € Q,(t,x) with0 < s <t+ r? we have ¢(s,y) < %

3) for all (s,y) € Qu(t,z) with 0 < s < t+r* we have Vo(s,y) < r%,

¥

4) moreover, for all (s,y) € Q,(t,x) with 0 < s < t+1r? we have |(9s + A)p(s,y)| <

Q
3

A detailed proof of this lemma can be found for instance in [6] or in [I7].

The strategy is thus the following: by a convenient use of the estimate (3.2) and by the properties of
the function ¢ given in the previous lemma, we will obtain -by controlling the information over small balls
by the information over bigger balls- the wished Morrey information stated in Proposition

To do so, it will be useful to introduce the following quantities: for a point (¢,z) € R x R3 and for a real
parameter r > 0 we write

1 . 1 -
Aoy = sw [ iRy, orlt) =1 [ V@ ilsy)Pdyds,
t—r2<s<t+r2 T JB(z,r) T JQ,(t,x) (3 3)
1 R 1 3 '
Mto) = 5 [ s, )Py, Prti) =5 [ ooy by,
r Qr(t7$) r Q'r(tvx)
and when the context is clear we will simply write Ar = A,(t,x). Note that the previous quantities

and L2 Note also that for 0 < r < 1, we have the

correspond to the information L{°L2, L?H}, tm

relationship between \,, A, and o

1
A2 < C(Ay + )2, (3.4)
Indeed, using the definition of A\, given in (3.3)) above and by Holder inequality we have
1 C
Ad = allzy Ul 10
e = i3 @n) < I Il 12y



Since by interpolation we have | u(t, ')HL%(BT) < it )”LZ(B )H u(t, )HL() B,)» We can easily deduce that

|ld]| 10 Now, for the L?LS norm of @, we use the classical Gagliardo-

L3 (Qr) = HUHE?L%(QT)WHE?LQ(QT)'

t,x
Nirenberg inequality (see [3]) to obtain ||| 216 (q,) < c(Iv ®l L2120, T HEHL,?OL?D(QT)) and using Young’s
inequalities we have

Il 1

2 - 3 3 -
oy S s (IF @ T o) + 1112, < ClElL 200 + 19 ©Ti2200)
t,x T

1 - 1
Noting that ||u]| g r2(q,) = rz A2 and IV ®dllp2r20,) = rzaZ, we finally obtain ||

We establish now a first relationship between the quantities given in (3.3]) that will be helpful to deduce
by an iteration procedure the wished Morrey control.

Lemma 5 Under the hypotheses of Theorem and with the notations given in we have for any radius
0 <7 <& <1 the inequality

7“2 2 p 1 p 1
Ar+0zr§C'E.Ap+ 0F A+ CLyPF (A + 0t + CL2 T NGz o007 (3.5)

Proof. With the support properties of the function ¢ stated in the Lemma 4| and using the notations (3.3|)
above we can rewrite the left hand side of the inequality (3.2)) in the following manner:

A +a, < / (8t¢+A¢)|u\2d:cds +2 / / ¢)dxds + / /R . V)odads

2) (3)

/ /R 3 - (6)daxds (3.6)

@)

—

The terms of the right hand side above will be studied separately. Indeed,

e For the quantity (1) in (3.6)), using the properties of the function ¢ given in Lemma [4] and by the
definition of the quantity A, given in (3.3|) we have

t+p?

/ (006 + Ag)|d2dads < O / (i 2dwds — c / (i 2dwds < 0 A,

e For the term (2) in , by the properties of the function ¢ given in Lemma [4| and by the Holder
inequality, we obtain

t+p?
a - qu Ydxds < — / / p||t|dzds < pll s Ul ;3 )
Jy R [ s < Sl g il

2 =

2
noting that by 1) we have Hp|| o) = p§735 and ||4llzs (q,) = p3Aj, we can thus write
t T P o

2
// ¢)dxds < — ¢ <p Pﬁ) <p§)\
RB

where in the last estimate we used the control (3.4]).

=

OIS
Dwl~

P2 1
> § Cﬁpg (Ap + Oép)i,



1
e For the term (3) in 1) let us first define the average (|@|%), = Bl / |i(t, y)|>dy and since
Z,p B(z,p)

@ is divergence free we have (J@)*) (i - V)¢dz = 0. Then, we can write by the properties of the

P
function ¢ given in Lemma [4] and by the Hélder inequality:

t+p2

L2 " . L3 c . . .
| [ et Sodeds = [~ qap) Dodads < 5 [ [ JjaP = (@)l dldods
R JR3 o ™ Ji—p2 JB,
C t+p? 9 5
I = ()l 1752 s,

IN

2
T t—p

Now, Poincare’s inequality implies

C t+p? —_— 9 ~
< /t IV (a(s, ) s s, )l s s, ds

=
C t+p? .
< 12 [ 10 o 19 @ o, s, s s

. . - o
< ﬁ”uHL?Lg(QP)HV @z @nlldlz (@,

where in the last inequality we used the Holder inequality in the time variable. We observe now that
by the notations given in (3.3)) we can write

— 1., 5 1 - o 1 1 N 2 1
ldllzs12(Q,) < Cr3llllLper2q, < CroAs, IV @il q, =, il @, =r32,
and we obtain, by (3.4)):

(- §)ddads < P ABadad < P ABad (A +a)b < Lok (A, + o)
- SN S R A X (A p)? = C 50 (A p):

e Finally, for the term (4) in (3.6)), by the Holder inequality and by the properties of the function ¢
given in Lemma [] we write

- t+p? -
(¥ A@)- (pT)dads < 1605, M 25, I A G5, Mgz s, 1705, ) g, ds
R JR3 t—p2
P t+p?
< CTAQFHVAw@,w@@MM@fw@@@w

Pie L L,
< CUIVAGIL @)llillzmio,)

where we applied the Sobolev inequalities (see Corollary 9.14 of [4]) and the Cauchy-Schwartz inequal-
1
ity in the time variable. Since by 1) we have Hﬁ”LfH;(Qp) = p%alg, we conclude

3

- . . IoE = . 1
/R RS(V A &) - (pt)dzds < CTHV /\w||L§’m(Qp)a,§.

Gathering all these estimates we obtain the inequality (3.5) and this ends the proof of the Lemma |

The inequality (3.5) is important, but it will not be enough for our purposes as we need to study more in
detail the pressure p. This variable only appears in the first equation of the system (1.1)) and since we have

7



=

the condition div(i#) = 0 and the vectorial identity div(V A &) = 0, by applying the divergence operator to
the equation of @ in ([1.1)), we can write

-

- - 1
div(Opi) = div(Ad) — div((d - V)u) — div(Vp) + §diU(V A @)
0 = —div((Z-V)a@)— Ap,
from which we obtain the following equation for the pressure (see also ([1.2)) above):
— Ap = div((@ - V@) = div(div(@ Z 0;0; (). (3.7)

1,j=1

Note that this previous equation for the pressure p is exactly the same for the system (1.1) than for the
classical Navier-Stokes equation. Thus, by the same ideas given in Proposition 4.3 of our previous work [7]
(see also Proposition 4.2 of [6] or Lemma 13.3 of [17]) we obtain the following result for the pressure:

Lemma 6 Under the hypotheses of Theorem and with the notations given in forany0<r<f <R

we have the inequality
2
2 p 1 r\3 2
PP < c((r) (Aya,)? + <p> P,i”). (3.8)

For the sake of completeness we give the proof of this result.

Proof. We will start by proving the following estimate

1 —
D <C <O’3 U\ poog2 V ® U2 P ) 3.9
Pl 5 ot 1]l oo 2 (@)l Iz, @y +o*lpll g ot o (3.9)

where ), and @)1 are parabolic balls of radius ¢ and 1 respectively (the definition of such balls given in
(1.3)). To obtain this inequality we introduce 7 : R — [0,1] a smooth function supported in the ball By
such that 7 = 1 on the ball B; and 7 = 0 outside the ball B4 Note in particular that on @), we have the

identity p = np. Now a stralghtforward calculation shows that we have the identity

—A(np) = —nlp + (An)p — 2 Z 8i((0m)p),

i=1
from which we deduce the inequality

— nAp (An)p
IR R e B 0 L ew)
( a) (QU) LE‘L(QO) t2 Qa-) 1:271(Q0')
(p1) (p2) (p3)
3
For the first term of (3.10]), since we have the equation (3.7) Ap = — Z 0;0;(ujuj) on Qq, if we denote by
ij=1
Ni; = ui(u; — (uj)1) where (u;)1 is the average of u; over the ball of radius 1, since 1 is divergence free we
3
have Z 0;0;(uiuj) = Z 0;0;N; j and thus we can write
ij=1 ij=1
— nAp
() = H((_A)) . <c (—( Z 03N )||
Li:(Qo) =l L2,(Q0)
3
1
< 0 =) (9:0;(nNij) — 0i((95m)Ni ) — 05 ((9im) Nij) + 2(9:9;n) Ny 5) 4 an (3.11)
ij=1 tia(Qo




Denoting by R; = \/% the usual Riesz transforms on R?3, by the boundedness of these operators in Lebesgue
spaces and using the support properties of the auxiliary function n, we have for the first term above:

0;0;
N; < ||RiR; (nN; ; < C|InN;.(t, -
H(AW S0 g IRRS AN gy < ClaNis ),
< Clluit, )HL%BQH%( ) = (uih HLG(Bl)
< Cllat, )lpzslIV @t ) 2z,

where we used Holder and Poincaré inequalities in the last line. Now taking the L3-norm in the time variable
of the previous inequality we obtain

1 =
< Cobllperzen IV @ iz - (3.12)
Lt,z(QU)

i?j

H 0;0;

The remaining terms of - can all be studied in a similar manner. Indeed, noting that d;n vanishes on

B 8 U B¢ i and since B, C B1 CcB 8 using the integral representation for the operator (fiA) we have for the

second term of (3.11] - ) the estlmate

0; 9
“— ((0;m)N; ;) (¢, < Co? L ((8;m)Nij) (¢, -
|25 (@) . ENCOLDICS!
< o[ EER (@) () dy
ety To =i D) L (3,)
< Co®|INij(t,) s (3.13)

IN

C o®||uit, ) 2 (my lus(t, ) = (uiillree,)

Clli(t, ) 2y IV @t )| p2(m,).

IN

where we used the same ideasé as previously and the fact that 0 < ¢ < 1, and with the same arguments as
in (3.12)) before, taking the L2-norm in the time variable, we obtain

0; 1o S
H(_A)«aﬂnﬁad)lg(Q <ol izanl¥ © i (3.14)
t,x o
A symmetric argument gives
ﬁj 1., = -
(_A)((am)Nz‘,j) g < Cosld]perznllV @il g (3.15)
L?,(Qq) ’

and observing that the convolution kernel associated to the operator ﬁ is
we have for the last term of (3.11]) the inequality

g

\wl’ following the same ideas

1 S

3 < Cos|ltll ez IV @ 2 _(g)- (3.16)
3 ,

Lt,z(QU)

Therefore, combining the estimates (3.12]), (3.14)), (3.15) and (3.16) and getting back to (3.11]) we finally
have:

1., -
< C (a3 Nz IV @ lliz(0u) - (3.17)

@mzH“”ﬁ“

(=4)

3
2

L{4(Qo)



We continue our study of expression (3.10]) and for the term (p2) we first treat the space variable. Recalling
the support properties of the auxiliary function n and properties of the convolution kernel associated to the
operator ﬁ, we can write as before (see (3.13)):

(An)p(t,-) 2 2
—_— < . < .
|GG s, O < ot M5,
and thus, taking the L>-norm in the time variable we obtain:
(An)p 2
o0 =[ SR, <ol o (3.18)
(=2) 1122 (@n) Fia(@n)
For the last term of expression (3.10)), following the same ideas developed in (3.13) we can write
O 2 2
” eyl ')' Fee Collelt: Mz en < ColptE 3,
and we obtain 3:((Bm)p)
i\\0i")P 2
pg) = || VE) <Co?pl| 5+ . 3.19
(p3) S | IILE@(QO (3.19)

Now, gathering the estimates (3.17)), (3.18) and (3.19) we obtain the inequality
1. = 2
Wﬂ%@dﬁceﬂﬂwﬁ@ﬂv®WQ#m+aWM%@Q,

which is (3.9). With estimate at hand, it is quite simple to deduce inequality (3.8]). Indeed, if we fix
o= % < % and if we introduce the functions p,(t,z) = p(p?t, pxr) and @,(t,x) = @(p*t, px) then from lb

we have
1 2
r\3 = r
HpAu§(QT)§(7<<p> HuﬁquanHvQ@@ngAQn4—<p> HpAu§(Qﬂ>,
s T ﬁ ’w

and by a convenient change of variable we obtain

1 2
_1o r\3 _3, 3.2 T _1o0
|wu;@ﬂpsrzC<Q) p 2l g2 (@) P WV@“Mh@m+<p>p ”@M?@»>'

Now, recalling that by (3.3)) we have the identities

4 2 1 1 o 1 1 -
r3pp = HPHL? X P2 Ap = llullerzq, and prog =Vl g,
we obtain ,
2 p 1 r\3 2
WSC(ﬂMMP+; P,
and this finishes the proof of Lemma [6] [

Now, with the estimates (3.5]) and (3.8)) obtained in the previous lines, we will set up a general inequality
that will help us to deduce the gain of integrability stated in Proposition For this, we introduce the
notations

5 3 5
702(1—% T§(1—%)

1 1 oz \°
A, = 205 (Ar+ay), Po.=——-—P, and O, =A,+ 5 P.| , (3.20)
and we have the following result:
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Lemma 7 Under the hypotheses of Thearem for 0 <r < § < R there exists a constant € > 0 such that
1
O (to, wo) < 5@,0(750,560) +e, (3.21)

where the point (to,zg) € QR 1is given by the hypothesis .

Note that this result allows us to control the information over smaller parabolic balls by the information
over bigger parabolic balls and this will be the key to obtain the whished gain of integrability.

Proof. First, by the estimate (3.5)) we can write

B = e (At ay)
T 70
C 72 p2 1 p2 2 1 p% - 1
S (540 + a3 A+ 55P3 (A, + 0t + 2|V NG g08),  (3:22)
Ir‘ T

and we will treat each one of the previous terms separately. Indeed,

e For the first term of (3.22)) we have

10

1 7"2 1 7’2 2(1_i) r\ 70
_ < — oA, = (- A,
2(1-25) <p2Ap> = 20-2) 2P 0 B <p> P

ro T

e For the second term of (3.22), using the definition of A, given in (3.20)), we obtain
1 P2 % 1 p2 % 2(1—2) p 4—% %
@ (ﬂa’) ) S M 2P oAy ) = (;) Apag.

e The third term of (3.22)) follows essentially the same arguments as above and by the definition of the
quantities A, and P, given in (3.20) we can write

1 (P2 1 PN 70 o ah
20-3) (rgpp (ApJfap)Q) < <;) PoAs.
e Finally, for the last term of (3.22)), we have
3
1 p2 = 1 p\3—1 0.3 L1 .
e (219 et ) £ (0 F A 19 vl
oo
Thus, gathering all these estimates, we have
A <C (p) Ap+(;) Ayal +(;) IP’,,A,,+<;) po 2RV Al @ ] (323)

Now, for the pressure, from the inequality (3.8)) we can write

1 C p 3 3 3 r
]P)'r': 3(1_%)Pr§ %(1_i) <(T) Aéa§+<p>73p>7

7’12 r T0

and by the Young inequality and using the definition of A, given in (3.20) we obtain for the first term of
the right-hand side above:

1L (p\2 8 3 L (py
50-2) (?) Ap s S 5o (?) P

r 70



75
27

N

and using the fact that ﬁ <£> P, = (2) P, (by the definition of P, given in (3.20])), we conclude
r2 70

p
that

P, < C<(£)3_2150 (Apay)i + (f)é_;fo IP,,>. (3.24)

With the estimates (3.23)) and (3.24) at hand, we will now introduce a relationship between the parameters
r and p: indeed, let us fix 0 < Kk K % a real number and consider r = kp, then, by the definition of the

quantity @, given in (3.20) we obtain:

15 __ 15

1515 \3 10 10 4 104 3 10
O, = A+ (mo 2 IP’T) <C| kA, + K7 Apap + K0 IP>3A2 +/<T0 pro 2ap v /\w||L2 @)
1) (2) 3)

ol

45 21 3 45 g
+C </£2T0 2 (Apap)t + k%0 IP’,,) . (3.25)

(4)
We will rewrite now each one of the previous terms:

e Since by ([3.20) we have A, < ©,, it is then easy to see that the term (1) above can be controlled in

the following manner:
10 10

I P SO St
koA, + K70 "Ajap < (/iTO + K70 ap)(O)p.

e For the quantity (2) in (3.25)), using Young’s inequality and the relationships given in (3.20)), we observe
that

ESTNIES

10 10 11y 2 11
n%_ﬁP“AQ e (Ii5 %_E)Pg x k770 A
15_15 \3
< k(A + (/@TO 2 Pp) < k0O,.

e For the term (3) of li using the fact that % > % (recall the hypothesis of Proposition |1 we have

10_3
%a <70 < 23—0) and that 0 < p < R < 1, we obtain p7 2 < 1, and thus

><Kig_4<1o( m)A 410G )IP’§>

10_g 10_ 2 10_3 % = =
K70 3 pTo ap||V/\w||L2 Q) SE™ "o [VAGIL (g,

b

15 15

e For the last term of (3.25)), since (/-@To 2 JP’,,) <0, and A, <0, we have

45

45 _ 21 3 45 g 4 30_ 14 45 g 4 30_14 10_2
k¥7o 2 (Ajap)t + k%70 P, ) <Ok Ay, + (kZ0 Py | SOk Ta,+ k0 3 )0,

Gathering these estimates we finally obtain
10 10 _4 1 30 _14 10_2 10_g5 1
Op < (k0 +K™ “af +h+K0 Tap+r0 3|0+ K70 “ap[VAD|2 o) (3.26)
Futhermore, we claim that we have
10 10_y 1 30 _q4 10_2 1
K0 +K0 ap+Kk+K0 Ta,+k0 3| < 7 (3.27)

12



10

Indeed, since k= § < 3 is a fixed small parameter and since o 2 > 0 (recall again that 12— < 79 < 2),

10 10_2

then the quantities k7, x and k7 3 in the previous formula are small. Now, using the fact that we have
the control a, < €* which is given in the hypothesis (1.5) where €* > 0 is small enough, then the terms

0_, 1L 30
K0 4043 and K7 1404,) can be made small enough and thus we obtain (3.27)). To continue, noting that the
quantity |V A @2 (q,) is bounded since & € LPL2(QRr) N L?HL(QR), we can apply the same ideas used

previously (i.e. a, < €* < 1) to obtain
0 31 =
k7o “ag ||V A wHLf,x(Qp) <e.

Then, with these estimates at hand and coming back to 1’ we conclude that O, < %@p + € and Lemma
[7]is proven. [ ]

Lemma [7] paved the way to obtain some Morrey information for the velocity @ that will be crucial.
Indeed, from the definition of Morrey spaces given in (2.1)) we only need to prove that for all radius r > 0
such that r < Ry < & and (t,2) € Qg (to, z0), We have

/ @R dyds < Cr®0~ ), (3.28)
Qr(t,x)

and this will imply that 1o, @ € M3 (R x R3). In order to obtain the control 1} by the definitions
given in (3.3) and by the estimate (3.4)), we observe that

/ @ dyds = 12\ () < r2(An(L 3) + ap(t, 7).
QT‘(tvx)

Hence, it is then enough to prove for all 0 < r < R; < g < R < 1and (t,x) € Qpg, that one has the control

5

Ar(t,z) + an(t,z) < Or*0 ),

Recalling the definition of the quantity A, given in , we easily see that the condition above is
equivalent to prove that there exists some R; and 0 < xk < % such that for all n € N and (¢,x) € QRg, (to, x0),
we have estimates:

Apnp, (t,x) < C. (3.29)

Note that, for any radius r such that 0 < r < Ry < min{%,dist(@QR, (to, o))} (and since we have
Qr, (to,z0) C Qr) by the hypotheses of the Theorem (1, we have the bounds

19l Lo 2@ t0.w0)) < Nl Lger2(@m) < 005 IV @Iz (rttowon < IV @ Uz (@r) < 00

and [|p|| s <Ipll = < +00. Then, by the notations introduced in 1) we have the uniform
Lt%:c(QT‘(t()’IO)) Ltg,z(QR)

bounds sup {T.Ar, rog, TQ’PT} < +o0 from which we can deduce by the definition of the quantities A, (to, zo)
0<r<R

and P,(to, zo) given in (3.20)), the uniform bounds

10

3— 5—3(1+2)
sup 7 0 A (tg,x0) < 400, and  sup 1 2 0'P.(tg, ) < +00.
0<r<R 0<r<R

Thus, there exists a radius 0 < rg < R small such that, by the estimates above, the quantities A,, and P,
are bounded: indeed, recall that we have 79 > % > 5 (where 0 < a < 1) and this implies that all the
powers of r in the expression above are positive. As a consequence of this fact, by (3.20) the quantity Oy,

13



is itself bounded. Remark also that, if ry is small enough, then the inequality (3.21]) holds true and we can
write Oy (t0, 20) < 3Oy, (to, 7o) + €. We can iterate this process and we obtain for all n > 1,

1 n—1 »
@H"To(tO)xO) < 27@7“0(750#“)) +622 ja
=0

and therefore there exists N > 1 such that for all n > N we have Qyny,(to, z0) < 4€ from which we obtain
(using the definition of @, given in (3.20))) that

1
AHN’I’() (to,l’o) < gC and ]PJK/NT() (to,w()) < C.

1
32
This information is centered at the point (tg,xg), in order to treat the uncentered bound, we can let %FLN 70
to be the radius R; we want to find, thus for all points (¢, z) € QRg, (to, o) we have that Qr, C Q2r, (to, z0),
which implies

3_10

AR, (t,z) <27 0 Agp, (to, m0) < 8Azg, (to, 7o) < 8A,N ,(to, o) < C,

_3(14 5
and Pg, (t,z) < 9° 2(1+TO)]P>2R1 (to, o) < 32Pag,(to,z0) < 8P.~,(to,z0) < C. Having obtained these
bounds, by the definition of Og,, we thus get Og, (t,z) < C. Applying the Lemma 7| and iterating once
more, we find that the same will be true for kR and then, for all k" R;, n € N. Since by definition we have
Apng, (t,2) < Ogxnp, (t,z) we have finally obtained the estimate A.npg, (t,z) < C and the inequality (3.29) is
proven which implies the Proposition [

Corollary 1 Under the hypotheses of Proposition [, we also have the following local control:

L 1
S 2, 3 , _
Lon, (toan)V @ T € My R XR), - with = — + . (3.30)
Proof. In the previous results we have proved the estimate (3.29)). Let us recall now that, by the definition
of the quantity A, given in (3.20), we can easily deduce for all 0 < r < R; and (¢,x) € Qg, the control

21— . .
o, < Cr (=25 which can we rewritten as

1 - _5
(/ |V®62dyd8> < P,
r Qr(t,x)

1 _ % + %, for all 0 <7 < Ry and (t,z) € Qr, (to, o), we have the estimate

Thus, since —
T1

- 1 o,
/ !V@ﬁyzdyds < Cr’ "m0 = oot T1)7

T

and by the definition of Morrey spaces given in 1’ we obtain that 1 Ay (toﬂco)ﬁ ®UE Mtzf (R x R3). &

4 A (second) partial gain of information for the variable @

This first gain of integrability information stated in Proposition [1| is fundamental for our theory to work,
however it is not enough since we only obtain a “small” controﬂ for the variable # and without any infor-
mation on the variable & we can not go very far: now we will see how to obtain some further control on
w and how it is possible to reinject this information in the study of the variable #. Indeed, in our recent
article [§] we proved the following result which gives some mild control over the variable &:

In terms of the indexes of the Morrey spaces involved in Proposition

14



Theorem 2 Let (i,p,d) be a weak solution of the micropolar equations over a parabolic ball Qr of
the form for some fived radius R > 0. Assume that i,&d € L°L2 N LIH(QR) and p € D; (QR)-
Suppose in addition that for some 0 < Ry < R we have

g, @ € MPSP(R X R?)  with 2 <py < qo, 5<qo <6, (4.1)
then
1) for a parabolic ball Q.,, with 0 < t; < Ry we have

1o, i € LY (R x R?), 5< qo <6,

2) for a parabolic ball Qy,, with 0 < to < t; < Ry we have
1g,,@ € L, (R x R?),
for 5 < qo <6.

As we can see, this result gives an interesting improvement of integrability for both variables ¢ and & as long
as we have the hypothesis , but this is precisely the conclusion of Proposition [1f indeed, over a small
parabolic ball Qr, (to, zo) we do have 1, (1,20)U € Mf;‘) (R x R?) and it is enough to remark that we have
here pg = 3 and gy = 1 with % <7< 23—0 and this last parameter can be chosen such that 7o = 6 < %.
Thus, we deduce that

1o, (toa0)@ € Li (R X R?) and  1q_(100)F € Ly, (R X R?), (4.2)

to,
where v <t < R < R< 1.
Note that from the initial setting @,& € L°L2 N L?H}, the controls stated in (4.2) provide a better

integrability information and we will see now how to improve the Morrey information given in Proposition
[l for the variable w:

Proposition 2 Under the hypotheses of Theorem[1] and within the framework of Proposition[d], there exists
a radius Ry with 0 < Ro <t9 <t1 < R1 < R <1 such that

- 3,0
]lQRz(to,xo)u € My, (R x R3)7

T
for some o close to 19 = 6 such that 19 < o.

Proof of the Proposition In order to obtain this small additional gain of integrability we will first
localize the variable « in a suitable manner and then we will study its evolution: the wished result will then
be deduced from the Duhamel formula and from all the available information over @. Let us start fixing the
parameters R, Ry, R, such that

0< Ry <R <Rp <Ry <19 <11 < Ry,

with the associated parabolic balls Qr, C Qn, C Qn, C Qx, C Qr, (all centered in the point (tg,zo)).
Consider now ¢, : R x R3 — R two non-negative functions such that ¢, € C5°(R x R3) and such that

=1 over Qun,, supp(¢) C Qn, and ¢ =1 over Qn,, supp(¥) C Qr,- (4.3)
Using these auxiliar functions we will study the evolution of the variable ¥ = ¢ @ given by the system
O = AT+ V,

om0 (4.4)

15



where we have

w

= (010 — A@)T }: (8;0)(8;@) — p(@ - V)i — 20Vp + ¢(V A D). (4.5)

We will now rewrite the term d)Vp above in order to avoid a direct derivative over the pressure. Indeed, as
we have the identity p = ¥p over Qn,, then over the smaller ball Qr, (recalling that ¢» = 1 over (g, by

(4.3) since Qr, C Qn,), we can write —A(¢Yp) = —Ap + (AY)p — 228 ) from which we deduce
the identity =
V(—vap) V(&Y <~ V@O((9)p))
\Y% -2 _— 4.6
BVP == ay T Ay ;<¢> N (4.6)

At this point we recall that we have by (1.2) the following equation for the pressure Ap = — Z 0;0; (uju;)
i,j=1
and thus, the first term of the right-hand side of the previous formula can be written in the following manner:

V(-yAp) v
Ty T m(zwaw)
3

i,j=1

_ Z q)(a 0; (Yugu; > Z ¢ < (059 uiuy) + 95 (0 )uuy) — (aiaj¢)(Uin)>7

7j=1 7,7=1

Recalling that by construction of the auxiliar functions ¢, ¢ given in (4.3) we have the identity ¢ip = ¢, we
can write for the first term above:

-

NV 99
R

\) vV 8;0;

Uz U4 - UiUj ),
0 A )]<¢”>+<_A><¢ )

<wuzu3) [d)a

and we finally obtain the following expression for (4.6)):
3

3 = . .
oVp = > |¢ (V_af) (Pugug) + Y V_af; (Guiuy)
z‘jfl ij—=1
- Z¢> ( (@50 )uss) + 0503 i) ~ (Oid5w) i)
,j=1

V((AY)p) <, V(i((9)p))
A B2 e e v

With this expression for the term that contains the pressure p, we obtain the (lengthy) formula for (4.5)):

: .o [, Voo, V0,0;
= (O — Ap)iT—2 " (9:0)(95i0) — p(t0 - V)i — > [¢, A )] (Pugu;) + Z A (Puiw)
(1) =g 3 h.y=1 i7j=1\—(5_/
(4)
3 —
- Z (fA)[ai((ajw)uiuj) + 05 (D )usuy) — (3:d5) (uiuy) | (4.7)
ij=1 ~~

(6) (7) (8)

YTy 20T ) TeAd)
(9) (10) (1)

16



Thus, by the Duhamel formula, the solution ¥ of the equation (4.4)) is given by

11

t 11
5= / =98 (s, )ds = 3 / I (5, )ds = 3 Vi
0 k=170

k=1

Since U = ¢, and due to the support properties of ¢ (see ), we have 1g 3217 =1g Rzﬁ and to conclude
that T, @ € M7 (R x R?) we will study Lq, Vy forall 1 <k < 11.

e For Vi, by the term (1) in (4.7) we have

(4.8)

t
Lo, ¥ (1,2)] = ]1% [ et 0 - agyis. s,

since the convolution kernel of the semi-group e(*=)2 is the usual 3D heat kernel g;, we can write by

the decay properties of the heat kernel as well as the properties of the test function ¢ (see (4.3)), the
estimate

- 1 -
‘]IQRgvl(ta .’E)‘ < CﬂQRQ / / 1 ’]lmeu(&y)‘ dy ds,
RIR? ([t — s]2 + [z —y[)?

Now, recalling the definition of the parabolic Riesz potential given in (2.2) and since Qr, C Qn, we
obtain the pointwise estimate

[1Qr, Vi(t, 2)| < Clgy, L2([1qw, ©))(t, 2), (4.9)
and taking Morrey M?g norm we obtain
MQr, Vit 2)ll e < Clilow, L2(gm, dl)ll o

Now, for some 2 < ¢ < weset A =1— %q Then, we have 3 < % and o < {. Thus, by Lemmaand
by Lemma [3] we can erte

1L, L2(Lgm, @llypr < CllL2(|Lg, @)

< C”]lmeuHqu > H]IQR UHMS 0 < 100,

34
A/\

where in the last estimate we applied again Lemma [2| (noting that ¢ < 79 = 6) and we used the
estimates over « available in (3.1)).

e For Vy, using the expression (2) in we write (0;0)(9;@) = 0;((9i¢)©0) — (9?¢)@ and we have

3 t t
flan,Talt)] < 3 1o, | esa@omas +]1QR2 | esiatorias (4.10)
i=1 0

Remark that the second term of the right-hand side of (4.10)) can be treated in the same manner as the
term V1 so we will only study the first term: by the propertles of the heat kernel and by the definition
of the Riesz potential £y (see (2.2))), we obtain

t t
o =ty [ <50 (@01 11% | [ 2i-ste = p@o)its.yyavas

Ly, (s, y)] .
< Clg,, // i dyds < Clgg, (L1(|1qy, @))(t, ). (4.11)
® (|t — |2 + |z — )
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Taking the Morrey M norm we obtain [ A2l \3.0 < C||]lQR2( LQy, UD)HMBG' Now, for some
’ t,x

1(
4<q<5<7 =6 wedefine A =1— £, noting that 3 < $ and o < ¢, by Lemma we can write
102, (Lo, @)lyge < Cler(an Dl 5

Ol g, il 0 < +00,

< C|[1qn, il o2

A

from which we deduce that H]IQR2V2||M3,G < +00.
t,x

For the term Vg, by the same arguments given to obtain the pointwise estimate || we have

]]IQR2\73(t,x)| = ‘]IQR2 /Ot /R3 gi—s(x —y) [(b ((11' ﬁ)ﬁ)} (s,y)dyds

ClQn, L2 <’1me <(7~7' ﬁﬁ) ) (t,2),

(recall (4.3) from which we deduce

IN

H]IQszi%HMf:g < O tan, 22 (11an, G- D1al) |, (4.12)
We set now 2— < ¢ < 3 2 and A =1— 22, Since 3 < 6/\ and 790 = 6 < 0 < {, applying Lemmaand
LemmaBlwe have
o 985l 1 )]s = ron @ ]

Recall that we have 79 = 6 < ¢ and by the Holder inequality in Morrey spaces (see Lemma [1) we
obtain

11QR16®6H < +o0,

[em, @931, . < 1007

where % = % + 7—11 = % + % These two last quantities are bounded by (3.1)) and Note that the

condition 79 = 6 < ¢ and the relationship % == —|— 5 are compatible with the fact that 32~ <g¢ <
(recall that 0 < o < 5;).

2,7'1
Mt,z

The term V4 is the most technical one. Indeed, by the expression of Vi given in || we write

V88

L [0, 12| (wusuy) (s, ) s 0.0,
1gg, Va| < 1g // dyds < 1o, Lo o, L (Yuiug)| |
@ ij:l RS (|t —s|? 3+ |z —y[)? z]z:l @ (=4) ’
and taking the Mm—norm we have |[1g, V4HM35 < Z P i1 H]IQR2£2 (‘ [qb, Va0, } (@Z)uzuj)D HM3"" If
Weset5254—5and)\zl——thenwehave3< )\andfor 7
q 970
= = 4.1
A 10— 7o’ (4.13)
by Lemmas [2] and [3] we obtain:
V0,0; [ Vo0,
]IQRQACQ <‘ (Z)a (_ ) (wuzu]) )H S C ]IQRQEQ (‘ ¢7 (—A)] (¢uluj) >' 3 ¢
ME7 - Mz
v 0;0; |
< C||9 YOi0; (Yuiuy) ,
(_A) M%,q
- t,x
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We will study this norm and by the definition of Morrey spaces ({2.1)), if we introduce a threshold

(=4)

t= ER;, , we have
:

vaa vaa

0, (wuzug) < sup ETTEERY o, A (wuzuj) dxdt
(-8) b T ) 20720 Joua) (-4)

t,x o<r<t . (414)
b
+sup ——— [¢, V68 ] (Yujuy)| dadt.

(t7) 50730 Jo, ()

Now, we study the second term of the right-hand side above, which is easy to handle as we have vt < r
and we can write

3
2

1 / V8;8; \) :
sup EETTERERY ¢a (¢U1U ) dxdt < C ¢) (T/)UZU) s
(,7)eRxR3 7"5(1_%) Qr(t,7) (—=4A) ! ’ (—A4) ! L%
t<<r t,x
and since ¢ is a regular function and = Aa) is a Calderén-Zydmund operator, by the Calderén commu-

tator theorem (see the book [16]), we have that the operator |¢, Yaf)} is bounded in the space Lt7m
L

3) and the information given in (3.1)):

and we can write (using the support properties of 1 given in (4.

|

where in the last line we used Holder inequalities in Morrey spaces and we applied Lemma

- V88

9, (=) (Yuiuy) < CW%U;H 3 <C||11QR it

3
3 - M?
2 t,
Lt

x
,T

< CH]IQRl ﬁ”/\/lfi’ H]lQRl 6“/\/1?2 < CH]IQRl ﬁHva;O H]IQRl ﬁHM?’;O < +09,

The first term of the right-hand side of (4.14]) requires some extra computations: indeed, as we are
interested to obtain information over the parabolic ball Q,(t,Z) we can write for some 0 < r < t:

[¢, (V_a ‘9) ] (Vuiy)) = 1g,

V0;0;
(=4)

V9,0,
(=4)

o

o

(Lgu, Yuiug) +1q, (T=1gy,, )Puiug), (4.15)

3
and as before we will study the L?, norm of these two terms. For the first quantity in the right-hand
side of (4.15]), by the Calderén commutator theorem, by the definition of Morrey spaces and by the
Holder inequalities we have

o

V0,
lg, [qﬁ, (_A;] (g, uiu;)

IN

3 5(1-3 3
Clg, dua|?, < Cr' 70|10, wiugl|® ,
2 1 MtQ’

,T

70
2

Shrolw
8

t,a:

L
5(1—2) 2 2
S CT‘ 70 H]]-Qqu‘LH/QV[f’,;() |’]]-QR1U‘|/2\/[E”;07

for all 0 < r < t, from which we deduce that

Njw

1 Vo, 0; 3 3
su , 1g,, Yuu dedt < Cl|lg, t||? .. 1o, €l|? 5, < 4oo.
(tag r ( ) Qr(t,f) Qr (b (—A) ( Q2 1/} ( ]) H QRl HMf;zo H QR1 HM‘?:IO
o<r<r
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We study now the second term of the right-hand side of (4.15)) and for this we consider the following

operator:
\) 0;
Tf’_><]]‘Qr !¢7 —A ](H_]IQ%W)> f7

and by the properties of the convolution kernel of the operator ﬁ we obtain

[-1g,.)(y)1lgy z) —
IT(f) ()| g(j]lQr(x)/ (I =10, )W) Lgr, W W)llo(x) — o(y)]

R3 |$ - y|4

dy.

Recalling that 0 < r <t = mb 2 by the support properties of the test function ¢ (see (4 ), the
integral above is meaningful if |y; — y| > r and thus we can write

\ ) 2 Ly yor 3
10, |6 oat| (@~ 1au)vua)| <0 |ta, [ 10 10,0010y, sl
&y r oo 1o — 9 4
t,x )
1 2
<ol [ altogluulc—oly ) <o itgguall,
< y|>r| ‘4 QRI ’ Lt%z(Q?“) QR ! 39¢(Qr)

with this estimate at hand and using the definition of Morrey spaces, we can write

/Qr(tvi')

2

_3 3
dedt < Or~ 3™ |1, wiug)?

[¢, (V_a 3) ] ((T— Lqu, Jbuiuy)

370
2°72
t,x

<

3 70
272

3 3
< ") |1, uil|?

t,x

_3 _3
where in the last inequality we used the fact that % = % + %, which implies a0 70) _5(0-50)

Thus we finally obtain

e

V8;0;
(—4)

1g, | o, (I = 1g,, )uuy)

1 3 3
sup ———— dedt < Cl|1g, u||? 5. [|Tos. ©|? 5., < +oc.
w o [ 80, 71 g 10, 1

o<r<r

We have proven that all the term in (4.14) are bounded and we can conclude that [[1q \2 | Mo < oo

Remark 1 The condition (4.13) implies an upper bound for o depending on the current Morrey
information of ©, which a priori is close to 19 = 6. Newvertheless it is clear that whether we obtain a
better Morrey information on integrability for i, the value of o can increase.

For the quantity \75, based in the expression lb we write

i . RRs (G5 ) 4 < : P
onTs(to) < €3 1o yds < C Y Tgn, L1 (IRR;(duiuy))) (¢, @),
3,7=1 RS ‘t—8|2+‘$—y’

i,j=1
where we used the decaying properties of the heat kernel (recall that R; = \/?LA are the Riesz trans-
forms). Now taking the Morrey M?; norm and by Lemma (with v = 4750%5’ p =3, ¢ = 7o such that

% > 3 and % > ¢ which is compatible with the condition 79 < o) we have

MG, VsHMSU < C Z 1Qr, £1 (IRiRj(Puiug)]) |

p
MV
i,5=1 ¢
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Then by Lemma [3| with A =1 — %ﬂ (recall 7o = 6 < 10 so that v > 2X) and by the boundedness of
Riesz transforms in Morrey spaces we obtain:

\*@

[Lop, L1 (|RiR(puivw)) | 2a < ClL1 (|RiR;(dusuy)l) ||

o, il < CIRRGua) g

2
t,x

L
2X

H>’

< H]lQRlUinHMg,%o < Cllqp, dll y 30 1L Qp, 4l .70 < 00,
t,x ? ?

and we obtain ||11QR2V5HM3,U < 400.
t,x

e For the term \76 and following the same ideas we have

(O (5.y)|

|]]‘QR V6| <C Z ]IQRQ //

1,7=1

dyds = C Z 1gg, Lo <| Ebvj)( O )uiu;

3,j=1

) |

For 2 < g < 2, define A = 1 — &L, we thus have 3 < % and o < %. Then, by Lemmaand Lemma
we can write

!t—8\2 +lz —yl)?

Vo, Vo, Vo,
Lgp, L2 0 Ay (Oi¥)uit < Clllgg, L2 %(aﬂb)uzua , ., SC %(31'1/})“% ,
@y e =y e [y il
but since the operator ¢v is bounded in Morrey spaces and since 2 < g < 2 < 3 =3 (since 9 = 6),

one has by Lemma [2 and by the Holder inequalities

Vo,
Eﬁ—A) (05¢)uu;

<Ot un|, g0 < Cltogunll g < Clon, @l sl o, Ty
Mgv"l t,x t ’ ’

, T
t,x

from which we deduce |[1g,, V|| e < +00. Note that the same computations can be performed to
t,x

obtain that \|1QR2V7]\M3,U < +o00.
t,x

e The quantity Vg based in the term (8) of .) is treated in the following manner: we first write

) H 370
M7

Weset1<l/< 5,20 < q< 3 v and)\—l—— thus we have 3 < ¥ and o < %,then,byLemma
and by Lemma We can wrlte

-

M@r, VSIIMJG <C Z N

3,j=1

v
(—A) (0:059) (uiuy)

]lQR2 (Ez

v v
]]'QR2 <£2 ¢( A) (0; 8J¢)(Uzuy )HM&U <C ]]'QR2 <£2 ¢( A) (0; 8J¢)(Uzuj)) M%%
<0l Y @i )| < |6V (D10 ()
n <_A) o o MYa B (_A) B o Mt”’%
v
<C ¢m(aiajw)(uiuj) Lo (4.16)

5v
where in the last estimate we used the space inclusion LY L3 C Mty”;
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Remark 2 Note that if the parameter q above is close to the value 3%, then A =1 — 57 is close to 0
and thus the value § can be made very big: in the estimates (u) we can consider a Morrey space

Mf;’ with o > 1.

Let us focus now in the L* norm above (i.e. without considering the time variable). Remark that due
to the support properties of the auxiliary function 1 given in (4.3)) we have supp(9;0;¢) C Qr, \ Qwn,
and recall by (4.3) we have supp ¢ = Qn, where Ry, < R, < Ry, thus by the properties of the kernel

of the operator % we can write

v

@(@@W(uw;‘) <C

/R 1ﬂme(m)ﬂQRl\Q%(y)(é’iajw)(uz'ug')(-,y)dy‘

s |z —yl?

<C (4.17)

Ty (Ra—m
/R 3 Wn% (2) L0y \@n, () (@070 (i) (-, y)dy

and the previous expression is nothing but the convolution between the function (9;0;4)(u;u;) and a
L°°-function, thus we have

-

\%

|'¢(_A)(3i3j¢)(uiu3‘)(ta )| < CllGi059) (uiwy) ()l 1 < ClLQp, (wiug)(t, )l Lv, (4.18)

Loe

and taking the L”-norm in the time variable we obtain

=

\Y%
H¢(A) (0:059) (uiuy)

< COllgpuiuilicy, < ClllQp, dll yomo[Lap, @l yp o < +o0,
LyLg ' ’

where we used the fact that 1 < v < % < 73 and we applied Holder’s inequality. Gathering together
all these estimates we obtain H]IQRQVg;HMs,a < +o00.
t,x

The quantity Vg based in the term (9) of 1) can be treated in a similar manner. Indeed, by the
same arguments displayed to deduce li we can write (recall that 1 < v < %)

—

v
(=4)

H]IQR VQHM:”U <Cl¢— ((Aw) )

)

LY L

and if we study the L°°-norm in the space variable of this term, by the same ideas used in - -
we obtain Hqﬁ( ) ((AY)p H < C|[(AY)p(t, )l < CllLqg, p(t,)|lLv. Thus, taking the L”-norm
in the time var1able we have

=

v
(=4)

||]1QR2V9||M30 <Cllo—

((A¢)p) < Clgp,pllzy, < Clllgg,pl ih < +o00.

LYLge

The study of the quantity Vm follows almost the same lines as the terms Vg and @"g. However instead

of (4.17) we have

Vo,
(=4)

'cb ((Gi)p)| <

1 z—y|>(Re—R
C| [, L g, @)Ly, 0, (1) )0t )dy.

22



and thus we can write:
Vo,
(—-4)

((9:%)p) < +o00.

< CllLgg,pliLy, < CllLgg,pl
LYLg

H]]‘QR2 Vio HMf;’ <

3
2
t

Note that, by the same reason given in the Remark [2 in the study of the terms that contain the
pressure (i.e. Vg and Vm) we can consider a Morrey space ./\/lt » With o > 1. But this is not the case
anymore for the last term below.

Finally, for the term Vy; based in the term (11) of (4.7) we write:

t
Lo, V0| = ]n% [ 8165 Ao, ayis

IN
=
)
&
Cb,-\
T
&
>
<
>
=
&
2
S
QL
)

< Va +Vb,

for the first term above, and following the ideas given in (4.11]), we have the following estimate with
the Riesz potential £1, and by Lemma [2] we can write

IVall pgoe < €L, (£1(Law, By < ClLr(Lam, B ypiz020 = [ £1(|L g, 31

a4,
M
where ¢ = % and \ = % Thus, since 1 < g and since A =1 — % we can apply the Lemma |3[to obtain
that

1218, @Dl .5 < Ol Blazs = Olan, 1 331 < O, Flps = Clan, Bl <+

24 24
TTT
T

Now, for the term V; above, using the same ideas as in (4.8)-(4.9) and applying again the Lemma
we obtain

Villagzs < Clllgn, (£2(1qn, @)y

< Clgn, (La([L0n, @) | 000 (4.19)
< Cla(ltan, S 4.1
where this time ¢ = % and A = % Since we have 2 <3 2 and A =1 — 24, we apply Lemma |3 and we

have

O”EQ(’BQMQDHM%;% < Oy, Wl mge = Cllﬂme03||Mj§,%z < Lo, Gl s = [Mow, @llzg, < +oo.

We can thus conclude that
HHQR2V11HM?;;' < +00.

With all these estimates Proposition [2] is now proven. |

Remark 3 Note that the value of the index o of the Morrey space Mf”;’(R x R3) is potentially bounded by
the information available over & and the maximal possible value for this parameter is close to o = 60 (see

the expression above).

This result gives a small gain of integrability as we pass from an information on the Morrey space M;

370

to a control over the space Mt,x with 79 < ¢ with o close to 79. This is of course not enough and we
need to repeat the arguments above in order to obtain a better control. In this sense we have the following
proposition:
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Proposition 3 Under the hypotheses of Theorem[1] and within the framework of Proposition[l], there exists
a radius Ro with 0 < Ry < Ry such that

Lop, (toao) ¥ € ML (R x RY), (4.20)

Proof. By the Proposition |2 above it follows that 1, 4 € M?’U(R x R3) with o very close to 7o (say
o =79 +e¢). Hence, with the information 1q,, @ € M3 o (R x R3) at hand, we can reapply the Proposition
to obtain for some smaller radius Rs < Ry that ]lQR TS M3 1R x R3) where 01 = 0 + ¢ = 79 + 2e.

Iterating these arguments as long as necessary, we obtain the information ]lQRQz_[ € Mi’fO(R x R3) where
the value 0 = 60 is fixed by the information available for the quantity & which is the only term that is
fixed: see the computation leading to the estimate and Remark 3| Let us note that a slight abuse of
language has been used for the radius Ry: at each iteration this radius is smaller and smaller, but in order
to maintain the notations we still denote the final radius by Rj. |

5 A first gain of information for the variable &

Note that the Proposition [3|and the Corollary [1] give interesting control (on a small neighborhood of a point
(to, o)) for the variable @. Remark also that Theorem [2| gives some information for the variable J:

— 3,60 — = 2 ,T
Lo, (to.a0) @ € My (RXR®), 1o (19,008 € LE(R X RY), Loy (19.00)V ® 7 € Mi7' (R X R?),

(5.1)
- 6 3
Lg., (to,w0)W € Li (R x R?),
where B
O<Ry<Ro<to<tuu<R<R<I1, (5.2)
with BO: 6 and 3701 % (which is given by the condition T—ll = T—lo + %, see the Corollary . Note that we

have G5 <11 =17

We will exploit all this information in order to derive some Morrey control for the variable div(&), indeed,
we have:

Proposition 4 Under the general hypotheses of Theorem if we have the controls over U and @ then
we have, for some radius 0 < Rg < Rs, we have

]]'QR (to, zo)d“)( ) € qul (R X R3)

Proof. We first apply the divergence operator to the equation satisfied by & (see the system (1.1))) and
since we have the identities div(Vdiv(J)) = A& and div(V A @) = 0, we obtain

dydiv(@) = 2Adiv(&) — div(@F) — div((@ - V)@).
Consider now ¢ : R x R — R a non-negative function such that ¢ € C§°(R x R3) and such that
¢ =1 over Q,,(to,x0), supp(®) C Qp,(to, o), (5.3)

where we have
0 < R3 < pp < pg < Ro, (5.4)

where the radius Ry is fixed in (5.2)). With the help of this auxiliar function we define the variable W by
= ¢pdiv(&J),
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note that, due to the support properties of the function ¢ we have Lo, W = 1q,, div(&J). If we study the
evolution of W we obtain:

oW = (09)div(@) + &(mdw@) — div(@) — div((a - ﬁ)a))

3
— AW+ (96 + 206 — )div(@) — 4 0 ((0:6)div(@)) — ddiv((i - @),

i=1
— 3 —
where we used the identity ¢Adiv(&) = A(ddiv(S)) + Addiv(F) — 22 9;((9;0)div(J)). Recall now that
i=1
we also have the identity (since div(@) = 0):
odiv((@ - V@) = pdiv (div(@ @ 1)) = div(div(¢d ® @) — div(F QT - Vo) — V- div(@ @ i),

and we obtain
— — — 3 — —
OW = 200+ (90 + 2A¢ — $)div(@) — 4> 8;((0id)div(&)) — div(div(¢d @ 1))
i=1
+div(@ @ @ - V) + Vé - div(@d @ ).
Thus, since we have W(0,-) = 0 (by the properties of the localizing function ¢ given in (5.3))), applying the
Duhamel formula we can write:

3
W(t, z) = /0 t )80y + 2A¢ — @)div()ds —4 Y /0 t 2929, ((9;0)div(3))ds  (5.5)
=1

J/

d W
t t t
- / 2= di (div (96 @ @) ds + / I8 din(& @ - V)ds + / IS - din(@ @ @) ds,
0 0 0
W3 Wy Ws

and we will estimate each one of the terms above.

e For the first term W; we write,

t
Loy Wi| = 'nQR3 / 2D i (9,6 + 206 — B)F)ds
0

t
ﬂﬂQRS /0 IV (0 + 206 — 9)) - &

since the convolution kernel of the semi-group e2(t=5)2 is the usual 3D heat kernel go¢, thus by the
decay properties of the heat kernel, by the properties of the test function ¢ (see (5.3)) and by the
definition of the parabolic Riesz potentials £1 and Ly given in (2.2]), we can write the estimate

1 1
\]IQR Wi < C]lQRS// | Q”“ ()l dyd8+C]lQR3// | Qp“ (5,9)l dyds
B (|t — 8|2 + o — y])* R? ( |t*8|2+|90*y|)

< Clgg, (L1([1q,, &)t x) + Clgy, (L2(/1q,, &) (E ©), (5.7)

and we have

ItoaWill s < O, (Lallto, @) g
t

,T

49+ C [ an (Lallta, @) o0
t t

,T

=o
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For the first term above, since % < %, we set p = g, q= % and A = % and by Lemma |2| we obtain

o,
I )\ 2N
t

|10, (€110, @) .80 < CllLan, L1010, 8D g3 < (1, &DI s
t,x t,x

’acn

since g < )\% and % < %. Thus, applying Lemma (and Lemma , we have

1£1(1e,, 9Dl .5 < Cllg,, 4l

X 9 < CH]lQpa‘E”Lf,Q < +00,

§
:
M

&m

since we have the control 1¢,, & € LY (R x R?) given in (5.1) and we have by (5.2) and that
pa < Ro < 1.

For the second term that we need to study, we fix p = g, q= % and A = 25, by applying Lemmal
and Lemma B we obtain

[tar (cato, @D g0 < Cllon Lallton @Dl g4 < I£a(La, D 512
< Olq,al, g ¢ < Clla, 8, < Cla,dl, < +oo.

where we used the information and the relationships (5.2} . With these two estimates at
hand we conclude that ||1¢,, WlH § 15 < Fo00.

it

For the term W5 of (5.5) we need to study, for all 1 < i < 3, the quantities

)

t
I; = ‘11QR3/0 =220, ((0,¢)div(3))ds

and we write

t
I; < ‘HQRS /0 21=929; (div((8;¢)@)) ds

+\1QRS / -39 (F(00) - B)ds|.  (5.8)

We study the first term above and by the support properties of the function ¢ given in (5.3)), we have
for 1 <4,5 <3:

t
‘ﬂQRg /0 *17920,0;((0i9)5) ) ds

where the set C(pp, po) is the corona defined by Q,, \ @Q,,. Noting that (t,z) € Qr, and that (s,y) €

Lop, (@) le(py.p0) (5:9) .
L is bounded and
(|t—s|Z +[z—y|)5

1 (t,z)1 S w(s
<C// Qry (1 2)Le(p, ) (85 ) |6 (s, y)!dyds’ (5.9)
R3 (|t — 5|2 + |z — y|)®

C(pp, pa), since we have R3 < pp by 1) the convolution kernel

we can write

[1on, [ %00 (05))as

< Clle(pyp)9lry, < Clllg,dlirg, < +oo, (5.10)
Ly, ’ ’

(recall (5.2)-(5.4), from which we deduce that

t
HnQR3 /O 2929, (div((8;9)@)) ds

s < Cllta,@lsg, < +ox.
Mt,;: ]

The second term of (5.8)) has the same structure as the first term in (5.6), and thus by the same
arguments we can write

t
Hn% | 2o @ - @as| <Ol < +oc.

Qi
51

M

26



e We study now the term Wjs defined in (5.5) and we write

%’
)
M

t
”]]‘QR3W3|| 60 = H]lQ / 62(t_s)Adiv(div(gEcU®ﬁ))ds
0

6
5
t

Sruio

and by the maximal regularity of the heat kernel in Morrey spaces (the Theorem 7.3 of [16] can be
generalized to parabolic Morrey spaces), we have

LQn,Wall

now, using the Holder inequalities for Morrey spaces stated in Lemma (with % = %—i—% and % = %—l—&)
and the properties of the localizing function ¢, we obtain

Mop,Wsll, .50 < Clilq,, &l veslla, dllyee

6
MP!
< Ol1Q, @l pesllap, @l poe < Clllg,dllLs, I1og, UHM6 60 < 400,

where in the last estimate above we used Lemma [2| the information available in and the rela-
tionships (5.2)-(54).
e For the term Wy given in ([5.5)) we have, following the same arguments given in (|5.9):

1 (t,z)1 &
< C// QRJ $) C(pp,pa) (5 y)|w ( )|dyds,
(|t — 512 + |z — y|)*

t
[LQp, Wal = ‘]IQR3/ 2092 din(G @ @ - VP)ds
0

and thus, by the ideas given in (5.9))-(5.10) we can write

where we applied the Holder inequalities, Lemma (in the Lebesgue space setting) and the relationships
(5.2)-(5.4). With these estimates at hand, we easily deduce that

]lQR tx]lCﬂbpa)’w® ( )‘
B (sl + ey

dyds

IN

Clle(pypn)@ @l < CllQ, @ @llrs

oo
Lt,w

IN

OllLgu,@llss Mg, il < +oo,

|’]1QR3W4HM?:50 < 400.
e For the last term W; of (5.5) we have

t
ym%%mgy:‘nQ&ﬂ/ 2RV G - div(S @ @)ds
0

Thus, for 1 <14,7,k,1 < 3 we need to study the quantities
Jijrs = ‘HQRS / 2079)2(0;6)0; (wyur)ds
0

t
< ‘ILQRs/O eQ(t_S)Aaj<(8i¢)(wkul)>d8

t
+ ’]IQRg/O 21=92(9,0;0) (wyw)ds

where we used the identity (9;¢)0;(wyu;) = 0; <(8¢¢)(wkul)> — (0;0;¢)(wgw;). Now, due to the
properties of the heat kernel and the support properties of the function ¢, we obtain the inequality

1 (t,z)1 D weu (s, y
ik < C// QR C(pv,pa) | ( )‘dyds
R3 (It — 5|2 + |2 — y|)*

1 (t,z)1 wruy (s
—I—C// QR3 C(pbpa)‘ k l( y)|dyd8
R3 (Jt — 8|7 + [z —y])3
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Now, by the same arguments given in (5.9)-(5.10) we obtain

1 z)1l O weu(s,y 1 D weu (s, y
QR C(pbp)‘ ( )’d n // QR (pbp | ( )‘dyds
3 — — 3 — .
R (|t 5|2 + |z —y|)* L, R (|t 8|2 + |z —y|)3 Ly,
< Cllg,wrwllpy, + Cllq,wewlzr
< Oyl g, @l < +oo,
and with these estimates for 1 < 4, j, k,l < 3, we easily deduce that
”]1QR3W5HM?:5° < +00.
With all these controls, Proposition [4|is proven. |

6 The end of the proof of Theorem

The key result for obtaining a gain of regularity is the following lemma coming from the theory of parabolic
equations (see [15] 17]).

Lemma 8 Let o be a smooth homogeneous function over R3 \ {0}, of exponent 1 with o(D) the Fourier
multiplier associated. Consider a vector field ® € M3 (R x R?) and a scalar function h € Mﬁqul (R x R3)

such that 1 < pg < qo, with q% = %Ta’q% = k?a, for 0 < a < 1. Then, the function U equal to 0 fort <0
and

t
t,0) = [ IN@(s,) + o (D5, ),
0
for t > 0, is Holder continuous of exponent o with respect to the parabolic distance.

In order to apply this lemma to the proof of Theorem [I} we will first localize the full micropolar equations
(1.1) and then we will show that each term of the corresponding Duhamel formula belongs either to the
space M?f}fqo (R x R3) or to the space M’Zgqu(R x R3).

We start by localizing the problem and for this we consider ¢ : R x R?> — R a test function such that
supp(¢) C]— %, $[xB(0,3) and ¢ =1 over | — 5, ;=[x B(0, §). We consider next a radius R > 0 such that

AR<R3<Ry<ta<t <R <R<I, (6.1)

where R3 is the radius of Proposition |4l Ry is the radius of Proposition [3| t1,to are the radii from Theorem
and R; is the radius obtained in Proposition [Il We then write

t— t(] Tr — X
t,x) = — 2
o0 =o ("t TR ) (6.2
and we consider the variable ¢/ defined by the formula
U=n(i+a), (6.3)

then, by the properties of the auxiliar function n, we have the identity U = T+ & over a small neighborhood
of the point (tg,x), the support of the variable I/ is contained in the parabolic ball Qr and moreover we
also have U (0,x) = 0. Thus, if we study the evolution of this variable, following the system 1) we have

- - .1 - -
ouU = Om)(u+&)+nA(U+ &) —n((a-V)d) —nVp+ inV/\cU—i—anz’v(cv)

',_n

—nc‘_}—n((ﬁ-ﬁ) J) + ﬁAu
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We use now the identity nA (@ + @) = AU — An(@ + @) — 2> (8;0)(8;(@ + @)) to obtain the equation

. . - .1 -
U = AU+(8m*An)(ﬁ+ﬁ)*22(0177)(&(17%3))*n((ﬁ'v)ﬁ)*an+§nVA5

+nVdiv(&) — @ —n((@- V)B) + =nV A .
In the expression above, we need to rewrite six particular terms, indeed, since we have the identities

nVdiv(@) = V(ndiv(@)) — (Vn)div(@),

3 3 3
d_@m)@i(a+@) = Y o:((0m Zaam i+ @),
i=1 i=1 i=
n((@-V)d) = divini®ad) —a®d %,
WNAG = VAG0DS) — (V) A&, and gV Ad =V A (nid) — (V) A,
( —

we obtain

. — — — — = 1 = — 1 =
@ — div(nd @U) + U - Vn+ EV A (nid) — §(V17) A
We rewrite this equation in the following form:

3

O = AU+ A+ 9,8, +VC+V AD+ dioE,
i=1

U0, z) =0,

where the vector A is given by

. . L1 -
A = (8m+A77)(ﬁ+cD’)+ﬂ’®ﬁ~V17—77Vp—i(Vn)/\(IJ'

—(Vn)div(3) — @+ 3@ @ - Vn,
the vector [)?Z (for 1 <1i < 3) is given by
the scalar function C is given by

the vector D is given by

and finally, the tensor E is defined by the expression
E=-nUi®i+d®q).

29

(6.4)

(6.6)

(6.7)

(6.8)

(6.9)



Thus, by the Duhamel formula, the solution of the equation (6.4)) can be written in the following manner:

— - - —

t 3
umxy:/ewﬂA<A+§}M&+vc+VAD+dWE)m, (6.10)
0 i=1
thus, in order to apply Lemma [§] to this system and obtain a parabolic gain of regularity, we only need to
prove that the quantities A, B;, C, D and E, defined in l) respectively, satisfy:
Ae MP%P(R xR%) and B;,C,D,E € MP%™ (R x R?), (6.11)
11—

1 2-a 1 1
wherelgpogggqo,vmthq—oz?"‘,q—l:T,forsomeO<a<ﬂ.

Let us start with the quantity A and we have
Lemma 9 For the term A defined in we have
mem%<+m.
Proof. By definition we have

Il pggoso < 104 + An) @+ @) yggas + 159 - Il gz + 19 pgzos

M) @ 3)
HC () Al ggguso + (i@ pggoso + 15 pgguto + 5 - Tl o (612
@) %) (©) ™)
Each term above is studied separately:
e For the first term of (6.12), we note that since pg < qg = % and since 0 < a < i, we have
o < qo < 3 < 6, and thus by the support properties of the function 7 as well as by the properties of

Morrey spaces given in the Lemma [2] we obtain
1@+ An) @+ o0 < Cllar (@+@) oo < Cllly, @+ o0 = g, (@435, < +oo,

since we have the controls (b.1)) and the relationships (6.1)).

e The terms (2) and (7) of (6.12) can be treated in a similar manner. Indeed, since 0 < a < 5; we have
po < qo < 3 and by the same arguments as above we write for (2):

lZ@ @Vl ypos < Cllor@®dl yypos0 < Clllg,, @@ @] yyps

< COlgui®ily, < Clliq, il |lg, @l < +oo,

where we used the Holder inequality in the last estimate as well as the controls (5.1)) and the relation-
ships (6.1). The same ideas apply for (7).

e For the term (3) of (6.12)), we recall that by the equation (|1.2]) over the pressure we have the expression
3

0;0; . - . ~ -~ .
p= Z = (ujuj). We consider now two auxiliary functions ¢ and 1 satisfying the same properties

G (=A)
stated in (4.3)) and such that

=1 over Q,(to,z0), supp(¢) C Qp,(to,70) and =1 over Q,(to,xo), supp()) C Qry(to,x0),
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where R < r, < r, < R3. N _
Thus, by definition of the auxiliary function d) we have the identity 1g,, = ¢lgg, (recall the relation-

ships D Thus the term qpr 1) Z A) 0;0;(uju;) can be rewritten in the following manner
4= 1

3 N—' 3

oo
(D59 uiuj — > ¢_VAJ) (Oi)uiuy

~o ~V 6
$Vp = Z N zwuzuj
,7=1 j=1 i,j=1
(a) (b) (c)

—

(6.13)

=

3 Vi . .~
r2303 e 8ajw><uzuj>+¢W 3 )
i,j=1 N =1

120

and since 0 < a < ﬂ we have pp < qp = 5= < < 3 and we only need to prove that each one of

6 120

these terms belong to the Morrey space Ms’ AT (R x R3).

* The term (a) in (6.13]) is treated as follows: since the Riesz transforms are bounded in Morrey
spaces we obtain

0; 8
(—A) (T/JUZUJ)

8.7
6 120 ’
M7 Mie

Wi
now, for 1 < k < 3, using all the information available over @ (see (5.1))), by Lemma and by the
Holder inequality in Morrey spaces, we have

H(@@)WWH 0 < C H]lQ uZuJHM < CllLqg, uill g0l L, wsll g0 < +00,

8.7
Mp,

3 120 2 1,1 1 1,1 . .
since 5 <3, < 30and § = 3+3, 35 = g5+ go- BY the same arguments (recall the informations
over @ given 1n (.1)) we have

Hw(akUZ)UJH gTo < C||]1QR1V®ﬁ”Mf,%||]lQR3ujHMi’go

t,x

IN

CH]IQR V® ﬁ”M2,rl H]lQRg,uj‘|MB’6O < +00,
([t (Orus) |

IN

120
>

8.4 A
M,

C||]1QR quMB GOH]IQR V®u” M
t

IN

ClLQp,uill pzooll L, V @ U] pgzim < H00,

5 45 | 1 120 20
since g = 2 + 3 and 2 120 50t % and B <n= 11 < Thus we can deduce that we have

the estimate

* The terms (b) and (c) of (6.13) can be treated in a similar manner and using the information
available in ([5.1) we have:

VO, Vo .~ ~
Cayomas| < Oy <O @] g v
MtS,:; 47 Mt5,; 47 t,x
< Cllgy, uiu 33 C”]IQRQUZH/\/P 60 [ Lqp, ujll pgo.00 < +o00
t,x



* The term (d) is treated as follows. By Lemma since ¢ < 2 and 22 < 13 we have
v
(=4)

a7 0| < O | 00y )

120
14T

Mis

f

Saloe

3

3 3
Now, by the space inclusion L{ L® C M7,

»\a

we obtain

—

(_Z)wiaj&)(uiuj) <cls

,
M,

[><|l

(9:05) (uiuy)

H¢ &)

LZ Lge

Following the same ideas displayed in formulas (4.16] - due to the support properties of the
auxiliary functions we obtain

—n) %059 (uing) < Clllgg,uiujll 3 < Cllqg,tl yz0lllQg, @l ypa0 < +oo.

%
Ltz

I

LiLg
« The term (e) of (6.13) follows the same ideas as previous one, and we have

5V«Awm) gﬁﬂAJM)
(—4) (—4A)

3
since we have by hypothesis that 1g,p € L{,(R x R3).

5 < CH]IQRPHL%C < +-00,

‘M LZL

« The last term of (6.13)) is estimated in a very similar manner:

gWWH <c H%WW

(_A) (—A) < C||]1QRPH

< +00.

L3
LZL Lia

We have proven that all the terms of lb belong to the Morrey space Mg’(;qo and thus, the term (3)

of (6.12) too.

e The terms (4) and (6) of (6.12) are very similar. Indeed, for (4), using the properties of the auxiliar
function 7 and Wlth the Lemma I 2| we write (recall that py < qop < 6 and that we have the controls

(5.1))

() A& gm0 < Cllndlagguon < CllLa, g, <+
For (6) we have by the same arguments:

193] gz 0 < Clllrllyon < Cllg,dllgg, < +.

e For the term (5) of (6.12]), we need to study the quantity H(ﬁn)div(oﬁ)HMpmm, but by the Proposition

We know that 1q,, div(J) € ./\/15’11 (R x R3). Since 0 < o < 5, we have pg < & < qo = 2 < 89,
and by the support properties of the function n (recall . and . ) we have (by Lemma'

I()div (@) gy < Olau,div@)l g 49 < o0

With all these estimates, we can conclude that A € Mgfx’qo (R x R3), and Lemma |§| is proven. [
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We study now the quantity B; defined in . Following 1' we shall obtain that B; € Mfg;ql(R x R3)

Where1Spggqo,with%:%Ta,q%:%,forsomeo<a<l. SinceO<a<2—14,vmhaveq1:%<6
and we thus write

1By = 120m) @+ @)y < CllLg, (@+ )y < Cllg, (@+ @>||ng < oo,

where we used the support properties of the test function 7, the Lemma I 2| and the controls
We thus obtain that B; € MG (R x R3).

[e=]

For the term C given in 1) we have ”CHMSO"“ = Hndiv(@’)HMro,ql Since 1 <po < Sand gy = 22 < &

11—«

(since 0 < a < i), by the support properties of the function n and by Lemma I we obtain

T

H’?div(a})HMi’O’“l < CH]]'QRgdiv( )|l gm < +o0.

With this estimate we obtain C € MJ%™ (R x R?).

The term D given in can be treated just as the terms B; above. Indeed, using the controls 1 we
write:

- 1 . oL o
1Bllpom = I5n(@ + Dl ppons < Cllla, (@+3)ypgn < Cllgy (@+@)l5y, < +oo.

We have D € MJ%™ (R x R?).

l—«a 1

For the tensor E defined in , since 1 < pg g and q; = i < 99 we obtain, by Lemma

Bl g = 0@ T+ D) ypom < |17 @ il ygoos + 93 © ] g
< COlnu ® |

4 +Cllns @

6 §,60
5° 5 11
t,x t
. . o . . . 5 _ 1 1 11 _ 1 1
and by the Holder inequalities in Morrey spaces (see Lemma [1)) with § = 5+ 3 and g5 = § + 55, We can
write :

N

IEllpgom < Clindll yzsllnall pac0 + Cllingdll s llmal] o0

IA

ClltQp, s 1@z, dll ypeo + Clilgg, @l [TQg, ll yo0 < +oo.
We thus have E € M{%" (R x R?).

With all the previous computations we have proven all the information stated in , which applied
in the integral representatlon formula allows us, with Lemma |8 to conclude that U e C*(R x R3)
with 0 < a < 55, and since by (6.3) we have U = (@ + @) over a small neighborhood of the point (¢, z0),
we deduce that 4 and & are also H('jlder regular and this finishes the proof of Theorem |
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