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Spumellaria (Radiolaria, Rhizaria) are holoplanktonic amoeboid protists, ubiquitous and abundant in
the global ocean. Their silicified skeleton preserves very well in sediments, displaying an excellent
fossil record extremely valuable for paleo-environmental reconstruction studies, from where most
of their extant diversity and ecology have been inferred. This study represents a comprehensive clas-
sification of Spumellaria based on the combination of ribosomal taxonomic marker genes (rDNA) and
morphological characteristics. In contrast to established taxonomic knowledge, we demonstrate that
symmetry of the skeleton takes more importance than internal structures at high classification ranks.
Such reconsideration allows gathering different morphologies with concentric structure and spherical
or radial symmetry believed to belong to other Radiolaria orders from the fossil record, as for some
Entactinaria families. Our calibrated molecular clock dates the origin of Spumellaria in the middle
Cambrian (ca. 515 Ma), among the first radiolarian representatives in the fossil record. This study
allows a direct connection between living specimens and extinct morphologies from the Cambrian,
bringing both a standpoint for future molecular environmental surveys and a better understanding
for paleo-environmental reconstruction analysis.
� 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Radiolaria are holoplanktonic amoeboid protists
belonging to the Rhizaria lineage, one of the main
branches of the eukaryotic tree of life (Burki and
Keeling 2014). Along with Foraminifera they com-
pose the phylumRetaria, characterized by cytoplas-
mic prolongations and a skeleton composed of
different minerals (Adl et al. 2019). Spumellaria rep-
resents an important order within the Radiolaria
(Suzuki and Not 2015), extensively studied across
the fossil record thanks to its opaline silica skeleton
(DeWever et al. 2001). Along with that of other radi-
olarians, the Spumellaria fossil record dates back to
the early middle Cambrian (ca. 509–521 Ma;
Aitchison et al. 2017; Suzuki and Oba 2015;
Zhang and Feng 2019) constituting an important tool
for paleo-environmental reconstructions analysis
(e.g., Abelmann and Nimmergut 2005). In contem-
porary oceans, molecular-based metabarcoding
surveys performed at global scale have shown that
Radiolaria contribute significantly to plankton com-
munities (de Vargas et al. 2015; Pernice et al.
2016) and the silica biogeochemical cycle (Llopis-
Monferrer et al. 2020), although very little is known
about their ecology and diversity. Living Spumellar-
ia, as other Radiolaria, are characterized by a com-
plex protoplasmic meshwork of pseudopodia
extending radially from their skeleton (Suzuki and
Aita 2011). With their pseudopodia, they actively
capture prey, such as copepod nauplii or tintinnids,
by adhesion (Sugiyama and Anderson 1997). In
addition to predation, many spumellarian species
dwelling in the sunlit ocean harbour photosynthetic
algal symbionts, mainly identified as dinoflagellates
(Probert et al. 2014; Yuasa et al. 2016; Zhang et al.
2018).

Radiolaria classifications are historically based
on morphological criteria relying essentially on the
initial spicular system, an early developed skeletal
structure considered to be the foundation of the sys-
tematics at family and higher levels (DeWever et al.
2001). Traditionally, radiolarians with concentric
structures and spherical or radial symmetry have
been classified as Spumellaria or Entactinaria
depending on the absence or presence, respec-
tively, of such a skeletal structure. Yet these taxo-
nomic differences, based on the initial spicular
system, have been recently questioned, finding
molecular evidence for the polyphyly of Entactinaria
among Rhizaria (Nakamura et al. 2020). The latest
spumellarian classification attempted to merge the
extensive morphological criteria (De Wever et al.
2001; Noble et al. 2017; O’Dogherty et al. 2009) with
recent rDNA molecular studies (Matsuzaki et al.
2015). An outcome from this later work, the current
classification scheme describes nine extant super-
families: Actinommoidea (Haeckel 1862;
O’Dogherty 1994), Hexastyloidea (Haeckel 1882),
Liosphaeroidea (Haeckel 1882), Lithelioidea
(Haeckel 1862; Petrushevskaya 1975), Pylonioidea
(Dumitrica 1989; Haeckel 1882), Saturnalioidea
(Deflandre 1953), Spongodiscoidea (De Wever
et al. 2001; Haeckel 1862), Sponguroidea (De
Wever et al. 2001; Haeckel 1862), Stylodictyoidea
(Haeckel 1882; Matsuzaki et al. 2015); and two
undetermined families (Heliodiscidae, Haeckel,
1887; DeWever et al. 2001; and Spongosphaeridae
Haeckel, 1862). In Matsuzaki et al. (2015) the
authors stated the “overwhelmingly artificial”
spumellarian classification outweighed by morpho-
logical criteria in regard to the little amount of molec-
ular data available.

Few studies have explored the genetic diversity
of Spumellaria, essentially unveiling relationships
among higher rank taxonomical groups (Ishitani
et al. 2012; Krabberød et al. 2011; Kunitomo et al.
2006; Yuasa et al. 2009). To date, with a total of
35 sequences frommorphologically described spec-
imens, covering 5 out of the 9 superfamilies
described, mismatches between morphological
and molecular characters are reported for two main
groups of Spumellaria among which different inner-
most shell structures are found (Ishitani et al. 2012;
Yuasa et al. 2009). Despite such important insights,
the understanding of the inner structure relation-
ships with the rest of the families remains elusive.
Time-calibration of radiolarian phylogenies thanks
to the fossil record allows a better understanding
of relationships among extinct groups along with a
contextualized evolutionary history (Decelle et al.
2012a; Lewitus et al. 2018; Sandin et al. 2019). In
addition, the morphological description of single cell
reference DNA barcodes establishes the basis for
further molecular ecology surveys, allowing us to
infer the actual diversity and ecology in the extant
oceans through metabarcoding approaches (Biard
et al. 2017; Decelle et al. 2013; Nitsche et al. 2016).
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Here we present an integrative morpho-
molecular classification of Spumellaria obtained by
combining ribosomal DNA genes (18S and 28S par-
tial rDNA), widely used as taxonomical markers, and
imaging techniques (light and scanning electron
microscopy). Phylogenetic placement of environ-
mental sequences provided insights in the extant
genetic diversity of Spumellaria in the contemporary
oceans, allowing access to undescribed diversity. In
addition, the extensive fossil record of Spumellaria
allowed calibrating our phylogenetic analysis in time
and inferring their evolutionary history contextual-
ized with global scale geological and environmental
changes from the Cambrian to present ecosystems.

Results

Comparative Molecular Phylogeny and
Morphological Taxonomy

Our final molecular phylogeny is composed of 133
distinct spumellarian sequences of the full 18S
rDNA gene, completed with 55 sequences of the
partial 28S (D1 and D2 regions) rDNA gene (Sup-
plementary Material Table S1). From the 133 final
sequences of the 18S rDNA, 67 were obtained in
this study, 58 were previously available sequences
associated to a morphologically described speci-
men and 8 were environmental sequences not affil-
iated to any morphology, added to increase
phylogenetic support in poorly represented clades.
Regarding the partial 28S rDNA, a total of 37
sequences were obtained in this study, where 18
were previously available. The final alignment matrix
has 25.45% of invariant sites.

Phylogenetic analyses show 13 different clades
(clades A, B, C, D, E, F, G, H, I, J, K, L andM) clearly
differentiated by BS and PP values distributed in 4
main lineages (I, II, III, and IV) showing high BS
(>97) and PP (1) and consistent position across
the different phylogenetic analyses (Fig. 1). In gen-
eral, morphological classification agrees withmolec-
ular phylogeny at the clade level. Considered
together, morphological similarities and molecular
phylogenetic support established super-families
Hexastyloidea (spread in clades A, B and C), Spon-
gosphaeroidea (clade D), Lithocyclioidea (clade E1)
and Spongodiscoidea (clade E2 and E3) in lineage I;
Liosphaeroidea (clade F) in lineage II; Rhi-
zosphaeroidea (clade G) and Centrocuboidea
(clades H and I) in lineage III and Actinommoidea
(clade K), Stylodictyoidea (clade J), Spongopy-
loidea (clade L2) and Pylonioidea (clade M) in lin-
eage IV with two unresolved families (clade L1,
Litheliidae and Sponguridae). Superfamily and fam-
ily definitions are based in similarity of morphological
characters, shared synapomorphies and phyloge-
netic clustering support into the so-called morpho-
molecular clades. All these morpho-molecular
clades are highly supported in both the 18S rDNA
and 28S rDNA gene phylogenies, except clades B
and E in the 28S rDNA gene phylogeny (Supple-
mentary Material Fig. S1). In contrast to the clade
definition, the general topology and relationships
between clades slightly disagree between the 18S
rDNA and the 28S rDNA gene phylogenies. Such
discrepancies are basically due to the variable posi-
tion of clade F that in the 18S rDNA gene phylogeny
appears basal to all clades and in the 28S rDNA
gene appears basal to clades J, K, L and M, weakly
supported as a sister group of clades H and G.
Another example is, clades B, C, D and E, which
are in the same highly supported group in the 18S
rDNA gene phylogeny, whereas in the 28S rDNA
gene phylogeny these clades appear scattered at
basal positions regarding the rest of the clades. In
the concatenation of the two genes clade F appears
highly supported as a group with the clades G to M
(Fig. 1).

Lineage I includes clades A, B, C, D and E and is
phylogenetically distant to the other 3 lineages.
Lineage I is characterized by the presence of one
or two concentric shells or a full spongy test, some-
times non-distinguishable, where the main spines
grow from the innermost shell and go through the
outermost shell, when present (Fig. 2A-E). Only
clade A and B shows two concentric shells with six
primary spines from the center (Fig. 2A-B). Clade
A is composed of 1 novel and 2 previously available
sequences and a common characteristic is the frag-
ile and hexagonal mesh constituting the outermost
shell (Fig. 2A). Clade B is composed of two novel
and five previously available sequences clustered
with high BS and PP values despite their phyloge-
netic distance (Fig. 1). All specimens of clade B
show a more irregular and thicker mesh of the shell
compare to that of clade A, and, when present, very
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thin spines (generally called by-spines) coming out
from all the surface of the shell (Fig. 2Ba and Bb).
Clade C is composed of five novel sequences show-
ing a large single double layered shell with no main
spines but a large abundance of long and thin spines
(Fig. 2C). These three clades agree with the defini-
tion of the Superfamily Hexastyloidea (Haeckel
1882; Matsuzaki et al. 2015) displaying an inner-
most shell that, if present, always shows pyriform
with six radial beams. Three different families within
Hexastyloidea correspond to: Hexastylidae
(Haeckel 1887) in clade A, Hexalonchidae
(Haeckel 1882) in clade B and Hollandosphaeridae
(Deflandre 1973) in clade C. The innermost shell if
present always shows pyriform with six radial
beams. Clades D and E are the more distal clades
in this lineage and highly supported together (100
BS and 1 PP). The presence of spongy structures
differentiates these two clades from the others of lin-
eage I (Fig. 2D-E). Clade D is composed of four
novel sequences obtained in this study. All speci-
mens of this clade show a single, very small spher-
ical shell where several long and three bladed
spines grow interconnected by a spongy mesh
(Fig. 2D). This definition agrees with the genus
Spongosphaera belonging to the Superfamily Spon-
gosphaeroidea (Haeckel 1862). The last clade of lin-
eage I (clade E) is composed of 30 sequences of
which 15 are novel. Members of this clade tend to
lose the concentric symmetry towards a cylindrical
to ellipsoidal (sub-clade E1; Fig. 2E1a and E1b) or
flat symmetry (sub-clade E2, Fig. 2E2a and Eb;
and sub-clade E3, Fig. 2E3), and so does the spines
and the shell. Spongy structures take more impor-
tance complicating the inner structure. These mor-
phologies agree with the definition of the Family
Artiscinae (Haeckel 1882) for E1 and the Superfam-
ily Spongodiscoidea (DeWever et al. 2001; Haeckel
Figure 1. Molecular phylogeny of Spumellaria inferred f
(D1-D2 regions) rDNA genes (135 taxa and 2459 alig
phylogenetic Maximum likelihood method implemented
PhyML bootstrap values (100 000 replicates, BS) and po
PP). Black circles indicate BS � 99% and PP � 0.99.
Sequences obtained in this study are shown in bold. T
support and morphological criteria (A, B, C, D, E, F, G, H
For each morpho-molecular clade, capital letters represe
name. Main skeletal traits are identified on the right fo
sequences were assembled as outgroup. Branches wi
clarity.

3

1862) for E2 and E3. Within the latest clades there
are representatives of two families Spongobrachi-
idae (Haeckel 1882) with moderate BS and PP val-
ues in sub-clade E2 and Eucthitoniidae (Haeckel
1882) highly supported in sub-clade E3.

Lineage II, including clade F alone, is composed
of 13 sequences of which five were previously avail-
able and eight are novel. All specimens within this
clade are characterized by one large and hollow
shell where long spines grow from its surface
(Fig. 2F1 and F2), that agree with the definition of
the Superfamily Liosphaeroidea (Haeckel 1882).
Members of the sub-clade F1 (Fig. 2F1) share a
robust shell compared to that of sub-clade F2
(Fig. 2F2) where short spicules come out of the
spines. Those specimens agree with the definition
of the family Astrosphaeridae (Haeckel 1887;
Matsuzaki et al. 2015) in the large hollow and fragile
shell with the presence of long or short spicules
coming out at the far end of the spines.

Within lineage III, including clades G, H and I,
clade G is represented by five novel and three pre-
viously available sequences. Members of this clade
have a unique innermost shell, named
“rhizosphaerid-type microsphere” or “microbursa”
(Dumitrica et al. 2010) with a large and fragile spher-
ical skeleton (Fig. 2Ga) or several cortical shells with
a robust skeleton (Fig. 2Gb). Either morphology
agree with the definition of the family Rhizosphaeri-
dae (Dumitrica 2017; Hollande and Enjumet 1960).
Clade H is composed by one novel sequence with
a morphological reference (Ses55, Supplementary
Material Fig. S2) and two environmental sequences
not morphologically described. The picture available
for this specimen lacks taxonomic resolution,
although the skeletal structure resembles that
shown in Aita et al. (2009, pl. 23, Fig. 3) specified
as Centrocubus cladostylus (Haeckel 1887). This
rom the concatenated complete 18S and partial 28S
ned positions). The tree was obtained by using a
using the GTR + c + I model of sequence evolution.
sterior probabilities (PP) are shown at the nodes (BS/
Hollow circles indicate BS � 90% and PP � 0.90.

hirteen main clades are defined based on statistical
, I, J, K, L, M), divided in 4 main lineages (I, II, III, IV).
nt the Superfamily name and small letters the Family
r each spumellarian specimen. Fourteen Nassellaria
th a double barred symbol are fourfold reduced for
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species has characteristic interconnected spines
and the highly supported position between clade G
and I agrees with the definition of the family Cen-
trocubidae (Hollande and Enjumet 1960; emend.
Dumitrica 1994). The last clade of this lineage (clade
I) is represented by two novel sequences obtained
in this study and 6 environmental sequences. Spec-
imens of this clade show only spongy structures with
radiated fibers and there is no evidence of either
shell or main spines (Fig. 2I).

In lineage IV, clade J, K and L cluster together
with relatively high BS (88) and PP (0.98) values
as a sister group of clade M. Although relationships
between clades J, K and L remain still elusive due to
the short phylogenetic distance and the different
topology when using a Maximum Likelihood
(Fig. 1) or a Bayesian (Fig. 3) approach (BS: 49
between clade K and L and PP: 0.38 between clade
J and K). All members of this lineage share a very
small spherical inner most shell with four or more
radial beams connecting to the second shell, where
12 or more radial beams come out (Fig. 2J-M). lin-
eage IV differs from lineage I in the absence of dis-
crete radial beams from the second or later shells.
Clade J is characterized by five sequences obtained
in this study and three previously available
sequences. Members of this clade share a flattened
skeleton with two or more concentric shells and
radial spines from the innermost or second inner-
most shell (Fig. 2J1, J10 and J2), agreeing with the
definition of the Superfamily Stylodictyoidea
(Haeckel 1882; Matsuzaki et al. 2015). Morphologi-
cal differences between sub-clade J1 (Fig. 2J1) and
J2 (Fig. 2J2) were not possible to determine, yet
they have been separated into two different sub-
Figure 2. Scanning Electron Microscope (SEM) image
phylogenetic analysis or morphologically related to one
correspond to its phylogenetic clade in Fig. 1. Scale ba
not included in phylogeny). (Ba) Vil484: Stigmostylus fe
Hollandosphaera hexagonia. (D) Mge17-82: Spongosp
(E1b) Vil458: Cypassis irregularis. (E2a) Osh48: Spo
Spongobracium ellipticum. (E3) Vil246: Dictyocoryne
Vil499: Cladococcus sp. A. (Ga) Vil240: Haliommill
Rhizosphaera trigonacantha. (I) Vil210: Plegmosphaer
detail of Vil441. (J2) Osh90: Stylodictya stellata. (K
Trilobatum aff. acuferum. (L10) detail of Mge17-118. (L2a
in phylogeny). (L2b) Vil296: Calcaromma morum. (M
Larcopyle aff. buetschlii. (M4a) Mge17-20: Tetrapyle
(specimen not included in phylogeny).

3

clades due to high BS (96 in J1 and 100 in J2)
and PP (0.98 in J1 and 1 in J2) values. Clade K con-
tains one novel and four previously available
sequences. All specimens of this clade have three
spherical shells with more than eight main spines
that extend from the inner shell (Fig. 2K), represent-
ing the Superfamily Actinommoidea (Haeckel 1862).
Clade L is represented by five novel and 14 previ-
ously available sequences. Members of this clade
are morphologically distant. Sub-clade L1 has a
tightly concentric or coiled center with one thick pro-
toplasmic pseudopodium (axopodium) (AB61787)
or a rhomboidally inflated center (Fig. 2L1 and
L10), which is not observed in any other Spumellaria.
In the first case, this morphology is attributed to the
family Sponguridae, and in the second to Litheliidae.
Sub-clade L2 is represented by either: a flatten cir-
cular test with a tunnel-like pylome and a test com-
prised by a very densely concentric structure
(Fig. 2L2a) attributed to Spongodiscoidea; or by a
spherical translucent protoplasm with an encrypted
flat consolidated skeletal shell in distal position and
star-like solid soluble materials (Fig. 2L2b and Sup-
plementary Material Fig. S2) assigned to Collodaria.
In clade M there are 13 novel sequences and seven
previously available sequences. A morphological
characteristic of this clade is the broken, or fenes-
trated, outermost shell with the presence of pyloniid
central structure (Fig. 2M), corresponding to the
Superfamily Pylonioidea (Haeckel 1882), thereafter,
the symmetry and the different opening of the outer-
most shell distinguishes the sub-clades. Yet, phylo-
genetic relationships within this clade remains
elusive. The first sub-clade (M1) consists of three
basal sequences poorly supported as a clade yet
s of Spumellaria specimens used in this study for
of the morpho-molecular clades of Fig. 1. Letters

rs = 50 mm. (A) Osh194: Hexacontium sp. (specimen
rrusi. (Bb) Mge17-15: Hexacontella? sp. (C) Vil174:
haera streptacantha. (E1a) Vil186: Didymocyrtis sp.
ngodiscidae gen et sp. Indet. A (E2b) Mge17-17:
koellikeri. (F1) Osh34: Heliosphaera bifurcus. (F2)
a capillacea (broken specimen). (Gb) Mge17-81:
omma? sp. (J1) Vil441: Stylodictya arachnea. (J10)
) Vil438: Actinomma trinacrium. (L1) Mge17-118:
) Osh191: Schizodiscus spp. (specimen not included
1) Vil200: Tholomura transversara. (M2) Osh16:
octacantha. (M4b) Vil452: Tetrapyle octacantha
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Vil240 - Haliommilla capillacea 

Mge17-82 - Spongosphaera streptacantha 

KX532703 - Uncultured marine eukaryote

Osh16 - Larcopyle aff. buetschli 

AB430758 - Dictyocoryne truncata 

GU822590 - Uncultured Rhizaria 

Vil282 - Hexacontella sp.

AB617585 - Un-identifiable specimen 

AB246684 - Rhizosphaera sp. 

AB246680 - Tetrapyle sp. 

Mge17-99 - Dictyocoryne sp.

Mge17-20 - Tetrapyle octacantha 

Vil476 - Rhizosphaera trigonacantha 

HQ651783 - Un-identifiable specimen 

HQ651795 - Hexastylus nobilis

AB617584 - Lithelius cf. alveolina 

Osh79 - Spongodiscus sp.

Vil228 - Cladococcus scoparius

KJ757677 - Uncultured marine eukaryote 

AB860155 - Schizodiscus? spp.

AB284518 - Heliosphaera aff actinota 

AB193605 - Didymocyrtis tetrathalamus

AB617587 - Schizodiscus sp. 

Vil437 - Cryptolarnaciinae gen. et sp. indet

HQ651798 - Hexastylus nobilis

Vil480 - Tetrapyle octacantha  

AB617590 - Schizodiscus asymmetricus 

AB246696 - Spongodiscus aculeatus

Vil453 - Stylodictya arachnea 

AB860147 - Stylodictya stellata 

Mge17-81 - Rhizosphaera trigonacantha 

AB246686 - Rhizosphaera sp. 

Vil293 - Dicytocoryne koellikeri 

AB860153 - Schizodiscus? spp.

AB617589 - Spongotrochus beringianus 

Osh69 - Spongosphaera streptacantha 

AB860156 - Schizodiscus? spp. 

JQ706069 (Oki50) - Rhizosphaera trigonacantha 

Ses13 - Pylodiscus spinulosus 

Vil441 - Stylodictya arachnea

Ses64 - Didymocyrtis tetrathalamus

Vil297 - Calcaromma morum 

Vil451 - Spongoplegma? sp.

AB860149 - Spongopyle osculosa 

Vil200 - Tholomura transversara 

Vil484 - Stigmostylus ferrusae 

Vil454 - Hollandosphaera hexagonia 

Oki25 - Spongosphaera streptacantha 

Osh174 - Spongodiscus sp.

AB179734 - Myelastrum lobum 

Outgroup (14 sequences of Nassellaria)

Time (Ma)

Figure 3. Time-calibrated tree (Molecular clock) of Spumellaria, based on alignment matrix used for
phylogenetic analyses. Node divergences were estimated with a Bayesian relaxed clock model and the GTR
+ c + I evolutionary model, implemented in the software package BEAST. Nine different nodes were selected
for the calibration (blue dots). Blue bars indicate the 95% highest posterior density (HPD) intervals of the
posterior probability distribution of node ages.
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sharing a cubic morphology and the two opposite
and closed gates (Fig. 2M1), which agrees with
the family Tholoniidae (Haeckel 1887). The three
other sub-clades have different morphologies
(Fig. 2M2; Ses13, Ses53 and Vil437, Supplemen-
tary Material Fig. S2) agreeing with the definition
of different families within Pylonioidea. Sub-clade
M2 (Fig. 2M2) has a spherical to ellipsoidal skeleton
without distinctive openings. On the other side, sub-
clades M3 and M4 are highly supported as a group
with a flattened box-shaped skeleton for the former
sub-clade (Ses13, Ses53 and Vil437, Supplemen-
tary Material Fig. S2) and a cubic skeleton charac-
terized by big openings of the second shell for the
later sub-clade (Fig. 2M4a and 4b).

Molecular Dating

The molecular clock dated the diversification
between Nassellaria and Spumellaria (the root of
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the tree) at a median value of 651 Ma (95% Highest
Posterior Density -HPD-: between 789 and 540 Ma)
(Fig. 3). From here on, all dates are expressed as
median values followed by the 95% HPD interval.
The first diversification of Spumellaria happened
Figure 4. Lineages Through Time (LTT) analysis bas
removing the outgroup (in black) and of each lineage ind
lineage III (dark green) and lineage IV (orange) and of Na
axis represents the number of lineages (N) expressed in l
represented the time in millions of years ago (Ma). Ho
Highest Posterior Density (HPD) of molecular clock esti
around 515 (659–382) Ma, followed by a rapid
branching of the lineages. Despite their dubious
phylogenetic relationships, lineage II splits apart
445 (571–332) Ma and lineage III and IV diversified
from each other 407 (526–306) Ma. The next diver-
ed on the molecular clock results for Spumellaria,
ependently: lineage I (purple), lineage II (light green),
ssellaria (data taken from Sandin et al. 2019). The y-
ogarithmic (base e) scale (Ln(N)) and in the x-axis it is
rizontal gray bars in black slope represent the 95%
mates.
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sification events correspond to the first radiation of
lineage IV 319 (417–234) Ma and that of lineage
III 307 (414–213) Ma. Within lineage IV, the phylo-
genetic relationships are doubtful, yet two radiation
events at 277 (363–203) Ma and 252 (334–182)
Ma separate clades J, K and L. clade L is the first
of these clades diversifying at 184 (255–121) Ma,
followed by clade J 153 (228–88) Ma, clade K at
145 (185–105) Ma and clade M at 105 (123–88)
being the youngest clade of lineage IV. Lineage III
diverged soon after lineage IV, yet the next ramifica-
tion was between clade G and clade I 229 (326–
145) Ma. It was not until 143 (162–123) and 135
(202–76) Ma when clade G and I respectively radi-
ate, and the latest diversification within this lineage
corresponds to clade H 49 (107–12) Ma. Lineage I
appeared 245 (264–226) Ma, and thereafter is char-
acterized by a series of relatively continuous diversi-
fication events until the radiation of clades B, A, E, D
andC at 142 (205–79), 131 (216–54), 153 (163–90),
34 (78–8) and 28 (68–7) Ma respectively. Regarding
lineage II, it is the youngest of all the lineages
appearing at 215 (255–177) Ma despite its early
branching from any other lineage.

Post-hoc Analyses

The lineages through time analysis (Fig. 4) showed
a classic exponential diversification slope, with a
0.0102 rate of speciation (Ln(lineages)�million
years�1). The first diversification of extant Spumel-
laria corresponds to an early and fast divergence
of the different lineages from �515 to �407 Ma.
After that, the diversification of living groups
remained at standstill until �313 Ma when lineage
IV and III radiated. From�276 to�215 Ma all differ-
ent groups diversified: clades K, J and L (within lin-
eage IV) split apart; lineage I appeared and started a
continued diversification; within lineage III the three
clades split apart; and lineage II emerged. Another
important diversification event happened from
�157 to �125 Ma when lineage IV greatly diversi-
fied, followed by lineage I and II. During the following
years there was a tiered diversification, where clade
M appeared in isolated events as well as the ramifi-
cation of clade L or the branching between sub-
clades E2 and E3. Finally, from �54 Ma onwards
there was a continuous diversification where the rest
of the clades appeared or keep diversifying. During
this time lineage III diversified notably and so did lin-
eage II.

The ancestral state reconstruction analysis (Sup-
plementary Material Fig. S3) established a spheri-
cal skeleton shape with a line of symmetry for the
common ancestor to all Spumellaria, with a central
structure that can be either empty (state 0) or with
an entactinarian-type microsphere or fused fibers
or soft spongy system (state 1), but with a wide
space in between the central structure and the cor-
tical shell, without spines arising from it and one
distinctive cortical shell. The common ancestor of
lineage I and that of lineages II, III and IV share a
spherical skeleton shape with a line of symmetry,
a wide internal cavity and one cortical shell. The dif-
ference between these two ancestors are that the
ancestor of lineage I is characterized by an
entactinarian-type central structure or fused fibers
or soft spongy system with more or less six spines,
whereas that of lineages II, III, IV could also have
an empty central structure and have no spines aris-
ing from the central structure. The common ances-
tor for lineage II has the most ancestral state in
every reconstructed trait (state 0). The common
ancestor of lineages III and IV also have a spherical
skeleton shape with a line of symmetry, like the
common ancestor of these two lineages indepen-
dently. Although the common ancestor of lineages
III and IV differs from that of lineage II in a higher
complexity of the central structure, the appearance
of structures in the internal cavity, the presence of
significantly more than six spines and that it could
have three cortical shells. Lastly, the common
ancestor of the lineage III and that of lineage IV
could also have one or three cortical shells with sig-
nificantly more than six radial spines. Yet in lineage
III the internal cavity gets denser than that of lin-
eage IV, whereas the central structure tends to be
entactinarian-type, fused fibers or soft spongy in lin-
eage III and that of the common ancestor of lineage
IV is undefined since it has equal probabilities every
character state.

Environmental Genetic Diversity of Spumellaria

A total of 1165 environmental sequences affiliated
to Spumellaria, and retrieved fromNCBI public data-
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base, were placed in our reference phylogenetic
tree (Fig. 5; Supplementary Material Table S3).
From these, 617 were closely related to clade F.
Two other cladeswith a high number of environmen-
tal sequences related to are clade I and clade M,
with 145 and 47 sequences respectively. While up
to 40 sequences were scattered between clades
E, L, B, G, D and J (17, 14, 3, 3, 1 and 1 respec-
tively), no environmental sequences were clustered
within clades A, C, H and K. The rest of the
sequences (317) where distributed across the tree,
mainly at basal nodes, with no possible assignation:
206 basal to clade F in lineage II, 70 in lineage I (of
which 41 basal to the lineage, 11 basal to clades C,
D and E, 12 basal to clades D and E, 6 basal to
clade B and 1 basal to clade C), 26 in lineage IV
(of which 16 basal to clade J, 5 basal to clade M
and 5 basal to the lineage), 4 in lineage III basal to
clade G, 2 basal to lineages II, III and IV and 8 final
sequences basal to all Spumellaria.

To go beyond rapid phylogenetic placement
using the pplacer tool, these 317 environmental
sequences dubiously assigned, were later included
in a phylogenetic tree of the 18S rDNA gene
(RAxML v8.2.10, GTR + G + I, with 1000 rapid boot-
straps, Stamatakis 2014) after removing chimeras
(52 sequences were detected as chimeric) and sus-
picious sequences (11 sequences with multiple phy-
logenetic placements and/or long branches). Up to
six different new clades were found (Env1 – 6;
Fig. 6), six sequences scattered over the phyloge-
netic tree (one related to Env2, three sequences
related to clade F and Env5 and two sequences clo-
sely related to clade G) and two last sequences
were clustered with high support basal to clade M
(Fig. 6; further details of sequence assignations
can be found in Supplementary Material
Table S3). From these clades, Env5 gathers 149
sequences related to clade F in lineage II, yet low
bootstrap values (51) avoid a formal assignation.
Two clades (Env1 with 63 sequences and Env2 with
seven) are found at basal positions of lineage I.
Another environmental clade appears in lineage IV
(Env4 with 16 sequences), and two final clades
are found basal to lineages I, III and IV (Env6 with
eight sequences) and basal to lineage IV (Env3 with
three sequences).
Figure 5. Pplacer phylogenetic placement of 1165 env
netic tree of Spumellaria (complete 18S + partial 28S rDN
environmental sequences assigned to a branch or a nod

3

In order to improve the understanding of the
diversity of the environmental clades (Fig. 6) and
try to explain the high chimeric ratio (�13–25%)
observed, we performed a second phylogenetic
analysis (RAxML v8.2.10, GTR + G + I, with 1000
rapid bootstraps, Stamatakis 2014). This analysis
includes the dataset used to build Fig. 6 and nine
other sequences obtained from single-cell isolates
but previously removed due to the contrasting mor-
phological assignation in the clustered phylogenetic
clade. It turns out that these nine sequences clus-
tered with moderate to high support among one of
the environmental clades, clade Env1 (Fig. 7; Sup-
plementary Material Table S1). These nine speci-
mens show a morphology that matches clades E
(Osh87 and Osh174), F (Osh156), G (Osh82,
Osh97 and Osh114), I (Osh187), L (Osh116) and
a last specimen with a morphology not covered in
our morpho-molecular framework (Osh108). Our
morpho-molecular classification show that each
molecular clade has a clear and endorsed (two or
more specimens) morphological patterns distinct
from one another. The combination of different mor-
phologies within the same clade Env1 contrasts with
this global pattern. In addition, one of the specimens
from clade Env1 (Osh174) is also found within clade
E. Although in clade E it is composed by the con-
catenation of the first part of the 18S rDNA and
the 28S rDNA gene (1489 bp in total) and that of
clade Env1 by the second part of the 18S rDNA
gene (871 bp).

To assess possible pseudogenes for clade Env1,
we performed two analyses for the 18S rDNA: (i) an
entropy analysis of the alignment and (ii) the GC
content estimation of every sequence. No differ-
ences were found between the entropy of Env1
and that of the different lineages (Supplementary
Material Fig. S4), showing an average Shannon
entropy of 0.07 (±0.16 standard deviation; sd) in
Env1, 0.08 (±0.19 sd) in lineage I, 0.03 (±0.08 sd)
in lineage II, 0.11 (±0.24 sd) in lineage III and 0.14
(±0.26 sd) in lineage IV. The greatest entropy values
correspond to the V4 hyper-variable region of the
18S rDNA gene (positions � 450-�850). Other
important regions correspond to the V2 (around
the position � 200), V7 (�1400) and V9 (�1720)
hyper-variable regions of the 18S rDNA gene. GC
ironmental sequences into a concatenated phyloge-
A genes). Numbers at nodes represent the amount of
e.
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content of Env1 also reveals comparable results to
the other clades, where Env1 has an average GC
content of 50.1% (±1.36% sd) and the average of
all the sequences analyzed is of 48.9% (±1.61%
sd) (Supplementary Material Fig. S5). Yet Env1
has the highest average GC content among its rela-
tives in lineage I and decreases towards more distal
groups, finding a similar pattern in lineage IV.

Discussion

Morpho-molecular Classification of Spumellaria

Our study shows that the symmetry of the skeleton
and the overall morphology are key features
describing spumellarian phylogeny at higher rank
classifications, as for other radiolarian groups such
as Acantharia (Decelle et al. 2012b) or Nassellaria
(Sandin et al. 2019). Central structure patterns are
also well defined between clades helping to discern
similar symmetric trends in distantly related clades
(e.g. flat and radial symmetry in the super-families
Spongodiscoidea, Spongopyloidea and Stylodicty-
oidea). These results contrast the recognized impor-
tance of internal structures in previous morphology-
based radiolarian classifications (Afanasieva et al.
2005; De Wever et al. 2001) in which the initial spic-
ular system was the key element for taxonomic
delimitation and characterization. Yet, overall shape
has always played a significant role in the further
description of different taxonomic groups. We there-
fore establish the symmetry and the overall mor-
phology of the skeleton of Spumellaria as main
morphological markers, followed by central struc-
ture patterns at finer taxonomic ranks.

The morpho-molecular framework established
herein understands the Spumellaria as polycystines
radiolarians with concentric structure and a spheri-
cal or radial symmetry. This concept includes some
living groups classified under the order Entactinaria
in DeWever et al. (2001) such asHexastyloidea that
were already suggested to be included in Spumel-
laria (Ishitani et al. 2012; Matsuzaki et al. 2015;
Figure 6. Molecular phylogeny of environmental sequen
by using 1000 rapid bootstrap RAxML GTR + c model o
BS � 99% and hollow circles indicates BS � 90%. BS low
double barred symbol are fourfold reduced for clarity. B
known (Figs. 1,2). Gray triangles represent environmen
mental clade is described in Supplementary Material Ta
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Yuasa et al. 2009). Our results also confirm the
inclusion of the Entactinaria super-families Cen-
trocuboidea and Rhizosphaeroidea within Spumel-
laria. The Radiolaria orders Spumellaria and
Entactinaria were traditionally separated based on
the absence or presence of internal structures
respectively (De Wever et al. 2001). Here we show
that the Entactinaria order in the sense of DeWever
et al. (2001) is scattered into clades A, B, C (from lin-
eage I) G, H and I (from lineage III). Recent
advances in imaging techniques have suggested
the Spumellaria as a sub-order within the Entacti-
naria based on findings of homologous structures
with the initial spicular system in Spumellaria among
primitive radiolarian forms (Kachovich et al. 2019).
Despite our results agreeing with Kachovich et al.
(2019) in the taxonomic inclusion of both orders,
we consider Entactinaria as a polyphyletic group
within the Rhizaria as shown in Nakamura et al.
(2020). The prevalence of the overall shape at
higher taxonomic levels would therefore place the
Spumellaria as the name of polycystines radiolari-
ans with concentric structure and a spherical or
radial symmetry, in contrast to Kachovich et al.
(2019). The formal inclusion of most entactinarian
families with extant Spumellaria provides a direct
and documented link from the Cambrian to current
ecosystems, improving the connection for paleo-
environmental reconstruction analyses. In addition
to our conclusions, there are no genetic evidences
of a purely Entactinaria clade so far and at this point
we cannot exclude that other groups sharing these
symmetric patterns might also be emended within
Spumellaria, as for the Centrocubidae and Rhi-
zosphaeridae families. Despite the demonstrated
polyphyletic nature of Entactinaria, different appear-
ance and extinction ranges along the fossil record
makes it a valuable taxon for biostratigraphic
studies.

Extant Spumellaria included in our study can be
divided in 13 morpho-molecular clades, grouped in
four main evolutionary lineages based on the combi-
ces associated to Spumellaria. The tree was obtained
f sequence evolution. Black circles at nodes indicate
er than 60 were removed for clarity. Branches with a
lack triangles represent clades which morphology is
tal clades. Sequence composition of each environ-
ble S3.
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nation of phylogenetic clustering support, morpho-
logical features and molecular dating. Our results
confirm the monophyly of some families (e.g., Lio-
sphaeroidea, Rhizosphaeridae, Actinommoidea or
Pylonioidea) while others such as Hexastyloidea
found in clades A, B and C or Spongodiscoidea pre-
viously gathering morphologies from clades E and L
are polyphyletic (Matsuzaki et al. 2015). Different
families included within Hexastyloidea have been
classified as independent super-families in previous
morphology-based taxonomic studies (Afanasieva
et al. 2005; De Wever et al. 2001), as seen in the
paraphyletic relationships of our phylogenetic
results. For instance, flat spumellarians have been
classified all together on the basis of their flat sym-
metry, yet the previously stated polyphyletic nature
of this group is confirmed by our results, due to dif-
ferences in the test and the overall morphology of
the skeleton (De Wever et al. 2001). Despite our
efforts, some uncertainties regarding specific fami-
lies such as Heliodiscidae, Ethmosphaeridae or
Saturnalidae remain yet to be genetically described.
This could be addressed by performing further sin-
gle celled morpho-molecular characterization analy-
ses on targeted specimens from a broad variety of
environments (e.g. deep water). Although these
families are represented by very few species and
have similar symmetric and central structure pat-
terns to other families presented herein; they could
be therefore emended within one of the described
clades.

Diversity of Spumellaria

The great environmental diversity found at early
diverging positions (i.e.; Env1, Env3, Env6 from
Fig. 6) prevents a comprehensive exploration of
the extant spumellarian morpho-molecular diversity
and challenges the reliability of such molecular
clades. However, our analyses allowed us to
hypothesizing different morphologies for such envi-
ronmental clades, precisely Env1. Various lines of
evidences led us to conclude the existence of two
Figure 7. Detailed molecular phylogeny of the environm
within the same phylogenetic clade. In brackets after the
in the morpho-molecular framework established herein.
shown at the nodes. Black circles indicate BS � 99% and
were removed for clarity. Branches with a double barred
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different and phylogenetically distant 18S rDNA
gene copies within the same specimen:

(i) The notably high ratio of chimeric sequences
obtained from each single cell analyzed (�13–
25%) that would reflect the presence of different
rDNA genes amplified with the same Spumellaria-
specific primer sets from a single cell/specimen.

(ii) The common relatively long branches within
clade Env1 (Fig. 7) traducing the decreased accu-
racy and quality of sequences obtained by the
sequencing of a mix of rDNA gene copies.

(iii) Distantly related morpho-species unexpect-
edly clustered in the same phylogenetic clade
Env1 (Fig. 7), contrasting with the globally well sup-
ported morpho-molecular clades in Spumellaria.

(iv) The presence of the same single cell speci-
men in 2 different and highly supported clades
(Osh174 in Env1 and E2), when different amplifica-
tion and sequencing runs have been carried out.

Further analyses based on the entropy and GC
content of sequences clustering in Env1 showed
similar trends compare to the rest of spumellarian
sequences, disregarding the possibility of a pseu-
dogene (e.g. Balakirev et al. 2014). Intra-genomic
or intra-specific polymorphism may also be
excluded as possible causes since phylogenetic
distances between families and superfamilies are
of grater magnitude. Given the regular occurrence
of symbiotic relationships within the SAR super-
group
(Bjorbækmo et al. 2020; Stoecker et al. 2009,
2016), the most likely explanation left for clade
Env1 is the existence of a naked symbiotic group
of Spumellaria developing within another,
skeleton-bearing Spumellaria. The exact symbiotic
nature (parasitic, mutualistic or commensalistic) of
such group remains beyond the scope of this study
and cannot be inferred from our data. It is worth
mentioning that the possibility of environmental
DNA contamination cannot be excluded. All 9 spec-
imens come from different samples within the water
column (from surface down to 2000 m deep; Sup-
plementary Material Table S1) yet belonging to
ental clade Env1, showing the different morphotypes
species name is indicated the expected clade based
RAxML bootstrap values (1000 replicates, BS) are
hollow circles indicates BS � 90%. BS lower than 60
symbol are fourfold reduced for clarity.
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the same water mass. Further imaging analysis on
live or fixed specimens (e.g. fluorescence in situ
hybridization) could help settle this hypothesis by
visualizing two cells/nucleus within the same skele-
ton or detecting skeleton-less Spumellaria. Similar
associations have been already identified between
benthic bathyal Foraminifera and dead tests of
Xenophyophorea (Foraminifera) (Hughes and
Gooday 2004; Pawlowski et al. 2003). To our
knowledge the few molecular data available for
marine Heliozoa have appeared to be polyphyletic
(Burki et al. 2016; Cavalier-Smith et al. 2015), as
for freshwater heliozoans (Nikolaev et al. 2004).
Indeed, some groups of Heliozoa, such as Gym-
nosphaeridae, have been moved to the Retaria lin-
eage (precisely within Radiolaria) based on ultra-
structural features of the axopodial complex
(Yabuki et al. 2012). Therefore, one cannot rule
out that some of these basal environmental clades
are represented by heliozoan-like organisms and
some of them (clade Env1) developed symbiosis
within other Spumellaria.

The morpho-molecular framework of Spumellaria
established in this study allows an accurate phylo-
genetic placement of environmental sequences for
which it would not be possible to infer their taxo-
nomic position otherwise. Most of the environmental
(i.e. not morphologically described) sequences
placed in our reference morpho-molecular frame-
work are highly related to Liosphaeroidea, coming
primarily from deep environments (1500–2500 m)
(Edgcomb et al. 2011; Lie et al. 2014). Another
group displaying a large environmental diversity is
the family Excentroconchidae, mainly represented
by sequences coming from anoxic environments
(Edgcomb et al. 2011; Kim et al. 2012). These
results agree with the data obtained by morphologi-
cal observations from the fossil record (De Wever
et al. 2001) or from plankton and sediments traps
and surface sediment materials (Boltovskoy et al.
2010; Boltovskoy and Correa 2016), in which both
the Liosphaeroidea and the Excentroconchidae
are among the most abundant groups. Representa-
tives of these families are characterized by a thin
and fragile skeleton with a dense protoplasm. As
previously suggested (Not et al. 2007), cell break-
age may also contribute to the outstanding amount
of sequences found among these taxonomic groups
compared to other clades.
Evolutionary History of Spumellaria

Our molecular clock results dated the first diversifi-
cation of Spumellaria at � 515 (HPD: 659–382)
Ma, in agreement with recent findings of the oldest
radiolarian fossils with spherical forms, taxonomi-
cally classified in the extinct spumellarian genus
Paraantygopora (early Cambrian, Series 2, ca.
521–509 Ma; Zhang and Feng 2019). This early
diversification separated the two contrasting lin-
eages I and IV, followed soon afterwards by the
branching of linages II and III, during the so-called
Great Ordovician Biodiversification Event (Noble
and Danelian 2004; Servais et al. 2016). At this
moment many different symmetrically spherical
radiolarians appeared in the fossil record
(Aitchison et al. 2017; Noble et al. 2017). Yet, poor
radiolarian-bearing rocks (Aitchison et al. 2017), dif-
ferent topologies of the different marker genes and
the short phylogenetic distance at these nodes in
the concatenated phylogenetic analysis make rela-
tionships between lineages obscure. From this per-
iod until the end of the Paleozoic the diversification
of extant lineages is low and basically restricted to
the end of the Carboniferous (358.9 – 298.9 Ma)
when lineages III and IV start diversifying.

All over the Paleozoic, extinct specimens previ-
ously attributed to Entactinaria show a great diver-
sity that mostly became extinct towards the
beginning of the Mesozoic (De Wever et al. 2003,
2006). Some representatives of this group have
been tentatively considered as Nassellaria in latest
classifications and later suggested as ancestors of
this order due to overall morphology and molecular
clock results (Noble et al. 2017; Sandin et al.
2019). The morpho-molecular framework here pro-
posed allows the attribution of some radiolarian
extinct groups with spherical or radial symmetry as
possible ancestors of the extant Spumellaria, that
can be reflected in the long branches of clades
belonging to lineages II, III and IV (Fig. 1). These
phylogenetic patterns may be interpreted as a bot-
tleneck effect, in which many groups went extinct
before they had a chance to radiate.

At the beginning of the Mesozoic the first extant
representatives appear with the diversification of lin-
eage II (Liosphaeroidea) and Hexastyloidea.
Although, the polyphyletic nature of Hexastyloidea
shows a later diversification within the clades (A, B
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and C), explaining why the Triassic (251.9–
201.3 Ma) genera does not resemble that of the
Cenozoic (66–0 Ma) (O’Dogherty et al. 2011). Dur-
ing the Triassic, lineage III also diversifies and all
clades from lineage IV are already separated from
each other, yet their diversifications are not happen-
ing until the end of the Mesozoic. Similar diversifica-
tion patterns at the beginning of the Mesozoic have
been reported in living Nassellaria inferred from the
combination of the molecular clock and the direct
observation of the fossil record (De Wever et al.
2006; Sandin et al. 2019); in which ancient forms,
presumably extinct during the end-Permian extinc-
tion (Aitchison et al. 2017; De Wever et al. 2006;
O’Dogherty et al. 2011; Sepkoski 1981; Takahashi
et al. 2009) led to the diversification of extant
groups.

The second part of the Mesozoic is characterized
by a stepped diversification of Spumellaria, as
already described for Nassellaria (Sandin et al.
2019) and Foraminifera (Hart et al. 2003; Leckie
et al. 2002). This phenomenon is classically
explained by the onset of a global oceanic anoxia
during the Jurassic (Jenkyns 1998) and a series of
Oceanic Anoxic Events during the Cretaceous
(Erbacher et al. 1996; Jenkyns 2010; Kemp and
Izumi 2014; Schalanger and Jenkyns 1976; Yilmaz
et al. 2012). In contrast to Nassellaria diversification,
towards the end of the Jurassic (201.4–145 Ma) and
beginning of Cretaceous (145–66 Ma), there is a big
increase in Spumellaria diversification where most
of the clades suddenly diversified. This trend is also
reported in the fossil record (De Wever et al. 2003;
Kiessling 2002). Such differences between diversifi-
cation patterns of Spumellaria regarding other radi-
olarian groups is a question already raised in
recent studies (Kachovich et al. 2019). Both extant
Nassellaria and Spumellaria share similar environ-
mental preferences (Suzuki and Not 2015). Yet
Spumellaria tend to possess a larger protoplasmic
volume (Des Combes and Abelmann 2009;
Takahashi 1982). There is also a drastic diversifica-
tion of flat spumellarians, a feature that increases
the surface/volume ratio of a given organisms. Prob-
ably such morphological adaptations provided an
advantage to thrive during low nutrient availability
periods, as known to be case during the Jurassic
(Cárdenas and Harries 2010). Once the conditions
became more favorable heterotrophic Spumellaria
started a sustained diversification that followed
throughout the Cenozoic (66–0 Ma). Similar diversi-
fication patterns linked to climatic oscillations over
T T 1 1 2
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the Cenozoic were found in Nassellaria (Sandin
et al. 2019), Foraminifera (Hallock et al. 1991) and
coccolithophores (Bown et al. 2004).

Methods

Sampling and single cell isolation: Plankton samples were col-

lected: 1- off Sendai (11 samples: 38� 0’ 28.8’’ N, 142� 0’ 28.8’’ E), 2-
Sesoko (8 samples: 26� 48’ 43.2’’ N, 73� 58’ 58.8’’ E), 3- the

Southwest Islands, South of Japan (2 samples: 28� 14’ 49.2’’ N, 129�
5’ 27.6’’ E) 4- in the bay of Villefranche-sur-Mer (38 samples: 43� 40’
51.6’’ N, 7� 19’ 40.8’’ E) and 5- in the western Mediterranean Sea (9

samples: MOOSE-GE cruise) by net tows (20, 64 or 200 mm), Ver-

tical Multiple-opening Plankton Sampler (VMPS) or Bongo net (24-

200 mm). Samples related metadata can be found in the RENKAN

database (http://abims.sb-roscoff.fr/renkan). Spumellarian speci-

mens were individually handpicked using Pasteur pipettes from the

plankton tow sample and transferred 3 to 4 times into 0.2 mm filtered

seawater to allow self-cleaning from debris, particles attached to the

cell or prey digestion. Images of live specimens were taken under an

inverted microscope and thereafter transfer into 1.5 ml Eppendorf

tubes containing 50 ml of molecular grade absolute ethanol and

stored at -20 �C until DNA extraction.

DNA extraction, amplification and sequencing: DNA was

extracted using the MasterPure Complete DNA and RNAPurification

Kit (Epicentre) following manufacturer’s instructions. Both 18S rDNA

and partial 28S rDNA genes (D1 and D2 regions) were amplified by

Polymerase Chain Reaction (PCR) using Radiolaria and Spumellaria

specific and general primers (Table 1). For further details about rDNA

amplification see: dx.doi.org/10.17504/protocols.io.xwvfpe6. PCR

amplicons were visualized on 1% agarose gel stained with ethidium

bromide. Positive reactions were purified using the Nucleospin Gel

and PCR Clean up kit (Macherey Nagel), following manufacturer’s

instructions and sent to Macrogen Europe for sequencing.

Scanning Electron Microscopy (SEM): After DNA extraction,

spumellarian skeletons were recovered from the eluted pellet and

handpicked under binoculars or inverted microscope. After cleaning

and preparing the skeletons (detailed protocol in dx.doi.org/10.175

04/protocols.io.ug9etz6) images were taken with a FEI Phenom

tabletop Scanning Electron Microscope (FEI technologies).

Single cell morphological identification: Spumellaria speci-

mens were identified at the species level, referring to pictures of

holotypes, through observation of live images and analysis of the

skeleton by scanning electron microscopy when available (see

Supplementary Material Table S1 for taxonomic authority of speci-

mens included in our study). Further details in taxonomic assignment

of the specimens can be found in the Methods of Sandin et. al. 2019.

Phylogenetic analyses: After sequencing, forward and reverse

sequences were checked and assembled using ChromasPro soft-

ware version 2.1.4 (2017). Sequences were compared to the Gen-

Bank reference database (GenBank) using the BLAST search tool

integrated in ChromasPro to discriminate radiolarian sequences from

possible contamination. Presence of chimeras, at a frequency as

high as 13-25%, was detected by mothur v.1.39.3 (Schloss et al.

2009) against previously available reference sequences of Spumel-

laria. Sequences not detected as chimeras, were in turn included in

our reference database for future phylogenetic reconstruction and

chimeric analysis.

Two different datasets for each genetic marker (18S rDNA gene

and partial 28S rDNA gene) were aligned separately using MAFFT
v7.395 (Katoh and Standley 2013) with a L-INS-i algorithm (‘--

localpair’) and 1000 iterative refinement cycles for high accuracy.

Each alignment was manually checked in SeaView version 4.6.1

(Gouy et al. 2010) and trimmed automatically using trimal (Capella-

Gutiérrez et al. 2009) with a 30% gap threshold. For both genes,

the 18S rDNA (133 taxa, 1789 positions) and the 28S rDNA (55 taxa,

746 positions), phylogenetic analyses were performed indepen-

dently. The best nucleotide substitution model was chosen following

the corrected Akaike Information Criterion (AICc) using the modelT-

est function implemented in the R version 3.6.0 (R Core Team 2014)

package phangorn version 2.5.5 (Schliep 2011). The obtainedmodel

(General Time Reversible with Gama distribution and proportion of

Invariable sites, GTR + G + I) was applied to each data set in R upon

the packages APE version 5.3 (Paradis et al. 2004) and phangorn

version 2.5.5 (Schliep 2011). A Maximum Likelihood (ML) method

(Felsenstein 1981) with 10 000 replicates of bootstrap (Felsenstein

1985) was performed to infer phylogenies.

Despite specific discrepancies in the topology of the two analyses

(Supplementary Material Fig. S1), the two genes were concatenated

in order to increase taxonomic coverage and improve phylogenetic

resolution. A final data set containing 133 taxa and 2535 positions

was used to infer phylogenies following the previous methodology.

Fourteen sequences of Nassellaria were assembled to form the

outgroup as seen in previous classifications to be the sister clade of

Spumellaria (e.g., Cavalier-Smith et al. 2018; Krabberød et al. 2011).

The best model obtained was GTR + G + I, with four intervals of the

discrete gamma distribution, and a ML method with 100 000 boot-

straps. In parallel, a Bayesian analysis was performed using BEAST

version 1.8.4 (Drummond et al. 2012) with the same model parame-

ters over 100 million generations sampled every 1000 states, to

check the consistency of the topology and to calculate posterior prob-

abilities. The final tree was visualized and edited with FigTree version

1.4.3 (Rambaut 2016). All sequences obtained in this study and used

for the phylogeny were submitted in GenBank under the accession

numbers: MT670437 - MT670549.

Morphological observations performed with light and scanning

electron microscopy (Supplementary Material Fig. S2) allowed

assigning these sequences to nine super-families (Actinommoidea,

Hexastyloidea, Liosphaeroidea, Lithocyclioidea, Pylonioidea, Spon-

godiscoidea, Spongopyloidea, Spongosphaeroidea and Stylodicty-

oidea), two super-families considered to belong to Entactinaria

(Centrocuboidea and Rhizosphaeridae) and two unresolved families

(Litheliidae and Sponguridae).

Molecular clock analyses: Molecular clock estimates were

performed according to Sandin et al. (2019). Nine nodes were cho-

sen to carry out the calibration. The selection of these nodes is

explained below from the oldest to the newest calibration age, and

given the name of the node for the taxa they cover:

1. Root: The calibration for the root of the tree corresponds to the

hypothesized last common ancestor between Nassellaria and

Spumellaria (De Wever et al. 2001). A uniform distribution (U) with a

minimum bound of 300 million years ago (Ma) and a maximum of

800 Ma (U[300, 800]) was set to allow uncertainty in the diversifica-

tion of both groups and to establish a threshold restricting the range

of solutions for the entire tree.

2. Nassellaria N(410, 20): The outgroup of the phylogeny is cal-

ibrated based in a consensus between the first appearance of

nassellarian-like fossils in the Upper Devonian (ca. 372.2 Ma) in the

fossil record (Cheng 1986) and the first diversification of Nassellaria

dated with previous analysis of the molecular clock (ca. 423 Ma; 95%

HPD: 500–342 Ma; Sandin et al. 2019). Therefore, the node was nor-

http://abims.sb-roscoff.fr/renkan
http://dx.doi.org/10.17504/protocols.io.xwvfpe6
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mally distributed (N) with a mean of 410 and a standard deviation of

20: N(410, 20).

3. Spumellaria U[700, 200]: Recent studies have found the oldest

spumellarian representatives in the early middle Cambrian (Zhang

and Feng 2019). Yet, De Wever et al. (2001) have argued that the

initial spicular system may be subjected to preservation bias. Since

many spumellarians and entactinarians (presence of the initial spic-

ular system or not, respectively) are superficially similar and it is

not possible to distinguish from one another (Suzuki and Oba

2015), a uniform distribution was set to allow uncertainty in the diver-

sification of Spumellaria.

4. Hexastyloidea N(242, 10): The family Hexastylidae is the first

representative of the superfamily Hexastyloidea and has its first

appearance in the fossil record in the Middle Triassic (Late Anisian:

ca. 246.8–241.5 Ma; O’Dogherty et al. 2011).

5. Liosphaeroidea N(233, 20): The Liosphaeroidea seems to

have appeared in the Triassic (De Wever et al. 2001; Pessagno and

Blome 1980). Although it is not sure whether there is a continuity

between members from the Mesozoic and Cenozoic (Matsuzaki

et al. 2015).

6. Actinommidae N(170, 20): The family Actinommidae appears

for the first time in the fossil record in the Middle Jurassic (Aalenian:

ca. 174.2–170.3 Ma; O’Dogherty et al. 2011) yet somemorphologies

from the Triassic resemblance this Superfamily (De Wever et al.

2001).

7. Rhizosphaeroidea N(148, 10): The Rhizosphaeridae appeared

during the late Jurassic (Tithonian: ca. 145–152.1 Ma) in the fossil

record (Afanasieva and Amon 2006; DeWever et al. 2001; Dumitrica

2017; Petrushevskaya 1975).

8. Pylonioidea N(97, 10): The family Larnacillidae are the first

representatives of the superfamily Pylonioidea appearing at the

beginning of the Late Cretaceous (Cenomanian: ca. 100.5–93.9 Ma;

Afanasieva and Amon 2006; De Wever et al. 2001, 2003).

9. Coccodiscoidea N(45, 10): The family Coccodiscoidea

appears for the first time in the fossil record in the Early Eocene

(Afanasieva and Amon 2006; De Wever et al. 2001). This family cor-

responds to clade E1 in Fig. 1.

Post hoc analyses: Two different analyses were performed a

posteriori: a diversification of taxa over time (Lineages Through Time:

LTT) and an ancestral state reconstruction. The former analysis was

carried out with the ltt.plot function implemented in the package APE

(Paradis et al. 2004) upon the tree obtained by the molecular dating

analyses after removing the outgroup. The second analysis used the

resulting phylogenetic tree to infer the evolution of morphological

characters. A numerical value was assigned to each state of a char-

acter trait, being 0 for the considered ancestral state, and one to three

for the presumed divergence state. In total six traits were considered

(Supplementary Material Table S2): the skeleton shape, the symme-

try, the central structure, the internal cavity (outside of the central

structure), the number of spines arisen from the central structure

and the number of distinctive cortical shells. Once the character

matrix was established a parsimony ancestral state reconstruction

was performed to every character independently in Mesquite version

3.2 (Maddison and Maddison 2017).

Environmental sequences: Each of the reference 18S rDNA

and partial 28S rDNA spumellarian sequences available in our study

was compared with publicly available environmental sequences in

GenBank (NCBI) using BLAST (as of May 2019). It allowed esti-

mating the environmental genetic diversity of Spumellaria and to

assess the genetic coverage of our phylogenetic tree. A total of 1171
and six environmental sequences affiliated to Spumellaria were

retrieved for the genes 18S rDNA and 28S rDNA respectively. Out of

the six 28S rDNA sequences, four were also found in the 18S rDNA

survey covering the full rDNA operon. These four sequences along

with the eight sequences already included in the phylogeny (two in

clade H and eight in clade I) were therefore removed to avoid

duplicates. Final dataset containing 1165 environmental sequences

were aligned against the reference alignment used for the phyloge-

netic analysis using MAFFT v7.395 (Katoh and Standley 2013) with

the “--add” option and placed in our reference phylogenetic tree using

the pplacer software (Matsen et al. 2010). A RAxML (GTR + G + I)

tree was built for the placement of the sequences with a rapid boot-

strap analysis and search for best-scoring ML tree and 1000

bootstraps.

In order to discriminate pseudo-genes among environmental

clades due to a high frequency of chimeras encountered and long

phylogenetic branches, two preliminary analyses were performed: a

Shannon entropy analysis and an estimation of the GC content.

Shannon entropy was calculated for every position of the resulting

alignment matrix, without considering gaps due to differences in

length of environmental sequences (script available on https://

github.com/MiguelMSandin/DNA-alignment-entropy). The GC con-

tent was estimated for every sequence independently as follows: (G

+ C)/(G + C + A + T), where G, C, A and T are the number of gua-

nines, cytosines, adenines and thymines respectively. Analysis were

performed in R version 3.6.0 (R Core Team 2014) and plotted with

the package ggplot2 version 3.2.1 (Wickham 2016).
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the Laboratoire d’Océanographie of Villefranche sur
Mer. We are greatly thankful to Cedric Berney for
the phylogenetic advice and the valuable help on
the interpretation of the “symbiotic” clade, as well
as Vasily Zlatogursky for his contributions and feed-
back on the heliozoan-like organism.

Appendix A. Supplementary Data

Supplementary data to this article can be found
online at https://doi.org/10.1016/j.protis.2021.
125806.

References

Abelmann A, Nimmergut A (2005) Radiolarians in the Sea
of Okhotsk and their ecological implication for

paleoenvironmental reconstructions. Deep Sea Res. Part II
Top Stud Oceanogr 52:2302–e2331

Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov
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