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Abstract

The purpose of this paper is to explore the concept of trivial control systems, namely systems whose dynamics
depends on the controls only. Trivial systems have been introduced and studied by Serres in the the context of
control-nonlinear systems on the plane with a scalar control. In our work, we begin by proposing an extension
of the notion of triviality to control-a�ne systems with arbitrary number of states and controls. Next, our �rst
result concerns two novel characterisations of trivial control-a�ne systems, one of them is based on the study of
in�nitesimal symmetries and is thus geometric. Second, we derive a normal form of trivial control-a�ne systems
whose Lie algebra of in�nitesimal symmetries possesses an almost abelian Lie subalgebra. Third, we study and
propose a characterisation of trivial control-a�ne systems on 3-dimensional manifolds with scalar control. In
particular, we a complete proof of the previous characterisation obtained by Serres. Our characterisation is
based on the properties of two functional feedback invariants: the curvature (introduced by Agrachev) and the
centro-a�ne curvature (used by Wilkens). Finally, we give several normal forms of control-a�ne systems, for
which the curvature and the centro-a�ne curvature have special properties.

Résumé

L'objectif de cet article est d'explorer le concept de système de contrôles trivial, c'est-à-dire un système dont
la dynamique dépend uniquement des commandes. Les systèmes triviaux ont été introduits et étudiés par
Serres dans le contexte des systèmes bidimensionnels et non-linéaires par rapport à un contrôle scalaire. Dans
notre travail, nous commençons par proposer une extension de la notion de trivialité aux systèmes a�nes par
rapport aux contrôles et avec un nombre arbitraire d'états et de contrôles. Ensuite, notre premier résultat
concerne deux nouvelles caractérisations des systèmes a�nes triviaux, l'une d'entre elles est basée sur l'étude
des symétries in�nitésimales et est donc géométrique. Deuxièmement, nous donnons une forme normale pour
les systèmes a�nes triviaux dont l'algèbre de Lie des symétries in�nitésimales possède une sous-algèbre de Lie
presque abélienne. Troisièmement, nous étudions et proposons une caractérisation des systèmes a�nes triviaux
sur des variétés à 3 dimensions et avec un contrôle scalaire. En particulier, nous complétons la preuve de la
caractérisation précédemment obtenue par Serres. Notre caractérisation est basée sur les propriétés de deux
invariants fonctionnels du bouclage : la courbure (introduite par Agrachev) et la courbure centro-a�ne (utilisée
par Wilkens). En�n, nous donnons plusieurs formes normales de systèmes a�nes, pour lesquelles la courbure
et la courbure centro-a�ne ont des propriétés particulières.
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1 Introduction

In this paper, we consider control-a�ne systems Σ of the form

Σ : ξ̇ = f(ξ) +

m∑
i=1

gi(ξ)ui, ui ∈ R, (1)

where the state ξ belongs to a smooth n-dimensional manifold M (or an open subset of Rn, since most of our
results are local), and f and gi are smooth vector �elds on M, i.e. smooth sections of the tangent bundle
TM. Throughout the paper, the word "smooth" will always mean C∞-smooth, and all objects (manifolds,
vector �elds, di�erential forms, functions) are assumed to be smooth. We denote a control-a�ne system by
the pair Σ = (f, g), where g = (g1, . . . , gm). We will assume throughout that the vector �elds gi are pointwise
independent everywhere (see a comment, following De�nition 1, that justi�es this assumption). To any control-
a�ne system Σ = (f, g) we attach two distributions:

G = span {g1, . . . , gm} and G1 = G + [f,G] = span {g1, . . . , gm, [f, g1] , . . . , [f, gm]} . (2)

We call two control-a�ne systems Σ = (f, g) and Σ̃ = (f̃ , g̃) feedback equivalent, if there exists a di�eomorphism
ϕ : M → M̃ and smooth functions α : M → Rm and β : M → GLm(R) such that

f̃ = ϕ∗

(
f +

m∑
i=1

giαi

)
and g̃i = ϕ∗

 m∑
j=1

gjβ
j
i

 ,

where ϕ∗ denotes the tangent map of ϕ. If ϕ is de�ned locally around ξ0 and ξ̃0 = ϕ(ξ0), then we say that Σ and Σ̃
are locally feedback equivalent at ξ0 and ξ̃0, respectively. Feedback equivalence of control-a�ne systems means,
geometrically, equivalence of the a�ne distributions A = f+G and Ã = f̃+ G̃ attached to Σ and Σ̃, respectively.

In the thesis [21], Serres proposed the notion of a trivial system of the form

(T ) : ẋ = F (w), x ∈ X , w ∈ Rm,

where w is the control that enters nonlinearly and X is a smooth manifold. The dynamics F (w) of a trivial
system does not depend on the state variables x and thus depends on control variables w only. Actually, (T )
is called �at in [21] but that name can be misleading because, �rst, there is a well established notion of �at
control systems [8] and, second, the class of trivial control systems does not coincide with control systems of
zero-curvature [2], which thus can be considered as geometrically �at, as we will discuss in Section 3. For
those reasons, following [22], we call (T ) a trivial system and we say that a general control-nonlinear system
ẋ = F (x,w) is trivialisable if it is equivalent, via a feedback of the form x̃ = ϕ(x), w̃ = ψ(x,w), to a trivial
system (T ), where (ϕ, ψ) : X × Rm → X̃ × Rm is a di�eomorphism. Inspired by the above considerations, we
adapt the concept of triviality to control-a�ne systems as follows.

De�nition 1 (Trivialisable control-a�ne systems). We say that a control-a�ne system Σ = (f, g) is (locally)
trivialisable if it is (locally) feedback equivalent to a trivial system of the form:

(T ) :

{
ẋ = F (w)
ẇ = u

, (x,w) ∈ M = X × Rm, u ∈ Rm,

whose ẋ-dynamics depend on the controlled w-variables only.

Notice that for (T ) we have gj = ∂
∂wj

, for 1 ≤ j ≤ m, that justi�es our assumption that the vector

�elds g1, . . . , gm of Σ are pointwise independent everywhere. The notions of trivial and trivialisable general
control-nonlinear versus control-a�ne systems are two sides of the same coin. Indeed, two control-nonlinear
systems ẋ = F (x,w) and ˙̃x = F̃ (x̃, w̃) are feedback equivalent if and only if their control-a�ne extensions
ẋ = F (x,w), ẇ = u and ˙̃x = F̃ (x̃, w̃), ˙̃w = ũ are equivalent via control-a�ne feedback transformations,
see [11, Proposition 3.4]. Therefore a control-nonlinear system ẋ = F (x,w) is trivialisable if and only if
ẋ = F (x,w), ẇ = u is trivialisable in the sense of De�nition 1 and the latter class is the object of our studies
in this paper.

Trivial control systems are interesting to study because they model trajectories of dynamical systems under a
nonholonomic constraint that does not depend on the point. Indeed, under the additional regularity assumption
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that rk ∂F
∂w (w) = m, equivalently, the distribution G1 of (T ) satis�es rkG1 = 2m, there exist local coordinates

x = (z, y), with dim z = n− 2m and y = (y1, . . . , ym) such that the equations of (T ) can be rewritten ż = f(w)
ẏ = w
ẇ = u

and we conclude that the trajectories of (T ) satisfy the nonholonomic constraints ż = f(ẏ), whose shape is
independent of the point x = (z, y). Denoting by X the (locally de�ned) quotient manifold M/G, we see that
a trajectory x(t) ∈ X satis�es the nonholonomic constraint ż = f(ẏ) if and only if there exists a smooth control
u(t) such that (x(t), w(t)) is a trajectory of (T ). Connections between equations on the tangent bundle and
control systems are explored in [17, 18]. Examples of trivial systems can be found in the literature; e.g. in [18]
we characterise trivial elliptic, hyperbolic, and parabolic control systems, Dubin's car [7] is a very simple model
of system that is trivial, and, �nally, trivial control-nonlinear system on surfaces (i.e. n = 2) and with scalar
control have been studied, characterised (and normal forms in particular cases have been given) in [20, 21, 22].

1.1 Outline of the paper

In the next subsection, we develop the main notions of di�erential geometry and of control theory that we will
need in the rest of the paper. Next, in Section 2, we study trivial control-a�ne systems on manifolds of arbitrary
dimension and with an arbitrary number of controls. We propose two characterisations of trivial systems, one
of them is based on the Lie algebra of in�nitesimal symmetries. Afterwards, in the remaining part of the paper,
we focus on the single input case. Using our characterisation of trivial systems via symmetries, we will give a
normal form of single-input trivial systems whose Lie algebra of in�nitesimal symmetries possesses an almost
abelian Lie subalgebra. In particular, in the two and three dimensional cases, we give an exhaustive list of trivial
systems possessing such a Lie subalgebra of symmetries. Next, in Section 3, we will be interested in revisiting
the characterisation of trivial systems discovered by Serres [21] in the context of control-nonlinear systems on
surfaces. We propose a characterisation of trivial control-a�ne systems on 3-dimensional manifolds with scalar
control. Our characterisation exhibits a discrete invariant, and two fundamental functional invariants: the
control curvature introduced by Agrachev [1, 2], and the centro-a�ne curvature used by Wilkens [23]. Both
functional invariants can be computed for any control-a�ne system. We will �ll a gap in the proof of Serres
and interpret his results. Finally, in Section 4, we discuss several normal forms (some new and some existing
in the literature) of control-a�ne systems, for which the control curvature and the centro-a�ne curvature have
special properties.

1.2 Preliminaries

In this subsection, we recall the main de�nitions and notions of di�erential geometry and of control theory that
we need in the paper. The main notations that we use are summarised in Table 1.

Di�erential Geometry. For a manifold M we will denote by TM and T ∗M the tangent and cotangent
bundle, respectively. The space of all smooth vector �elds (smooth sections of TM) will be denoted V∞(M)
and the space of all smooth di�erential p-forms by Λp(M), except for smooth functions (0-forms) whose space
is denoted C∞(M). For a di�eomorphism ϕ : M → M̃, a vector �eld f ∈ V∞(M), and a di�erential p-form
ω ∈ Λp(M̃), we denote by ϕ∗f ∈ V∞(M̃) the push-forward of f , and by ϕ∗ω ∈ Λp(M) the pull-back of ω.

The (local) �ow of a vector �eld f ∈ V∞(M) is denoted by γft (for any t for which it is de�ned). The Lie
derivative of a di�erential p-form ω along a vector �eld f will be denoted by Lf (ω). In particular, for a function
λ ∈ C∞(M) and its di�erential dλ (an exact 1-form) we have

Lf (λ) = ⟨dλ, f⟩ and Lf (dλ) = dLf (λ) .

For any smooth functions α, λ, and µ, the Lie derivative possesses the following properties: Lαf (λ) = αLf (λ),

and Lf (λµ) = Lf (λ)µ + λLf (µ). Iterative Lie derivatives are de�ned by Lk
f (λ) = Lf

(
Lk−1
f (λ)

)
, for any

k ≥ 2. For any two vector �elds f, g ∈ V∞(M), we de�ne their Lie bracket as a new vector �eld, denoted
[f, g] ∈ V∞(M), such that for any smooth function λ we have

L[f,g] (λ) = Lf (Lg (λ))− Lg (Lf (λ)) .

The Lie bracket possesses the following properties: it is bilinear over R, it is skew-commutative, i.e. [f, g] =
− [g, f ], and it satis�es the Jacobi identity:

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0, ∀ f, g, h ∈ V∞(M).
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Moreover, for any smooth function α, and any vector �elds f , g, and h, we have

[f, αg + h] = α [f, g] + Lf (α) g + [f, h] .

Two vector �elds f and g satisfying [f, g] = 0 are said to be commuting; since under di�eomorphisms ϕ :
M → M̃ the Lie bracket is transformed by [ϕ∗f, ϕ∗g] = ϕ∗ [f, g], the commutativity property does not depend
on coordinates. The celebrated Flow-box theorem (also called the "Straightening-out theorem" or the "Local
linearisation lemma") asserts that on a given n-dimensional manifold M there exists a local coordinate system
(x1, . . . , xn) such that f = ∂

∂x1
in a neighbourhood of any point p where f(p) ̸= 0. This can simultaneously be

done for a family of (locally) independent vector �elds (f1, . . . , fm) if and only if they are mutually commuting.

We set ad0fg = g, adfg = [f, g], and the iterated Lie bracket is denoted by adkfg =
[
f, adk−1

f g
]
for k ≥ 1; see

[10, chapter 1] for a detailed introduction and proofs of the above properties.

In�nitesimal symmetries. We brie�y introduce the notion of symmetries of control-a�ne systems (see [9,
16] for a detailed introduction). For a control-a�ne system Σ = (f, g), given by (1), with state M a smooth
n-dimensional manifold, we de�ne the set of admissible velocities A as

A(ξ) = {f(ξ) +
m∑
i=1

gi(ξ)ui : ui ∈ R} ⊂ TξM.

Clearly, A is a collection of a�ne m-planes, that is, an a�ne distribution. We say that a di�eomorphism
ϕ : M → M is a symmetry of Σ if it preserves the a�ne distribution A = f + G, that is, ϕ∗A = A. We
say that a vector �eld v on M is an in�nitesimal symmetry of Σ = (f, g) if the (local) �ow γvt of v is a local
symmetry, for any t for which it exists, that is, (γvt )∗A = A. Consider the system Σ = (f, g) and recall that G is
the distribution spanned by the vector �elds g1, . . . , gm. We have the following characterisation of in�nitesimal
symmetries.

Proposition 1. A vector �eld v is an in�nitesimal symmetry of the control-a�ne system Σ = (f, g) if and
only if

[v, g] = 0 mod G and [v, f ] = 0 mod G.

By the Jacobi identity, it is easy to see that if v1 and v2 are in�nitesimal symmetries, then so is [v1, v2], hence
the set of all in�nitesimal symmetries forms a real Lie algebra. Notice that the Lie algebra of in�nitesimal
symmetries is attached to the a�ne distribution A = f +G and not to a particular pair (f, g) = (f, g1, . . . , gm).
Di�erent pairs (f, g) related via feedback transformations (α, β) de�ne the same A and thus have the same Lie
algebra of in�nitesimal symmetries which, therefore, is a feedback invariant object attached to Σ.

M, TM, ξ = (x,w) Smooth n-dimensional manifold, its tangent bundle, and its local coordi-
nates with dimw = m.

ϕ, ϕ∗, ϕ
∗ A di�eomorphism, its tangent map, its cotangent map.

Σ = (f, g) A control-a�ne system given by (1).

G and G1 Distribution spanned by the vector �elds g1, . . . , gm and the distribution
spanned by the vector �elds g1, . . . , gm and [f, g1] , . . . , [f, gm]; see (2).

(T ) Trivial control-a�ne system; see De�nition 1.

K, A, I A real Lie (sub)algebra, a subalgebra, an ideal.

ΣA, Σ
0,k
λ Normal forms of trivial systems having an almost abelian subalgebra of

in�nitesimal symmetries; see Theorem 2 and Proposition 2.

Σs = (fs, g) Control a�ne system given by a semi-canonical pair; see De�nition 3.

Σc = (fc, gc) Control a�ne system given by the canonical pair; see De�nition 3.

(k1, k2, k3) and (λ1, λ2, λ3) Structure functions attached to any control-a�ne system on a 3-dimensional
manifold with scalar control; see (7).

(ε, κ, ν) Feedback invariants of control-a�ne systems; de�ned for the canonical pair
by (7') and expressed for any control-a�ne system by (12).

Table 1: Main notations for the paper

2 Trivial control-a�ne systems

In this section, we �rst propose two new characterisations of trivialisable control-a�ne systems (with the state-
space of arbitrary dimension and with an arbitrary number of controls); see Theorem 1 below. Second, we give
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a normal form of trivial systems whose Lie algebra of in�nitesimal symmetries possesses an almost abelian Lie
subalgebra; see Theorem 2 and Proposition 2 of this section.

2.1 Characterisations of trivial systems

The following theorem gives two characterisations of trivialisable systems. The �rst one is technical and shows
that triviality is a property that depends on the coordinates (like being a linear control system depends on the
choice of coordinates), and the second one is based on in�nitesimal symmetries and is thus geometric. Recall
that to a control-a�ne system Σ = (f, g) we attach two distributions G = span {g1, . . . , gm} and G1 = G+[f,G],
see (2).

Theorem 1 (Two characterisations of trivialisable systems). Consider a control-a�ne system Σ = (f, g) with
state on a n-dimensional manifold M and with m ≥ 1 controls. The following assertions hold locally around ξ0:

(i) Suppose that rkG1 = m + k is constant. The system Σ is locally trivialisable if and only if Σ is locally
feedback equivalent to

ΣT :

{
ẋi = hi(x,w), for 1 ≤ i ≤ n−m,
ẇj = uj , for 1 ≤ j ≤ m,

where the smooth scalar functions h1, . . . , hn−m satisfy

rk span {dh1, . . . ,dhn−m} = k. (3)

(ii) Σ is, locally around ξ0, trivialisable if and only if the distribution G is involutive and of constant rank m
and, additionally, the Lie algebra of in�nitesimal symmetries of Σ possesses an abelian subalgebra A such
that A(ξ0)⊕ G(ξ0) = Tξ0M.

Observe that the assumption on the rank of the distribution G1 in statement (i) implies that the dimension
n of the manifold M is greater than or equal to m + k. If n = m + k, then the trivialisation (T ) of ΣT (and
thus of Σ) can be taken (for suitable w and u) as ẋi = wi, 1 ≤ i ≤ k, ẇj = uj , 1 ≤ j ≤ m. On the other hand,
if n > m+ k, then ẋi = wi, 1 ≤ i ≤ k, ẋi = Fi(w1, . . . , wk), k+1 ≤ i ≤ n−m, and ẇj = uj , 1 ≤ j ≤ m. Notice
that k ≤ m, so if n > 2m, then there are always nonlinear equations ẋi = Fi(w1, . . . , wk). In item (ii), there
are no particular relations between the dimension of the state space and the number of controls (other than the
obvious n ≥ m).

Remark 1. For the system ΣT , de�ne h = (h1, . . . , hn−m)t. Then, under the assumption that rkG1 is constant,
condition (3) can be equivalently reformulated as

rk
∂h

∂w
(x,w) = rk

∂h

∂(x,w)
(x,w),

in a neighbourhood of (x0, w0).

Proof.

(i) Suppose that Σ is locally trivialisable, i.e. by De�nition 1, Σ is locally feedback equivalent to (T ), which
is of the form of ΣT with hi(x,w) = Fi(w), for 1 ≤ i ≤ n −m, and we now show that those functions
satisfy (3). On one hand, the condition rkG1 = m+ k implies that the Jacobian matrix ∂F

∂w is of constant

rank k, where F = (F1, . . . , Fn−m)T . On the other hand, we obtain that dhi = dFi =
∑m

j=1
∂Fi

∂wj
dwj .

Hence the rank of span {dh1, . . . ,dhn−m} is the same as that of ∂F
∂w and the conclusion follows. Conversely,

assume that Σ is feedback equivalent to ΣT . Using the assumption rkG1 = m + k we can reorder the

x-coordinates such that h = (ĥ1, . . . , ĥk, h̃k+1, . . . , h̃n−m), where rk ∂ĥ
∂w = k. We set ŵi = ĥi(x,w), for

1 ≤ i ≤ k, completed by ŵk+1, . . . , ŵm (chosen among the wi's) in such a way that ŵ1, . . . , ŵm form a
local coordinate system. We conclude, by condition (3), that the functions h̃k+1, . . . , h̃n−m depend on the
variables ŵ1, . . . , ŵk only. Using a feedback transformation that yields ˙̂wi = ûi, 1 ≤ i ≤ k, we conclude
that ΣT is, indeed, a trivial system in coordinates (x, ŵ).

(ii) Suppose that Σ = (f, g) is locally trivialisable, then for (T ) we have G = span
{

∂
∂w1

, . . . , ∂
∂wm

}
, which

clearly is involutive and of constant rank m. Moreover, the vector �elds vi = ∂
∂xi

, for 1 ≤ i ≤ n − m,
are commuting symmetries of (T ) that span the abelian Lie algebra A satisfying A(ξ0)⊕ G(ξ0) = Tξ0M.
Conversely, suppose that the Lie algebra of in�nitesimal symmetries of Σ = (f, g) possesses an abelian
subalgebra A = vectR {v1, . . . , vn−m}. By A(ξ0)⊕G(ξ0) = Tξ0M the vector �elds v1, . . . , vn−m are linearly

independent, so we choose local coordinates ξ̃ = (x̃, w̃) such that vi =
∂

∂x̃i
, for 1 ≤ i ≤ n −m. In those
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coordinates, we have gj = Aj(x̃, w̃)
∂
∂x̃ +Bj(x̃, w̃)

∂
∂w̃ . Since G is of constant rank m and satis�es A(ξ̃0)⊕

G(ξ̃0) = Tξ̃0M, via a suitable feedback transformation we choose generators of G as g̃j = Ãj(x̃, w̃)
∂
∂x̃ +

∂
∂w̃j

(to simplify notations, we skip the "tildes" and denote g̃j by gj and Ãj by Aj). Using that vi are symmetries
of Σ, that is [vi, gj ] ∈ G, we deduce that Aj = Aj(w̃), therefore we actually have [vi, gj ] = 0. Moreover,
G is involutive so we deduce that [gj , gk] = 0. Therefore, all vector �elds vi and gj commute and thus
there exist coordinates ξ = (x,w) such that vi =

∂
∂xi

, for 1 ≤ i ≤ n −m, and gj = ∂
∂wj

, for 1 ≤ j ≤ m.

The �elds vi are symmetries of Σ so [vi, f ] ∈ G implying that f = F ∂
∂x + f

∂
∂w , where F = F (w) and we

achieve f = 0 by a suitable feedback transformation.

The previous theorem gives two characterisations of trivialisable systems with arbitrary number of states
and controls. In the remaining of the paper, we focus on single-input systems, which reveals to be rich. Namely,
we will study trivial single-input systems possessing an almost abelian algebra of symmetries in Section 2.2 and,
in Section 3, we give several normal forms of systems with three states and one control for which the curvature
(a feedback invariant) has special properties.

2.2 Normal form of trivial systems possessing an almost abelian Lie subalgebra

of in�nitesimal symmetries

Theorem 1 of the previous subsection asserts that the Lie algebra of in�nitesimal symmetries of a trivialisable
system possesses an abelian subalgebra A complementary to the distribution G. In many cases, A is the full
algebra of in�nitesimal symmetries; for instance, this is the case for the 3-dimensional trivial system ẋ = ew,
ẏ = w, ẇ = u. In this subsection, we study the case of A being an abelian ideal of codimension one in a
subalgebra K of the Lie algebra of all in�nitesimal symmetries. Due to item (ii) of Theorem 1, A being of
codimension one implies that the rank of the distribution G is one and thus the system is single-input. We give
a normal form of control-a�ne systems (with a scalar control) possessing such a Lie algebra of symmetries.

De�nition 2 (Almost abelian Lie algebra). Let K be a real Lie algebra; following the de�nition of [6], we call
K almost abelian if it has an abelian ideal I of codimension one.

It is a simple application of Lie algebra homology to deduce that an almost abelian Lie algebra (possibly
of in�nite dimension) is isomorphic to the semi-direct product K ∼= I ⋊ vectR {v0} and that its structure is
determined by the non-zero action of v0 on I, namely by

adv0 : I −→ I

v 7−→ [v0, v] .

Moreover, two almost abelian Lie algebras K = I ⋊ vectR {v0} and K̃ = Ĩ ⋊ vectR {ṽ0} are isomorphic if
and only if there exists a real invertible transformation P : I → Ĩ and a non-zero constant µ ∈ R∗ such
that Padv0 = µ adṽ0P ; see [5, Proposition 11]. Therefore, isomorphism classes of almost abelian Lie algebras
correspond to similarity classes of the linear operator adv0 (up to multiplication by a scalar). In particular,
if K is �nite dimensional, then the similarity classes of adv0 corresponds to the Jordan normal forms. In
the following theorem, we consider the case of adv0

being non-singular (see Remark 3 below for the singular
case) and we give a general normal form of control-a�ne systems, whose Lie algebra of in�nitesimal symmetries
possesses an almost abelian Lie subalgebra.

Theorem 2 (Almost abelian in�nitesimal symmetries). Consider a control-a�ne system Σ = (f, g) on an
n-dimensional state manifold M and with scalar control. Assume that f(ξ0) /∈ G(ξ0) and that the Lie algebra of
in�nitesimal symmetries possesses an almost abelian Lie subalgebra K = I⋊vectR {v0} satisfying: I(ξ0)⊕G(ξ0) =
Tξ0M and the operator adv0 is non-singular. Then, locally around ξ0, K acts transitively on M and Σ is locally
feedback equivalent to a trivial system of the form

ΣA :

{
ẋ = exp (Aw) f(0)
ẇ = u

, u ∈ R,

around (x0, 0) ∈ Rn−1 × R, where A is the matrix representation of adv0
in the basis

(
∂

∂x1
, . . . , ∂

∂xn−1

)
, and

f(0) ̸= 0 ∈ Rn−1.

Remark 2. By a linear change of coordinates, the system ΣA can be brought into a simpler normal form by
transforming the matrix A into its real Jordan normal form. Below, I and I ′ (for complex eigenvalues) denote
suitable subsets of the indices {1, . . . , n−1} and the vector x = (x1, . . . , xn−1) of transformed coordinates consists
of blocks xI and xI′ corresponding to the Jordan blocks of A. The matrix exponential of the normalised trivial
system decouples over Jordan blocks, which yields:

6



(1) For a diagonal Jordan block given by a real eigenvalue λ ∈ R, we have:

ẋI = eλwηI ;

(2) For a diagonal Jordan block given by a complex eigenvalue λ = a+ ib ∈ C, we have

ẋI = eaw cos(bw)ηI and ẋI′ = eaw sin(bw)ηI′ ;

(3) For a non-diagonal Jordan block given by a real eigenvalue λ ∈ R, we have

ẋI = eλwNI , where NI =
(
η1 η2w · · · ηqw

q
)t
;

(4) For a non-diagonal Jordan block given by a complex eigenvalue λ = a+ ib ∈ C, we have

ẋI = eaw cos(bw)NI , where NI =
(
η1 η2w · · · ηqw

q
)t
,

ẋI′ = eaw sin(bw)NI′ , where NI′ =
(
η′1 η′2w · · · η′qw

q
)t
;

In all of the above cases, ηi and η
′
i (present in the vectors ηI , ηI′ , NI and NI′) are either zero or one. See

Corollaries 1 and 2 for an illustration of the above cases for two and three dimensional systems.

Proof. Consider the control-a�ne system Σ = (f, g) given by vector �elds f and g, and let n vector �elds
v1, . . . , vn−1, v0 generate the n-dimensional Lie subalgebra K = vectR {v1, . . . , vn−1, v0} of the algebra of in-
�nitesimal symmetries. Notice that K is, indeed, of dimension n since I(ξ0) ⊕ G(ξ0) = Tξ0M. By assumption,
K is almost abelian, its abelian ideal is I = vectR {v1, . . . , vn−1} and, in the basis (v1, . . . , vn−1), the linear
operator adv0 is represented by the matrix A = (aij)

n−1
i,j=1, i.e.

[v0, vi] =

n−1∑
j=1

ajivj , ∀ 1 ≤ i ≤ n− 1. (4)

By statement (ii) of Theorem 1, Σ is locally trivialisable and following the proof of that theorem we deduce
that there exists local coordinates (x,w) around (x0, 0) and feedback transformation such that vi = ∂

∂xi
, for

1 ≤ i ≤ n − 1, g = ∂
∂w , and f =

∑n−1
i=1 Fi

∂
∂xi

=
∑n−1

i=1 Fivi, where Fi = Fi(w). We express the in�nitesimal

symmetry v0 =
∑n−1

i=1 γi
∂

∂xi
+δ ∂

∂w , where γi = γi(x), since v0 is a symmetry of G = span
{

∂
∂w

}
, and δ = δ(x,w).

Using the fact that v0 is a symmetry of f , i.e. [v0, f ] ∈ G, we deduce the following equations:

n−1∑
i=1

(
Fi [v0, vi] + δ(w)

dFi

dw
vi

)
= 0 or, equivalently,

δ(w)
df

dw
(w) +Af(w) = 0. (5)

The assumption f(ξ0) /∈ G(ξ0) implies that f(0) ̸= 0 ∈ Rn−1. Moreover, A is non-singular, hence δ(0) ̸= 0 and
we conclude that K acts transitively on M around ξ0. Moreover, for all w1, w2 we have

A
δ(w1)

A
δ(w2)

= A
δ(w2)

A
δ(w1)

.

Thus, the Magnus expansion [13] holds and the solution of equation (5) is f(w) = exp (h(w)A) f(0), with
h(w) = −

∫ w

0
1

δ(τ) dτ . Clearly, h′(0) ̸= 0 and, therefore, w̃ = h(w) is a local di�eomorphism that maps

w0 = 0 into w̃0 = 0. Within this new coordinate system (relabelling w̃ as w, for simplicity) we have f(w) =
exp (Aw) f(0).

Remark 3 (On the singularity of the operator adv0
). The non-singularity of A is crucial to deduce from

equation (5) that K is transitive. Indeed, if this is not the case, then we may have Af(0) = 0 and we cannot
conclude that δ(0) ̸= 0. However, under the additional assumption that K is transitive on M, i.e. δ(0) ̸= 0, the
same conclusion, as the one of Theorem 2, holds even with A being singular.

To show the transitivity of K, the proof of the previous theorem used f(ξ0) /∈ G(ξ0) and, therefore, we gave
a normal form around a point which is not an equilibrium. On the other hand, if we drop that condition, then a
result similar to Theorem 2 holds for an almost abelian Lie subalgebra K of symmetries whose rank drops at ξ0,
see Proposition 2 below. That case turns out to be much more restrictive on the normal form and on the almost
abelian Lie subalgebra. Indeed, we will show that the operator adv0 has to be necessarily diagonalisable over R
and that all its eigenvalues have to be positive integers. To compare the normal form given in the proposition
below and the one of the theorem above, we give the form of ΣA in the case of A being diagonalisable over R,
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where item (1) of Remark 2 yields ẋi = ηie
λiw, 1 ≤ i ≤ n − 1, ẇ = u. and, using the local di�eomorphism

w = ln(1 + w̃), the system ΣA takes the normal form

Σλ :

{
ẋi = ηi(w + 1)λi , 1 ≤ i ≤ n− 1,
ẇ = u

u ∈ R,

around (x0, 0) ∈ Rn−1 ×R, where the λi's are the eigenvalues of adv0 and η = (η1, . . . , ηn−1)
t is a vector whose

components are either 0 or 1; notice that, due to f(ξ0) /∈ G(ξ0), necessarily the vector η ̸= 0.
Now, we will assume that the system Σ = (f, g) is accessible at ξ0, implying that dimL(ξ) = n in a neighbour-
hood of ξ0, where L = {f, g}LA is the accessibility Lie algebra of Σ; see [10]. The accessibility of Σ implies that
all ηi = 1 and that all eigenvalues λi are pair-wise distinct. Therefore, any accessible system Σ satisfying the
assumptions of Theorem 2, and such that the matrix A is diagonalisable over R, is locally feedback equivalent
to

Σ1
λ :

{
ẋi = (w + 1)λi/λ1 , 1 ≤ i ≤ n− 1,
ẇ = u

u ∈ R,

where λ1 < λ2 < . . . < λn−1 (recall that λi ̸= 0 by the non-singularity of A). Moreover, two such systems Σ1
λ and

Σ1
λ̃
are feedback equivalent if and only if [λ1 : · · · : λn−1] = [λ̃1 : · · · : λ̃n−1] or [λ1 : · · · : λn−1] = [λ̃n−1 : · · · : λ̃1].

Notice that the lack of accessibility (meaning that either some eigenvalues are equal, or some ηi = 0, or both)
implies that the Lie algebra of in�nitesimal symmetries is of in�nite dimension; on the other hand for accessible
system the Lie algebra of in�nitesimal symmetries is of �nite dimension actually it is the almost abelian algebra
K; we will give details about that analysis elsewhere.

Proposition 2. Consider a control-a�ne system Σ = (f, g) with an n-dimensional state manifold and a scalar
control. Assume that Σ is accessible at ξ0, f(ξ0) ∈ G(ξ0), that there exists the smallest integer k ≥ 1 such that
g∧adkgf(ξ0) ̸= 0, and that the Lie algebra of in�nitesimal symmetries possesses an almost abelian Lie subalgebra
K ∼= I⋊vectR {v0} satisfying: I(ξ0)⊕G(ξ0) = Tξ0M and the operator adv0 is non-singular. Then K is transitive
on M\{ξ0}, the operator adv0 is diagonalisable over R and its eigenvalues λi are pairwise distinct and such
that kλi/λ1, for 2 ≤ i ≤ n− 1, are positive integers greater than k, where λ1 is the smallest, in absolute value,
eigenvalue of adv0 . Moreover, the system Σ is locally feedback equivalent to

Σ0,k
λ :


ẋ1 = wk

ẋi = wkλi/λ1 , 2 ≤ i ≤ n− 1
ẇ = u

, u ∈ R,

around (x0, 0) ∈ Rn.

Recall that the eigenvalues of adv0 are given up to a multiplication by a non-zero factor and that it is a
classical fact that (under the above assumptions) the integer k is an invariant of feedback transformations.

Hence two systems Σ0,k
λ and Σ0,k̃

λ̃
are locally feedback equivalent around (x0, 0) if and only if k = k̃ and the

ratios λi/λ1 and λ̃i/λ̃1 are equal for all 2 ≤ i ≤ n−1 (after permutations of xi's and x̃i's such that the sequences
of λi/λ1 and λ̃i/λ̃1 are both growing).

Observe that the normal form Σ0,k
λ de�nes a polynomial system since kλi/λ1 are positive integers. Therefore

there are only countably many feedback non-equivalent classes of systems Σ0,k
λ , whereas in the case of Theorem 2

there are uncountably feedback non-equivalent normal forms Σλ. The di�erence lies in the assumption that
there exists or not an equilibrium at the point ξ0 under consideration and that the systems have to be smooth
around that point. Indeed, both normal forms Σ1

λ and Σ0,k
λ consist of power functions of the variable w, but to

be smooth around w = 0, the second one needs to actually be given by monomials only.
Notice that it is possible to relax the assumption of Σ being accessible. In that case, we conclude that the

operator adv0 is diagonalisable when restricted to the accessibility Lie algebra L and that the normal form Σ0,k
λ

holds on L (while on its complement the components of the system are ẋj = 0).

Proof. The beginning of the proof is the same as that of Theorem 2 up to equation (5), so we start from there.
Di�erentiating relation (5) k − 1 times and evaluating the result at w = 0 yields δ(0)f (k)(0) +Af (k−1)(0) = 0
and thus, by de�nition of k, we deduce that δ(0) = 0. Moreover, by derivating the same equation once more, we
obtain (A+ kδ′(0)Id) f (k)(0) = 0. Hence,

(
−kδ′(0), f (k)(0)

)
is an eigenpair of A and, since A is non singular,

we conclude that δ′(0) = ρ ̸= 0. Thus, the one-dimensional singular vector �eld δ(w) ∂
∂w can be linearized at

w = 0, cf. [4], that is, there exists a smooth local di�eomorphism w̃ = ψ(w) that maps δ(w) ∂
∂w into ρw̃ ∂

∂w̃ .
Under that transformation, equation (5) becomes

ρw̃f̃ ′(w̃)−Af̃(w̃) = 0, (6)
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where f̃(w̃) = f
(
ψ−1(w̃)

)
. Let P : Rn−1 → Rn−1be an invertible linear transformation such that P−1AρP = Jρ,

where Aρ = 1
ρA and Jρ is the real Jordan normal form of Aρ, whose eigenvalues are λi/ρ (recall that λi are the

eigenvalues of adv0 represented by A). Set x̄ = Px, then equation (6) in x̄-coordinates becomes (we drop the
"tildes" for a better readability)

wf ′(w)− Jρf = 0.

The system Σ is assumed accessible at ξ0, so all components fi(w) of f(w) are non-zero. Therefore, by the
Lemma of Appendix A, we conclude that all eigenvalues of Jρ are positive integers (λi/ρ ̸= 0 since A is non-
singular) and that fi(w) = ciw

λi/ρ, λi/ρ ∈ N and ci ̸= 0. Using accessibility one more time, we conclude
that all eigenvalues λi are pair-wise distinct. Permuting the components x̄i's we can assume that the smallest,
among the ratios λi/ρ, is λ1/ρ and, by de�nition of k, it follows that k = λ1/ρ and thus λi/ρ = kλi/λ1. Using
accessibility once again, we see that ci ̸= 0, so replacing x̄i by xi =

x̄i

ci
we bring the system Σ into the form

Σ0,k
λ .

The previous proposition describes all smooth systems having an almost abelian Lie subalgebra of symmetries
for which k exists, in particular all analytic systems satisfying dimL0(ξ0) ≥ 2, where L0 is the accessibility ideal
of Σ, see [10]. Notice that for a single-input analytic system either k exists or, if not, then it is locally feedback
equivalent to a trivial system ẋ = c, ẇ = u, where c ∈ Rn−1. In the C∞ category there are, however, systems
for which k does not exist but the symmetry algebra possesses an almost abelian subalgebra. For example,
consider around (x0, 0) the system

ẋ1 = f(w)
ẋi = f(w)λi/λ1 , 1 ≤ i ≤ n− 1
ẇ = u

, with f(w) = exp

(
− 1

w2

)
, f(0) = 0,

and λi/λ1 ∈ N∗. By a straightforward calculation, one may check that the system possesses an almost abelian
Lie subalgebra of in�nitesimal symmetries but, obviously, k does not exist at (x0, 0) and thus it is not feedback

equivalent to Σ0,k
λ .

The above theorem and proposition generalise our previous observations on the Lie algebra of in�nitesimal
symmetries of null-forms of elliptic, hyperbolic and parabolic systems for which we have n = 3 and, respectively,
A =

(
0 1
−1 0

)
, A =

(
1 0
0 −1

)
, and A = ( 2 0

0 1 ); see [19]. Moreover, to extend the aforementioned results and as
corollaries of Theorem 2 and Proposition 2, we give the equivalence classes of trivial low dimensional systems
possessing an almost abelian Lie subalgebra of symmetries. These results correspond to the di�erent classes
of almost abelian Lie algebra of dimension two and three. In dimension two, there is only one class of almost
abelian Lie algebra given by adv0 = 1. We have :

Corollary 1 (n = 2). If Σ = (f, g) is a 2-dimensional trivialisable control-a�ne system such that its Lie algebra
of in�nitesimal symmetries contains an almost abelian subalgebra K = I⋊ vectR {v0} satisfying I(ξ0)⊕G(ξ0) =
Tξ0M. Then, the following hold:

(i) If f(ξ0) /∈ G(ξ0), then K is transitive and Σ is locally feedback equivalent to{
ẋ = w + 1
ẇ = u

, around (x0, 0), and K ∼= vectR

{
∂

∂x
, x

∂

∂x
+ (w + 1)

∂

∂w

}
.

(ii) If f(ξ0) ∈ G(ξ0) and there exist the smallest integer k ≥ 1 such that g ∧ adkgf(ξ0) ̸= 0, then K is transitive
on M\{ξ0} and Σ is locally feedback equivalent to{

ẋ = wk

ẇ = u
, around (x0, 0), and K ∼= vectR

{
∂

∂x
, x

∂

∂x
+
w

k

∂

∂w

}
.

Notice that in both above cases the algebra of in�nitesimal symmetries K is a proper subalgebra of the full
in�nitesimal Lie algebra which is of in�nite dimension (in both cases that algebra depends on one function of
one variable, see [14]). In dimension three, there are three classes of almost abelian Lie algebra given by: adv0
is diagonalisable over R, adv0 has a double real eigenvalue and is not diagonalisable, and adv0 has a pair of
complex conjugate eigenvalues. These three cases yield:

Corollary 2 (n = 3). Let Σ = (f, g) be a 3-dimensional system accessible at ξ0.

(i) Under the assumptions of Theorem 2, then Σ is locally feedback equivalent to one of the following normal
form, given around (x0, y0, 0).
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(a) If adv0 is diagonalisable over R, then we have the local normal form ẋ = ew

ẏ = ηeλw

ẇ = u
and K ∼= vectR

{
∂

∂x
,
∂

∂y
, x

∂

∂x
+ λy

∂

∂y
+

∂

∂w

}
,

where λ ̸= 0 and η = 0 or η = 1.

(b) If adv0 has two real eigenvalues and is not diagonalisable, then we have the local normal form ẋ = ew (η0 + η1w)
ẏ = ewη1
ẇ = u

and K ∼= vectR

{
∂

∂x
,
∂

∂y
, (x+ y)

∂

∂x
+ y

∂

∂y
+

∂

∂w

}
,

where (η0, η1)
t = (1, 0)t or (η0, η1)

t = (0, 1)t

(c) If adv0 has two complex eigenvalues, then we have the local normal form ẋ = eλw cos(w)
ẏ = eλw sin(w)
ẇ = u

and K ∼= vectR

{
∂

∂x
,
∂

∂y
, (λx− y)

∂

∂x
+ (x+ λy)

∂

∂y
+

∂

∂w

}
,

where λ ≥ 0.

(ii) Under the assumptions of Proposition 2, then the linear operator adv0 is diagonalisable over R and Σ is
locally feedback equivalent to the following normal form, given around (x0, y0, 0), ẋ = wk

ẏ = wkλ

ẇ = u
and K ∼= vectR

{
∂

∂x
,
∂

∂y
, kx

∂

∂x
+ kλy

∂

∂y
+ w

∂

∂w

}
,

where kλ is an integer greater than k.

3 Trivial systems on 3D-manifolds

In this section, we study trivial system on 3-dimensional manifolds with scalar control. Our aim is to give a
new interpretation of the results of [20] and to extend them by giving several normal forms.

Throughout this section, we consider a control-a�ne system Σ = (f, g) of the form

Σ : ξ̇ = f(ξ) + g(ξ)u, u ∈ R,

where the state ξ belongs to a 3-dimensional manifold M and the vector �elds f and g satisfy, at any ξ ∈ M,
the following regularity assumptions

(A1) f ∧ g ∧ [g, f ] ̸= 0,

(A2) g ∧ [g, f ] ∧ [g, [g, f ]] ̸= 0.

To any control-a�ne system Σ = (f, g) we attach 6 structure functions uniquely de�ned by the following
decompositions:

[f, [f, g]] = k1g + k2 [g, f ] + k3 [g, [g, f ]] ,
[g, [g, f ]] = λ1f + λ2g + λ3 [g, f ] .

(7)

Notice that assumption (A2) implies that λ1 ̸= 0. We now de�ne two di�erent classes of pairs (f, g).

De�nition 3 ((Semi)-canonical pairs). We call the pair (f, g) semi-canonical if k3 ≡ 0, and we will denote it
by (fs, g). If, additionally λ1 ≡ ±1, then we call (f, g) a canonical pair and we denote it by (fc, gc).

Observe that a semi-canonical pair is characterised by the inclusion [f, [f, g]] ∈ span {g, [g, f ]}, which is
the property of the singular vector �eld of Σ (justifying the notation (fs, g) for a semi-canonical pair). Under
assumption (A2), that singular vector �eld is unique and can be computed using the singular control, thus we
are not surprised that the following proposition shows that a semi-canonical pair exists (but observe that our
proof does not require using the machinery of singular controls).

The following proposition shows that a control-a�ne system is always feedback equivalent to a system given
by a semi-canonical and even by a canonical pair. Moreover, those pairs can be explicitly constructed, meaning
that the feedback transformations bringing (f, g) into (fs, g) or into (fc, gc) are constructed via di�erentiation
and algebraic operations only (no di�erential equations to be solved). Furthermore, a canonical pair is unique
(up to multiplying gc by −1) hence its structure functions are feedback equivariants (up to a discrete involution,
see Remark 4 below).
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Proposition 3 (Existence of semi-canonical and canonical pairs). Consider a control-a�ne system Σ = (f, g)
satisfying assumptions (A1) and (A2). Then, the following statements hold globally:

(i) Σ is globally feedback equivalent to Σs = (fs, g), where (fs, g) is a semi-canonical pair;

(ii) Σ is globally feedback equivalent to Σc = (fc, gc), where (fc, gc) is a canonical pair.

Moreover (fs, g) and (fc, gc) can be explicitly constructed via the following feedback transformations

fs = f + gk3, fc = fs, and gc = |λ1|−1/2
g.

Furthermore, the canonical pair (fc, gc) is unique up to gc 7→ −gc.

The proof of the above proposition is based on the following lemma, which gives some relations between the
structure functions k1, k2, k3, λ1, λ2, λ3, and shows how they change under feedback transformations. Its proof
is a straightforward computation that we detail in Appendix B.

Lemma 1. Consider a control-a�ne system Σ = (f, g) with structure functions (k1, k2, k3) and (λ1, λ2, λ3).
Then, the following relations hold:

Lf (λ1) = −k2λ1 − Lg (λ1k3) , (8a)

Lf (λ2)− λ3k1 + Lg (k1) = −k2λ2 − Lg (λ2k3) , (8b)

Lf (λ3)− λ2 = −k3λ1 − Lg (k2)− Lg (λ3k3) . (8c)

Under a feedback transformation f 7→ f̃ = f + gα and g 7→ g̃ = gβ, where α and β are smooth scalar functions
satisfying β ̸= 0, the structure functions are transformed by

k̃1 = k1 + L[g,f ] (α) +
1
β (Lf (γ) + αLg (γ)− γLg (α)) + k̃2

γ
β

+k̃3
(
L[g,f ] (β) + Lg (γ)− γLg (ln(β))

)
,

k̃2 = k2 − Lf (ln(β))− γ
β − αLg (ln(β)) + k̃3Lg (β) ,

k̃3 = 1
β (k3 − α) ,

(9)

λ̃1 = β2λ1, λ̃2 = βλ2 − βλ1α+ γλ3 − L[g,f ] (β)− Lg (γ) + 2γLg (ln(β)) , λ̃3 = βλ3 + Lg (β) , (10)

where γ = Lf (β) + αLg (β)− βLg (α).

Proof of Proposition 3. Consider Σ = (f, g) whose structure functions are (k1, k2, k3) and (λ1, λ2, λ3). By
equations (9) and (10) we have that under feedback transformations βk̃3 = k3 − α and λ̃1 = β2λ1. Hence,
choosing α = k3 we obtain that the transformed pair (f̃ , g), where f̃ = f + gk3, is semi-canonical. Moreover,

additionally choosing β = |λ1|−1/2
, recall that λ1 ̸= 0 by assumption (A2), yields a canonical pair (fc, gc) =

(f̃ , g̃), where g̃ = βg. Clearly, the singular vector �eld fs = fc is uniquely de�ned, but the canonical vector �eld
gc is unique up to gc 7→ ±gc.

Observe that for the canonical pair (fc, gc) we additionally have k2 ≡ 0, due to (8a). Thus, the canonical
pair (fc, gc) satis�es the following decomposition (renaming k1 to κ, λ1 to ε, λ2 to µ, λ3 to ν)

[fc, [fc, gc]] = κgc,
[gc, [gc, fc]] = εfc + µgc + ν [gc, fc] ,

(7')

where ε = ±1. Moreover, using equations (8b) and (8c) we deduce that κ, µ, and ν are related by

Lfc (µ)− νκ+ Lgc (κ) = 0 (8b')

Lfc (ν)− µ = 0, (8c')

from which we deduce that the feedback invariants κ and ν are associated via

L2
fc (ν) − νκ+ Lgc (κ) = 0. (11)

Therefore, a canonical pair identi�es explicitly a discrete invariant ε = ±1 and two constructible feedback
invariant functions κ and ν called, respectively, the curvature and the centro-a�ne curvature by analogy with
Serres' work [22]; see also [23]. Observe that due to (8c') above, µ is determined by ν. Moreover, the curvature
κ determines the centro-a�ne curvature ν up to an a�ne part; i.e. if fc is recti�ed as ∂

∂x , then ν is determined

by κ via (11) up to two functions ν1 and ν0 satisfying Lfc (νi) =
∂νi

∂x = 0.
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Remark 4. A canonical pair is unique up to gc 7→ −gc. Hence the centro-a�ne curvature ν is a feedback
equivariant up to the involution ν 7→ −ν (which does not in�uence our conditions below). We will get back to
that subtlety in Proposition 7, where we will construct several normal forms. On the other hand, the curvature
κ is a true feedback invariant (actually, a feedback equivariant that changes as ϕ∗κ under a di�eomorphism ϕ).

For a control-a�ne system Σc = (fc, gc), given by a canonical pair, we will denote by (ε, κ, ν) the triple of
invariants. Although the canonical pair can be constructed without much work, for the sake of completeness,
we give the expression of (ε, κ, ν) for an arbitrary control-a�ne system. In particular, observe that our formula
for the curvature κ generalises the one given in [3, p. 376], where k3 is already normalised to 0.

Proposition 4 (Invariants of control-a�ne systems). Consider a control-a�ne system Σ = (f, g) on a 3-
dimensional state-space manifold, and with scalar control, and let (k1, k2, k3) and (λ1, λ2, λ3) be structure func-
tions de�ned by (7). Then, the invariants (ε, κ, ν) are given by:

ε = sgn (λ1) , κ = k1 +
1

2
Lf (k2 − Lg (k3)) +

1

4
(k2 − Lg (k3))

2
+ L[g,f ] (k3) +

1

2
k3Lg (k2 − Lg (k3)) ,

and ν = |λ1|−1/2

(
λ3 −

1

2
Lg (ln |λ1|)

)
. (12)

Our formula for the curvature κ is, indeed, a generalisation of that in [3] because if k3 = 0 (i.e. we suppose
that f is the singular vector �eld fs), then (12) reads

κ = k1 +
1

2
Lf (k2) +

1

4
(k2)

2
,

which is exactly the formula given by Agrachev [1, 3].

Proof. Consider a pair (f, g) with structure functions (k1, k2, k3) and (λ1, λ2, λ3). To deduce the expression of

the invariants (ε, κ, ν), we apply equations (9) and (10) with α = k3 and β = |λ1|−1/2
, namely the feedback

transformation that constructs the canonical pair. We detail the computation for κ and left the computation
for ν to the reader. Recall that, applying a feedback to construct the canonical pair, we obtain as a by-product
k̃2 = 0 (see the proof of Proposition 3). First we have,

γ = −1

2
|λ1|−1/2

Lf (Λ)−
1

2
k3 |λ1|−1/2

Lg (Λ)− |λ1|−1/2
Lg (k3)

= |λ1|−1/2

(
−1

2
Lf (Λ)−

1

2
k3Lg (Λ)− Lg (k3)

)
,

where Λ = ln |λ1|. Second, using k̃2 = 0 we deduce

k2 = −1

2
Lf (Λ)−

1

2
k3Lg (Λ) + |λ|1/2 γ = −Lf (Λ)− k3Lg (Λ)− Lg (k3) .

Therefore, inserting the last expression of k2 into γ, we get γ = 1
2 |λ1|

−1/2
(k2 − Lg (k3)). Now the curvature

reads κ = k̃1, i.e

κ = k1 + L[g,f ] (k3) + |λ1|1/2
(
1

2
Lf

(
|λ1|−1/2

(k2 − Lg (k3))
)
+

1

2
k3Lg

(
|λ1|−1/2

(k2 − Lg (k3))
)

−1

2
|λ1|−1/2

(k2 − Lg (k3)) Lg (k3)

)
= k1 + L[g,f ] (k3)−

1

2
(k2 − Lg (k3)) Lg (k3)

+
1

2
|λ1|1/2

(
|λ1|−1/2

Lf (k2 − Lg (k3))−
1

2
(k2 − Lg (k3)) |λ1|−3/2

Lf (|λ1|)
)

+
1

2
|λ1|1/2 k3

(
|λ1|−1/2

Lg (k2 − Lg (k3))−
1

2
(k2 − Lg (k3)) |λ1|−3/2

Lg (|λ1|)
)

= k1 + L[g,f ] (k3)−
1

2
(k2 − Lg (k3)) Lg (k3) +

1

2
Lf (k2 − Lg (k3))

− 1

4
(k2 − Lg (k3)) Lf (Λ) +

1

2
k3Lg (k2 − Lg (k3))−

1

4
(k2 − Lg (k3)) k3Lg (Λ)

= k1 + L[g,f ] (k3) +
1

2
Lf (k2 − Lg (k3)) +

1

2
k3Lg (k2 − Lg (k3))

− 1

4
(k2 − Lg (k3)) (Lf (Λ) + Lg (Λ) + 2Lg (k3))

= k1 +
1

2
Lf (k2 − Lg (k3)) +

1

4
(k2 − Lg (k3))

2
+ L[g,f ] (k3) +

1

2
k3Lg (k2 − Lg (k3)) .
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Now consider a trivial system, whose state (x, y, w) belongs to a 3-dimensional manifold M,

(T ) :

 ẋ = F1(w)
ẏ = F2(w)
ẇ = u

, (x, y, w) ∈ M, u ∈ R.

Notice that (T ) is, in general, not given by a canonical pair but is given by a semi-canonical pair since [f, [f, g]] =
0. Clearly, for trivial systems we have κ = 0, but the converse is not true as discovered in [20] and as we will
show in the following theorem.

Theorem 3 (Characterisation of trivial systems). Consider a control-a�ne system Σ = (f, g) together with
its structure functions κ and ν. Then, Σ is locally trivialisable if and only if its canonical form Σc = (fc, gc)
satis�es

κ = 0, Lfc (ν) = 0, and L[fc,gc] (ν) = 0. (13)

Observe that the conditions of (13) can explicitly be tested on the control-a�ne system Σ = (f, g). Indeed,
with the help of Proposition 3, we explicitly construct the canonical pair (fc, gc) of Σ for which the invariants
κ and ν can be computed by algebraic operations only. Another way to test condition (13) on an arbitrary
control-a�ne system Σ = (f, g) is to compute the invariants κ and ν using (12) and then to evaluate (13) with

fc = f + gk3 and gc = |λ1|−1/2
g.

Proof. We begin with necessity and suppose that Σ is trivialisable. Then, (T ) is given by f = F1(w)
∂
∂x+F2(w)

∂
∂y

and g = ∂
∂w (which, a priori, is not a canonical pair), whose structure functions are k1 = k2 = k3 = 0,

λ1 = λ1(w), λ2 = 0, and λ3 = λ3(w). In particular, observe that λ1 and λ3 satisfy Lf (λ1) = L[g,f ] (λ1) = 0 and
Lf (λ3) = L[g,f ] (λ3) = 0. As in the proof of Proposition 3, to transform the pair (f, g) of (T ) into the canonical

pair (fc, gc) we use α = k3 = 0 and β = |λ1|−1/2
, which therefore satis�es Lf (β) = 0 and L[g,f ] (β) = 0. Now,

using equations (9) and (10) of Lemma 1, we calculate the structure functions of (fc, gc) = (f, gβ) which are
κ̃ = 0, ε̃ = ±1, µ̃ = 0, and ν̃ = λ̃3 = βλ3 + Lg (β). Hence, for the canonical pair (fc, gc) of (T ) we have

Lfc (ν̃) = βLf (λ3) + Lf (Lg (β)) = βLf (λ3) + Lg (Lf (β))− L[g,f ] (β) = 0,

L[gc,fc] (ν̃) = βL[g,f ] (ν̃) = β
(
L[g,f ] (λ3) + L[g,f ] (Lg (β))

)
= β

(
Lg

(
L[g,f ] (β)

)
− L[g,[g,f ]] (β)

)
= β

(
−λ1Lf (β)− λ3L[g,f ] (β)

)
= 0,

and the necessity of (13) is proved.
Now, conversely, suppose that Σc, given by its canonical pair (fc, gc), satis�es (13). First, due to Lemma 3

of Appendix C, we apply a di�eomorphism (x, y, w) = ϕ(ξ) that simultaneously recti�es the distribution F =

span {fc, [gc, fc]} and the vector �eld gc, that is ϕ∗F = span
{

∂
∂x ,

∂
∂y

}
and ϕ∗gc = ∂

∂w . In those coordinates,

we have fc = f1
∂
∂x + f2

∂
∂y , with fi = fi(x, y, w), and we have ν = ν(w) since Lfc (ν) = L[gc,fc] (ν) = 0 and

fc∧gc∧ [gc, fc] ̸= 0. Therefore, using relation (7') we deduce that fc satis�es the following two equations (notice
that equation (8c') together with Lfc (ν) = 0 imply that µ = 0)

[fc, [fc, gc]] = 0 and [gc, [gc, fc]] = εfc + ν(w) [gc, fc] .

The second equation reads

∂2fc
∂w2

= εfc + ν(w)
∂fc
∂w

, (14)

and, interpreted as a second order linear ODE with respect to w and with parameters (x, y), admits local
solutions of the form

fc(x, y, w) = F1(w)

a1a2
0

+ F2(w)

b1b2
0

 = F1(w)A+ F2(w)B. (15)

In (15), F1(w) and F2(w) are smooth fundamental solutions functions of (14) (i.e. F1(w0) = 1, F ′
1(w0) = 0,

F2(w0) = 0, and F ′
2(w0) = 1) and ai = ai(x, y) and bi = bi(x, y), for i = 1, 2, so A = a1

∂
∂x + a2

∂
∂y and

B = b1
∂
∂x + b2

∂
∂y are smooth vector �elds on R2 equipped with coordinates (x, y).

Using the commutativity of fc and [gc, fc] we deduce that

[F1A+ F2B,F
′
1A+ F ′

2B] = (F1F
′
2 − F ′

1F2) [A,B] = 0.
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By F1F
′
2 − F ′

1F2 ̸= 0 (since fc ∧ [gc, fc] ̸= 0), we conclude that [A,B] = 0 and, therefore, there exists a local
di�eomorphism ψ(x, y) that simultaneously recti�es A and B (seen as vector �elds on R2). For simplicity, we
still denote the new coordinates by (x, y), i.e. we have ψ∗A = ∂

∂x and ψ∗B = ∂
∂y . In coordinates (x, y, w), the

vector �elds (fc, gc) take the form

fc = F1(w)
∂

∂x
+ F2(w)

∂

∂y
and gc =

∂

∂w

and therefore we conclude that the system Σc = (fc, gc) is trivial.

Remark that in our proof we start with a canonical pair (fc, gc) and we render it trivial by constructing a
suitable local coordinate system.

Remark 5. The previous theorem was �rst discovered by Serres in [21]. In the proof of [21, Theorem 4.3.3]
(but also in [22, Theorem 4.3] and in [20, Theorem 3.4]), he shows, using his notation, that α2 = a2(u, q2)− q1
and ∂a2

∂q2
= b(u) and then considers the case α2 = a2(u)− q1 and not the general case α2 = b(u)q2 + a2(u)− q1.

The proof of [21, Theorem 4.3.3], given for the case b ≡ 0 (which, using our notation, is equivalent to ν ≡ 0),
still provides an inspiring intuition to treat the general case, as done in our proof.

In the following proposition, we express the structure functions of the trivial system (T ) and give two
canonical forms of control-a�ne system that are trivialisable. Both canonical forms are expressed using the
canonical pair but in di�erent coordinate systems. For two smooth scalar functions F (w) and G(w), we de�ne
their Wronskian as W(F,G) = F ′G − FG′. Recall that for any control-a�ne system Σ = (f, g) satisfying (A1)
and (A2) we de�ned, via (7), structure functions k1, k2, k3 and λ1, λ2, λ3.

Proposition 5. Consider a control-a�ne system Σ = (f, g) and suppose that it satis�es conditions (13) of
Theorem 3, i.e. Σ is trivialisable. Then, locally, the following hold

(i) Σ admits the normal form (T ), that is,

ΣT :

 ẋ = F1(w)
ẏ = F2(w)
ẇ = u

whose structure functions are k1 = k2 = k3 = 0 and λ1 = − W(F ′
1,F

′
2)

W(F1,F2)
, λ2 = 0, λ3 = W′(F1,F2)

W(F1,F2)
.

(ii) Σ admits the normal forms ΣT,1
c and ΣT,2

c given, respectively, by

ΣT,1
c :

 ẋ = Fc,1(w)
ẏ = Fc,2(w)
ẇ = u

and ΣT,2
c :

 ẋ = 1 + εyu
ẏ = (x− ν(w)y)u
ẇ = u

,

where
W(F ′

c,1,F
′
c,2)

W(Fc,1,Fc,2)
≡ ±1 and whose invariants are (ε1, κ1, ν1) =

(
− W(F ′

c,1,F
′
c,2)

W(Fc,1,Fc,2)
, 0,

W′(Fc,1,Fc,2)
W(Fc,1,Fc,2)

)
and (ε2, κ2, ν2) =

(ε, 0, ν(w)), respectively.

Remark 6. Neither the structure functions ki nor λi are feedback invariant. Item (i) asserts that for the
normal form ΣT = (f, g), all ki = 0, so the pair (f, g) is semi-canonical (thus, actually, f = fs) but, in general,
it is not canonical since λ1 is a non trivial function. Item (ii) assures that, given ΣT = (f, g), we can always

choose wc-coordinate, as w = ϕ(wc), such that Fc,i = ϕ∗Fi satisfy
W(F ′

c,1,F
′
c,2)

W(Fc,1,Fc,2)
= ±1 and the corresponding pair

(fc, gc), where fc = Fc,1
∂
∂x + Fc,2

∂
∂y and gc = βg, with β = ϕ′, is canonical.

The two presented canonical forms ΣT,1
c = (f1c , g

1
c ) and ΣT,2

c = (f2c , g
2
c ) are somehow dual to each other.

Indeed, both are given in terms of the canonical pair (fc, gc) of Σ and for ΣT,1
c we adopt coordinates for which

the vector �eld g1c is recti�ed, whereas for ΣT,2
c the coordinates are chosen so that f2c is recti�ed. The two

forms carry complementary informations about the control-a�ne system Σ. The canonical form ΣT,1
c exhibits

the trivial nature of Σ, but its invariants ε and ν are not immediately visible, and the canonical form ΣT,2
c

explicitly identi�es the invariants ε = ±1 and ν but hides the triviality of the system. The two canonical forms
show that trivial systems depend on a smooth function of one variable: for ΣT,2

c it is clearly ν(w) and for ΣT,1
c

it is the function Fc,2(w) that determines Fc,1(w) (or, equivalently, the other way around) through the ODE
W(F ′

c,1,F
′
c,2)

W(Fc,1,Fc,2)
= ±1.
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Proof. The normal form presented in item (i) is a direct consequence of Theorem 1 and it is a straightforward
computation to derive the expressions of the structure functions. To obtain the canonical form ΣT,1

c of item

(ii), we consider ΣT and de�ne gc = βg, where β = |λ1|−1/2
, see Proposition 3. We choose w = ϕ(ŵ) satisfying

(ϕ−1)′β = 1. Then in the coordinates (x, y, ŵ), the system ΣT takes the form ΣT,1
c , where Fc,i = ϕ∗Fi and

whose third equation reads ˙̂w = û.
Finally, the canonical form ΣT,2

c is a special case of item (i) of Proposition 7 presented in the next section.

Let us shed a new light on the result of Theorem 3. Recall that any system Σ satisfying (A1) and (A2)
admits a canonical pair (fc, gc). On the other hand, Σ is trivialisable if and only if it can be brought to the
normal form ΣT,2

c for which (fT,2
c , gT,2

c ) forms also a canonical pair. Therefore, Σ is trivialisable if and only if its
canonical pair (fc, gc) is equivalent, via a di�eomorphism ϕ, to (fT,2

c , gT,2
c ), that is, ϕ∗fc = fT,2

c and ϕ∗gc = gT,2
c .

The equivalence of control systems via di�eomorphisms was solved in the C∞-category in [11, Theorem 2.4]
and we will use this result to give another proof of Theorem 3.

Proposition 6. The system Σc = (fc, gc) is locally trivialisable, with its normal form ΣT,2
c satisfying ν(j)(0) = 0,

for 1 ≤ j ≤ ρ− 1, and ν(ρ)(0) ̸= 0, if and only if Σc satis�es (13) and, moreover,

Lj
gc (ν) (0) = 0, for 1 ≤ j ≤ ρ− 1, and Lρ

gc (ν) (0) ̸= 0. (16)

Remark, that the above proposition, based on the general result of [11], is weaker than Theorem 3. Indeed,
it assumes that the structure function ν has a �nite order, whereas in Theorem 3 we allow ν to be any smooth
function; in particular, ν may be a smooth function �at at 0, i.e. ν(j)(0) = 0, for all j ≥ 0.

Proof. Necessity of (13) is shown in the proof of Theorem 3, while necessity of conditions (16) on the derivatives
of ν is obvious.

To prove su�ciency we will use [11, Theorem 2.4]. For Σc = (fc, gc) satisfying (13) and (16) we choose, due

to Lemma 3 of Appendix C, coordinates (x, y, w) such that gc =
∂
∂w and span {fc, [fc, gc]} = span

{
∂
∂x ,

∂
∂y

}
. To

apply the result of [11], we set f0 = fc, f1 = g, f2 = [f0, f1] and de�ne structure functions ckij via

[fi, fj ] =

2∑
k=0

ckijfk, 1 ≤ i, j ≤ 2.

We denote the successive derivatives of ckij by (ckij)
i1,...,iq = Lfiq

(
· · ·Lfi1

(
ckij
)
· · ·
)
, where q ≥ 0 and 0 ≤ ij ≤ 2.

For Σc satisfying (13) we have c102 = 1, c012 = −ε, c212 = ν(w), and all the other structure functions vanish.
Hence, (c212)

i1,...,iq = Lq
f1

(
c212
)
= dqν

dwq and thus the rank of the family C =
{
(ckij)

i1,...,iq , 0 ≤ i, j ≤ 2, q ≥ 0
}
is

r = 1 and its order is ρ (see [11] for the de�nition of the rank and order of a family of smooth functions).
On the other hand, consider the normal form Σ̃ = ΣT,2

c given by f̃0 = fT,2
c = ∂

∂x̃ and f̃1 = gT,2
c = ε̃ỹ ∂

∂x̃ +(x̃−
ν̃(w̃)ỹ) ∂

∂ỹ + ∂
∂w̃ , where we de�ne ε̃ = ε and ν̃(w̃) = ν(w̃), that is, the function ν of Σc applied to the argument

w̃. By a straightforward calculation, we conclude that the family C̃ =
{
(c̃kij)

i1,...,iq , 0 ≤ i, j ≤ 2, q ≥ 0
}
, where

the structure functions c̃kij are de�ned as above, is of rank r̃ = 1 and order ρ (notice that Lq

f̃1
(ν̃) = dq ν̃

dw̃q since ν̃

depends on w̃ only and the component of f̃1 along ∂
∂w̃ is one).

Now observe that Σc and Σ̃ satisfy r = r̃ = 1, ρ = ρ̃, and the identity di�eomorphism (x̃, ỹ, w̃) = ψ(x, y, w) =
(x, y, w) maps ckij into c̃

k
ij and (ckij)

i1,...,iq into (c̃kij)
i1,...,iq , for 1 ≤ q ≤ ρ+1; the latter is obvious because w̃ = w

and, according to our de�nition of Σ̃, ν̃(w̃) = ν(w). Therefore, it follows by [11, Theorem 2.4] that there exists
a local di�eomorphism ϕ such that ϕ∗fc = fT,2

c and ϕ∗gc = gT,2
c , thus proving that Σ is locally trivialisable.

Remark 7. Notice that the third components of ϕ (that conjugates the systems) and ψ (that conjugates the
structure functions) coincide and are w = w̃ while the two �rst components of ϕ establish the equivalence of
(fc, gc) with (fT,2

c , gT,2
c ) and have nothing to do with the �rst two components of ψ, which have been chosen as

the identity but can be taken arbitrarily since ν = ν(w). It is a consequence of r = r̃ = 1, see [11, Proposition
2.4] and [15, Remark 3].

4 Normal forms of �at and centro-�at control-a�ne systems on 3D-

manifolds

We have shown that the curvature κ and the centro-a�ne curvature ν are two functional feedback equivariants
of control-a�ne systems, hence, their properties de�ne non-equivalent classes of systems. In this section, we
propose a normal form for each class of control-systems that is presented in Table 2 below. The presented
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classes describe all the cases for which the curvature κ and the centro-a�ne curvature ν satisfy κν ≡ 0 together
with the particular sub-cases for which, additionally, either κ or ν is constant.

Notation Name Properties

Σε,κ=0,ν Flat Curvature κ vanishes

Σε,κ,ν=0 Centro-�at Centro-a�ne curvature ν vanishes

Σε,κ′=0,ν=0 Flat-constant Curvature κ is constant and the centro-a�ne curvature ν vanishes

Σε,κ=0,ν′=0 Centro-�at-constant Curvature κ vanishes, and the centro-a�ne curvature ν is constant

Σε,κ=0,ν=0 Completely �at Curvatures κ and ν vanish

Table 2: Nomenclature of subclasses of �at and centro-�at control-a�ne systems

Each class of control system presented in the above table is denoted by an upper index I = (a, b, c), which
is de�ned as follows. The �rst element is always ε = ±1 to emphasize the dependence of the normal forms on
the invariant ε; the second element is either κ = 0 to say that the curvature vanishes or κ′ = 0 to express that
the curvature is constant (this notation is a bit abusive because κ is not a function of one variable in general);
�nally, the third index is either ν = 0 or ν′ = 0 with the same interpretation as previously. The following
proposition provides a normal form ΣI

c for each class of control-a�ne systems ΣI , where the upper multi-index
I is one of the �ve given in Table 2. The lower index c indicates that all normal forms ΣI

c are expressed using
their canonical pairs. Recall that the structure function ν is unique up to its sign, i.e. changing gc 7→ −gc yields
ν 7→ −ν, hence in normal forms below we suppose that ν ≥ 0.

Proposition 7 (Normal forms of �at control-a�ne systems). Consider a control-a�ne system Σ = (f, g)
together with its invariants ε, κ, and ν. Then, the following statements hold locally (all normal forms below are
represented by a canonical pair (fc, gc) and considered around an arbitrary point (x0, y0, w0) ∈ R3).

(i) If κ = 0, then Σ is locally feedback equivalent to

Σε,κ=0,ν
c :

 ẋ = 1+ a(y, w)u
ẏ = (x+ b(y, w))u
ẇ = c(y, w)u

,

whose invariants are ε, κ = 0, and ν = ν1(y, w)x + ν0(y, w), and the functions a, b and c satisfy the
following di�erential equations

∂a

∂y
= ε+ ν1(y, w)a(y, w), a(y0, w) = 0,

∂b

∂y
= ν1(y, w)b(y, w)− ν0(y, w), b(y0, w) = 0,

∂c

∂y
= ν1(y, w)c(y, w), c(y0, w) = 1,

and thus are given by

a(y, w) =

[
ε

∫ y

y0

exp

(
−
∫ τ

y0

ν1(t, w)dt

)
dτ

]
exp

(∫ y

y0

ν1(τ, w)dτ

)
,

b(y, w) =

[
−
∫ y

y0

ν0(τ, w) exp

(
−
∫ τ

y0

ν1(t, w)dt

)
dτ

]
exp

(∫ y

y0

ν1(τ, w)dτ

)
,

c(y, w) = exp

(∫ y

y0

ν1(τ, w)dτ

)
.

(ii) If ν = 0, then Σ is locally feedback equivalent to

Σε,κ,ν=0
c :


ẋ = r(x, y) cε(w)
ẏ = r(x, y) sε(w)
ẇ = ε ∂r

∂y cε(w) +
∂r
∂x sε(w) + u

,

where

cε(w) =
ew

√
ε + e−w

√
ε

2
and sε(w) =

ew
√
ε − e−w

√
ε

2
√
ε

,
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whose invariants are ε, κ = κ(x, y), ν = 0, and the function r(x, y) satis�es r > 0 and the following
non-linear partial di�erential equation

−r(x, y)2
(
∂2

∂x2
− ε

∂2

∂y2

)
(ln r(x, y)) = κ(x, y). (17)

(iii) If κ and ν are constant then

κν = 0, (18)

i.e. at least one of them vanishes.

(iv) If κ = 0 and ν is constant, then Σ is locally feedback equivalent to

(a) If ε = 1, then

Σ+,κ=0,ν′=0
c :

 ẋ = eνwew
√
ν2+4

ẏ = eνwe−w
√
ν2+4

ẇ = 1
2u

, where ν ≥ 0.

(b) If ε = −1 and ν > 2, then

Σ−,κ=0,ν′=0,+
c :

 ẋ = eνwew
√
ν2−4

ẏ = eνwe−w
√
ν2−4

ẇ = 1
2u

.

(c) If ε = −1 and ν = 2, then

Σ−,κ=0,ν′=0,0
c :

 ẋ = ew

ẏ = wew

ẇ = u
.

(d) If ε = −1 and 0 ≤ ν < 2, then

Σ−,κ=0,ν′=0,−
c :

 ẋ = eνw cos
(
w
√
4− ν2

)
ẏ = eνw sin

(
w
√
4− ν2

)
ẇ = 1

2u

.

Moreover, for the four normal forms above, ε, κ = 0, and ν are complete invariants.

(v) If ν = 0 and κ is constant, then Σ is locally feedback equivalent to

Σε,κ′=0,ν=0
c :

 ẋ =
(
1− κ

4

(
x2 − εy2

))
cε(w)

ẏ =
(
1− κ

4

(
x2 − εy2

))
sε(w)

ẇ = −κ
2 (y cε(w)− x sε(w)) + u

,

whose complete invariants are ε, κ, and ν = 0.

(vi) If κ = 0 and ν = 0, then Σ is locally feedback equivalent to

Σε,κ=0,ν=0
c :

 ẋ = cε(w)
ẏ = sε(w)
ẇ = u

.

Before presenting a proof for those normal forms, we give some remarks about them. For item (i) we adopt
coordinates, where the vector �eld fc is recti�ed, whereas for the other normal forms we choose coordinates in
which the vector �eld gc is recti�ed. The �rst normal form Σε,κ=0,ν

c of �at control-a�ne systems describes the
most general form of a system for which the curvature κ vanishes. On the other hand, the normal form Σε,κ,ν=0

c

of item (ii), describes systems for which the centro-a�ne curvature ν vanishes. All other items are then special
cases of those two general normal forms.

Recall that ν is unique up to its sign, that is why in item (iv) we have ν ≥ 0 for (iv)-(a) to (iv)-(d). It is
remarkable that if κ and ν are constant (hence true invariants) then at least one of them is zero as asserted in
item (iii). Moreover, relation (18) already appeared in [23], where the four families of normal forms given by
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κ = 0 and ν constant were listed (but the non-invariance of the sign of ν was not discussed there). The two
normal forms of (vi) with ε = ±1 and κ = ν = 0 are , respectively, given by

Σ+,κ=0,ν=0
c :

 ẋ = cosh(w)
ẏ = sinh(w)
ẇ = u

and Σ−,κ=0,ν=0
c :

 ẋ = cos(w)
ẏ = sin(w)
ẇ = u

correspond to hyperbolic and elliptic systems without parameters and have been extensively analysed and
di�erently characterised in [18, 19].

Proof. For each item, we consider a control-a�ne system Σc = (fc, gc) given by the canonical pair and with
ε = ±1 and structure functions κ and ν.

(i) Since κ = 0, using relation (7'), we conclude that the vector �elds fc and [fc, gc] are commuting. Therefore,
we can rectify them simultaneously to get fc =

∂
∂x and [fc, gc] =

∂
∂y . Afterwards, we determine the form

of the vector �eld gc. First, it satis�es
[

∂
∂x , gc

]
= ∂

∂y and thus we immediately conclude

gc = a(y, w)
∂

∂x
+ (x+ b(y, w))

∂

∂y
+ c(y, w)

∂

∂w
.

Moreover, assumptions (A1) and (A2) imply that c ̸= 0 and ∂
∂y

(
a
c

)
̸= 0. Second, for gc we have[

gc,− ∂
∂y

]
= ε ∂

∂x + µgc − ν ∂
∂y , where the functions µ and ν satisfy (8b') and (8c') and therefore ν =

ν1(y, w)x+ ν0(y, w) and µ = ν1(y, w). Hence, the functions a, b, and c of gc satisfy

∂a

∂y
(y, w) = ε+ ν1(y, w)a(y, w),

∂b

∂y
(y, w) = ν1(y, w)b(y, w)− ν0(y, w),

∂c

∂y
(y, w) = ν1(y, w)c(y, w).

Solutions of those equations are, respectively,

a(y, w) =

[
ε

∫ y

y0

exp

(
−
∫ τ

y0

ν1(t, w)dt

)
dτ +A(w)

]
exp

(∫ y

y0

ν1(τ, w)dτ

)
, (19a)

b(y, w) =

[
−
∫ y

y0

ν0(τ, w) exp

(
−
∫ τ

y0

ν1(t, w)dt

)
dτ +B(w)

]
exp

(∫ y

y0

ν1(τ, w)dτ

)
, (19b)

c(y, w) = C(w) exp

(∫ y

y0

ν1(τ, w)dτ

)
. (19c)

Updating the coordinates, we can set C(w) = 1, A(w) = B(w) = 0; and in those coordinates we obtain
the normal form Σε,κ=0,ν

c .

(ii) Suppose that ν = 0 and choose coordinates (x̄, ȳ, w̄) such that gc =
∂
∂w̄ . Then, by relation (7') we conclude

that

fc = Ā(x̄, ȳ)cε(w̄) + B̄(x̄, ȳ)sε(w̄), cε(w̄) =
ew̄

√
ε + e−w̄

√
ε

2
, sε(w̄) =

ew̄
√
ε − e−w̄

√
ε

2
√
ε

,

where Ā = a1
∂
∂x̄ + a2

∂
∂ȳ + a3

∂
∂w̄ , with ai = ai(x̄, ȳ), and B̄ = b1

∂
∂x̄ + b2

∂
∂ȳ + b3

∂
∂w̄ , with bi = bi(x̄, ȳ) being

smooth vector �elds. By assumption (A1), we conclude that a1b2 − a2b1 ̸= 0, hence ¯̄A = a1
∂
∂x̄ + a2

∂
∂ȳ and

¯̄B = b1
∂
∂x̄ + b2

∂
∂ȳ form a moving frame of the tangent bundle of X = O/G, where O is an open subset of

R3, in which the rectifying coordinates (x̄, ȳ, w̄) are de�ned, and G = span
{

∂
∂w̄

}
. We de�ne a metric ¯̄g on

X by declaring ( ¯̄A, ¯̄B) orthonormal, i.e.

¯̄g( ¯̄A, ¯̄A) = 1, ¯̄g( ¯̄A, ¯̄B) = 0, and ¯̄g( ¯̄B, ¯̄B) = −ε.

Notice that the signature of ¯̄g is (+,−sgn (ε)), hence ¯̄g is de�nite for ε = −1 and inde�nite for ε = 1.
Since all metrics on 2-dimensional manifolds are locally conformally �at, we conclude that there exists an
isometry (x, y) = ψ(x̄, ȳ) such that ¯̄g = ψ∗g, where g = ϱ(x, y)(dx2−εdy2), with ϱ > 0. In the coordinates
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(x, y), both the pair (Ã, B̃), with Ã = ψ∗
¯̄A and B̃ = ψ∗

¯̄B, and
(

∂
∂x ,

∂
∂y

)
form an orthornormal frame for

g so we have

(Ã, B̃) = r(x, y)I(x, y)

(
∂

∂x
,
∂

∂y

)
,

where r = 1√
ϱ and I(x, y) is a a linear isometry, i.e. it belongs to the (pseudo)-orthonormal group O(1,−ε).

Using a suitable change of the variable w = w̄ + h(x, y) we can get rid of I(x, y). Finally, in coordinates
(x, y, w), the vector �eld fc of the control system takes the form

fc = r(x, y)cε(w)
∂

∂x
+ r(x, y)sε(w)

∂

∂y
+ (a(x, y)cε(w) + b(x, y)sε(w))

∂

∂w
.

We now use the structure equations (7') and deduce that necessarily

a(x, y) = ε
∂r

∂y
and b(x, y) =

∂r

∂x

and that r satis�es

εr
∂2r

∂y2
− ε

(
∂r

∂y

)2

+

(
∂r

∂x

)2

− r
∂2r

∂x2
= κ(x, y).

which can be expressed in the form of (17).

(iii) If κ and ν are constants, then due to relation (11), we immediately conclude (18).

(iv) Suppose that κ = 0 and ν is constant, then Σ satis�es condition (13) of Theorem 3 and thus Σ is locally
trivialisable. Using the results of item (ii) of Proposition 5, we bring Σ in the form of ΣT,1

c for which
fc = Fc,1(w)

∂
∂x +Fc,2(w)

∂
∂y and gc =

∂
∂w form a canonical pair. Using (7'), we conclude that the functions

Fc,i, for i = 1, 2, satisfy the following second order linear ordinary di�erential equation

F ′′
c,i(w) = εFc,i(w) + νF ′

c,i(w). (20)

Solutions are dictated by the sign of the discriminant ∆ = ν2 + 4ε of the characteristic polynomial of

the ODE. Moreover, the roots of the characteristic polynomial are r1/2 = ν±
√
∆

2 . Recall that the sign
of ν is not invariant and thus by choosing w suitably we can always get ν ≥ 0. Moreover, it is a trivial
calculation to check that the solutions given below are fundamental solutions of (20), i.e. we just need to
compute the Wronskian at w0.

(a) If ε = +1, then ∆ > 0 for all ν ≥ 0. Solutions of (20) are given by (after normalising w with 1
2 )

Fc,1(w) = eνwew
√
ν2+4 and Fc,2(w) = eνwe−w

√
ν2+4,

and we obtain the normal form Σ+,κ=0,ν′=0
c .

(b) If ε = −1 and ν > 2, then ∆ > 0, and solving (20) gives

Fc,1(w) = eνwew
√
ν2−4, and Fc,2(w) = eνwe−w

√
ν2−4,

and we obtain the normal form Σ−,κ=0,ν′=0,+
c .

(c) If ε = −1 and ν = 2, then ∆ = 0, and the solutions of (20) are

Fc,1(w) = wew, and Fc,2(w) = ew,

which gives Σ−,κ=0,ν′=0,0
c .

(d) If ε = −1 and 0 ≤ ν < 2, then ∆ < 0, and the solutions of (20) are

Fc,1(w) = eνw cos
(
w
√
4− ν2

)
, and Fc,2(w) = eνw sin

(
w
√
4− ν2

)
,

which gives Σ−,κ=0,ν′=0,−
c .
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(v) Assume that κ is constant and ν = 0, then we re�ne the normal form Σε,κ,ν=0
c of item (ii). We recognize

that equation (17) satis�ed by r(x, y) describes the curvature (in the usual di�erential geometry sense)
of the metric g = 1

r2 (dx
2 − εdy2). By assumption, the curvature of g is constant (equal to −κ) and

by Minding's theorem, surfaces with the same constant curvature are locally isometric. Therefore, there
exists an isometry (x̃, ỹ) = ψ(x, y) such that g = ψ∗g̃ with

g̃ =

(
1

1− κ
4 (x̃2 − εỹ2)

)2 (
dx̃2 − εdỹ2

)
,

which is also of curvature −κ. The action of the isometry on (ẋ, ẏ) can be compensated by applying
w 7→ w+h(x, y), for a suitable function h, thus we obtain that the system takes the form of Σε,κ,ν=0

c with
r(x, y) = 1− κ

4

(
x2 − εy2

)
, i.e. we get Σε,κ′=0,ν=0

c .

(vi) The normal forms Σε,κ=0,ν=0
c is a special case of item (v) with κ = 0.

5 Conclusions and Perspectives

In this paper, we have analysed in details the notion of triviality adapted to the context of control-a�ne systems.
We proposed two new characterisations of trivial control-a�ne system, one of them is based on the existence
of an abelian subalgebra of the Lie algebra of in�nitesimal symmetries. In particular, we gave a normal form
of trivial control-a�ne systems for which the Lie algebra of in�nitesimal symmetries has a transitive almost
abelian Lie subalgebra. In the future, we will be interested in extending our result to the case of multi-input
systems and we will try to propose other characterisation of triviality that are purely geometric. In the second
part of the paper, we have revisited results due to Serres [21] and we give a novel proof of his characterisation
of trivial systems on 3-dimensional manifolds with scalar inputs. In particular, our characterisation uses a
discrete invariant ε = ±1 and two well-de�ned functional invariants of feedback transformations: the curvature
κ (introduced by Agrachev [2]) and the centro-a�ne curvature ν (studied by Wilkens [23]). We show that
those invariants can explicitly be computed for any control-a�ne system and that a canonical pair of vector
�elds (fc, gc), for which κ and ν appear explicitly, can also be constructed with a purely algebraically de�ned
feedback transformation. Then, we extended the results of Serres and Wilkens by giving several normal forms
of control-a�ne systems. In the future, our goal is two-folds: �rst we will be interested in the question of
how to enlarge the triple (ε, κ, ν) to a set of complete invariants of control-a�ne systems (on 3D manifolds
with scalar control). Identifying a set of complete invariants would be helpful in obtaining normal forms of
control-a�ne system in dimension three. Second, we will be interested in generalising our characterisation of
trivial control-a�ne systems to the multi-input case, in particular the notion of curvature of dynamics pairs, as
proposed in [12], seems promising.

Acknowledgements. The authors would like to thank anonymous reviewers, whose remarks challenged us
to �nd the actual general versions of Theorem 2 and Proposition 2.
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A Smooth solutions of Cauchy-Euler System

Let J be the real Jordan normal form of an N ×N matrix, i.e.

J =

J1 . . .

Jℓ

 , where either Jj =


λj 1

. . .
. . .

. . . 1
λj

 or Jj =


Λj I2

. . .
. . .

. . . I2
Λj

 ,

with λj ∈ R, Λj =

(
aj bj
−bj aj

)
, where aj , bj ∈ R, bj ̸= 0, and I2 =

(
1 0
0 1

)
.

Lemma 2. If the Cauchy-Euler system

wF ′(w)− JF (w) = 0, F (0) ∈ RN , (21)

possesses a smooth solution F (w), around w = 0, such that all components F are non-zero, then the matrix J
is diagonal with non-negative integer eigenvalues λj ∈ N0 = N∪ {0}. Moreover, the solution of (21) is given by
Fj(w) = cjw

λj , for 1 ≤ j ≤ N , with cj ̸= 0.

Proof. Four cases are to be discussed. First, the Jordan block is of the form J = (λj), with λj ∈ R. For
simplicity of notation, denote λ = λj and the corresponding scalar component of F by F1, so we have the scalar
equation wF ′

1 − λF1 = 0. The solution of the latter is F1(w) = θ|w|λ, where θ = θ+ for w > 0 and θ = θ−

for w < 0, with θ+ and θ− being real constants. The function F1(w) is C∞-smooth if and only if λ ∈ N0,
θ+ = (−1)λθ−, and θ ̸= 0.

Second, the Jordan block is of the form Jj =


λj 1

. . .
. . .
. . . 1

λj

. Denote λ = λj and the corresponding components

of F by (F1, . . . , Fqj )
t, where Jj is a (qj × qj)-matrix. The last row of Jj gives wF ′

q − λFq = 0, where for

simplicity we denoted q = qj , and by the above analysis of the �rst case, we conclude that Fq(w) = θq|w|λ,
with λ ∈ N0 and θ+q = (−1)λθ−q . Now, one before the last row of Jj gives wF

′
q−1 − λFq−1 − Fq = 0 and hence

Fq−1(w) = |w|λ (θq ln |w|+ θq−1), where θq−1 is a constant possibly depending on the sign of w. Clearly, Fq−1

is smooth at w = 0 if and only if θq = 0, which contradicts the fact that Fq ̸= 0. Therefore all Jordan blocks
with q ≥ 2 are excluded.
Third, the Jordan block of the form Jj = Λj . For simplicity of notation, denote λ = λj = a + bi, Λ =

(
a b
−b a

)
,

and the corresponding components of F by (F1, F2)
t. Solving (wF ′

1, wF
′
2)

t − Λ(F1, F2)
t = 0 we conclude that

F1(w) and F2(w) are R-linear combinations of |w|a cos (b ln |w|) and |w|a sin (b ln |w|) but none of them is smooth
at w = 0, which contradicts the assumption. So Jordan blocks of the form Jj = Λj are excluded.

Fourth, the Jordan blocks of the form Jj =


Λj I2

. . .
. . .
. . . I2

Λj

 produce along the last two rows a system of

equations similar to that of the third case and, as previously, we conclude that there are no smooth non-zero
solutions; hence, the Jordan blocks with complex eigenvalues are excluded as well.
To summarize, the only smooth non-zero solutions exist in the case of the diagonal matrix J with eigenvalues
λj ∈ N0 and, moreover, are of the for Fj(w) = θj |w|λj , where θ+j = (−1)λjθ−j and θj ̸= 0. Finally, removing the

absolute value, we obtain that Fj(w) = cjw
λj , where cj = θ+j ̸= 0.

B Detailed computations for Lemma 1

In this appendix, we detail the computation to obtain relations (8a)-(8c) between structure functions and we
prove transformation rules (9) and (10) that show how the structure functions are changed under a feedback
transformation. Consider a control-a�ne system Σ = (f, g) with structure functions (k1, k2, k3) and (λ1, λ2, λ3).

First, by applying the Jacobi identity to [f, [g, [g, f ]]] we deduce that [f, [g, [g, f ]]] = − [g, [f, [f, g]]]. We
compute the left-hand-side and the right-hand-side separately:

[f, [g, [g, f ]]] = Lf (λ1) f + Lf (λ2) g − λ2 [g, f ] + Lf (λ3)− λ3 (k1g + k2 [g, f ] + k3 [g, [g, f ]]) ,

= Lf (λ1) f + (Lf (λ2)− λ3k1) g + (Lf (λ3)− λ2 − λ3k2) [g, f ]

− λ3k3 (λ1f + λ2g + λ3 [g, f ]) ,

= (Lf (λ1)− λ3k3λ1) f + (Lf (λ2)− λ3k1 − λ3k3λ2) g

+
(
Lf (λ3)− λ2 − λ3k2 − λ23k3

)
[g, f ] .
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And on the other hand we have

[g, [f, [f, g]]] = Lg (k1) g + Lg (k2) [g, f ] + k2 (λ1f + λ2g + λ3 [g, f ])

+ Lg (k3) (λ1f + λ2g + λ3 [g, f ]) + k3 [g, λ1f + λ2g + λ3 [g, f ]] ,

= (k2λ1 + λ1Lg (k3)) f + (Lg (k1) + k2λ2 + Lg (k3)λ2) g

+ (Lg (k2) + k2λ3 + Lg (k3)λ3) [g, f ]

+ k3 (Lg (λ1) f + λ1 [g, f ] + Lg (λ2) g + Lg (λ3) [g, f ] + λ3 (λ1f + λ3g + λ3 [g, f ])) ,

= (k2λ1 + λ1Lg (k3) + k3Lg (λ1) + k3λ3λ1) f

+ (Lg (k1) + k2λ2 + Lg (k3)λ2 + k3Lg (λ2) + k3λ3λ2) g

+
(
Lg (k2) + k2λ3 + Lg (k3)λ3 + k3λ1 + k3Lg (λ3) + k3λ

2
3

)
[g, f ]

Identifying the terms in front of f , g, and [g, f ] we obtain equations (8a) to (8c).

Now, we apply a feedback transformation of the form f̃ = f + gα and g̃ = gβ and we get �rst
[
f̃ , g̃
]
=

β [f, g] + γg, where γ = Lf (β) + αLg (β)− βLg (α). Second,[
g̃,
[
g̃, f̃
]]

= β2 [g, [g, f ]] + βLg (β) [g, f ] +
(
−βL[g,f ] (β)− βLg (γ) + γLg (β)

)
g

= β2λ1f +
(
β2λ2 − βL[g,f ] (β)− βLg (γ) + γLg (β)

)
g +

(
β2λ3 + βLg (β)

)
[g, f ]

= β2λ1f̃ +
(
−β2λ1α+ β2λ2 − βL[g,f ] (β)− βLg (γ) + γLg (β) + γ (βλ3 + Lg (β))

)
g

+ (βλ3 + Lg (β))
[
g̃, f̃
]
,

implying that λ̃1 = β2λ1, λ̃2 = βλ2 − βλ1α + γλ3 − L[g,f ] (β) − Lg (γ) + 2γLg (ln |β|), and λ̃3 = βλ3 + Lg (β).
Third, we have[

f̃ ,
[
f̃ , g̃
]]

= [f + gα, β [f, g] + γg]

= β [f, [f, g]] + Lf (β) [f, g] + Lf (γ) g + γ [f, g]

+ αβ [g, [f, g]] + αLg (β) [f, g]− βL[f,g] (α) g + αLg (γ) g − γLg (α) g,

=
(
βk1 + Lf (γ) + βL[g,f ] (α) + αLg (γ)− γLg (α)

)
g + (βk2 − Lf (β)− γ − αLg (β)) [g, f ]

+ (βk3 − αβ) [g, [g, f ]] ,

=
(
βk1 + Lf (γ) + βL[g,f ] (α) + αLg (γ)− γLg (α)

)
g + (βk2 − Lf (β)− γ − αLg (β)) [g, f ]

+
1

β2
(βk3 − αβ)

{[
g̃,
[
g̃, f̃
]]

− βLg (β) [g, f ] + βL[g,f ] (β) g + βLg (γ) g − γLg (β) g
}
,

implying k̃3 = 1
β (k3 − α). Next, continuing the computation (denoting h̃ = k̃3

[
g̃,
[
g̃, f̃
]]
):[

f̃ ,
[
f̃ , g̃
]]

=
(
βk1 + Lf (γ) + βL[g,f ] (α) + αLg (γ)− γLg (α) + k̃3

(
βL[g,f ] (β) + βLg (γ)− γLg (β)

))
g + h̃

+
(
βk2 − Lf (β)− γ − αLg (β)− k̃3βLg (β)

)
[g, f ] + h̃

=
(
βk1 + Lf (γ) + βL[g,f ] (α) + αLg (γ)− γLg (α) + k̃3

(
βL[g,f ] (β) + βLg (γ)− γLg (β)

))
g

1

β

(
βk2 − Lf (β)− γ − αLg (β)− k̃3βLg (β)

){[
g̃, f̃
]
+ γg

}
+ h̃,

implying k̃2 = k2 − Lf (ln |β|)− γ
β − αLg (ln |β|)− k̃3Lg (β) and �nally

k̃1 =
1

β

(
βk1 + Lf (γ) + βL[g,f ] (α) + αLg (γ)− γLg (α) + k̃3

(
βL[g,f ] (β) + βLg (γ)− γLg (β)

)
+ k̃2γ

)
= k1 + L[g,f ] (α) +

1

β

(
Lf (γ) + αLg (γ)− γLg (α) + k̃3

(
βL[g,f ] (β) + βLg (γ)− γLg (β)

)
+ k̃2γ

)
.

C Technical lemma for the proof of Theorem 3

The su�ciency part of the proof of Theorem 3 relies on the existence of a di�eomorphism that simultaneously
recti�es the distribution span {fc, [gc, fc]} and the vector �eld gc as proven by the following lemma.

23



Lemma 3. Consider a control-a�ne system Σc = (fc, gc) given by its canonical pair and assume set F =
span {fc, [gc, fc]}. If, the structure functions of Σc satisfy the condition (13) of Theorem 3, then, there exists a

di�eomorphism (x, y, w) = ϕ(ξ) such that ϕ∗F = span
{

∂
∂x ,

∂
∂y

}
and ϕ∗gc =

∂
∂w .

Proof. First, we prove that there exists smooth solutions h for the system

Lfc (h) = 0, L[gc,fc] (h) = 0, and Lgc (h) = 1.

We need to check three integrability conditions:

1. L[fc,[gc,fc]] (h) = Lfc

(
L[gc,fc] (h)

)
− L[gc,fc] (Lfc (h)) = 0 and [fc, [gc, fc]] = 0, so 0 = 0 and the �rst

condition holds.

2. L[fc,gc] (h) = Lfc (Lgc (h)) − Lgc (Lfc (h)) = 0 and L[fc,gc] (h) = 0 so 0 = 0 and the second integrability
condition holds.

3. L[[gc,fc],gc] (h) = L[gc,fc] (Lgc (h)) − Lgc

(
L[gc,fc] (h)

)
= 0 and [[gc, fc] , gc] = −εfc − ν [gc, fc] . Therefore

L[[gc,fc],gc] (h) = −εLfc (h)− νL[gc,fc] (h) = 0 and 0 = 0 the third condition holds.

Take a smooth solution h of the above system, rename it ϕ3 = h, and choose ϕ1, ϕ2 such that dϕ1 and dϕ2
annihilate gc and are independent (they exist since gc ̸= 0). The di�eomorphism ϕ = (ϕ1, ϕ2, ϕ3) = (x, y, w) is

such that ϕ∗F = span
{

∂
∂x ,

∂
∂y

}
and ϕ∗gc =

∂
∂w .
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