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Introduction

In this paper, we consider control-ane systems Σ of the form Σ : ξ = f (ξ) + m i=1 g i (ξ)u i , u i ∈ R, [START_REF] Agrachev | Feedback-Invariant Optimal Control Theory and Dierential Geometry, II. Jacobi Curves for Singular Extremals[END_REF] where the state ξ belongs to a smooth n-dimensional manifold M (or an open subset of R n , since most of our results are local), and f and g are smooth vector elds on M, i.e. smooth sections of the tangent bundle T M. Throughout the paper, the word "smooth" will always mean C ∞ -smooth, and all objects (manifolds, vector elds, dierential forms, functions) are assumed to be smooth. We denote a control-ane system by the pair Σ = (f, g), where g = (g 1 , . . . , g m ). To any control-ane system Σ = (f, g) we attach two distributions:

G = span {g 1 , . . . , g m } and G 1 = G + [f, G] = span {g 1 , . . . , g m , [f, g 1 ] , . . . , [f, g m ]} . ( 2 
)
We call two control-ane systems Σ = (f, g) and Σ = ( f , g) feedback equivalent, if there exists a dieomorphism ϕ : M → M and smooth functions α : M → R m and β : M → GL m (R) such that

f = ϕ * f + m i=1 g i α i and gi = ϕ *   m j=1 g j β j i   ,
where ϕ * denotes the tangent map of ϕ. If ϕ is dened locally around ξ 0 and ξ0 = ϕ(ξ 0 ), then we say that Σ and Σ are locally feedback equivalent at ξ 0 and ξ0 , respectively. Feedback equivalence of control-ane systems means equivalence of the ane distributions A = f + G and à = f + G attached to Σ and Σ, respectively.

In the thesis [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF], Serres proposed the notion of a trivial system of the form (T ) : ẋ = F (w), x ∈ X , w ∈ R m , where w is the control that enters nonlinearly. The dynamics F (w) of a trivial system does not depend on the state variables x and thus depends on control variables w only. Actually, (T ) is called at in [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF] but that name can be misleading because, rst, there is a well established notion of at control systems [START_REF] Fliess | On Dierentially Flat Nonlinear Systems[END_REF] and, second, the class of trivial control systems does not coincide with control systems of zero-curvature [START_REF] Agrachev | Feedback-Invariant Optimal Control Theory and Dierential GeometryI. Regular Extremals[END_REF], which thus can be considered as geometrically at, as we will discuss in Section 3.

For those reasons, following [START_REF] Serres | On Curvature and Feedback Classication of Two-Dimensional Optimal Control Systems[END_REF], we call (T ) a trivial system and we say that a general control-nonlinear system ẋ = F (x, w) is trivialisable if it is equivalent, via a feedback of the form x = ϕ(x), w = ψ(x, w), to a trivial system (T ), where (ϕ, ψ) : X × R m → X × R m is a dieomorphism. Inspired by the above considerations, we adapt the concept of triviality to control-ane systems as follows.

Denition 1 (Trivial control-ane systems). We say that a control-ane system Σ = (f, g) is trivialisable if it is feedback equivalent to a trivial system of the form:

(T ) : ẋ = F (w) ẇ = u , (x, w) ∈ M = X × R m , u ∈ R m ,
whose ẋ-dynamics depend on the controlled w-variables only.

The notions of trivial and trivialisable general control-nonlinear versus control-ane systems are two sides of the same coin. Indeed, two control-nonlinear systems ẋ = F (x, w) and ẋ = F (x, w) are feedback equivalent if and only if their control-ane extensions ẋ = F (x, w), ẇ = u and ẋ = F (x, w), ẇ = ũ are equivalent via control-ane feedback transformations, see [10, equation 3.6].

Therefore a control-nonlinear system ẋ = F (x, w) is trivialisable if and only if ẋ = F (x, w), ẇ = u is trivialisable in the sense of Denition 1 and the latter class is the object of our studies in this paper.

2

Trivial control systems are interesting to study because they model trajectories of dynamical systems under a nonholonomic constraint that does not depend on the point. Indeed, under the additional regularity assumption that rk ∂F ∂w (w) = m, equivalently, the distribution G 1 of (T ) satises rk G 1 = 2m, there exist local coordinates x = (z, y), with dim z = n -2m and y = (y 1 , . . . , y m ) such that the equations of (T ) can be rewritten    ż = f(w) ẏ = w ẇ = u and we conclude that the trajectories of (T ) satisfy the nonholonomic constraints ż = f( ẏ), whose shape is independent of the point x = (z, y). Denoting by X the (locally dened) quotient manifold M/G, we see that a trajectory x(t) ∈ X satises the nonholonomic constraint ż = f( ẏ) if and only if there exists a smooth control u(t) such that (x(t), w(t)) is a trajectory of (T ). Connections between equations on the tangent bundle and control systems are explored in [START_REF] Schmoderer | Study of Control Systems under Quadratic Nonholonomic Constraints[END_REF][START_REF] Schmoderer | Conic Nonholonomic Constraints on Surfaces and Control Systems[END_REF]. Examples of trivial systems can be found in the literature; e.g. in [START_REF] Schmoderer | Conic Nonholonomic Constraints on Surfaces and Control Systems[END_REF] we characterise trivial elliptic, hyperbolic, and parabolic control systems, Dubin's car [START_REF] Dubins | On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents[END_REF] is a very simple model of system that is trivial, and, nally, trivial control-nonlinear system on surfaces (i.e. n = 2) and with scalar control have been studied, characterised (and normal forms in particular cases have been given) in [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF][START_REF] Serres | On Curvature and Feedback Classication of Two-Dimensional Optimal Control Systems[END_REF][START_REF] Serres | Control Systems of Zero Curvature Are Not Necessarily Trivializable[END_REF].

Outline of the paper

In the next subsection, we develop the main notions of dierential geometry and of control theory that we will need in the rest of the paper. Next, in Section 2, we study trivial control-ane systems on manifolds of arbitrary dimension and with an arbitrary number of controls. We propose two novel characterisations of trivial systems, one of them is based on the Lie algebra of innitesimal symmetries.

Moreover, using our characterisation of trivial systems via symmetries, we will give a normal form of trivial systems whose Lie algebra of innitesimal symmetries possesses a transitive almost abelian Lie subalgebra. Afterwards, in Section 3, we will be interested in revisiting the characterisation of trivial systems discovered by Serres [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF] in the context of control-nonlinear systems on surfaces. We propose a characterisation of trivial control-ane systems on 3-dimensional manifolds with scalar control. Our characterisation exhibits a discrete invariant, and two fundamental functional invariants: the control curvature introduced by Agrachev [2, 1], and the centro-ane curvature used by Wilkens [START_REF] Wilkens | Centro-Ane Geometry in the Plane and Feedback Invariants of Two-State Scalar Control Systems[END_REF]. Both functional invariants can be computed for any control-ane system. We will provide another proof and interpretation of Serres results. Finally, in Section 4 we discuss several normal forms (some new and some existing in the litterature) of control-ane systems, for which the control curvature and the centro-ane curvature have special properties.

Preliminaries

In this subsection, we recall the main denitions and notions of dierential geometry and of control theory that we need in the paper. The main notations that we use are summarised in Table 1.

Dierential Geometry. For a manifold M we will denote by T M and T * M the tangent and cotangent bundle, respectively. The space of all smooth vector elds (smooth sections of T M) will be denoted V ∞ (M) and the space of all smooth dierential p-forms by Λ p (M), except for smooth functions (0-forms) whose space is denoted C ∞ (M). For a dieomorphism ϕ : M → M, a vector eld f ∈ V ∞ (M), and a dierential p-form ω ∈ Λ p ( M), we denote by ϕ * f ∈ V ∞ ( M) the push-forward of f , and by ϕ * ω ∈ Λ p (M) the pull-back of ω. The (local) ow of a vector eld f ∈ V ∞ (M) is denoted by γ f t (for any t for which it is dened). The Lie derivative of a dierential p-form ω along a vector eld f will be denoted by L f (ω). In particular, for a function λ ∈ C ∞ (M) and its dierential dλ (an exact 1-form) we have

L f (λ) = ⟨dλ, f ⟩ and L f (dλ) = dL f (λ) .
For any smooth functions α, λ, and µ, the Lie derivative possesses the following properties:

L αf (λ) = αL f (λ), and L f (λµ) = L f (λ) µ+λL f (µ). Iterative Lie derivatives are dened by L k f (λ) = L f L k-1 f (λ) ,
for any k ≥ 2. For any two vector elds f, g ∈ V ∞ (M), we dene their Lie bracket as a new vector eld, denoted [f, g] ∈ V ∞ (M), such that for any smooth function λ we have

L [f,g] (λ) = L f (L g (λ)) -L g (L f (λ)) .
The Lie bracket possesses the following properties: it is bilinear over R, it is skew-commutative, i.e.

[f, g] = -[g, f ], and it satises the Jacobi identity:

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0, ∀ f, g, h ∈ V ∞ (M).
Moreover, for any smooth function α, and any vector elds f , g, and h, we have 

[f, αg + h] = α [f, g] + L f (α) g + [f, h] .
) such that f = ∂ ∂x 1
in a neighbourhood of any point p where f (p) ̸ = 0. This can simultaneously be done for a family of (locally) independent vector elds (f 1 , . . . , f m ) if and only if they are mutually commuting. We set ad 0 f g = g, ad f g = [f, g], and the iterated Lie bracket is denoted by ad k f g = f, ad k-1 f g for k ≥ 1; see [9, chapter 1] for a detailed introduction and proofs of the above properties.

Innitesimal symmetries. We briey introduce the notion of symmetries of control-ane systems (see [START_REF] Respondek | Nonlinearizable Single-Input Control Systems Do Not Admit Stationary Symmetries[END_REF][START_REF] Grizzle | The Structure of Nonlinear Control Systems Possessing Symmetries[END_REF] for a detailed introduction). For a control-ane system Σ = (f, g), see [START_REF] Agrachev | Feedback-Invariant Optimal Control Theory and Dierential Geometry, II. Jacobi Curves for Singular Extremals[END_REF], with state M a smooth n-dimensional manifold, we dene the eld of admissible velocities A as

A(ξ) = {f (ξ) + m i=1 g i (ξ)u i : u i ∈ R} ⊂ T ξ M.
We say that a dieomorphism ϕ : M → M is a symmetry of Σ if it preserves the eld of ane m-planes A (equivalently, the ane distribution A = f + G), that is, ϕ * A = A. We say that a vector eld v on M is an innitesimal symmetry of Σ = (f, g) if the (local) ow γ v t of v is a local symmetry, for any t for which it exists, that is, (γ v t ) * A = A. Consider the system Σ = (f, g) and recall that G is the distribution spanned by the vector elds g 1 , . . . , g m . We have the following characterisation of innitesimal symmetries. Proposition 1. A vector eld v is an innitesimal symmetry of the control-ane system Σ = (f, g) if and only if

[v, g] = 0 mod G and [v, f ] = 0 mod G.
By the Jacobi identity, it is easy to see that if v 1 and v 2 are innitesimal symmetries, then so is

[v 1 , v 2 ],
hence the set of all innitesimal symmetries forms a real Lie algebra. Notice that the Lie algebra of innitesimal symmetries is attached to the ane distribution A = f + G and not to a particular pair (f, g) = (f, g 1 , . . . , g m ). Dierent pairs (f, g) related via feedback transformations (α, β) dene the same A and thus have the same Lie algebra of innitesimal symmetries which, therefore, is a feedback invariant object attached to Σ.

M, T M, ξ = (x, w)

Smooth n-dimensional manifold, its tangent bundle, and its local coordinates with dim w = m. ϕ, ϕ * , ϕ * A dieomorphism, its tangent map, its cotangent map.

Σ = (f, g)

A control-ane system; see [START_REF] Agrachev | Feedback-Invariant Optimal Control Theory and Dierential Geometry, II. Jacobi Curves for Singular Extremals[END_REF].

G and G 1

Distribution spanned by the vector elds g 1 , . . . , g m and the distribution spanned by the vector elds g 1 , . . . , g m and [f, g 1 ] , . . . , [f, g m ]; see (2).

(T )

Trivial control-ane system; see Denition 1.

L, A, I

A real Lie (sub)algebra, a subalgebra, an ideal. Σ s = (f s , g)

Control ane system given by a semi-canonical pair; see Denition 3.

Σ c = (f c , g c )
Control ane system given by the canonical pair; see Denition 3.

(k 1 , k 2 , k 3 ) and (λ 1 , λ 2 , λ 3 )

Structure functions attached to any control-ane system on a 3dimensional manifold with scalar control; see [START_REF] Dubins | On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents[END_REF].

(ε, κ, ν)

Feedback invariants of control-ane systems; dened for the canonical pair by (6') and expressed for any control-ane system by [START_REF] Jakubczyk | Vector Fields with Distributions and Invariants of ODEs[END_REF]. 

Characterisations of trivial systems

The following theorem gives two characterisations of trivialisable systems. The rst one is technical and shows that triviality is a property that depends on the coordinates (like being a linear control system depends on the choice of coordinates), and the second one is based on innitesimal symmetries and is thus geometric. Recall that to a control-ane system Σ = (f, g) we attach two distributions G = span {g 1 , . . . , g m } and

G 1 = G + [f, G], see (2). 
Theorem 1 (Two characterisations of trivialisable systems). Consider a control-ane system Σ = (f, g) with state on a n-dimensional manifold M and with m ≥ 1 controls. The following assertions hold locally around ξ 0 :

(i) Suppose that rk G 1 = m + k is constant. The system Σ is locally trivialisable if and only if Σ is locally feedback equivalent to

Σ T : ẋi = h i (x, w) ẇ = u , for 1 ≤ i ≤ n -m,
where the smooth scalar functions h 1 , . . . , h n-m satisfy rk span {dh 1 , . . . , dh n-m } = k.

(

(ii) Σ is, locally around ξ 0 , trivialisable if and only if the distribution G is involutive and of constant rank m and, additionally, the Lie algebra of innitesimal symmetries of Σ possesses an abelian subalgebra A such that

A(ξ 0 ) ⊕ G(ξ 0 ) = T ξ 0 M.
Observe that the assumption on the rank of the distribution G 1 in statement (i) implies that the dimension n of the manifold M is greater than or equal to m + k. If n = m + k, then the trivialisation (T ) of Σ T (and thus of Σ) can be taken (for suitable w and u)

as ẋi = w i , 1 ≤ i ≤ k, ẇj = u j , 1 ≤ j ≤ m. On the other hand, if n > m + k, then ẋi = w i , 1 ≤ i ≤ k, ẋi = F i (w 1 , . . . , w k ), k + 1 ≤ i ≤ m + k, and ẇj = u j , 1 ≤ j ≤ m.
Notice that k ≤ m, so if n > 2m, then there are always nonlinear equations ẋi = F i (w 1 , . . . , w k ). In item (ii), there are no particular relations between the dimension of the state space and on the number of controls (other than the obvious n ≥ m).

Remark 1. For the system Σ T , dene H = (h 1 , . . . , h n-m ) t . Then, under the assumption that rk G 1 is constant, condition (3) can be equivalently reformulated as

rk ∂H ∂w (x, w) = rk ∂H ∂(x, w) (x, w),
in a neighbourhood of (x 0 , w 0 ).

Proof.

(i) Suppose that Σ is locally trivialisable, i.e. by Denition 1, Σ is locally feedback equivalent to (T ), which is of the form of Σ T with h i (x, w) = F i (w), for 1 ≤ i ≤ n -m, and we now show that those functions satisfy (3). On one hand, the condition rk G 1 = m + k implies that the Jacobian matrix ∂F ∂w is of constant rank k, where F = (F 1 , . . . , F n-m ) T . On the other hand, we obtain that dh i = dF i = m j=1 ∂F i ∂w j dw j . Hence the rank of span {dh 1 , . . . , dh n-m } is the same as that of ∂F ∂w and the conclusion follows. Conversely, assume that Σ is feedback equivalent to Σ T . Using the assumption rk G 1 = m + k we can reorder the x-coordinates such that h = ( ĥ1 , . . . , ĥk , hk+1 , . . . , hn-m ), where rk ∂ ĥ ∂w = k. We set ŵi = ĥi (x, w), for 1 ≤ i ≤ k, completed by ŵk+1 , . . . , ŵm (chosen among the w i 's) in such a way that ŵ1 , . . . , ŵm form a local coordinate system. We conclude, by condition [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF], that the functions hk+1 , . . . , hn-m depend on the variables ŵ1 , . . . , ŵk only. Using a feedback transformation that yields ẇi = ûi , 1 ≤ i ≤ k, we conclude that Σ T is, indeed, a trivial system in coordinates (x, ŵ).

(ii) Suppose that Σ = (f, g) is locally trivialisable, then for (T ) we have G = span ∂ ∂w 1 , . . . , ∂ ∂wm , which clearly is involutive and of constant rank m. Moreover, the vector elds

v i = ∂ ∂x i , for 1 ≤ i ≤ n -m, are commuting symmetries of (T ) that span the abelian Lie algebra A satisfying A(ξ 0 ) ⊕ G(ξ 0 ) = T ξ 0 M. Conversely, suppose that the Lie algebra of innitesimal symmetries of Σ = (f, g) possesses an abelian subalgebra A = vect R {v 1 , . . . , v n-m }. By A(ξ 0 ) ⊕ G(ξ 0 ) = T ξ 0 M the vector elds v 1 , . . . , v n-m are linearly independent, so we choose local coordinates ξ = (x, w) such that v i = ∂ ∂ xi , for 1 ≤ i ≤ n -m. In those coordinates, we have g j = A j (x, w) ∂ ∂ x + B j (x, w) ∂ ∂ w . Since G is of constant rank m and satises A( ξ0 ) ⊕ G( ξ0 ) = T ξ0 M, via a suitable feedback transformation we choose generators of G as gj = A j (x, w) ∂ ∂ x + ∂ ∂ wj (to
simplify notations, we skip the "tildes" and denote gj by g j ). Using that v i are symmetries of Σ, that is [v i , g j ] ∈ G, we deduce that A j = A j ( w), therefore we actually have [v i , g j ] = 0. Moreover, G is involutive so we deduce that [g j , g k ] = 0. Therefore, all vector elds v i and g j commute and thus there exist coordinates ξ = (x, w)

such that v i = ∂ ∂x i , for 1 ≤ i ≤ n -m, and g j = ∂ ∂w j , for 1 ≤ j ≤ m. The elds v i are symmetries of Σ so [v i , f ] ∈ G implying that f = F ∂ ∂x + f ∂ ∂w ,
where F = F (w) and we achieve f = 0 by a suitable feedback transformation.

Normal form of trivial systems possessing an almost abelian Lie subalgebra of innitesimal symmetries

Theorem 1 of the previous subsection asserts that the Lie algebra of innitesimal symmetries of trivialisable systems possesses an abelian subalgebra complementary to the distribution G. In this subsection, we study a particular case when the abelian subalgebra A is actually an abelian ideal of codimension one of a subalgebra L of symmetries, the latter acting transitively on M. We give a normal form of control-ane systems (with a, necessarily, scalar control) possessing such Lie algebra of symmetries.

Denition 2 (Almost abelian Lie algebra). Let L be a real Lie algebra; following the denition of [START_REF] Burde | Abelian Ideals of Maximal Dimension for Solvable Lie Algebras[END_REF],

we call L almost abelian if it has an abelian ideal I of codimension one.

It is a simple application of Lie algebra homology to deduce that an almost abelian Lie algebra (possibly of innite dimension) is isomorphic to the semi-direct product L ∼ = I ⋊ vect R {v 0 } and that its structure is determined by the action of v 0 on I, namely by

ad v 0 : I -→ I v -→ [v 0 , v] .
Moreover, two almost abelian Lie algebras L = I ⋊ vect R {v 0 } and L = Ĩ ⋊ vect R {ṽ 0 } are isomorphic if and only if there exists a real invertible transformation P : I → Ĩ such that P ad v 0 = µ ad ṽ0 P for some µ ∈ R * ; see [START_REF] Avetisyan | Structure of Almost Abelian Lie Algebras[END_REF]Proposition 11]. Therefore, isomorphism classes of almost abelian Lie algebras correspond to similarity classes of the linear operator ad v 0 (up to multiplication by a scalar). In particular, if L is nite dimensional, the similarity classes of ad v 0 are given by the Jordan normal forms. In the following theorem, we consider the simplest case where ad v 0 is diagonalisable over R and give a normal form of control-ane systems that have L as Lie subalgebra of innitesimal symmetries.

Theorem 2 (Almost abelian innitesimal symmetries). Consider a control-ane system Σ = (f, g) on an n-dimensional state manifold M and with scalar control. Assume that the Lie algebra of innitesimal symmetries possesses a Lie subalgebra L for which the following conditions hold at ξ 0 :

f (ξ 0 ) / ∈ G(ξ 0 ), L acts transitively on M, L = I ⋊ vect R {v 0 } is almost abelian, its abelian ideal satises I(ξ 0 ) ⊕ G(ξ 0 ) = T ξ 0 M
, and the operator ad v 0 is non-singular and diagonalisable over R. Then, Σ is, locally around ξ 0 , feedback equivalent to a trivial system of the form

Σ λ : ẋi = η i (w + 1) λ i 1 ≤ i ≤ n -1 ẇ = u , u ∈ R around (x 0 , 0) ∈ R n-1 × R,
where the λ i 's are the eigenvalues of ad v 0 and η i are constants equal 0 or 1, with η 1 = 1.

Observe that the assumptions: L is almost abelian, acts transitively on M, and satises I(ξ 0 ) ⊕ G(ξ 0 ) = T ξ 0 M, are quiet restrictive on the number of controls of Σ. Namely, they imply that rk G = 1, i.e. Σ has a scalar control.

Remark 2 (Converse implication). By a straightforward computation, we see that the vector elds

v i = ∂ ∂x i , ∀ 1 ≤ i ≤ n -1, and v 0 = n-1 i=1 λ i x i ∂ ∂x i + (w + 1) ∂ ∂w
are innitesimal symmetries of Σ λ . Thus the Lie algebra of innitesimal symmetries of Σ λ possesses an almost abelian subalgebra

L = vect R {v 1 , . . . , v n-1 , v 0 }.
Therefore, the theorem is actually an "if and only if" statement since all other assumptions are feedback invariant.

Proof. Consider the control-ane system Σ = (f, g) given by vector elds f and g, and let n vector elds v 1 , . . . , v n-1 , v 0 generate the n-dimensional Lie subalgebra L = vect R {v 1 , . . . , v n-1 , v 0 } of the algebra of innitesimal symmetries, which by assumption is almost abelian, whose abelian ideal is

I = vect R {v 1 , . . . , v n-1 } and since ad v 0 is diagonalisable over R we conclude that [v 0 , v i ] = λ i v i , ∀ 1 ≤ i ≤ n -1. (4) 
By statement (ii) of Theorem 1, Σ is locally trivialisable and following the proof of that theorem we deduce that there exists local coordinates (x, ŵ) around (x 0 , 0)

such that v i = ∂ ∂x i , for 1 ≤ i ≤ n -1, g = ∂ ∂ ŵ , and f = n-1 i=1 F i ∂ ∂x i
, where

F i = F i ( ŵ). Express the innitesimal symmetry v 0 = n-1 i=1 γ i ∂ ∂x i + δ ∂ ∂ ŵ , where γ i = γ i (x) since v 0 is a symmetry of G = span ∂ ∂ ŵ
, and δ = δ(x, ŵ). Using the commutativity relations (4) that have not been changed by applying dieomorphisms, we obtain

v 0 = - n-1 i=1 (λ i x i + a i ) ∂ ∂x i + δ( ŵ) ∂ ∂ ŵ , a i ∈ R.
To avoid unnecessary computations, we replace v 0 by-v 0 -n-1 i=1 a i v i ∈ L, having the same properties, so we can assume v 0

= n-1 i=1 λ i x i ∂ ∂x i + δ( ŵ) ∂ ∂ ŵ , where δ( ŵ) = -δ( ŵ).
Using the fact that v 0 is a symmetry of f , i.e. [v 0 , f ] ∈ G, we deduce the following equations:

δ( ŵ) dF i d ŵ ( ŵ) -λ i F i ( ŵ) = 0, ∀ 1 ≤ i ≤ n -1. (5) 
The assumption f

(ξ 0 ) / ∈ G(ξ 0 )implies that (F 1 , . . . , F n-1 )(0) ̸ = 0 ∈ R n-1 , so suppose that F 1 (0) ̸ = 0 (renumber the x i 's if necessary) and thus F 1 ( ŵ) = c + h( ŵ) with c = F 1 (0) for a function h satisfying h(0) = 0. Replacing x 1 by x 1
c we may assume that F 1 ( ŵ) = 1 + h( ŵ). Moreover, by [START_REF] Burde | Abelian Ideals of Maximal Dimension for Solvable Lie Algebras[END_REF] we conclude that h ′ (0) ̸ = 0; recall that by assumption ad v 0 is non-singular and hence λ i ̸ = 0 for all 1 ≤ i ≤ n -1. Thus, w = (1+h( ŵ)) 1/λ 1 -1 is a dieomorphism around ŵ0 = 0 and, to simplify notations, we keep the symbols f and v 0 for those vector elds represented using the coordinate w. We have F 1 (w) = (1+w) λ 1 , thus relation [START_REF] Burde | Abelian Ideals of Maximal Dimension for Solvable Lie Algebras[END_REF] gives, with ŵ renamed w, δ(w) = w + 1 and implies that the functions F 2 , . . . , F n-1

satisfy (1 + w) dF i dw (w) = λ i F i (w), for 2 ≤ i ≤ n -1.
Solving those equations around w 0 = 0 gives F i = c i (w + 1) λ i , with c i ∈ R. Thus, normalising x i with the non-zero c i we get that Σ takes the form of Σ λ around (x 0 , 0) ∈ R n .

The above theorem generalises our previous results on the Lie algebra of innitesimal symmetries of hyperbolic and parabolic systems for which we have n = 3 and, respectively, (λ 1 , λ 2 ) = (1, -1) and (λ 1 , λ 2 ) = (2, 1), see [START_REF] Schmoderer | Null-forms of conic systems in R 3 are determined by their symmetries[END_REF]. The situation is much more involved when f (ξ 0 ) ∈ G(ξ 0 ) as the following proposition illustrates.

Proposition 2. Consider a control-ane system Σ = (f, g) with a n-dimensional state manifold and a scalar control, and let L be a Lie subalgebra of innitesimal symmetries. Suppose that the following conditions hold at ξ 0 :

f (ξ 0 ) ∈ G(ξ 0 ), there exists k ≥ 1 the smallest integer such that g ∧ ad k g f (ξ 0 ) ̸ = 0, L acts transitively on M, L ∼ = I ⋊ vect R {v 0 } is almost abelian, I(ξ 0 ) ⊕ G(ξ 0 ) = T ξ 0 M
, and the action of ad v 0 is non-singular and diagonalisable over R. Then, the eigenvalues λ i of ad v 0 are such that λ i λ 1 k are positive integers greater or equal than k, where λ 1 is the smallest, in absolute value, eigenvalue of ad v 0 . Moreover, the system Σ is locally feedback equivalent to

Σ 0,k λ :    ẋ1 = w k ẋi = η i (w k ) λ i /λ 1 2 ≤ i ≤ n -1 ẇ = u , u ∈ R, around (x 0 , 0) ∈ R n
, where η i are constants equal to 0 or 1.

Observe that the normal form Σ 0,k λ denes a polynomial system since k λ i λ 1 are positive integers.

Moreover, although the eigenvalues λ i can be any, the conditions of the above proposition imply severe restrictions on them. Namely, all λ i 's have the same sign and λ i = l i k λ 1 , where the l i 's are integers satisfying l i ≥ k. Furthermore, it is a classical fact that (under the above assumptions) the integer k is an invariant of feedback transformations. Hence if k ̸ = k ′ , then Σ 0,k λ and Σ 0,k ′ λ are not locally feedback invariant around (x 0 , 0).

Proof. The beginning of the proof is the same as that of the previous theorem up to equation ( 5), so we start from there. By f (ξ 0 ) ∈ G(ξ 0 ) we have (F 1 , . . . , F n-1 )(0) = 0 ∈ R n-1 and due to g ∧ ad k g f (0) ̸ = 0

we assume that

d k F 1 d ŵk (0) ̸ = 0, if necessary relabel the x i -coordinates.
Using the Taylor expansion we can write F 1 = ŵk H( ŵ), where H(0) ̸ = 0 and we can suppose H(0) > 0, if not, replace x 1 by -x 1 . We apply the local dieomorphism w = ŵ (H( ŵ)) 1/k , that maps f and v 0 into vector elds that, for simplicity, we denote again by f and v 0 , respectively. We have F 1 (w) = w k , so equation ( 5), expressed in the w-coordinate, implies, for i = 1, that δ(w) = λ 1 k w and

λ 1 w dF i dw (w) = λ i kF i (w), for 2 ≤ i ≤ n -1.
Solving those equations around w 0 = 0

implies |F i | = c i |w i | kλ i /λ 1 , with c i ∈ R.
The only C ∞ -solutions are those given by either c i = 0 or by c i ̸ = 0 with λ i λ 1 k being a positive integer. The corresponding smooth solution is F i = c i w kλ i /λ 1 and by denition of k we have

k λ i λ 1 ≥ k (otherwise, g ∧ ad k ′ f g(ξ 0 ) ̸ = 0, where k ′ = λ i λ 1 k < k, contradicting the denition of k). Thus |λ i | ≥ |λ 1 |
and λ 1 is, indeed, the eigenvalue of ad v 0 of minimal absolute value.. Finally, normalising the coordinates x i , with c i ̸ = 0, we obtain the desired form Σ 0,k λ .

The previous proposition describes all smooth systems having an almost abelian Lie subalgebra of symmetries for which k exists, in particular all analytic systems. Notice that for a single-input analytic system either k exists or, if not, then it is locally feedback equivalent to a trivial system ẋ = c, ẇ = u, where c ∈ R n-1 . In the C ∞ category there are, however, systems for which k does not exist but the symmetry algebra possesses an almost abelian subalgebra. For example, consider around (x 0 , 0)

the system    ẋ1 = f(w) ẋi = f(w) λ i /λ 1 2 ≤ i ≤ n -1 ẇ = u , with f(w) = exp - 1 w 2 , f(0) = 0,
and λ i /λ 1 ∈ N * . By a straightforward calculation, one may check that the system possesses an almost abelian Lie subalgebra of innitesimal symmetries but, obviously, k does not exist at (x 0 , 0) and thus it is not feedback equivalent to Σ 0,k λ .

3 Trivial systems on 3D-manifolds

In this section, we study trivial system on 3-dimensional manifolds with scalar control. Our aim is to

give a new version of the results of [START_REF] Serres | Control Systems of Zero Curvature Are Not Necessarily Trivializable[END_REF] and to extend them by giving several normal forms.

Throughout this section, we consider a control-ane system Σ = (f, g) of the form

Σ : ξ = f (ξ) + g(ξ)u, u ∈ R,
where the state ξ belongs to a 3-dimensional manifold M and the vector elds f and g satisfy, at any ξ ∈ M, the following regularity assumptions

(A1) f ∧ g ∧ [g, f ] ̸ = 0, (A2) g ∧ [g, f ] ∧ [g, [g, f ]] ̸ = 0.
To any control-ane system Σ = (f, g) we attach 6 structure functions uniquely dened by the following decompositions:

[f, [f, g]] = k 1 g + k 2 [g, f ] + k 3 [g, [g, f ]] , [g, [g, f ]] = λ 1 f + λ 2 g + λ 3 [g, f ] . (6) 
Observe that assumption (A2) implies that λ 1 ̸ = 0. We now dene two dierent classes of pairs (f, g).

Denition 3 ((Semi)-canonical pairs). We call the pair (f, g) semi-canonical if k 3 ≡ 0, and we will denote it by (f s , g). If, additionally λ 1 ≡ ±1, then we call (f, g) a canonical pair and we denote it by

(f c , g c ).
Observe that a semi-canonical pair is characterised by the inclusion [f, [f, g]] ∈ span {g, [g, f ]}, which is the property of the singular vector eld of Σ (justifying the notation (f s , g) for a semicanonical pair). Under assumption (A2), that singular vector eld is unique and can be computed using the singular control, thus we are not surprised that the following proposition shows that a semicanonical pair exists (but observe that our proof does not require using the machinery of singular controls).

The following proposition shows that a control-ane system is always feedback equivalent to a system given by a semi-canonical and even by a canonical pair. Moreover, those pairs can be explicitly constructed, meaning that the feedback transformations bringing (f, g) into (f s , g) or into (f c , g c ) are constructed with dierentiation and algebraic operations only (no dierential equations to be solved).

Furthermore, a canonical pair is unique (up to multiplying g c by -1) hence its structure functions are feedback equivariants (up to a discrete involution, see Remark 3 below).

Proposition 3 (Existence of semi-canonical and canonical pairs). Consider a control-ane system Σ = (f, g) satisfying assumptions (A1) and (A2). Then, the following statements hold globally:

(i) Σ is globally feedback equivalent to Σ s = (f s , g), where (f s , g) is a semi-canonical pair;

(ii) Σ is globally feedback equivalent to Σ c = (f c , g c ), where (f c , g c ) is a canonical pair. Moreover (f s , g) and (f c , g c ) can be explicitly constructed via the following feedback transformations

f s = f + gk 3 , f c = f s , and g c = |λ 1 | -1/2 g.
Furthermore, the canonical pair (f c , g c ) is unique up to g c → -g c .

The proof of the above proposition is based on the following lemma, which gives some relations between the structure functions k 1 , k 2 , k 3 , λ 1 , λ 2 , and λ 3 , and shows how they change under feedback transformations. Its proof is a straightforward computation that we detail in Appendix A.

Lemma 1. Consider a control-ane system Σ = (f, g) with structure functions (k 1 , k 2 , k 3 ) and

(λ 1 , λ 2 , λ 3 ). Then, the following relations hold:

L f (λ 1 ) = -k 2 λ 1 -L g (λ 1 k 3 ) , (7a) L f (λ 2 ) -λ 3 k 1 + L g (k 1 ) = -k 2 λ 2 -L g (λ 2 k 3 ) , (7b) L f (λ 3 ) -λ 2 = -k 3 λ 1 -L g (k 2 ) -L g (λ 3 k 3 ) . (7c)
Under a feedback transformation f → f = f + gα and g → g = gβ, where α and β are smooth scalar functions satisfying β ̸ = 0, the structure functions are transformed by

k1 = k 1 + L [g,f ] (α) + 1 β (L f (γ) + αL g (γ) -γL g (α)) + k2 γ β + k3 L [g,f ] (β) + L g (γ) -γL g (ln(β)) , k2 = k 2 -L f (ln(β)) -γ β -αL g (ln(β)) + k3 L g (β) , k3 = 1 β (k 3 -α) , (8) 
λ1 = β 2 λ 1 , λ2 = βλ 2 -βλ 1 α + γλ 3 -L [g,f ] (β) -L g (γ) + 2γL g (ln(β)) , λ3 = βλ 3 + L g (β) , (9) 
where γ = L f (β) + αL g (β) -βL g (α).

Proof of Proposition 3. Consider Σ = (f, g) whose structure functions are (k 1 , k 2 , k 3 ) and (λ 1 , λ 2 , λ 3 ).

By equations ( 8) and ( 9) we have that under feedback transformations β k3 = k 3 -α and λ1 = β 2 λ 1 . Hence, choosing α = k 3 we obtain that the transformed pair ( f , g), where f = f + gk 3 , is semicanonical. Moreover, additionally choosing β = |λ 1 | -1/2 , recall that λ 1 ̸ = 0 from assumption (A2), yields a canonical pair (f c , g c ) = ( f , g), where g = βg. Clearly, the singular vector eld f s = f c is uniquely dened, but the canonical vector eld g c is unique up to g c → ±g c .

Observe that for the canonical pair (f c , g c ) we additionally have k 2 ≡ 0, due to (7a). Thus, the canonical pair (f c , g c ) satises the following decomposition (renaming k 1 to κ, λ 1 to ε, λ 2 to µ, λ 3 to ν)

[f c , [f c , g c ]] = κg c , [g c , [g c , f c ]] = εf c + µg c + ν [g c , f c ] , ( 6') 
where ε = ±1. Moreover, using equations (7b) and (7c) we deduce that κ, µ, and ν are related by

L fc (µ) -νκ + L gc (κ) = 0 (7b') L fc (ν) -µ = 0, (7c')
from which we deduce that the feedback invariants κ and ν are associated via

L 2 fc (ν) -νκ + L gc (κ) = 0. (10) 
Therefore, a canonical pair identies explicitly a discrete invariant ε = ±1 and two constructible feedback invariant functions κ and ν called, respectively, the curvature and the centro-ane curvature by analogy with Serres' work [START_REF] Serres | On Curvature and Feedback Classication of Two-Dimensional Optimal Control Systems[END_REF]; see also [START_REF] Wilkens | Centro-Ane Geometry in the Plane and Feedback Invariants of Two-State Scalar Control Systems[END_REF]. Observe that due to (7c') above, µ is determined by ν. Moreover, the curvature κ determines the centro-ane curvature ν up to a ane part; i.e. if f c is rectied on ∂ ∂x , then ν is determined by κ via (10) up to two functions ν 1 and ν 0 satisfying L fc (ν i ) = 0.

Remark 3. A canonical pair is unique up to g c → -g c . Hence the centro-ane curvature ν is a feedback equivariant up to the involution ν → -ν (which does not inuence our conditions below). We will get back to that subtlety in Proposition 6, where we will construct several normal forms. On the other hand, the curvature κ is a true feedback invariant (actually, a feedback equivariant that changes as ϕ * κ under a dieomorphism ϕ).

For a given control-ane system Σ c = (f c , g c ), given by a canonical pair, we will denote by (ε, κ, ν) the triple of invariants. Although the canonical pair can be constructed without much work, for the sake of completeness, we give the expression of (ε, κ, ν) for an arbitrary control-ane system. In particular, observe that our formula for the curvature κ generalises the one given in [3, p. 376], where k 3 is already normalised to 0.

Proposition 4 (Invariants of control-ane systems). Consider a control-ane system Σ = (f, g) on a 3-dimensional state-space manifold, and with scalar control, and let (k 1 , k 2 , k 3 ) and (λ 1 , λ 2 , λ 3 ) be structure functions dened by [START_REF] Dubins | On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents[END_REF]. Then, the invariants (ε, κ, ν) are given by:

ε = sgn (λ 1 ) , κ = k 1 + 1 2 L f (k 2 -L g (k 3 )) + 1 4 (k 2 -L g (k 3 )) 2 + L [g,f ] (k 3 ) + 1 2 k 3 L g (k 2 -L g (k 3 )) , and ν = |λ 1 | -1/2 λ 3 - 1 2 L g (ln |λ 1 |) . (11) 
Our formula for the curvature κ is, indeed, a generalisation of that in [START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF] because if k 3 = 0 (i.e. we suppose that f is the singular vector eld f s ), then [START_REF] Jakubczyk | Vector Fields with Distributions and Invariants of ODEs[END_REF] 

reads κ = k 1 + 1 2 L f (k 2 ) + 1 4 (k 2 ) 2 ,
that is to say, exactly as the formula given by Agrachev [START_REF] Agrachev | Feedback-Invariant Optimal Control Theory and Dierential Geometry, II. Jacobi Curves for Singular Extremals[END_REF][START_REF] Agrachev | Control Theory from the Geometric Viewpoint[END_REF].

Proof. Consider a pair (f, g) with structure functions (k 1 , k 2 , k 3 ) and (λ 1 , λ 2 , λ 3 ). To deduce the expression of the invariants (ε, κ, ν), we apply equations ( 8) and ( 9) with α = k 3 and β = |λ 1 | -1/2 , namely the feedback transformation that constructs the canonical pair. We detail the computation for κ and left the computation for ν to the reader. Recall, that applying a feedback to construct the canonical pair, we obtain as a by-product k2 = 0 (see the proof of Proposition 3). First we have,

γ = - 1 2 |λ 1 | -1/2 L f (Λ) - 1 2 k 3 |λ 1 | -1/2 L g (Λ) -|λ 1 | -1/2 L g (k 3 ) = |λ 1 | -1/2 - 1 2 L f (Λ) - 1 2 k 3 L g (Λ) -L g (k 3 ) ,
where Λ = ln |λ 1 |. Second, using k2 = 0 we deduce

k 2 = - 1 2 L f (Λ) - 1 2 k 3 L g (Λ) + |λ| 1/2 γ = -L f (Λ) -k 3 L g (Λ) -L g (k 3 ) .
Therefore, inserting the last expression of k 2 into γ, we get γ =

1 2 |λ 1 | -1/2 (k 2 -L g (k 3 )). Now the curvature reads κ = k1 , i.e κ = k 1 + L [g,f ] (k 3 ) + |λ 1 | 1/2 1 2 L f |λ 1 | -1/2 (k 2 -L g (k 3 )) + 1 2 k 3 L g |λ 1 | -1/2 (k 2 -L g (k 3 )) - 1 2 |λ 1 | -1/2 (k 2 -L g (k 3 )) L g (k 3 ) , = k 1 + L [g,f ] (k 3 ) - 1 2 (k 2 -L g (k 3 )) L g (k 3 ) + 1 2 |λ 1 | 1/2 |λ 1 | -1/2 L f (k 2 -L g (k 3 )) - 1 2 (k 2 -L g (k 3 )) |λ 1 | -3/2 L f (|λ 1 |) + 1 2 |λ 1 | 1/2 k 3 |λ 1 | -1/2 L g (k 2 -L g (k 3 )) - 1 2 (k 2 -L g (k 3 )) |λ 1 | -3/2 L g (|λ 1 |) = k 1 + L [g,f ] (k 3 ) - 1 2 (k 2 -L g (k 3 )) L g (k 3 ) + 1 2 L f (k 2 -L g (k 3 )) - 1 4 (k 2 -L g (k 3 )) L f (Λ) + 1 2 k 3 L g (k 2 -L g (k 3 )) - 1 4 (k 2 -L g (k 3 )) k 3 L g (Λ) = k 1 + L [g,f ] (k 3 ) + 1 2 L f (k 2 -L g (k 3 )) + 1 2 k 3 L g (k 2 -L g (k 3 )) - 1 4 (k 2 -L g (k 3 )) (L f (Λ) + L g (Λ) + 2L g (k 3 )) = k 1 + 1 2 L f (k 2 -L g (k 3 )) + 1 4 (k 2 -L g (k 3 )) 2 + L [g,f ] (k 3 ) + 1 2 k 3 L g (k 2 -L g (k 3 )) .
Now consider a trivial system, whose state (x, y, w) belongs to a 3-dimensional manifold M, (T ) :

   ẋ = F 1 (w) ẏ = F 2 (w) ẇ = u , (x, y, w) ∈ M, u ∈ R.
Notice that (T ) is, in general, not given by a canonical pair but is given by a semi-canonical pair since [f, [f, g]] = 0. Clearly, for trivial systems we have κ = 0, but the converse is not true as discovered in [START_REF] Serres | Control Systems of Zero Curvature Are Not Necessarily Trivializable[END_REF] and as we will show in the following theorem.

Theorem 3 (Characterisation of trivial systems). Consider a control-ane system Σ = (f, g) together with its structure functions κ and ν. Then, Σ is locally trivialisable if and only if its canonical form

Σ c = (f c , g c ) satises κ = 0, L fc (ν) = 0, and L [fc,gc] (ν) = 0. ( 12 
)
Observe that the conditions of ( 12) can explicitly be tested on the control-ane system Σ = (f, g). Indeed, with the help of Proposition 3, we explicitly construct the canonical pair (f c , g c ) of Σ for which the invariants κ and ν can be computed by algebraic operations only. Another way to test condition [START_REF] Respondek | Nonlinearizable Single-Input Control Systems Do Not Admit Stationary Symmetries[END_REF] on an arbitrary control-ane system Σ = (f, g) is to compute the invariants κ and ν using [START_REF] Jakubczyk | Vector Fields with Distributions and Invariants of ODEs[END_REF] and then to evaluate [START_REF] Respondek | Nonlinearizable Single-Input Control Systems Do Not Admit Stationary Symmetries[END_REF] with f c = f + gk 3 and g c = |λ 1 | -1/2 g.

Proof. We begin with necessity and suppose that Σ is trivialisable. Then, (T ) is given by f = F 1 (w) ∂ ∂x + F 2 (w) ∂ ∂y and g = ∂ ∂w (which, a priori, is not a canonical pair), whose structure functions are k 1 = k 2 = k 3 = 0, λ 1 = λ 1 (w), λ 2 = 0, and λ 3 = λ 3 (w). In particular, observe that λ 1 and λ 3 satisfy

L f (λ 1 ) = L [g,f ] (λ 1 ) = 0 and L f (λ 3 ) = L [g,f ] (λ 3 ) = 0.
As in the proof of Proposition 3, to transform the pair (f, g) of (T ) into the canonical pair (f c , g c ) we use β = |λ 1 | -1/2 , which therefore satises L f (β) = 0 and L [g,f ] (β) = 0. Now, using equations ( 8) and ( 9) of Lemma 1, we calculate the structure functions of (f c , g c ) = (f, gβ) which are κ = 0, ε = ±1, μ = 0, and ν = λ3 = βλ 3 + L g (β). Hence, for the canonical pair (f c , g c ) of (T ) we have

L fc (ν) = βL f (λ 3 ) + L f (L g (β)) = βL f (λ 3 ) + L g (L f (β)) -L [g,f ] (β) = 0, L [gc,fc] (ν) = βL [g,f ] (ν) = β L [g,f ] (λ 3 ) + L [g,f ] (L g (β)) = β L g L [g,f ] (β) -L [g,[g,f ]] (β) = β -λ 1 L f (β) -λ 3 L [g,f ] (β) = 0,
and the necessity of ( 12) is proved. Now, conversely, suppose that Σ c , given by its canonical pair (f c , g c ), satises [START_REF] Respondek | Nonlinearizable Single-Input Control Systems Do Not Admit Stationary Symmetries[END_REF]. First, due to Lemma 2 of Appendix B, we apply a dieomorphism (x, y, w) = ϕ(ξ) that simultaneously recties the distribution F = span {f c , [g c , f c ]} and the vector eld g c , that is ϕ * F = span ∂ ∂x , ∂ ∂y and ϕ * g c = ∂ ∂w .

In those coordinates, we have

f c = f 1 ∂ ∂x + f 2 ∂ ∂y , with f i = f i (x, y, w), and we have ν = ν(w) since L fc (ν) = L [gc,fc] (ν) = 0 and f c ∧ g c ∧ [g c , f c ] ̸ = 0.
Therefore, using relation (6') we deduce that f c satises the following two equations (notice that equation (7c') together with L fc (ν) = 0 imply that µ = 0)

[f c , [f c , g c ]] = 0 and [g c , [g c , f c ]] = εf c + ν(w) [g c , f c ] .
The second equation reads

∂ 2 f c ∂w 2 = εf c + ν(w) ∂f c ∂w , (13) 
and, interpreted as a second order linear ODE with respect to w and with parameters (x, y), admits local solutions of the form

f c (x, y, w) = F 1 (w)   a 1 a 2 0   + F 2 (w)   b 1 b 2 0   = F 1 (w)A + F 2 (w)B. (14) 
In ( 14), F 1 (w) and F 2 (w) are smooth fundamental solutions functions of (13) (i.e. F 1 (w 0 ) = 1, F ′ 1 (w 0 ) = 0, F 2 (w 0 ) = 0, and F ′ 2 (w 0 ) = 1) and a i = a i (x, y) and b i = b i (x, y),

for i = 1, 2, so A = a 1 ∂ ∂x + a 2 ∂ ∂y and B = b 1 ∂ ∂x + b 2 ∂
∂y are smooth vector elds on R 2 equipped with coordinates (x, y). Using the commutativity of f c and [g c , f c ] we deduce that

F 1 A + F 2 B, F ′ 1 A + F ′ 2 B = F 1 F ′ 2 -F ′ 1 F 2 [A, B] = 0. By F 1 F ′ 2 -F ′ 1 F 2 ̸ = 0 (since f c ∧ [g c , f c ] ̸ = 0)
, we conclude that [A, B] = 0 and, therefore, there exists a local dieomorphism ψ(x, y) that simultaneously rectify A and B (seen as vector elds on R 2 ). For simplicity, we still denote the new coordinates by (x, y), i.e. we have ψ * A = ∂ ∂x and ψ * B = ∂ ∂y . In coordinates (x, y, w), the vector elds (f c , g c ) take the form

f c = F 1 (w) ∂ ∂x + F 2 (w) ∂ ∂y and g c = ∂ ∂w
and therefore we conclude that the system Σ c = (f c , g c ) is trivial.

Remark that in our proof we start with a canonical pair (f c , g c ) and we render it trivial by constructing a suitable local coordinate system.

Remark 4. The previous theorem was rst discovered by Serres in [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF]. In the proof of [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF]Theorem 4.3.3] (but also in [START_REF] Serres | On Curvature and Feedback Classication of Two-Dimensional Optimal Control Systems[END_REF]Theorem 4.3] and in [START_REF] Serres | Control Systems of Zero Curvature Are Not Necessarily Trivializable[END_REF]Theorem 3.4]), he shows, using his notation, that α 2 = a 2 (u, q 2 ) -q 1 and ∂a 2 ∂q 2 = b(u) and then consider the case α 2 = a 2 (u) -q 1 and not the general case α 2 = b(u)q 2 + a 2 (u) -q 1 . The proof of [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF]Theorem 4.3.3], given for the case b ≡ 0 (which, using our notation, is equivalent to ν ≡ 0), still provides an inspiring intuition to treat the general case, as done in our proof.

In the following proposition, we express the structure functions of a trivial system (T ) and give two canonical forms of control-ane system that are trivialisable. Both canonical forms are expressed using the canonical pair but in dierent coordinate systems. For two smooth scalar functions F (w) and G(w), we dene their Wronskian as W(F, G) = F ′ G -F G ′ . Recall that for any control-ane system Σ = (f, g) satisfying (A1) and (A2) we dened, via [START_REF] Dubins | On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents[END_REF], structure functions k 1 , k 2 , k 3 and λ 1 , λ 2 , λ 3 . Proposition 5. Consider a control-ane system Σ = (f, g) and suppose that it satises conditions (12) of Theorem 3. Then, locally, the following hold (i) Σ admits the normal form (T ), that is,

Σ T :    ẋ = F 1 (w) ẏ = F 2 (w) ẇ = u whose structure functions are k 1 = k 2 = k 3 = 0 and λ 1 = -W(F ′ 1 ,F ′ 2 ) W(F 1 ,F 2 ) , λ 2 = 0, λ 3 = W ′ (F 1 ,F 2 ) W(F 1 ,F 2 ) . (ii) Σ admits the canonical forms Σ T,1 c and Σ T,2 c
given, respectively, by

Σ T,1 c :    ẋ = F c,1 (w) ẏ = F c,2 (w) ẇ = u and Σ T,2 c :    ẋ = 1 + εyu ẏ = (x -ν(w)y) u ẇ = u , where W(F ′ c,1 ,F ′ c,2 ) W(F c,1 ,F c,2
) ≡ ±1 and whose invariants are

(ε 1 , κ 1 , ν 1 ) = - W(F ′ c,1 ,F ′ c,2 ) W(F c,1 ,F c,2 ) , 0, W ′ (F c,1 ,F c,2 ) W(F c,1 ,F c,2 )
and (ε 2 , κ 2 , ν 2 ) = (ε, 0, ν(w)), respectively. Remark 5. Neither the structure functions k i nor λ i are feedback invariant. Item (i) asserts that for the normal form Σ T = (f, g), all k i = 0, so the pair (f, g) is semi-canonical (thus, actually, f = f s ) but, in general, it is not canonical since λ 1 is a non trivial function. Item (ii) assures that, given Σ T = (f, g), we can always choose w c -coordinate, as w = ϕ(w c ), such that

F c,i = ϕ * F i satisfy W(F ′ c,1 ,F ′ c,2 )
W(F c,1 ,F c,2 ) = ±1 and the corresponding pair (f c , g c ), where

f c = F c,1 ∂ ∂x + F c,2
∂ ∂y and g c = βg, with β = ϕ ′ , is canonical. Proof. The normal form presented in item (i) is a direct consequence of Theorem 1 and it is a straightforward computation to derive the expressions of the structure functions. To obtain the canonical form Σ T,1 c of item (ii), we consider Σ T and dene g c = βg, where β = |λ 1 | -1/2 , see Proposition 3. We choose w = ϕ( ŵ) satisfying (ϕ -1 ) ′ β = 1. Then in the coordinates (x, y, ŵ), the system Σ T takes the form Σ T,1 c , where F c,i = ϕ * F i and whose third equation reads ẇ = û.

Finally, the canonical form Σ T,2 c is a special case of item (i) of Proposition 6 presented in the next section.

The two presented canonical forms are somehow dual to each other. Indeed, both are given in terms of the canonical pair (f c , g c ) of Σ and for Σ T,1 c we adopt coordinates for which the vector eld g 1 c is rectied, whereas for Σ T,2 c the coordinates are chosen so that f 2 c is rectied. The two normal forms carry complementary informations about the control-ane system Σ. The canonical form Σ T,1 c exhibits the trivial nature of Σ, but its invariants ε and ν are not immediately visible, and the canonical form Σ T,2 c explicitly identies the invariants ε = ±1 and ν but hides the triviality of the system. The two canonical forms show that trivial systems depend on a smooth function of one variable: for Σ T,2 c it is clearly ν(w) and for Σ T,1 c it is the function F c,2 (w) that determines F c,1 (w) (or, equivalently, the other way around) through the ODE

W(F ′ c,1 ,F ′ c,2 ) W(F c,1 ,F c,2 ) = ±1.
4 Normal forms of at and centro-at control-ane systems on 3Dmanifolds

We have shown that the curvature κ and the centro-ane curvature ν are two functional feedback equivariants of control-ane systems, hence, their properties dene non-equivalent classes of systems.

In this section, we propose a normal form for each class of control-systems that is presented in Table 2 below. The presented classes describe all the cases for which the curvature κ and the centro-ane curvature ν satisfy κν ≡ 0 together with the particular sub-cases for which, additionally, either κ or ν

is constant. Notation Name Properties Σ ε,κ=0,ν Flat Curvature κ vanishes Σ ε,κ,ν=0 Centro-at Centro-ane curvature ν vanishes Σ ε,κ ′ =0,ν=0
Flat-constant Curvature κ is constant and the centro-ane curvature ν vanishes Σ ε,κ=0,ν ′ =0 Centro-at-constant Curvature κ vanishes, and the centro-ane curvature ν is constant

Σ ε,κ=0,ν=0
Completely at Curvatures κ and ν vanish Table 2: Nomenclature of subclasses of at and centro-at control-ane systems Each class of control system presented in the above table is denoted by an upper index I = (a, b, c), which is dened as follows. The rst element is always ε = ±1 and emphasises the dependence of the normal forms on the invariant ε; the second element is either κ = 0 to say that the curvature vanishes or κ ′ = 0 to express that the curvature is constant (this notation is a bit abusive because κ is not a function of one variable in general); nally, the third index is either ν = 0 or ν ′ = 0 with the same interpretation as previously. The following proposition provides a normal form Σ I c for each class of control-ane systems Σ I , where the upper multi-index I is one of the ve given in Table 2. The lower index c indicates that all normal forms Σ I c are expressed using their canonical pairs. Recall that the structure function ν is unique up to its sign, i.e. changing g c → -g c yields ν → -ν, hence in normal forms below we suppose that ν ≥ 0.

Proposition 6 (Normal forms of at control-ane systems). Consider a control-ane system Σ = (f, g) together with its invariants ε, κ, and ν. Then, the following statements hold locally (all normal forms below are represented by a canonical pair (f c , g c ) and considered around an arbitrary point (x 0 , y 0 , w 0 ) ∈ R 3 ).

(i) If κ = 0, then Σ is locally feedback equivalent to whose invariants are ε, κ = κ(x, y), ν = 0, and the function r(x, y) satises r > 0 and the following non-linear partial dierential equation

-r(x, y) 2 ∂ 2 ∂x 2 -ε ∂ 2 ∂y 2 (ln r(x, y)) = κ(x, y). (15) 
(iii) If κ and ν are constant then

κν = 0, (16) 
i.e. at least one of them vanishes.

(iv) If κ = 0 and ν is constant, then Σ is locally feedback equivalent to

(a) If ε = 1, then Σ +,κ=0,ν ′ =0 c :      ẋ = e νw e w √ ν 2 +4 ẏ = e νw e -w √ ν 2 +4 ẇ = 1 2 u
, where ν ≥ 0; 

(d) If ε = -1 and 0 ≤ ν < 2, then Σ -,κ=0,ν ′ =0,- c :        ẋ = e νw cos w √ 4 -ν 2 ẏ = e νw sin w √ 4 -ν 2 ẇ = 1 2 u
Moreover, for the four normal forms above, ε, κ = 0, and ν are complete invariants.

(v) If ν = 0 and κ is constant, then Σ is locally feedback equivalent to

Σ ε,κ ′ =0,ν=0 c :    ẋ = 1 -κ 4 x 2 -εy 2 c ε (w) ẏ = 1 -κ 4 x 2 -εy 2 s ε (w) ẇ = -κ 2 (y c ε (w) -x s ε (w)) + u ,
whose complete invariants are ε, κ, and ν = 0.

(vi) If κ = 0 and ν = 0, then Σ is locally feedback equivalent to

Σ ε,κ=0,ν=0 c :    ẋ = c ε (w) ẏ = s ε (w) ẇ = u .
Before presenting a proof for those normal forms, we give some remarks about them. For item (i) we adopt coordinates, where the vector eld f c is rectied, whereas for the other normal forms we choose coordinates in which the vector eld g c is rectied. The rst normal form Σ ε,κ=0,ν c of at control-ane systems describes the most general form of a system for which the curvature κ vanishes.

On the other hand, the normal form Σ ε,κ,ν=0 c of item (ii), describes systems for which the centro-ane curvature ν vanishes. All other items are then special cases of those two general normal forms.

Recall that ν is unique up to its sign, that is why in item (iv) we have ν ≥ 0 for (iv)-(a) to (iv)-(d).

It is remarkable that if κ and ν are constant (hence true invariants) then at least one of them is zero as asserted in item (iii). Moreover, relation ( 16) already appeared in [START_REF] Wilkens | Centro-Ane Geometry in the Plane and Feedback Invariants of Two-State Scalar Control Systems[END_REF], where the four families of normal forms given by κ = 0 and ν constant were listed (but the non-invariance of the sign of ν was not discussed there). The two normal forms of (vi) with ε = ±1 and κ = ν = 0 are , respectively, given by Σ +,κ=0,ν=0 Proof. For each item, we consider a control-ane system Σ c = (f c , g c ) given by the canonical pair and with ε = ±1 and structure functions κ and ν.

(i) Since κ = 0, using relation (6'), we conclude that the vector elds f c and [f c , g c ] are commuting. Notice that the signature of ḡ is (+, -sgn (ε)), hence ḡ is denite for ε = -1 and indenite for ε = 1. Since all metrics on 2-dimensional manifolds are locally conformally at, we conclude that there exists an isometry (x, y) = ψ(x, ȳ) such that ḡ = ψ * g, where g = ϱ(x, y)(dx 2 -εdy 2 ) with ϱ > 0. which can be expressed in the form of ( 15).

(iii) If κ and ν are constants, then due to relation [START_REF] Jakubczyk | Equivalence and Invariants of Nonlinear Control Systems[END_REF], we immediately conclude ( 16).

(iv) Suppose that κ = 0 and ν is constant, then Σ satises condition (12) of Theorem 3 and thus Σ is locally trivialisable. Using the results of item (ii) of Proposition 5, we take Σ in the form of

Σ T,1 c for which f c = F c,1 (w) ∂ ∂x + F c,2 ( 
w) ∂ ∂y and g c = ∂ ∂w form a canonical pair. Using (6'), we conclude that the functions F c,i , for i = 1, 2, satisfy the following second order linear ordinary dierential equation

F ′′ c,i (w) = εF c,i (w) + νF ′ c,i (w). (18) 
Solutions are dictated by the sign of the discriminant ∆ = ν 2 +4ε of the characteristic polynomial of the ODE. Moreover, the roots of the characteristic polynomial are r 1/2 = ν± √ ∆ 2 . Recall that the sign of ν is not invariant and thus by choosing w suitably we can always get ν ≥ 0. Moreover, it is a trivial calculation to check that the solutions given below are fundamental solutions of (18), i.e. we just need to compute the Wronskian at w 0 . (v) Assume that κ is constant and ν = 0, then we rene the normal form Σ ε,κ,ν=0 c of item (ii). We recognize that equation ( 15) satised by r(x, y) describes the curvature (in the usual dierential geometry sense) of the metric g = 1 r 2 (dx 2 -εdy 2 ). By assumption, the curvature of g is constant (equal to -κ) and by Minding's theorem, surfaces with the same constant curvature are locally isometric. Therefore, there exists an isometry (x, ỹ) = ψ(x, y) such that g = ψ * g with

g = 1 1 -κ 4 (x 2 -εỹ 2 ) 2 dx 2 -εdỹ 2 ,
which is also of curvature -κ. The action of the isometry on ( ẋ, ẏ) can be compensated by applying w → w + h(x, y), for a suitable function h, thus we obtain that the system takes the form of Σ ε,κ,ν=0 c with r(x, y) = 1 -κ 4 x 2 -εy 2 , i.e. we get Σ ε,κ ′ =0,ν=0 c .

(vi) The normal forms Σ ε,κ=0,ν=0 c is a special case of item (v) with κ = 0.

Conclusions and Perspectives

In this paper, we have analysed in details the notion of triviality adapted to the context of control-ane systems. We proposed two new characterisations of trivial control-ane system, one of them is based on the existence of an abelian subalgebra of the Lie algebra of innitesimal symmetries. In particular, we gave a normal form of trivial control-ane systems for which the Lie algebra of innitesimal symmetries has a transitive almost abelian Lie subalgebra. In the future, we will be interested in extending our result to the case of multi-input systems and we will try to propose other characterisation of triviality that are purely geometric. In the second part of the paper, we have revisited results due to Serres [START_REF] Serres | Geometry and Feedback Classication of Low-Dimensional Non-Linear Control Systems[END_REF] and we give novel proof of his characterisation of trivial systems on 3-dimensional manifolds with scalar inputs. In particular, our characterisation uses a discrete invariant ε = ±1 and two well-dened functional invariants of feedback transformations: the curvature κ (introduced by Agrachev [START_REF] Agrachev | Feedback-Invariant Optimal Control Theory and Dierential GeometryI. Regular Extremals[END_REF]) and the centro-ane curvature ν (studied by Wilkens [START_REF] Wilkens | Centro-Ane Geometry in the Plane and Feedback Invariants of Two-State Scalar Control Systems[END_REF]). We show that those invariants can explicitly be computed for any control-ane system and that a canonical pair of vector elds (f c , g c ), on which κ and ν appear explicitly, can also be constructed with a purely algebraically dened feedback transformation.

Then, we extended the results of Serres and Wilkens by giving several normal forms of control-ane systems. In the future, our goal is two-folds: rst we will be interested in the question of how to enlarge the triple (ε, κ, ν) to a set of complete invariants of control-ane systems (on 3D manifolds with scalar control). Identifying a set of complete invariants would be helpful in obtaining normal forms of control-ane system in dimension three. Second, we will be interested in generalising our characterisation of trivial control-ane systems to the multi-input case, in particular the notion of curvature of dynamics pairs, as proposed in [START_REF] Jakubczyk | Vector Fields with Distributions and Invariants of ODEs[END_REF], seems promising. B Technical lemma for the proof of Theorem 3

The suciency part of the proof of Theorem 3 relies on the existence of a dieomorphism that simultaneously recties the distribution span {f c , [g c , f c ]} and the vector eld g c as proven by the following lemma.

Lemma 2. Consider a control-ane system Σ c = (f c , g c ) given by its canonical pair and assume set Proof. First, we prove that there exists smooth solutions h for the system L fc (h) = 0, L [gc,fc] (h) = 0, and L gc (h) = 1.

We need to check three integrability conditions: 

Σ

  λ , Σ 0,k λ Normal forms of trivial systems having an almost abelian subalgebra of innitesimal symmetries; see Theorem 2 and Proposition 2.

ν 1 0 ν 1 0 ν 1 0 ν 1 0 ν 1

 101010101 a(y, w)u ẏ = (x + b(y, w)) u ẇ = c(y, w)u , whose invariants are ε, κ = 0, and ν = ν 1 (y, w)x + ν 0 (y, w), and the functions a, b and c satisfy the following dierential equations ∂a ∂y = ε + ν 1 (y, w)a(y, w), a(y 0 , w) = 0, ∂b ∂y = ν 1 (y, w)b(y, w) -ν 0 (y, w), b(y 0 , w) = 0, ∂c ∂y = ν 1 (y, w)c(y, w), c(y 0 , w) = 1, and thus are given by a(y, w) = ε (t, w)dt dτ exp y y (τ, w)dτ , b(y, w) = -y y 0 ν 0 (τ, w) exp -τ y (t, w)dt dτ exp y y (τ, w)dτ , c(y, w) = exp y y (τ, w)dτ .

(

  ii) If ν = 0, then Σ is locally feedback equivalent to (x, y) c ε (w) ẏ = r(x, y) s ε (w) ẇ = ε ∂r ∂y c ε (w) + ∂r ∂x s ε (w) + u ,

( b )

 b If ε = -1 and ν > 2, then Σ -,κ=0,ν ′ =0,+ c : If ε = -1 and ν = 2, then Σ -,κ=0,ν ′ =0,0

  (w) ẏ = sin(w) ẇ = u correspond to hyperbolic and elliptic systems without parameters and have been extensively analysed and dierently characterised in[START_REF] Schmoderer | Conic Nonholonomic Constraints on Surfaces and Control Systems[END_REF][START_REF] Schmoderer | Null-forms of conic systems in R 3 are determined by their symmetries[END_REF].

ν 1 0 ν 1 0 ν 1 0 ν 1 0 ν 1

 101010101 Therefore, we can rectify them simultaneously to get f c = ∂ ∂x and [f c , g c ] = ∂ ∂y . Afterwards, we determine the form of the vector eld g c . First, it satises ∂ ∂x , g c = ∂ ∂y and thus we immediately conclude g c = a(y, w) ∂ ∂x + (x + b(y, w)) ∂ ∂y + c(y, w) ∂ ∂w . Moreover, assumptions (A1) and (A2) imply that c ̸ = 0 and ∂ ∂y a c ̸ = 0. Second, for g c we have g c , -∂ ∂y = ε ∂ ∂x + µg c -ν ∂ ∂y , where the functions µ and ν satisfy (7b') and (7c') and therefore ν = ν 1 (y, w)x + ν 0 (y, w) and µ = ν 1 (y, w). Hence, the functions a, b, and c of g c satisfy ∂a ∂y (y, w) = ε + ν 1 (y, w)a(y, w), ∂b ∂y (y, w) = ν 1 (y, w)b(y, w) -ν 0 (y, w), ∂c ∂y (y, w) = ν 1 (y, w)c(y, w). Solutions of those equations are, respectively, (t, w)dt dτ + A(w) exp y y (τ, w)dτ , (17a) b(y, w) = -y y 0 ν 0 (τ, w) exp -τ y (t, w)dt dτ + B(w) exp y y (τ, w)dτ , (17b) c(y, w) = C(w) exp y y (τ, w)dτ .

where Ā = a 1 ∂∂ x + a 2 ∂∂ ȳ + a 3 ∂∂ 1 ∂∂ x + b 2 ∂∂ ȳ + b 3 ∂∂a 1 ∂∂ x + a 2 ∂∂ ȳ and B = b 1 ∂∂ x + b 2 ∂∂

 1231231212 Updating the coordinates, we can set C(w) = 1, A(w) = B(w) = 0; and in those coordinates we obtain the normal form Σ ε,κ=0,ν c .(ii) Suppose that ν = 0 and choose coordinates (x, ȳ, w) such that g c = ∂ ∂ w . Then, by relation(6') we conclude thatf c = Ā(x, ȳ)c ε ( w) + B(x, ȳ)s ε ( w), c ε ( w) =e w√ ε + e - w , with a i = a i (x, ȳ), and B = b w , with b i = b i (x, ȳ) are smooth vector elds. By assumption (A1), we conclude that a 1 b 2 -a 2 b 1 ̸ = 0, hence Ā = ȳ form a moving frame of the tangent bundle of X = O/G, where O is an open subset of R 3 , in which the rectifying coordinates (x, ȳ, w) are dened, and G = span ∂ ∂ w . We dene a metric ḡ on X by declaring ( Ā, B) orthonormal, i.e.ḡ( Ā, Ā) = 1, ḡ( Ā, B) = 0, and ḡ( B, B) = -ε.

where r = 1 √ϱ

 1 In the coordinates (x, y), both the pair ( Ã, B), with à = ψ * Ā and B = ψ * B, and ∂ ∂x , ∂ ∂y form an orthornormal frame for g so we have ( Ã, B) = r(x, y)I(x, y) and I(x, y) is a a linear isometry, i.e. it belongs to the (pseudo)-orthonormal group O(1, -ε). Using a suitable change of the variable w = w + h(x, y) we can get rid of I(x, y).

  Finally, in coordinates (x, y, w), the vector eld f c of the control system takes the formf c = r(x, y)c ε (w) ∂ ∂x + r(x, y)s ε (w) ∂ ∂y + (a(x, y)c ε (w) + b(x, y)s ε (w)) ∂ ∂w .We now use the structure equations (6') and deduce that necessarily a(x, y) = ε ∂r ∂y and b(x, y) ∂x 2 = κ(x, y).

2 )

 2 (a) If ε = +1, then ∆ > 0 for all ν ≥ 0. Solutions of[START_REF] Serres | On Curvature and Feedback Classication of Two-Dimensional Optimal Control Systems[END_REF] are given by (after normalising w with 1 F c,1 (w) = e νw e w √ ν 2 +4 and F c,2 (w) = e νw e -w √ ν 2 +4 , and we obtain the normal form Σ +,κ=0,ν ′ =0 c . (b) If ε = -1 and ν > 2, then ∆ > 0, and solving (18) gives

F c, 1

 1 (w) = e νw e w √ ν 2 -4 , and F c,2 (w) = e νw e -w √ ν 2 -4 , and we obtain the normal form Σ -,κ=0,ν ′ =0,+ c . (c) If ε = -1 and ν = 2, then ∆ = 0, and the solutions of (18) areF c,1 (w) = we w , and F c,2 (w) = e w , which gives Σ -,κ=0,ν ′ =0,0 c . (d) If ε = -1 and 0 ≤ ν < 2, then ∆ < 0, and the solutions of (18) are

F

  c,1 (w) = e νw cos w 4 -ν 2 , and F c,2 (w) = e νw sin w 4 -ν 2 , which gives Σ -,κ=0,ν ′ =0,- c .

βλ 3 + 1 β 2 (

 312 L g (β). Third, we havef , f , g = [f + gα, β [f, g] + γg] = β [f, [f, g]] + L f (β) [f, g] + L f (γ) g + γ [f, g] + αβ [g, [f, g]] + αL g (β) [f, g] -βL [f,g] (α) g + αL g (γ) g -γL g (α) g, = βk 1 + L f (γ) + βL [g,f ] (α) + αL g (γ) -γL g (α) g + (βk 2 -L f (β) -γ -αL g (β)) [g, f ] + (βk 3 -αβ) [g, [g, f ]] , = βk 1 + L f (γ) + βL [g,f ] (α) + αL g (γ) -γL g (α) g + (βk 2 -L f (β) -γ -αL g (β)) [g, f ] + βk 3 -αβ) g, g, f -βL g (β) [g, f ] + βL [g,f ] (β) g + βL g (γ) g -γL g (β) g , implying k3 = 1 β (k 3 -α).Next, continuing the computation (denoting h = k3 g, g, f ):f , f , g = βk 1 + L f (γ) + βL [g,f ] (α) + αL g (γ) -γL g (α) + k3 βL [g,f ] (β) + βL g (γ) -γL g (β) g + h + βk 2 -L f (β) -γ -αL g (β) -k3 βL g (β) [g, f ] + h = βk 1 + L f (γ) + βL [g,f ] (α) + αL g (γ) -γL g (α) + k3 βL [g,f ] (β) + βL g (γ) -γL g (β) g 1 β βk 2 -L f (β) -γ -αL g (β) -k3 βL g (β) g, f + γg + h, implying k2 = k 2 -L f (ln |β|) -γ β -αL g (ln |β|) -k3 L g (β) and nally k1 = 1 β βk 1 + L f (γ) + βL [g,f ] (α) + αL g (γ) -γL g (α) + k3 βL [g,f ] (β) + βL g (γ) -γL g (β) + k2 γ = k 1 + L [g,f ] (α) + 1 β L f (γ) + αL g (γ)-γL g (α) + k3 βL [g,f ] (β) + βL g (γ) -γL g (β) + k2 γ .

F

  = span {f c , [g c , f c ]}. If, the structure functions of Σ c satisfy the condition (12) of Theorem 3, then, there exists a dieomorphism (x, y, w) = ϕ(ξ) such that ϕ * F = span ∂ ∂x , ∂ ∂y and ϕ * g c = ∂ ∂w .

1 .

 1 L [fc,[gc,fc]] (h) = L fc L [gc,fc] (h) -L [gc,fc] (L fc (h)) = 0 and [f c , [g c , f c ]] = 0, so 0 = 0 and the rst condition holds.2. L [fc,gc] (h) = L fc (L gc (h)) -L gc (L fc (h)) = 0 and L [fc,gc] (h) = 0 so 0 = 0 and the second integrability condition holds.3. L [[gc,fc],gc](h) = L [gc,fc] (L gc (h)) -L gc L [gc,fc] (h) = 0 and [[g c , f c ] , g c ] = -εf c -ν [g c , f c ] .Therefore L [[gc,fc],gc] (h) = -εL fc (h) -νL [gc,fc] (h) = 0 and 0 = 0 the third condition holds.Take a smooth solution h of the above system, rename it ϕ 3 = h, and choose ϕ 1 , ϕ 2 such that dϕ 1 and dϕ 2 annihilate g c and are independent (they exist since g c ̸ = 0). The dieomorphism ϕ = (ϕ 1 , ϕ 2 , ϕ 3 ) = (x, y, w) is such that ϕ * F = span ∂ ∂x , ∂ ∂y and ϕ * g c = ∂ ∂w .

  Two vector elds f and g satisfying [f, g] = 0 are said to be commuting; since under dieomorphisms

ϕ : M → M the Lie bracket is transformed by [ϕ * f, ϕ * g] = ϕ * [f,

g], the commutativity property does not depend on coordinates. The celebrated Flow-box theorem (also called the "Straightening-out theorem" or the "Local linearisation lemma") asserts that on a given n-dimensional manifold M there exists a local coordinate system (x 1 , . . . , x n

Table 1 :

 1 Main notations for the paper

	2 Trivial control-ane systems
	In this section, we rst propose two new characterisations of trivialisable control-ane systems (with
	the state-space of arbitrary dimension and with an arbitrary number of controls); see Theorem 1 below.
	Second, we give a normal form of trivial systems whose Lie algebra of innitesimal symmetries possesses
	a transitive almost abelian Lie subalgebra; see Theorem 2 and Proposition 2 of this section.

A Detailed computations for Lemma 1 In this appendix, we detail the computation to obtain relations (7a)-(7c) between structure functions and we prove transformation rules [START_REF] Grizzle | The Structure of Nonlinear Control Systems Possessing Symmetries[END_REF] and ( 9) that show how the structure functions are changed under a feedback transformation. Consider a control-ane system Σ = (f, g) with structure functions (k 1 , k 2 , k 3 ) and (λ 1 , λ 2 , λ 3 ).

First, by applying the Jacobi identity to

We compute the left-hand-side and the right-hand-side separately:

And on the other hand we have

Identifying the terms in front of f , g, and [g, f ] we obtain equations (7a) to (7c). Now, we apply a feedback transformation of the form f = f + gα and g = gβ and we get rst

f ] (β) -βL g (γ) + γL g (β) + γ (βλ 3 + L g (β)) g + (βλ 3 + L g (β)) g, f , implying that λ1 = β 2 λ 1 , λ2 = βλ 2 -βλ 1 α + γλ 3 -L [g,f ] (β) -L g (γ) + 2γL g (ln |β|), and λ3 =