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Observations facilitate model evaluation and provide constraints that are relevant to

future predictions and projections. Constraints for uninitialized projections are generally

based onmodel performance in simulating climatology and climate change. For initialized

predictions, skill scores over the hindcast period provide insight into the relative

performance of models, and the value of initialization as compared to projections.

Predictions and projections combined can, in principle, provide seamless decadal to

multi-decadal climate information. For that, though, the role of observations in skill

estimates and constraints needs to be understood in order to use both consistently

across the prediction and projection time horizons. This paper discusses the challenges

in doing so, illustrated by examples of state-of-the-art methods for predicting and

projecting changes in European climate. It discusses constraints across prediction and

projection methods, their interpretation, and the metrics that drive them such as process

accuracy, accurate trends or high signal-to-noise ratio. We also discuss the potential

to combine constraints to arrive at more reliable climate prediction systems from years

to decades. To illustrate constraints on projections, we discuss their use in the UK’s

climate prediction system UKCP18, the case of model performance weights obtained

from the ClimatemodelWeighting by Independence and Performance (ClimWIP) method,

and the estimated magnitude of the forced signal in observations from detection and

attribution. For initialized predictions, skill scores are used to evaluate which models

perform well, what might contribute to this performance, and how skill may vary over

time. Skill estimates also vary with different phases of climate variability and climatic

conditions, and are influenced by the presence of external forcing. This complicates the

systematic use of observational constraints. Furthermore, we illustrate that sub-selecting

simulations from large ensembles based on reproduction of the observed evolution of

climate variations is a good testbed for combining projections and predictions. Finally,

the methods described in this paper potentially add value to projections and predictions

for users, but must be used with caution.
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climate modeling

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://www.frontiersin.org/journals/climate#editorial-board
https://doi.org/10.3389/fclim.2021.678109
http://crossmark.crossref.org/dialog/?doi=10.3389/fclim.2021.678109&domain=pdf&date_stamp=2021-06-09
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gabi.hegerl@ed.ac.uk
https://doi.org/10.3389/fclim.2021.678109
https://www.frontiersin.org/articles/10.3389/fclim.2021.678109/full


Hegerl et al. Consistent Observational Constraints on Predictions

INTRODUCTION

Information about future climate relies on climate model
simulations. Given the uncertainty in the future climate’s
response to external forcings and climate models’ persistent
biases, there is a need for coordinated multi-model experiments.
This need is addressed by the Coupled Model Intercomparison
Project (CMIP), proposing a uniform protocol to evaluate the
future climate. Currently, this protocol proposes to explore two
future timescales separately: firstly the evolution of the climate
toward the end of the century, and secondly the evolution
of the climate within the first decade ahead (Eyring et al.,
2016). Climate variations on the longer timescale are primarily
driven by the climate responses to different scenarios of socio-
economic development and resulting anthropogenic emissions
of greenhouse gases and aerosols (Gidden et al., 2019; see also
Forster et al., 2020). At decadal timescales on the other hand,
the internal variability of the climate system is an important
source of uncertainty, and part of the associated skill comes
from successfully initializing models with the observed state of
the climate. The two timescales are thus subject to different
challenges and are therefore addressed by distinct experimental
setups. In both cases, coordinated multi-model approaches are
necessary to estimate uncertainty from model simulations.

To account for internal variability, the size of individual
climate model ensembles has increased, so that there is a growing
need to extract the maximum information from these ensembles
and to grasp the opportunities associated with large ensembles
(e.g., Kay et al., 2015). In particular, treating eachmodel as equally
likely (the so-called one-model-one-vote approach) may not
provide the best information for climate decision making; This
demonstrates the need for a well-informed decision on choice
and processing of models for projections, while large ensembles
may overcome, at least in part, concerns about signal-to-noise
ratios in weighted ensembles (Weigel et al., 2010).

Furthermore, there is also a desire to provide decision makers
with seamless information on the time-scale from a season
to decades ahead. This involves the even more complex step
of combining ensembles from initialized predictions started
from observed conditions of near present-day with those from
projections, the latter of which are typically started from
conditions a century or more earlier. This paper discusses
available methods using observations to evaluate and constrain
ensemble predictions and projections, supporting the long-
term goal of a consistent framework for their use in seamless
predictions from years to decades.

Multiple techniques are available to constrain future
projections drawing on different lines of evidence and
considering different sources of uncertainty (e.g., Giorgi
and Mearns, 2002; Knutti, 2010; Knutti et al., 2017; Sanderson
et al., 2017; Lorenz et al., 2018; Brunner et al., 2020a,b; Ribes et al.,
2021). Models that explore the full uncertainty in parameter
space provide very wide uncertainty ranges (Stainforth, 2005),
motivating the need to use observational constraints. Usually
observational constraints are based on the assumption that
there is a reliable link between model performance compared to
observations over the historical era with future model behavior.

This link is expressed using emergent constraints, weights,
or other statistical approaches. For instance, this could mean
excluding or downweighting models which are less successful in
reproducing the climatological mean state or seasonal cycle. The
constraint can also be based on the variability, representation
of mechanisms or relationships between different variables, or
changes in multi-model assessments of future changes (e.g.,
Hall and Qu, 2006; Sippel et al., 2017; Donat et al., 2018), which
includes evaluation of the climate change magnitude in detection
and attribution approaches (e.g., Stott and Kettleborough,
2002; Tokarska et al., 2020b). In a similar manner, the risk of
experiencing an abrupt change in the subpolar North Atlantic
gyre has been constrained by the capability of CMIP5 climate
models to reproduce stratification in this region, which plays a
key role in the dynamical behavior of the ocean (Sgubin et al.,
2017). This is based on the fundamental idea that certain physical
mechanisms of climate need to be appropriately simulated for
the model to be “fit for purpose,” and consistent with this
thought, the Intergovernmental Panel on Climate Change
(IPCC) reports have consistently dedicated a chapter to climate
model evaluations. The IPCC has also drawn on observational
constraints from attribution to arrive at uncertainty estimates in
predictions both in assessment reports four (AR4) (Knutti et al.,
2008) and AR5 (Collins et al., 2013).

Many methods constraining projections have been evaluated
using model-as-truth approaches and several of them have been
part of a recent method intercomparison based on a consistent
framework (Brunner et al., 2020a). The authors found that there
is a substantial diversity in the methods’ underlying assumptions,
uncertainties covered, and lines of evidence used. Therefore, it is
maybe not surprising that the results of their application are not
always consistent, and that they tend to be more consistent for
the central estimate than the quantification of uncertainty. The
latter is important, as reliable uncertainty ranges are often key to
actionable climate information.

Emergent constraints is another highly visible research area
that makes use of relationships between present day observable
climate and projected future changes. Emergent constraints
rely on statistical relationships between present day, observable,
climate properties and the magnitude of future change. There is
currently effort within this community to discriminate between
those that are purely statistical from those where there is further
confirmational evidence to support their usage (e.g., Caldwell
et al., 2018, Hall et al., 2019). Efforts to identify consensus
or consolidate constraints from multiple, often conflicting,
emergent constraints have started to take place within the climate
sensitivity context (Bretherton and Caldwell, 2020, Sherwood
et al., 2020). However, these frameworks do not yet account
for common model structural errors that will likely lead such
assessments to an overly confident constraint (Sanderson et al.,
2021). The reliability of emergent constraints for general climate
projections is even less clear at this time (e.g., Brient, 2020), and
therefore, we do not discuss such constraints further here as it is
not clear how complete and reliable such constraints are.

For initialized predictions (Pohlmann et al., 2005; Meehl
et al., 2009, 2021; Yeager and Robson, 2017; Merryfield et al.,
2020; Smith et al., 2020), skill scores assess the model system’s
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performance in hindcasts compared to observations, allowing for
a routine evaluation of the prediction system that is unavailable to
projections. Multi-model studies on predictions have, however,
only recently started to emerge as more sets of initialized decadal
prediction simulations have become available as part of the
CMIP6 Decadal Prediction Project (DCPP; Boer et al., 2016).
Some studies merged CMIP5 and CMIP6 decadal prediction
systems to maximize ensemble size for optimal filtering of the
noise (e.g., Smith et al., 2020), or contrasted the multi-model
means of CMIP5 and CMIP6 to pinpoint specific improvements
in prediction skill from one CMIP iteration to the other (Borchert
et al., 2021). Attempts to explicitly contrast and explain the
decadal prediction skill of different model systems are yet very
rare (Menary and Hermanson, 2018). There are therefore no
methods of constraining or weighting multi-model ensembles of
decadal prediction simulations in the literature which we could
rely upon.

For these reasons, we provide in this paper a first exploration
of discriminant features of multi-model decadal prediction
ensembles with the aim of providing an indication which
inherent model features benefit, and which degrade skill.
We also discuss the contribution of forcing and internal
variability to decadal prediction skill over time, and show
how times of low and high skill (windows of opportunity;
Mariotti et al., 2020) can be used to constrain sources of skill
in space and time. We consider the cross-cutting relevance
of observational constraints and reflect on their consistency
across prediction and projection timescales and approaches. We
also pilot opportunities for building upon multiple methods
and investigate how observational constraints may be used in
uncertainty characterization in a seamless prediction. Finally, we
discuss the challenges in applying observational constraints to
predictions, where skill varies over time and may therefore not
be consistent across prediction timelines.

This paper examines the potential for observational
constraints in the three European SREX regions Northern
Europe (NEU), Central Europe (CEU) and Mediterranean
(MED) [see, e.g., Brunner et al. (2020a)]. Many of our results
will be transferable to other regions, although the signal-to-noise
ratio as well as the skill of initialized predictions might be
different for larger regions or lower latitude regions, with the
potential for observational constraints being more powerful in
some regions as a consequence. Hence our European example
can be seen as a stress test for observational constraints in use.

We first illustrate examples of observational constraints
for projections, identify contributing factors to model skill
metrics, and explore the potential to use multiple constraints in
sequence. We then illustrate, on the interface from projections
to predictions, that the performance of a prediction system
can be emulated by constraining a large ensemble to follow
observational constraints on modes of sea surface temperature
(SST). Lastly, the origin of skill and observational constraints
in initialized predictions is illustrated across different models,
different timelines and different regions as a first step toward
consistently constraining predictions and projections for future
merging applications.We draw lessons and recommendations for
the use of observational constraints in the final section.

CONSTRAINING PROJECTIONS

Lessons Learned From the Use of
Observational Constraints in Climate
Projections in UKCP18
Observational constraints have played an important role in
the latest generation of the UK climate projections (UKCP18;
Murphy et al., 2018). UKCP18 includes sets of 28 global
model simulations (∼60 km resolution), 12 regional (12 km
resolution), and 12 local (2.2 km resolution) realizations of 21st
century climate consisting of raw climate model data, for use
in detailed analysis of climate impacts (Murphy et al., 2018;
Kendon et al., 2019). Also provided is a set of probabilistic
projections, the role of which is to provide more comprehensive
estimates of uncertainty for use in risk assessments in their own
right, and also as context for the realizations. The probabilistic
climate projections are derived from a larger set of 360 model
simulations, based on a combination of perturbed parameter
ensembles with a single model, combined with simulations
with different CMIP5 models. These have been combined to
make probability density functions representing uncertainties
due to internal variability and climate response, using a Bayesian
framework that includes the formal application of observational
constraints. The UKCP18 probabilistic approach is one of the
methods covered in Brunner et al. (2020a). Key aspects include:
(a) use of emulators to quantify parametric model uncertainties,
by estimating results for parts of parameter space not directly
sampled by a climate model simulation; (b) use of CMIP5
earth system models to estimate the additional contribution
of structural model uncertainties (termed “discrepancy” in
this framework) to the pdfs; (c) sampling of carbon cycle
uncertainties alongside those due to physical climate feedbacks.
The method, described in Murphy et al. (2018), is updated
from earlier work by Sexton et al. (2012), Harris et al.
(2013), Sexton and Harris (2015), and Booth et al. (2017).
The climatological constraints are derived from seasonal spatial
fields for 12 variables. These include latitude-longitude fields
of surface temperature, precipitation, sea-level pressure, total
cloud cover and energy exchanges at the surface and at the
top of the atmosphere, plus the latitude-height distribution of
relative humidity (denoted HIST in Figure 1). This amounts to
175,000 observables, reduced in dimensionality to six through
eigenvector analysis (Sexton et al., 2012). Constraints from
historical surface air temperature (SAT) change include the global
average, plus three indices representing large-scale patterns
(Braganza et al., 2003). The ocean heat content metric (OHC)
is the global average in the top 700m. The CO2 constraint
arises because the UKCP18 projections include results from
earth system model simulations that predict the historical and
future response of CO2 concentration to carbon emissions, thus
including uncertainties due to both carbon cycle and physical
climate feedbacks. The observed trend in CO2 concentration
is therefore combined with the other metrics in the weighting
methodology, to provide a multivariate set of constraints used to
update joint prior probability distributions for a set of historical
and future prediction variables (further details in Murphy et al.,
2018).
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Figure 1 illustrates the impact of observational constraints on
the UKCP18 pdfs for global mean temperature, and summer
temperature and precipitation for Southern England; 2080–2099
relative to 1981–2000, under RCP8.5. Results show that as well as
narrowing the range, specific constraints can also weight different
parts of the pdf up or down, compared to the prior distribution.
As an example, the chance of a summer drying is upweighted
in the posterior, by the application of both the climatology and
historical temperature trend constraints. Experiences with use of
observational constraints in UKCP18 illustrate that considering
multiple constraints can be powerful. This is shown in Figure 1

by a sensitivity test, in which each pdf is modified by adding
individual constraints in sequence. However, the impact of
specific constraints can depend on the order in which they are
applied. Here, e.g., the effect of historic changes in ocean heat
content might appear larger, if applied as the first step in this
illustration. This illustrates that there is plenty of scope to refine
such constraint methods in the future. For example, metrics of
climate variability are not yet considered in the set of historical
climatology constraints.

Examples of Methods for Observational
Constraints on Projections
Performance Weighting Methods (ClimWIP)
Methods using performance weighting evaluate if models
are fit for purpose and weight them accordingly (see also
UKCP18 Example discussed above). The fundamental idea
is that projected climate change can only be realistic if the
model simulates processes determining present day climate
realistically as discussed e.g., in Knutti et al. (2017) for the
case of Arctic sea ice. An updated version of the same
method (termed Climate model Weighting by Independence and
Performance—ClimWIP) was recently applied by Brunner et al.
(2020b) to the case of global mean temperature change. Each
model’s weight is based on a range of performance predictors
establishing its ability to reproduce observed climatology,
variability and trend fields. These predictors are selected
to be physically relevant and correlated to the target of
prediction. Other approaches, such as emergent constraints,
often use a single highly correlated metric, while ClimWIP
draws on several such metrics. This can avoid giving heavy
weight to a model which fits the observations well in one
metric but is very far away in several others. In addition to
that, they also include information about model dependencies
within the multi-model ensemble (see Knutti et al., 2013),
effectively downweighting model pairs which are similar to
each other.

We show results from two applications of ClimWIP here:
Figure 2 illustrates the effect of ClimWIP, alongside other
methods, compared to using unconstrained predictions from a
set of CMIP5 models, illustrating that ClimWIP reduces spread
in some seasons and regions, and also shifts the central tendency
somewhat, depending on the case (Brunner et al., 2019), and
in a similar manner as illustrated above for UKCP18. The
CMIP6 weights used in the later part of the study are based
on the latest version of ClimWIP described in Brunner et al.

FIGURE 1 | Examples of the impact of constraints derived from historical

climatology (Hist), added historical global surface air temperature trends

(Hist+SAT), added historical trends in atmospheric CO2 concentration

(Hist+SAT+CO2), and added upper ocean heat content

(Hist+SAT+CO2+OHC), in modifying the prior distribution to form the

posterior. The 5th, 50th (median), and 95th percentiles are plotted, along with

the pdfs. Results prior to the application of observational constraints (Prior with

discrepancy) are also shown. Reproduced from Murphy et al. (2018).

(2020b) and based on earlier work by Merrifield et al. (2020),
Brunner et al. (2019), Lorenz et al. (2018), and Knutti et al.
(2017). We used performance weights based on each model’s
generalized distance to reanalysis products (ERA5; Hersbach
et al., 2020, and MERRA2, Gelaro et al., 2017) in five diagnostics
evaluated from 1980 to 2014: global, spatially resolved fields
of climatology and variability of near-surface air temperature
and sea level pressure, as well as global, spatially resolved fields
of near-surface air temperature trend (Brunner et al., 2020b).
The weights were retrieved from the same setup as used in
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FIGURE 2 | Projected summer (June–August) temperature change 2041–2060 relative to 1995–2014 for (A) the combined European region as well as (B–D) the three

European SREX regions (Northern Europe, Central Europe, and the Mediterranean) using RCP8.5. The lighter boxes give the unconstrained distributions originating

from model simulations; the darker boxes give the observationally constrained distributions. Shown are median, 50% (bars) and 80% (whiskers) range. The gray box

and lines centered around zero show the same percentiles of 20-years internal variability based on observations. Methods ASK-ANT and ClimWIP used in this paper

are colored, additional methods HistC and REA shown in Brunner et al. (2020a), but not used in this paper, are in gray. After Figure 6 in Brunner et al. (2020a).

Brunner et al. (2020b) and it is important to note that they are
optimized to constrain global mean temperature change in the
second half of the 21st century for the full CMIP6 ensemble. Here
we use them only to show the general applicability combining
ClimWIP with the ASK approach (outlined next), which
illustrates common inputs across constraints on projections
and their relation to each other. We apply them to a subset
of nine models for which Detection and Attribution Model
Intercomparison Project (DAMIP simulations; Gillett et al.,
2016) are available, and then focus on projections for Europe.
For applications beyond the illustrative approach shown here,
it is critical to retune the method for the chosen target and
model subset.

Trend and Attribution Based Methods (ASK Method)
Another widely usedmethod for constraining projections focuses
on the amplitude of forced changes (here referred to as “trend,”
although the constrained time-space pattern may be more
complex than a simple trend). This method focuses on the
performance of climate models in simulating externally forced
climate change, with the idea that a model that responds too
strongly or too weakly over the historical period may also do so
in the future. Trend performance is included in ClimWIP, as its
full implementation accounts for trends, and also in UKCP18, as
illustrated above.

Trend based methods need to consider that the observed
period is not only driven by greenhouse gas increases, but also
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influenced by aerosol forcing, natural forcings (e.g., Bindoff et al.,
2013) as well as internal variability1, all of which impact on
the magnitude of the observed climate change Since the future
may show different combinations of external forcing than the
past, including reducing aerosol forcing with increased pollution
control, and different phases of natural forcing, non-discriminant
use of trends may introduce errors. Two approaches have been
used to circumvent this problem: one method is to use a
period of globally flat aerosol forcing and argue that the largest
contributor to trends is greenhouse gases over such periods,
and then use trends as emergent constraints (Tokarska et al.,
2020a). An alternative, the so-called Allen Stott Kettleborough
“ASK method,” introduced in the early 2000s (Allen et al., 2000;
Stott and Kettleborough, 2002; Shiogama et al., 2016) uses results
from detection and attribution of observed climate change to
constrain projections. These methods seek to disentangle the
role of different external forcings and internal variability in
observed trends, and result in an estimate of the contribution
by natural forcings, greenhouse gases, and other anthropogenic
factors to recent warming. This allows us to estimate the observed
greenhouse gas signal, and use it to constrain projections. This
can be done by selecting climate models within the observed
range of greenhouse gas response (Tokarska et al., 2020b) or
by using the uncertainty range of greenhouse warming that
is consistent with observations as an uncertainty range in
future projections around the multi-model mean fingerprint
(Kettleborough et al., 2007). The latter method has been included
in assessed uncertainty ranges in projections in IPCC (see Knutti
et al., 2008; Collins et al., 2013).

Here we illustrate the use of attribution based observational
constraints. This method assumes that the true observed climate
response, yobs, to historical forcing is a linear combination of
one or more (n) individual forcing fingerprints, Xj, scaled by
adjustable scaling factors, βj, to observations. We use the gridded
observations E-OBS v19.0e dataset (Haylock et al., 2008), with
monthly values computed from the daily data. Scaling factors
are determined that optimize the fit to observations. Hence
this method uses the response in observations to estimate the
amplitude of a model-estimated space time pattern of response,
with the rationale that uncertain feedbacks may lead to a larger or
smaller response than anticipated in climate models (e.g., Hegerl
and Zwiers, 2011). We use a total-least-squares (TLS) method to
estimate the scaling factors, which accounts for noise in both the
observations εobs, and in the modeled response to each of the
forcings εj(see e.g., Schurer et al., 2018),

yobs =

n∑

j=1

βj(Xj − εj)+ εobs (1)

where the n fingerprints chosen may include the response to
greenhouse gases only (GHG), natural forcings only (NAT), other
anthropogenic forcings (OTH) or combinations thereof (ANT

1Bonnet R., Swingedouw D., Gastineau G., Boucher O., Deshayes J., Hourdin F., et

al. (2021). Increased risk of near term global warming level due to a recent AMOC

weakening. Nat. Commun. (in review).

= GHG+OTH). A confidence interval for each of the scaling
factors describes the range of magnitudes of the model response
that are consistent with the observed signal. A forced model
response is detected if the range of scaling factors are significantly
>0, and can be described as being consistent with observations
if the range of values contains the magnitude of one (=1). The
uncertainty due to internal climate variability is here estimated
by adding samples from the preindustrial Control simulations
(of the same length) to the noise-reduced fingerprints and
observations, and recomputing the TLS regression (10,000 times)
in order to build a distribution of scaling factors, from which
the 5th−95th percentile range can be computed. We have also
explored confidence intervals based on bootstrapping (DelSole
et al., 2019), and while there are slight differences in the
spread, the two measures generally provide consistent and
robust agreement.

CMIP6 model simulations (Eyring et al., 2016) run with
historical forcings, and Detection and Attribution MIP (DAMIP)
single-forcing simulations (Gillett et al., 2016) are used over
the same period as E-OBS (1950–2014) to determine the
fingerprints. Our analysis uses a set of nine models with 33
total ensemble members (Table 1), that were available in the
Center for Environmental Data Analysis (CEDA) curated archive
(retrieved in September 2020), common to the required set
of simulations. For application of the ASK method, single
forcing experiments are needed. Monthly surface air temperature
fields from the observations and each of the CMIP6 model
ensemble members were spatially regridded to a regular 2.5◦

× 2.5◦ latitude-longitude grid, with only the grid boxes over
land (with no missing data throughout time) being retained
in the analysis. The resulting masked fields (from observations
and all individual model ensemble members) were spatially
averaged over a European domain (EUR) and three sub-domains
(NEU, CEU, and MED; as described in Brunner et al., 2020a).
Fingerprints for each forcing are based on an unweighted,
and in the example below (section Contrasting and Combining
Constraints FromDifferentMethodologies), weighted, average of
each model’s ensemble mean response to individual forcings. The
total least squares approach requires an estimate of the signal-
to-noise ratio of the fingerprint. This is calculated considering
the noise reduction by averaging individual model ensemble
averages, and assuming that the resulting variance adds in
quadrature when averaging across ensembles. When weights are
used, these are included in the calculation. Results from ASK are
illustrated in Figure 2, again illustrating that the method reduces
spread in some cases, and influences central tendency as well.

Whether this reduction in spread improves the reliability
of projections is still uncertain, although some recent analysis
supports these approaches: Gillett et al. (2021) applied an (im-)
perfect model approach to estimate the attributable warming to
CMIP6 models, and Schurer et al. (2018) an approach to estimate
the transient climate sensitivity from individual simulations with
withheld climate models for CMIP5. Gillett et al. (2021) found
high reliability of the estimate of attributable warming, which
increases confidence in its use for projections. Schurer et al.
(2018) found that the method was somewhat overconfident
for future warming if using the multi-model mean fingerprint,
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TABLE 1 | List of the CMIP6 models used in the ASK-ClimWIP constraining intercomparison pilot study (restricting to models with individual forcing simulations available

and normalizing weights to sum to unity for these relative to those shown in Figure 3).

CMIP6 model name Number of ensemble members included ClimWIP weighting (no trend information) ClimWIP weighting (with trend information)

ACCESS-ESM1-5 3 0.1627 0.1381

BCC-CSM2-MR 1 0.0132 0.0792

CNRM-CM6-1 5 0.0772 0.0762

CanESM5 10 0.0216 0.0049

GFDL-ESM4 1 0.4051 0.5047

HadGEM3-GC31-LL 4 0.2582 0.0070

IPSL-CM6A-LR 5 0.0313 0.0639

MIROC6 3 0.0052 0.0627

MRI-EMS2-0 1 0.0256 0.0633

Total 33 1.0 1.0

but conservative if accounting fully for model uncertainty in a
Bayesian approach, or if inflating residual variability.

Contrasting and Combining Constraints
From Different Methodologies
Eight different methods to arrive at weighted or constrained
climate projections were recently compared for European regions
in Brunner et al. (2020a). The study identified a lack of
coordination across methods as a main obstacle for comparison
since even studies which look at the same region in general
might report results for slightly different domains, seasons, time
periods or model subsets hindering a consistent comparison.
Therefore, a common framework was developed to allow such
a comparison between the different methods, including a set of
European sub-regions. The results in Brunner et al. (2020a) focus
on temperature and precipitation changes between 1995–2014
and 2041–2060 under RCP8.5 (i.e., using CMIP5) in the three
European SREX regions. In addition, reasons for agreements and
disagreements across these methods were also discussed.

Figure 2 shows some results of the comparison illustrated
in that review (for a detailed discussion of the results and the
underlying methods see Brunner et al., 2020a).While all methods
clearly show the anthropogenic warming signal, the comparison
reveals different levels of agreement based on the region
considered and themetric of interest (e.g., median vs. 80% range).
In general, methods tend to agree better on the central estimate
while uncertainty ranges can be fairly different, particularly for
the more extreme percentiles (see, e.g., Figure 2D). However, for
some regions also the median values can differ across methods
and in isolated cases methods even disagree on the direction
of the shift from the unconstrained distributions. Methods also
constrain projections to different extents, with some methods
leading to stronger constraints and others to weaker constraints.
This can be due to using observations more or less completely
and efficiently, but can also reflect differences in the underlying
assumptions of the methods such as the statistical paradigm used.
Somemethods assume themodels are exchangeable realization of
the true observed response, while others assume that the models
converge, as a sample, toward the truth, ranking models close to
the model average as more likely to be correct.

For cases with such substantial differences, Brunner et al.
(2020a) recommend careful evaluation of constraints projecting
the future change in a withheld model based on each method.
Full application of such withheld model approaches requires
withholding a large number of simulations to ensure robust
statistics, and is computationally expensive. Such work is ongoing
in the community and will help resolve uncertainty across
performance metrics. Brunner et al., also suggest attempting to
merge methods, either based on their lines of evidence (before
applying them) or based on their results (after applying them).

Here we pilot an example of combining two observational
constraint methods. We do this to both illustrate what aspects
of observed climate change influence performance metrics, and
in order to test if a combined approach might harness the
strengths of each paradigm. Results also illustrate the challenges
and limitations involved in such an endeavor.

In order to do so, we limit the constraint used in ClimWIP to
climatology and variance-based performance weights only. These
can then be used to construct a weighted fingerprint (mentioned
above) of the forced climate change that could be, arguably,
more credible as a best estimate of the expected change than
the simple one-model-one vote fingerprint generally used. It is
also conceivable to combine both differently, e.g., by using the
ASK constraint relative to a model’s raw projection as weight in
a ClimWIP weighted prediction. We chose the weighted ASK
method for its ability to project changes outside the model range
in cases where models over- or underestimate the actual climate
change signal, but different choices are possible.

We use two different combinations of diagnostics to calculate

the ClimWIP performance weights for this combination of

constraints: one including temperature trends, and one without

temperature trends (i.e., using only climatology and variability

of temperature and sea level pressure). This is done to avoid

accounting for trends twice when applying the constraints

subsequently (Table 1), since the ASK method is strongly driven

by temperature trends (while using also spatial information and

the shape of the time series particularly to distinguish between
the effects of different forcing and variability). Note that this
modification of ClimWIP will most likely reduce its performance
as a constraint on its own.
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FIGURE 3 | Role of temperature trends in model performance weights,

illustrating the relationship between the model-specific relative weights

assigned by ClimWIP, computed using global fields excluding temperature

trend information (along the x-axis), and including a temperature trend metric

(along the y-axis). Climate models across CMIP6 are shown in gray; those also

available in the DAMIP simulations (used in the ASK method) have been

colored, with the number of ensemble members (n) shown in the legend.

The weights assigned to each of the 33 CMIP6 models
(and the nine DAMIP models used in the ASK method) are
shown in Figure 3, both when using all five diagnostics, and
when not using the temperature trend. Results show that the
performance weights from trends show a substantial influence
on ClimWIP weights compared to the variant without trends,
with largest differences for models with unusually strong trends,
such as HadGEM3, which is almost disregarded in trend-based
weighting but performs well on climatology. In contrast, trend
information enhances the perceived value of a group of other
models in the bottom left corner of the diagram, with very
small weights in climatology-only cases compared to slightly
larger ones in trend including cases. However, for many other
models both metrics correlate (although their correlation is
largely driven by a few highly weighted models). This illustrates
that different information used can pull observational constraints
in different directions.

There are suggestions that the role of trends in downweighting
projections of higher end warming in both ClimWIP and
ASK may be common across the wider set of projection
methodologies. Historical trends in the UKCP18 methodology
(Figure 1, labeled SAT) tend to reduce the upper tails of projected
changes. Similarly, the HistC methodology (Brunner et al.,
2020a section) is largely based on trend information, which
also consistently downweights high end projected changes (Ribes
et al., 2021), in response to too large change in such models over
parts of the historical period.

We now use model performance weighting in constructing
each of the multi-model mean fingerprints (Figure 4) that are
subsequently used in the detection and attribution constraint.

Thus, two sets of multi-model mean fingerprints are computed.
Firstly, an equal-weighted set of multi-model fingerprints and,
for comparison, a second set of multi-model fingerprints are
computed as weighted average of each model’s individual
fingerprint in response to forcings. When combining the
constraints in this way, we use the ClimWIP performance
weights that were derived without temperature trend information
(Table 1).

Annual surface temperature anomalies from 1950 to 2014
averaged over nine models (33 runs) are displayed in Figure 4

with the upper left panel showing the equal-weighted time series,
and the lower left panel showing the time series after applying
the ClimWIP weights (without trend). The same observed
annual time series (E-OBS, black line) has been plotted in each
panel, along with the CMIP6 multi-model mean (of ensemble
means) of the all-forcing historical simulations (brown line), the
greenhouse gas single-forcing historical simulations (red line),
and the natural single-forcing historical simulations (green line).
A measure of the internal variability of the CMIP6 models is
estimated by averaging the standard deviation (65-years samples)
of the associated piControl simulations, and is indicated by the
background shaded region.

The scaling factors were derived through a total least squares
regression of the multi-model mean fingerprints onto the
observations, estimating the amplitude of a single-fingerprint all
forcing signal (“ALL”), and determining the separate amplitudes
for combinations of fingerprints (for more details, see Brunner
et al., 2020a; Ballinger et al., pers. com.; GHG, OTH, ANT,
NAT). The scaling factors shown in Figure 4 were derived using
fingerprints comprising the conjoined annual time series of the
three spatially-averaged European subregions (NEU, CEU, and
MED; 3 × 65 = 195 years), each having first been normalized
by a measure of that subregion’s internal variability (using
the standard deviation of equivalent piControl simulations).
Hence the fingerprint used captures an element of the spatial
signal in the three regions, and of their temporal evolution.
The analysis was also performed using a single European
average fingerprint, and separate single-subregion fingerprints
(NEU/CEU/MED; not shown). As expected, the three-region
fingerprint generally provides a tighter constraint because of
the additional (spatial) information included, which strengthens
the signal to noise ratio. However, the qualitative differences
of using an equal-weighted or ClimWIP-weighted fingerprint,
are found to be fairly robust irrespective of the particular
fingerprint formulation.

Figure 4 shows an overall narrowing of the uncertainty range
in the scaling factors (providing a slightly tighter constraint)
when using the ClimWIP-weighted model fingerprints,
particularly for NAT, suggesting that at least in this case, the
weighted fingerprints are more successful in identifying and
separating responses to greenhouse gases from those to other
forcings. The best-estimate magnitudes of the leading signal
(ALL, GHG, ANTH) scaling factors remain reasonably robust.
Results suggest that the weighted multi-model mean response
to aerosols is larger than that in the observations, significantly
so in the weighted case. Overall, the illustrated sensitivity of the
estimated amplitude of natural and aerosol response probably
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FIGURE 4 | Annual time series (left panels) of European surface air temperature anomalies (relative to 1950–2014) from observations (E-OBS v19, black line) and

CMIP6 historical simulations (all forcings, brown line; GHG-only forcing, red line; and NAT-only forcing, green line). We display the multi-model mean of ensemble

means from nine models, with the shaded region denoting the multi-model mean variability (±1 standard deviation) of the associated preindustrial Control simulations.

The scaling factors (right panels) are derived by regression of the CMIP6 model fingerprints on the observations and indicate to what extent the multi-model mean

fingerprint needs to be scaled to best match observations. Results show the 1-signal (ALL), two-signal (GHG & OTH; ANTH & NAT), and three-signal (GHG, NAT &

OTH) scaling factors. The upper panels display the time-series fingerprints and associated scaling factors using an equal-weighted multi-model mean; the lower

panels use ClimWIP performance weighting to weight the multi-model mean fingerprints for deriving the scaling factors. Confidence intervals show the 5th−95th (thin

bars) and 25th−75th (thicker bars) percentile ranges of the resulting scaling factors.

reflects model differences in emphasis between ClimWIP
weighted and unweighted cases.

We have further explored the robustness of results over
different seasons (not shown). Results again suggest that the
use of ClimWIP weights in the multi-model mean fingerprint
yields stronger constraints when separating out the greenhouse
gas signal (which is particularly useful for constraints). Also,
the contribution by natural forcing, other anthropogenic and
greenhouse gas forcing to winter temperature change is far less
degenerate in the ClimWIP constrained case, although it needs
to be better understood why this is the case. This illustrates some
promise in combining constraints.

However, in order to evaluate if these narrowed uncertainty
estimates reliably translate into better prediction skill, careful
“perfect” and “imperfect” model studies will need to be
performed, where single model simulations are withheld to
predict their future evolution as a performance test, calculating
performance weights relative to each withheld model (see e.g.,
Bo and Terray, 2015; Schurer et al., 2018; Brunner et al., 2020b).

When doing so, it would be useful to consider forecast evaluation
terminology used in predictions and to assess reliability (i.e.,
if model simulations that are synthetically predicted are within
the uncertainty range of the prediction, given the statistical
expectation; Schurer et al., 2018; Gillett et al., 2021), and if they
show improved sharpness, i.e., their RMS error is smaller in order
to avoid penalizing more confident methods unnecessarily).
Another avenue is to draw perfect models from a different
generation as explored, e.g., by Brunner et al. (2020b) where the
skill of weighting CMIP6 was explored based on models from
CMIP5 in order to provide an out-of-sample test to the extent
that CMIP6 can be considered independent of CMIP5. A first
pilot study using CMIP6 simulations to hindcast single CMIP5
simulations showed mixed results and no consistent preference
for the ClimWIP vs. ASK vs. combined method in either metric
(not shown; Ballinger et al., pers. com.).

In summary, there is an indication that the use of model
weighting can potentially provide improved constraints on
projections, fundamentally due to using fingerprints that rely
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strongly on the most successful models. Europe as a target of
reconstruction might be particularly tricky given high variability
over a small continent, rendering more noisy fingerprints from
weighted averages compared to straight multi-model averages,
which can reduce the benefit in weighting approaches (Weigel
et al., 2010).

However, climate variability can be considered as more than
just “noise” in near term predictions, and hence the next method
focuses on constraints for variability.

Toward Seamless Predictions:
Constraining Large Projection Ensembles
to Match Recent Observed Variability
Above, observations were employed to evaluate projections in
terms of processes, trends and climatology. Climate variability
is considered in those previous analyses a random uncertainty
that is separate from projections and adds uncertainty. This is
in sharp contrast to initialized predictions, where one of the
goals is to predict modes of variability. The forced signal is
included in predictions, but skill initially originates largely from
the initial condition and phasing in modes of climate variability.
Observations are employed both to initialize the prediction and
then to evaluate the hindcast.

In this section we illustrate the use of observations to align
climate model projections with observed variability. The aim is
to obtain improved information for predicting the climate of the
following seasons and years, and to evaluate how such selected
projections merge with the full ensemble as a case example
for merging predictions and projections, as recommended in
Befort et al. (2020). Sub-selecting ensemble members from a
large ensemble that more closely resemble the observed climate
state (e.g., Ding et al., 2018; Shin et al., 2020), is an attempt
to try to align the internal climate variability of the sub-
selected ensemble with the observed climate variability, similar
to initialized climate prediction. We therefore also refer to
these constraints relative to the observed anomalies as “pseudo-
initialisation.”

We use the Community Earth System Model (CESM)
Large Ensemble (LENS; Kay et al., 2015) of historical climate
simulations, extended with the RCP8.5 scenario after 2005. For
each year (from 1961 to 2008) we select 10 ensemble members
that most closely resemble the observed state of global SST
anomaly patterns, as measured by pattern correlations. We then
evaluate the skill of the sub-selected constrained ensembles in
predicting the observed climate in the following months, years
and decade, using anomaly correlation coefficient (ACC; Jolliffe
and Stephenson, 2003). We also compare the skill of “un-
initialised” (LENS40, the ensemble of all 40 LENS simulations)
and “pseudo-initialised” (LENS10, the ensemble of the best
10 ensemble members identified in each year) simulations
against “initialised” decadal predictions with the CESM Decadal
Prediction Large Ensemble consisting of 40 initialized ensemble
members (DPLE40; Yeager et al., 2018). The ocean and sea-ice
initial conditions for DPLE40 are taken from an ocean/sea ice
reconstruction forced by observation-based atmospheric fields
from the Coordinated Ocean-Ice Reference Experiment forcing

data, and the atmospheric initial conditions taken from LENS
simulations. The anomalies are calculated based on lead-time
dependent climatologies.

In this explorational study, the best 10 members of the LENS
simulations are selected based on their pattern correlation of
global SST anomalies with observed anomalies obtained from the
Met Office Hadley Center’s sea ice and sea surface temperature
data (HadISST; Rayner et al., 2003). These pattern correlations
are calculated using the average anomalies of the 5 months prior
to 1st November of each year, for consistency of the ‘pseudo-
initialisation’ with the initialized predictions (i.e., DPLE40),
which are also initialized on 1st November of each year. We
also tested ensemble selection based on the pattern correlation of
different time periods (up to 10 years) prior to the 1st November
initialization date, to better phase in low-frequency variability,
but these tests did not provide clearly improved skill over the
5-months selection.

Figure 5 compares the skill of different SST indices for
the constrained pseudo-initialized ensemble (i.e., LENS10), the
full LENS40, and the initialized prediction system. All three
ensembles show very high skill (R > 0.9) in predicting global
mean SSTs on inter-annual to decadal time-scales, primarily
due to capturing the warming trend. For the first few months
after initialization the constrained LENS10 ensemble shows
skill that is comparable to the DPLE40 for global mean SSTs.
Larger differences in the prediction skill between the three
ensembles are apparent for indices of Pacific (El Nino Southern
Oscillation, ENSO, and Interdecadal Pacific Oscillation, IPO)
and Atlantic SST variability (Atlantic Multidecadal Variability,
AMV). The constrained LENS10 ensemble shows significant
skill in predicting the ENSO and IPO indices in the first ∼6–
7 months after initialization, with correlations only about ∼0.1
lower compared to the initialized DPLE40 ensemble. LENS10
further shows improved skill over LENS40 during the first 2
forecast years for ENSO and IPO. For the AMV index, LENS10
shows increased skill over LENS40 for up to seven forecast years,
while DPLE40 shows high skill (R > 0.7) for all forecast times up
to one decade.

Figure 6 shows that the spatial distribution of forecast skill
of the LENS10 ensemble is often comparable to that of the
DPLE40 for seasonal and annual mean forecasts. The skill of
LENS40 is relatively lower than both the pseudo-initialized and
the initialized predictions at least for the first few forecast months
and the first forecast year. On longer time scales, LENS10 has
some added skill in the North Atlantic, but decreased skill in
other regions such as parts of the Pacific.

These analyses demonstrate the value of constraining large
ensembles of climate simulations according to the phases of
observed variability for predictions of the real-world climate. We
find added value in comparison to the large (un-constrained)
ensemble for up to 7 years in the Atlantic, and up to 2 years in
indices of Pacific variability. It illustrates that using observational
constraints by targeting modes of climate variability can produce
skill that can approach that from initialization in some cases for
large scale variability. Figure 6 also illustrates that this skill is
most pronounced in the first season in tropical regions and the
Pacific, while added skill in near-term projections over the North

Frontiers in Climate | www.frontiersin.org 10 June 2021 | Volume 3 | Article 678109

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Hegerl et al. Consistent Observational Constraints on Predictions

FIGURE 5 | Correlation skill for different forecast times: left lines represent skill for first 12 forecast months; center lines represent skill for first nine forecast years; dots

represent skill for multi-annual mean forecasts. IPO is calculated as a tripole index (Henley et al., 2015) from SST anomalies, ENSO is based on area-weighted mean

of SST anomalies at Nino3.4 region (i.e., 5◦S−5◦N, 170◦W−120◦W), and AMV is calculated as a weighted area average SST anomalies for 0–60◦N of the North

Atlantic ocean with global mean (60◦S−60◦N) SST removed.

Atlantic is more modest which could be related to weaker-than-
observed variability in simulating North Atlantic Oscillation in
LENS simulations (Kim et al., 2018). This work bridges between
un-initialized and initialized predictions and their evaluation
with observations, and illustrates how observational constraints
can be used within a large ensemble of a single model to improve
performance nearterm. The latter is the goal of initialized
predictions, which we focus on in the subsequent sections.

OBSERVATIONAL CONSTRAINTS ON
INITIALIZED PREDICTIONS

In this section, several examples of observational constraints
in initialized decadal climate prediction simulations are
presented and tested for their potential. These examples
include: identifying the level of agreement between model
simulations and observations (predictive skill) that arises from
the initialization process as well as different forcings of the
climate system over time; identifying the predictive skill found
in different initialized model systems using the models’ inherent
characteristics; and identifying the change of predictive skill
over time, illustrated using predictions of North Atlantic sea
surface temperature (SST). As with observational constraints

for projections, we explore if there is potential to improve
predictions by weighting or selecting prediction systems and
chosen time horizons with the goal to improve performance.

We thus test decadal prediction experiments for observational
constraints on the time dimension (exploring the changing
importance of various forcings and internal variability
over time) and the model dimension (a first step toward
weighing initialized climate prediction ensembles). These
analyses are both closely related to the approaches used
for climate projections discussed above, and they will offer
an indication about the degree to which the observational
constraints that are applied to projections (see above) represent
observed climatic variability. All of these explorational
investigations will also pave the way toward eventually
combining initialized and non-initialized climate predictions
in order to tailor near-term climate prediction to individual
users’ needs.

The analyses we present rely on the following methods:
We consider sea surface temperature (SST) and surface air
temperature (SAT) for the period 1960–2014 in our analyses,
based on simulations from the CMIP6 archive. We analyze
initialized decadal hindcasts from the DCPP project (HC; Boer
et al., 2016), as well as non-initialized historical simulations that
are driven with reconstructed external forcing (HIST; Eyring
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FIGURE 6 | Forecast skill, measured as anomaly correlation against HadISST, for LENS10 (top row), LENS40 (second row), DPLE40 (third row), and skill difference

between LENS10 and LENS40 (bottom row). Left, center and right columns represent forecast skill of the mean of forecast months 2–4, forecast months 3–14, and

forecast months 15–62, respectively.

et al., 2016). For comparison and to constrain predictions,
SST from HadISST (Rayner et al., 2003) and SAT from the
HadCRUTv4 gridded observational data set (Morice et al.,
2012) are used. Agreement between model simulations and
observations (prediction or hindcast skill) is quantified here as
Pearson correlation between ensemble mean simulations and
observations (Anomaly Correlation Coefficient, ACC) and mean
squared skill score (MSSS; Smith et al., 2020). ACC tests whether
a linear relationship exists between prediction and observation
and quantifies the standardized variance explained by it (in
its square), whereas MSSS quantifies the absolute difference
between simulations and observations. Both ACC and MSSS

indicate perfect agreement between prediction and observation
at a value of 1 and decreasing agreement at decreasing values.
Note that we do not compare these skill scores against a baseline
(e.g., the uninitialized historical simulations); this was done and
discussed extensively in Borchert et al. (2021). Instead much of
our analysis focuses on detrended data to reduce the influence of
anthropogenic forcing.

In all cases, anomalies against the mean state over the
period 1970–2005 of the respective data set are formed; this
equates to a lead time dependent mean bias correction in
initialized hindcasts. We also subtract the linear trend from
all time series prior to skill calculation to avoid the impact of
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linear trends on the results. When focusing on the example
of temperature in the subpolar gyre (SPG), we analyze area-
weighted average SST in the region 45–60◦N, 10–50◦W. Surface
temperature over Europe is represented by land grid-points
in the NEU, CEU and MED SREX regions defined above.
We examine summer (JJA) temperature over Europe. We
also analyze how prediction skill changes over time (so-called
windows of opportunity; Borchert et al., 2019; Christensen et al.,
2020; Mariotti et al., 2020) to attribute changes in skill to specific
climatic phases.

Sources of Decadal Prediction Skill for
North Atlantic SST
A recent paper detailed the influence of external forcing and
internal variability on North Atlantic subpolar gyre region
(SPG) SST variations and predictions (Borchert et al., 2021).
The authors found North Atlantic SST to be significantly
better predicted by CMIP6 models than by CMIP5 models,
both in non-initialized historical simulations and initialized
hindcasts. These findings indicated a larger role for forcing in
influencing predictions of North Atlantic SST than previously
thought. This work further showed that at times of strong
forcing, predictions and projections of North Atlantic SST
with CMIP6 multi-model averages exhibit high skill for
predicting North Atlantic SST. Natural forcing, particularly
major volcanic eruptions (Swingedouw et al., 2013; Hermanson
et al., 2020; Borchert et al., 2021), plays a prominent role in
influencing skill during the historical period, notably due to
their impact on decadal variations of the oceanic circulation
(e.g., Swingedouw et al., 2015). In the absence of strong
forcing trends, initialization is needed to generate skill in
decadal predictions of North Atlantic SST (Borchert et al., 2021;
their Figure 2). Analyzing the contributions of forcing and
internal variability to climate variations and their prediction is
therefore an important step toward understanding observational
constraints on initialized climate predictions. By examining
the dominant factors governing the skill of predictions in the
past, conclusions may be drawn for predictions of the future
as well. This also illustrates that metrics for initialized model
performance based on evaluating hindcasts are influenced not
only by how well the method reproduces observed variability,
but also by the response to forcing. Hence sources of skill
in predictions (initialization) and projections (forcing) overlap,
which is important to consider when comparing the role
of observational constraints in both. This also needs to be
considered when aiming to merge predictions and projections,
which are driven by forcing only, and generally do not include
volcanic forcing.

Toward Performance Based Weighting for
Initialized Predictions
Approaches discussed above, which identify the origin of skill
among different external forcings and variability, could be
seen as an observational constraint on predictions (section
Sources of Decadal Prediction Skill for North Atlantic SST),
constraining them based on the emerging importance of

forcing and internal variability over time. This makes that
technique similar to that used in ASK constraints (which,
however, focuses on a different timescale). We now consider
an approach similar to model-related weights used in the
ClimWIP method. Instead of multi-model means, we here assess
the seven individual CMIP6 DCPP decadal prediction systems
(Table 2) with the aim of linking the skill in model systems
to their inherent properties. We focus this analysis on North
Atlantic subpolar gyre SST due to its high predictability (e.g.,
Marotzke et al., 2016; Brune and Baehr, 2020; Borchert et al.,
2021) as well as its previously demonstrated ties to European
summer SAT (Gastineau and Frankignoul, 2015; Mecking et al.,
2019).

Initialized predictions from CMIP6 show broad agreement on
ACC skill for SPG SST, with high initial skill and skill degradation
over time (Figure 7A). The only prominent outlier to this is the
CanESM5 model, which displays a strong initialization shock
until approximately lead year 7 due to issues in the North
Atlantic region with the direct initialization from the ORAS5
ocean reanalysis (Sospedra-Alfonso and Boer, 2020; Tietsche
et al., 2020). For this reason, we will discuss CanESM5 as a special
case whenever appropriate. The other six models generally agree
on high skill in the initial years, which degrades over lead time
(Figure 7), showing some degree of spread in ACC that could
be linked to model or prediction system properties. This spread
is found for both ACC (Figure 7A) and MSSS (Figure 7B),
indicating the robustness of this result. Forming multi-model
means results in comparatively high skill compared to individual
models, evident in placement of the multi-model mean (black)
at the upper half of ACC and MSSS skills. This is likely related
to an improved filtering of the predictable signal from the noise
(e.g., Smith et al., 2020), and the compensation of model errors
between the systems; suggesting potential for further increased
skill if using a weighted rather than simple average multimodel
means. Skill degradation occurs at different rates in the different
model systems, representing a possible angle at which to try and
explain the skill differences.

Constraint Based on SPG Stratification
Sgubin et al. (2017) showed that the representation of
stratification over the recent period in the upper 2,000m of
the North Atlantic subpolar gyre in different models is a
promising constraint on climate projections, impacting among
other things the likelihood with which a sudden AMOC collapse
is projected to happen in the future. Ocean stratification impacts
North Atlantic climate variability not only on multidecadal
time scales, but also locally on the (sub-)decadal time scale.
It appears therefore appropriate to explore stratification as an
observational constraint on the model dimension in predictions,
and test whether models that show comparatively realistic SPG
stratification also show higher SPG SST prediction skill and
vice versa. To this end, we calculate a stratification indicator
as in Sgubin et al. (2017) by integrating SPG density from
the surface to 2,000m depth for the period 1985–2014 in the
different CMIP6 HIST models and EN4 reanalysis (Ingleby and
Huddleston, 2007). We then calculate the root-mean square
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TABLE 2 | Models used in the analysis presented in Section Observational Constraints on Initialized Predictions, based on availability at the time of analysis.

Modeling Center Model Ensemble size

Historical Decadal Hindcasts

CCCma, Canada CanESM5, (Sospedra-Alfonso and Boer, 2020) 20 10

IPSL, France IPSL-CM6A-LR, (Boucher et al., 2020) 30 10

JAMSTEC, Japan MIROC6, (Kataoka et al., 2020) 10 10

MOHC, UK HadGEM3-GC31-MM, (Knight et al., 2014) 4 10

MPI-M, Germany MPI-ESM1.2-HR, (Pohlmann et al., 2019) 10 10

NCAR, USA CESM1.1-CAM5, (Yeager et al., 2018) 20

CESM2, (Danabasoglu et al., 2020) 10

NCC, Norway NorCPM1, (Counillon et al., 2021) 30 10

Total models (members) 7 (114) 7 (80)

FIGURE 7 | (A) Anomaly correlation coefficient (ACC) for SPG SST in seven initialized CMIP6 model systems (y-axis) against lead time in years (x-axis). (B) as (A), but

showing mean squared skill score (MSSS) on the y-axis. Colors indicate the individual models, the thick black line the multi-model mean. The horizontal dashed line

indicates the 95% confidence level compared to climatology based on a two-sided t-test.

difference between modeled and observed stratification (as in2).
This index is then examined for a possible linear relationship
to SPG SST prediction skill. Note that comparing stratification
in the historical simulations to initialized predictions is
not necessarily straight-forward as initialization may change
the stratification.

For short lead times of up to 5 years, we find a strong, negative
and linear relationship between SPG SST prediction skill in terms
of ACC and MSSS in the seven prediction systems analyzed here,
and mean SPG stratification bias in the corresponding historical
simulation (Figures 8A–C). Models that simulate a more realistic
SPG stratification show higher SST prediction skill than those
that simulate less realistic stratification. At lead times longer
than 6 years, this linear relationship is not as strong (Figure 8C),
which also diminishes the skill-stratification relationship for the
full 1–10 years lead time range (Figure 8A). Note that due to the

2Swingedouw, D., Bily, A., Esquerdo, C., Borchert, L. F., Sgubin, G., Mignot, M.,

et al. On the risk of abrupt changes in the North Atlantic subpolar gyre in CMIP6

models. Ann. NY Acad. Sci. (in review).

initialization issue in CanESM5 discussed above, that model does
not behave in line with the other models at short lead times.

These findings show that models that simulate a more realistic
SPG stratification tend to predict SPG surface temperature for
up to 5 years into the future more skillfully than models with a
less realistic SPG stratification. The fact that mean stratification
in the historical simulation seems to have an influence on
the skill of initialized predictions at short lead time (although
initialization has modified mean stratification) suggests that
the modification of stratification through initialization is weak.
Moreover, this finding hints at a reduced initialization-related
shock in some models: models that simulate realistic SPG
stratification without initialization experience less shock through
initialization, while the shock itself may hamper the skill at
long lead time. The role of physical realism of climatology vs.
initialization shock should be explored further when analyzing
performance of and constraints on prediction systems. While
inspiring hope that SPG mean stratification state might be
an accurate indicator of SPG SST hindcast skill, this result
is based on a regression over 6 data points and therefore
lacks robustness.
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FIGURE 8 | ACC for SPG SST in seven initialized CMIP6 model systems at lead years (A) 1–10, (B) 1–5, and (C) 6–10 against RMSE between observed (vertical

dashed line) and simulated SPG stratification in the period 1960–2014 from the corresponding historical simulations (x-axis). (D–F) as (A–C), but showing the

standard deviation of SPG SST in the first 500 years of the respective model’s piControl simulation on the x-axis. Colors indicate the individual models: blue =

CanESM5, red = CESM-DPLE, brown = IPSL-CM6A-LR, black = HadGEM3-GC31-MM, cyan = MIROC6, yellow = MPI-ESM1.2-HR, green = NorCPM1. The gray

area indicates insignificant prediction skill at the 5% significance level based on 1,000 bootstraps.

Constraint Based on Internal Climate Variability
The amount of climate variability inherently produced by the
models might also relate to the skill of prediction systems. The
assumption is that models that produce pronounced SPG SST
variability by themselves reproduce strong observed decadal SPG
SST changes more accurately than those that do not. This is a
reasonable assumption since previous studies have shown that
North Atlantic SST variability appears to be underestimated in
climate models (Murphy et al., 2017; Kim et al., 2018). We
represent this variability by standard deviation of SPG SST
over 500 years in the pre-industrial control (piC) simulations
of the seven different CMIP6 models (sigma SPG). Decadal
SPG SST hindcast skill shows some increase with sigma SPG in
the respective control simulations (Figures 8D–F), particularly
at long lead time (Figure 8F). A possible cause for increased
skill in models with higher sigma is a linear relationship of
sigma SPG to the time lag at which autocorrelation becomes
insignificant in the piControl simulations (not shown): higher
variability implies longer decorrelation time scales which might
indeed lead to longer predictability. Another hypothesis could
be more robust variability produced by models with higher

sigma, less perturbed by noise, associated with higher levels
of variability. More work is needed to decipher the exact
cause of this effect. The linear correlation between sigma SPG
and SPG hindcast skill, however, is not robust across lead
times. At long lead time of 6–10 years, the CanESM and IPSL
models are outliers that potentially inhibit significant linear
regression, due to the known initialization issue in CanESM (see
above) and possible effect of the weak initialization in IPSL-
CM6A (Estella-Perez et al., 2020). Again, this analysis is limited
by the small number of models for which decadal hindcast
simulations are currently available. Adding more models to this
analysis could point toward other conclusions, or strengthen
the results presented here. Additionally, extending this analysis
to other regions in the piControl simulations (as in Menary
and Hermanson, 2018) would provide valuable insights into the
way that the representation of underlying dynamics in different
models preconditions their skill for prediction of the SPG SST.

Other possible discriminant factors for decadal SPG SST
prediction skill, such as equilibrium climate sensitivity (ECS),
model initialization strategy (e.g., Smith et al., 2013) and
resolution of the ocean model in the respective model
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have been investigated, but with no firm conclusions at
this point.

Multi-Model Exploration of Windows of Opportunity
Analyses presented above analyze prediction skill for the period
1960–2014 as a whole, i.e., operate under the assumption that
predictive skill is constant over time. In the North Atlantic
region, however, the skill of decadal predictions was previously
shown to change over time, forming windows of opportunity,
with possible implications for the constraints discussed above.
Here, we examine the model-dependency of windows of
opportunity for decadal SPG SST prediction skill as a call for
caution when applying observational constraints to predictions
and projections.

Windows of opportunity for annual mean North Atlantic
SPG SST across all models are presented for a lead time average
over years 1–10 in Figure 9. These lead time averages bring out
more skill due to temporal filtering of the time series, which is
achieved by averaging all 10 predicted years that are predicted
from a certain start year. The analysis of windows of opportunity
enables an identification of model differences of prediction skill
across time.

We find that there is general agreement among models on
the approximate timing of windows of opportunity for SPG
skill, where the general level of skill depends on the models’
mean performance (Figures 7, 8). Skill is high early and late
in the analyzed time horizon, with a “skill hole” around the
1970s and 80s. These windows have been noted in earlier studies
(e.g., Christensen et al., 2020), and interpreted by Borchert et al.
(2018) to result from changes in oceanic heat transport. Since
all examined models agree on this timing, it could be argued
that windows of opportunity arise from the predictability of the
climate system rather than the performance of individual climate
models over time. This limits the applicability of observational
constraints at times of low skill. Windows of opportunity should
therefore be taken into account in observational constraints.
While times of low skill appear to coincide with times of low
trends for North Atlantic SST (e.g., Borchert et al., 2019; 2021),
they are possibly caused by modes of climate variability that are
mis-represented in the models, or times of small forced trends.
As windows of opportunity found here are generally in line with
those found for uninitialized historical simulations in Borchert
et al. (2021), they appear to be at least partly a result of changes
in forcing, e.g., natural forcing. This conclusion likely holds for
observational constraints in predictions and projections alike.

While this assessment remains mainly qualitative, it highlights
the potential for better estimating sources of prediction skill when
combining observation-based skill metrics in time as well as
between models. The presented analysis should thus be extended
to include more models, and studying the underlying physics at
work in-depth to produce actionable predictions for society.

Potential for Constraining Decadal
Prediction Skill of European Summer
Temperature
Finally, we examine prediction skill for European surface air
temperature, which is known to be difficult to predict due to

small signal-to-noise ratio (e.g., Hanlon et al., 2013; Wu et al.,
2019; Smith et al., 2020), yet one of our ultimate goals in terms
of prediction. We contrast the skill of the different prediction
systems currently available, and its change depending on time
horizon, as a first step toward model weighing or selection. As
in Section Constraining Projections, we use the SREX regions as
a first step of homogenizing analysis methods between prediction
and projection research.

We analyze the decadal prediction skill for SAT in SREX
regions in CMIP6 models during summer (JJA) (Figure 10)
after subtracting the linear trend. Summer temperature in SREX
regions shows generally low hindcast skill for individual lead
years. We find some differences between the different regions,
with a tendency for higher skill toward the South. Forming
the multi-model mean as a simple first step toward improving
skill due to improved filtering of the signal from the noise
(see above) does in fact lead to comparatively higher skill, but
does not consistently elevate SREX summer temperature skill to
significance at the 95% level (Figure 10). Because SPG SST was
shown to impact European surface temperature during boreal
summer (e.g., Gastineau and Frankignoul, 2015; Mecking et al.,
2019) and hindcast skill for SREX SAT shows similar inter-model
spread as for SPG SST, attempts to connect hindcast skill in
individual models to inherent properties of the model (as above)
is promising. The generally low (and mostly insignificant) level
of skill for all models in the SREX regions indicates, however,
that discriminatory features of skill between models would
not enable the identification of skillful models without further
treatment. Hence, further efforts such as an analysis of windows
of opportunity (see Multi-Model Exploration of Windows of
Opportunity) might reveal times of high prediction skill in the
SREX regions in the future, indicating boundary conditions that
benefit prediction skill.

SPG Prediction Skill as Model Weights for
Projections Over Europe
Finally, we experimented with using lead-year correlations
from Subpolar gyre predictions, instead of the ClimWIP
performance weights, for constructing weighted multi-model
mean fingerprints of the response to external forcing, and
estimating their contribution to observed change using the
ASK method (Section Contrasting and Combining Constraints

From Different Methodologies). While the estimate of the
GHG signal against other forcings remained fairly robust, we
found that when using those skill weighted fingerprints, the
ASK method’s ability to distinguish between contributions to JJA
change from different forcings degenerated sharply compared
to what is shown in Figure 4, top row (not shown). This is
not very surprising as it is not clear that a model’s prediction
skill over the SPG would necessarily relate to its skill in
simulating the response to forcing over European land, but an
approach like this might prove more promising in other regions
and seasons.

When considering combinations of performance-based
weights derived from initialized model skill and long-term
projection skill, different properties of models might come
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FIGURE 9 | Decadal ACC hindcast skill for detrended annual mean North Atlantic subpolar gyre SST for a sliding 20-years long window (the end year of which is

shown on the y-axis) across multi-model mean and individual model means (x-axis). Colors indicate ACC (low to high = purple to green).

FIGURE 10 | ACC of detrended summer (JJA) SAT in the SREX regions (A) Northern Europe, (B) Central Europe, and (C) Mediterranean (y-axis) against lead time in

years (x-axis). The horizontal dashed line represents the 95% confidence level compared to climatological prediction based on a two-sided t-test.

into play. For example, a model that shows strong response to
forcings will show a higher signal-to-noise ratio in the response,
which can drive up ACC skills influenced by forcing (although,
potentially, at a cost of lower MSSS). Such a model may also show
higher signal-to-noise ratio in fingerprints used for attribution
which also improves the constraint from the forced response.
On the other hand, a model that shows too strong trends (which
may improve signal-to-noise ratios) would get penalized by
ClimWIP for over-simulating trends, and hence rightly be
identified as less reliable for predictions. Moreover, the skill of
initialized predictions is heavily dependent on lead time and
time-averaging windows, which requires careful consideration
when applied as a weighting scheme to climate projections.
This illustrates that different approaches to use observational
constraints can pull a prediction system into different directions.
It would be interesting to investigate links between the reliability
of projections and the skill of predictions. Presently, the
limited overlap between models providing individually forced
simulations necessary for ASK, and being used in initialized
predictions makes it difficult to pursue this further.

CONCLUSIONS AND LESSONS LEARNT

Observational constraints for projections may both originate
from weighting schemes that weight according to performance
(Knutti et al., 2017; Sanderson et al., 2017; Lorenz et al., 2018;
Brunner et al., 2020b), as well as from a binary decision which
models are within an observational constraint and which outside
(model selection methods; see e.g., discussion in Tokarska et al.,
2020b; drawing on the ASK method; and Nijsse et al., 2020).
Constraining projections based on the agreement with the
observed climate state can phase in modes of climate variability
and add skill, similar to initialization in decadal predictions.
Retrospective initialized predictions (hindcasts) are evaluated
against observations using skill scores thatmay also provide input
for performance-based model weighting. This study illustrates
that the prediction skill may vary strongly with lead time, climate
model, in space, with climate state and over time (Borchert
et al., 2019; Christensen et al., 2020; Yeager, 2020), suggesting
a careful selection of cases to choose. Similarly, performance
weighting varies depending on whether trends are included in
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the analysis (i.e., if weights include evaluation of the forced
response), or whetherthe weights are limited to performance in
simulating mean climate. Constraints on future projections from
attributed greenhouse warming (ASK, see Section Constraining
Projections) show smaller uncertainties for targets of predictions
where the signal-to-noise ratio is high compared to noisier
variables, and correct implicitly for too strong or too weak a
forced response compared to observations. In our view, these
factors that control the skill of initialized predictions as well as the
strength of observational constraints on projections need to be
accounted for in upcoming attempts to combine projections and
predictions, and this might complicate the seamless application
of observational constraints in predictions and projections.

Overall, observational constraints on projections show
substantial promise to correct for biases in the model ensemble of
opportunity as illustrated from the UKCP18 example (Figure 1)
as well as for other methods (Figure 2). However, several
questions arise: If applied to similar model data, will different
metrics for model performance favor similar traits and hence
similar models? This is important when attempting to merge
predictions and projections: If the choice of timescale strongly
influences the model weights, or leads to selection of different
models, the merged predictions might be inconsistent over
time: in cases where the climate sensitivity deviates between
up-weighted or selected models for projections and predictions,
the merged predictions may have a discontinuous underlying
climate change signal. Where high performance models show,
possibly by chance, different variability dependends on choice of
weights from projections or predictions, the merged predictions
may also show different variability over time. It remains to be
explored how detrimental a signal-strength discontinuity might
be, as the signal during the initialized time horizon is still small
compared to noise on all but global scales (Smith et al., 2020).

Finally, we found that observational constraints show promise
and should be included in predictions and projections. This
is a lesson also learned from UKCP18, where observational
constraints have been used successfully in a major climate
projections product, and thus influence planning and adaptation
decisions based on the application. Figures 1, 2 both illustrate
observational constraints and show potential to correct for model
biases, such as too strong (or weak) response to forcing. However,
we need to address the question to what extent observational
constraints are reliable, even if they are intuitively well-justified
(Weisheimer and Palmer, 2014). This is more straightforward
for predictions than projections. For projections, such a ‘perfect’
or ‘imperfect’ model evaluation is not a trivial task, as it
requires retuning the observational constraint for every model
whose future performance is predicted in order to arrive at
robust statistics. However, it provides powerful evaluation of
observational constraints (see e.g., Schurer et al., 2018 or Brunner
et al., 2020b among other recent examples).

Our analysis of initialized prediction simulations indicates
that there are several dimensions (such as the change of skill
over time) that add complexity when aiming to use observational
constraints on climate projections combined with predictions.
For an optimized constraining of merged, seamless climate
prediction for the next 40 years, these dimensions need to be

considered. Furthermore, initialization can introduce shocks that
lead the initialized climate simulations into a different climate
state to the uninitialised simulations (Bilbao et al., 2021), which
can hamper attempts to merge predictions and projections, or to
apply common constraints.

Questions that need to be considered when evaluating
observational constraints and use them across prediction and
projection timescales include:

• Is there potential to improve performance of prediction
and projection systems by combining observed constraints?
First results indicate that improvements may be possible,
at least over projection timescales, particularly if combining
climatological constraints and those based on the forced signal.
This is unsurprising given that the one-model-one-vote system
may well be suboptimal. However, any possible improvements
need to be carefully evaluated, including in a perfect model
setting. And the prediction-projection merging still requires
some work.

• To what extent do weighting or model selection criteria used
across projections and predictions favor similar model traits
and to what extent are they uncorrelated or pull in different
directions? Particularly:

• do any of the weighting schemes preferentially select or
highly weight models with stronger or weaker response
to forcing? This can arise if correlation skills, e.g.,
are influenced by response to external forcing, such as
volcanism (Borchert et al., 2021). Are there any other factors
where different weighting schemes select differently?

• relatedly, do any of the schemes which also draw on
variability reward or penalize climate models with high or
low internal climate variability, i.e., with low or high signal-
to-noise ratio for external forcing or predictable signals?
High variability may degrade the performance of the ASK
system, but on the other hand appears to favor good
performance over the subpolar gyre (Figure 8).

• which dimensions beyond the model dimension show
promise in the application of observational constraints? Is
there a role for lead-time dependent skill, or skill depending
on climatological conditions (see Section Observational
Constraints on Initialized Predictions)?

Overall, we recommend that:

• Assumptions and mechanisms behind constraining methods
need to be clear and transparent (this point was also made in
Brunner et al., 2020a, but only for projections).

• It needs to be clear what main model characteristics explain
a constraint. Skill/high model accuracy can originate from
different model properties, e.g., from strong climatological
performance of models, from the representation of physical
mechanisms in specific models, from realistic representation
of internal climate variability or from response to external
forcing, or combinations of all.

• This is particularly important when considering observational
constraints across the prediction/projection boundary.
Furthermore, it needs to be considered that skill may vary
over time, and short hindcast periods can be misleading. On
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the other hand, we can increase performance by drawing on
more lines of evidence but need to be wary of over fitting

• When evaluating/combining methods (for projections and
across projections and predictions) we need a common
and consistent test protocol for skill and reliance to ensure
performance. This test protocol needs to consider all
dimensions on which the skill of climate simulations varies.
Combining different observational constraints may increase
performance by drawing on more lines of evidence, but need
to be wary of over fitting.

• It is important that consistent model versions and releases
are used across the prediction/projection timeline to enable
physically consistent merging for seamless prediction
across the next 40 years. Carefully-designed simulations
are thus required, using the same model versions for
predictions and projections. Longer prediction lead
times would be helpful to improve on some of the above
robustness issues for bringing predictions and predictions
closer together.

Last, but not least, it is important to also consider what our
findings mean for users of climate information. Firstly, they

illustrate that there may be a much greater information content

in model prediction and projection ensembles than is first
apparent when considering the raw ensemble alone to look

at the spread in future conditions. Indeed, without applying

constraints users may get a rather skewed view of the spread

of future climate simulations. Secondly, the results show that
whilst there are methods to extract this extra information they
are currently affected by multiple choices around choice of
constraint and how they are applied. It is recommended that
studies include more focus on showing the effect of applying
particular constraints, for instance using out of sample testing or

the effect of windows of opportunity on constraining projections.
This will help users avoid selecting approaches that provide over-
confidence. Thirdly, although at an earlier stage in development,
there is the growing potential for merging predictions and
projections over their respective time-scales. Consideration of
observational constraints is a vital part of this merging.
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