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Abstract Although numerous marine prokaryotes dwelling in the sunlit layer of 

oceans can exploit solar energy, cyanobacteria are the only ones to perform oxygenic 

photosynthesis and to produce organic carbon, a critical process that sustains the 

whole marine trophic web. Here, we review the recent advances on marine 

cyanobacteria, with a special focus on the two most abundant genera of the ocean: 

Prochlorococcus and Synechococcus, which have been studied at all scales of 

organization from the gene to the global ocean. Both display a wide genetic and 

functional diversity intimately related to the ecological niches in which they thrive. 

Another ecologically important group of marine cyanobacteria are diazotrophs that, by 

their ability to fix atmospheric dinitrogen, constitute a major source of new nitrogen for 

the microbial community. Diazotrophic cyanobacteria are polyphyletic and display a 

remarkably large range of morphologies and lifestyles. These include both multicellular 

cyanobacteria, such as the colonial Trichodesmium or the heterocyst-forming 

Calothrix, Richelia and Nodularia, and unicellular cyanobacteria belonging to three 

major taxa: the symbiotic species Candidatus Atelocyanobacterium thalassa (UCYN-

A) and the free-living genera Crocosphaera watsonii (UCYN-B) and Crocosphaera 

subtropica (previously known as Cyanothece sp., UCYN-C). Whereas some of these 

organisms can form immense blooms (Nodularia, Trichodesmium), others such as 

UCYN-C can also have a significant ecological impact, even though they represent 

only a minor fraction of the phytoplanktonic community. After several billions of years 

of evolution, which led them to colonize most marine niches reached by solar light, 

cyanobacteria appear as truly fascinating organisms that constitute a major component 

of the marine microbial communities and are the matter of a thriving field of research. 

The considerable amount of omics data now available on both isolates and natural 

populations of marine cyanobacteria provides a solid basis for investigating their 

molecular ecology, contribution to biogeochemical cycles, as well as use for data 

mining and potential biotechnological applications, such as e.g. production of 

hydrogen, ethanol, alkanes or fluorophores. 

  

 

3.1 Introduction 
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A large proportion of bacteria thriving in the upper lit layer of oceans is able to use solar 

light as an energy source, including aerobic anoxygenic photosynthetic bacteria (Béjà 

et al. 2002; Boeuf et al. 2013; Koblížek 2015; Lehours et al. 2018; Auladell et al. 2019; 

Yurkov and Hughes 2107) and proteorhodopsin-containing bacteria (Béjà et al. 2001; 

Boeuf et al. 2016; Pinhassi et al. 2016; Giovannoni 2017). Yet, cyanobacteria are the 

only prokaryotes capable of performing ‘oxygenic photosynthesis’, a capacity they 

share with eukaryotic microalgae and plants. The latter process requires two 

photosystems (PSI and PSII), connected via an electron transfer chain (Falkowski and 

Raven 2007). Photons are collected by antenna complexes coupled to photosystems 

and transferred to special chlorophylls (Chls) located in the core of both photosystems. 

Most often, like in red algae, the light-harvesting antennae of cyanobacteria are large 

membrane-extrinsic, water-soluble complexes called phycobilisomes that consist of 

phycobiliproteins binding numerous chromophores (phycobilins), and the terminal 

acceptors in photosystems are Chl a molecules (Sidler 1994; Bar-Eyal et al. 2018). 

Notable exceptions to this rule are the atypical marine cyanobacteria Acaryochloris, 

Prochloron and Prochlorococcus, which possess integral membrane light-harvesting 

complexes and often use unusual Chls as terminal acceptors, such as Chl d or divinyl-

Chl a (for reviews, see e.g., Partensky and Garczarek 2003; Green 2019). Photon 

energy is used to break water molecules, a reaction that releases oxygen as a by-

product, and produce adenosine triphosphate (ATP) as well as reducing power in the 

form of reduced ferredoxin and nicotinamide adenine dinucleotide phosphate 

(NADPH). NADPH and ATP are ultimately used to synthesize organic carbon from 

atmospheric CO2 via the ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCo) and the Calvin-Benson-Bassham cycle (Falkowski and Raven 2007). 

Cyanobacteria have recently been suggested to share a common ancestor with two 

non-oxyphototrophic bacterial lineages, called Melainabacteria and Sericytochromatia 

(Soo et al. 2014; Shih et al. 2017; Soo et al. 2017). Based on this phylogenetic 

relatedness, Soo et al. (2017) proposed that the three lineages should be gathered 

into a single phylum called ‘Cyanobacteria’, and that members of the monophyletic 

branch capable of oxygenic photosynthesis should be renamed ‘Oxyphotobacteria’. 

However, this proposal is the matter of a vivid debate within the scientific community 

and a number of leading scientists have strongly rejected the idea to call 

‘Cyanobacteria’ organisms that are not capable of oxygenic photosynthesis (Garcia-
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Pichel et al. 2020). Instead they support the idea that Cyanobacteria should remain a 

separate phylum and reaffirmed that the correct definition of Cyanobacteria is the 

following: “organisms in the domain Bacteria able to carry out oxygenic photosynthesis 

with water as an electron donor and to reduce CO2 as a source of carbon, or those 

secondarily evolved from such organisms.”  

In this chapter, we will make an overview of recent advances on the biology, 

ecology, evolution and exploitability of marine cyanobacteria sensu Garcia-Pichel et 

al. (2020). Besides their ability to use solar energy to synthesize organic carbon, which 

places them at the basis of the marine food web, they also perform several other 

important functions within the marine ecosystem. For instance, many marine 

cyanobacteria are diazotrophs, i.e., capable of fixing atmospheric dinitrogen (N2) and 

transforming it into ammonium that is rapidly transferred to other members of the 

microbial community (Berthelot et al. 2016). The latter can be either free-living 

planktonic microbes, benthic organisms co-occurring with cyanobacteria in microbial 

mats or eukaryotic partners in symbioses. Such mutually beneficial associations are 

frequently encountered in nutrient-depleted areas of the ocean (Foster and Zehr 2019). 

Some cyanobacteria, such as the marine genus Trichodesmium or the brackish water 

genus Nodularia, can develop large blooms that can be seen from space (McKinna 

2015; Rousset et al. 2018) and may be toxic to other members of the planktonic 

community (Sivonen et al. 1989; Sacilotto Detoni et al. 2016).  

Marine cyanobacteria also constitute a unique resource for biotechnological 

applications. Notable examples are Crocosphaera subtropica (formerly Cyanothece 

sp.; cf. section 3.5.3) strains that have a natural potential for high yield hydrogen 

production (Bandyopadhyay et al. 2010; Melnicki et al. 2012), the discovery of a 

biosynthetic pathway for short-to-medium chain alkanes in Prochlorococcus (Schirmer 

et al. 2010; Lea-Smith et al. 2015), ethanol production in Synechococcus sp. PCC 

7002 by simultaneous inactivation of glycogen synthesis pathways and introduction of 

ethanologenic cassettes (Wang et al. 2020), or several strains producing beneficial 

metabolites (Jones et al. 2011; Mevers et al. 2014; Salvador-Reyes and Luesch 2015; 

Shao et al. 2015).  
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3.2 Marine cyanobacteria and the next generation sequencing 
revolution  

 

The availability of complete genome sequences is of utmost importance to understand 

the molecular bases of the biochemical and ecological potential of marine 

cyanobacteria. Thanks to their small genomes and large abundance in oceanic 

ecosystems, the first marine representatives of this phylum to be sequenced were 

three strains of Prochlorococcus (Dufresne et al. 2003; Rocap et al. 2003) and one of 

Synechococcus (Palenik et al. 2003). Since these pioneer studies, there has been a 

steady increase in the number of available genome sequences of marine 

cyanobacteria. Isolates of all major species of marine and brackish cyanobacteria 

known to date have been sequenced in recent years (Fig. 3.1), including i) the 

planktonic, free-living Crocosphaera watsonii (also called “unicellular cyanobacteria 

group B” or “UCYN-B”; Montoya et al. 2004), Cyanothece-like members of the UCYN-

C group recently renamed Crocosphaera subtropica (Mareš et al. 2019), Cyanobium 

sp., Nodularia spumigena and Trichodesmium erythraeum, ii) a few benthic species 

such as Acaryochloris marina, Microcoleus chtonoplastes and Rivularia sp., but also 

iii) a number of symbionts, including Candidatus Atelocyanobacterium thalassa 

(UCYN-A; Thompson et al. 2012), as well as Calothrix, Prochloron and Richelia spp. 

(the latter genus is missing from Fig. 3.1, but see e.g., Hilton et al. 2013).  

Sequencing projects so far have exhibited a large bias toward Prochlorococcus 

and Synechococcus, which have the advantage to exhibit few DNA repeats and 

transposase genes, considerably facilitating their assembly and closure compared to 

many other cyanobacteria (Palenik et al. 2006; Kettler et al. 2007; Dufresne et al. 2008; 

Biller et al. 2014a; Lee et al. 2019; Doré et al. 2020; Garczarek et al. 2021). Yet, the 

genomic diversity of a few other marine genera such as Crocosphaera, which contain 

hundreds of transposase genes, has also been well studied, with ten different strains 

sequenced to date (Bench et al. 2013; Bombar et al. 2014). It must be stressed that 

the true genomic diversity of marine picocyanobacteria exceeds vastly the information 

obtained from laboratory strains, which is nowadays largely complemented by genomic 

analyses of single amplified genomes (SAGs) obtained from flow cytometry-sorted 

cells (see e.g., Malmstrom et al. 2013; Kashtan et al. 2014; Berube et al. 2018; 

Pachiadaki et al. 2019) and metagenome-assembled genomes (MAGs; see e.g., 
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Rusch et al. 2010; Shi et al. 2011; Delmont and Eren 2018; Tully et al. 2018; Engelberts 

et al. 2020). For instance, sequencing of Prochlorococcus SAGs by Kashtan et al. 

(2014) revealed the occurrence of hundreds of coexisting Prochlorococcus 

subpopulations with distinct genomic backbones (cf. section 3.4.5.1 for more details).  

The tremendous power of next generation sequencing technologies coupled 

with rapid advancements in bioinformatics and data processing is currently 

revolutionizing our view of the genetic and functional diversity of marine cyanobacteria, 

notably by allowing scientists to integrate comparative genomics, transcriptomics 

and/or meta-omics information and to decipher their association with environmental 

factors using network approaches (see e.g., Guidi et al. 2016; Garcia et al. 2020; Guyet 

et al. 2020; Doré et al. 2020).  

 

 

3.3 Cyanobacterial origin and evolution 
 
3.3.1 The advent of Cyanobacteria and oxygenic photosynthesis 
 

Cyanobacteria are generally considered to be the most ancient microorganisms 

capable of oxygenic photosynthesis and held responsible for the ‘Great Oxidation 

Event’ (GOE), i.e. the first sharp rise of atmospheric O2 concentration in Earth history 

that occurred 2.3 ± 0.1 billion years (Gy) ago (Lyons et al. 2014). Yet, there is still a 

vivid controversy about when oxygenic photosynthesis arose, with estimates based on 

geological or geochemical evidence spanning from 3.7 (Rosing and Frei 2004) to 2.3 

Gy ago (Kirschvink and Kopp 2008). For instance, a study of the distribution of 

chromium isotopes and redox-sensitive metals in paleosols indicated that there were 

already notable levels of atmospheric oxygen (i.e., 3 x 10−4 times present levels) about 

3.0 Gy ago, suggesting that ancestral cyanobacteria might have evolved by this time 

(Crowe et al. 2013). A similar controversy also exists about timing the advent of the 

Cyanobacteria phylum based on molecular analyses. For instance, by using cross‐

calibrated Bayesian relaxed molecular clock analyses of slowly evolving core proteins, 

Shih et al. (2017) suggested a fairly recent advent of this group about 2.0 Gy ago, i.e. 

after the GOE, a hypothesis that they explained by the occurrence of nowadays extinct 

stem lineages that would have evolved oxygenic photosynthesis after their divergence 
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from Melainabacteria and would have sourced the O2 fluxes that led to the GOE. In 

sharp contrast, by combining fossil record data and relaxed molecular clock phylogeny 

based on sequences of the UV-A sunscreen scytonemin, Garcia-Pichel et al. (2019) 

estimated the advent of the Cyanobacteria phylum at 3.6 ± 0.2 Gy, i.e. well before the 

GOE. 

 

 

3.3.2 Evolutionary history of marine cyanobacteria 
 

Besides their age, other intriguing questions about early cyanobacteria deal with 

their morphology and habitat: did they first occur on land or in the ocean? The oldest 

microfossil interpreted with certainty as a cyanobacterium, Eoentophysalis 

belcherensis, dates back ~1.9 Gy and was discovered in silicified stromatolites 

originally located in intertidal mudflats (Hofmann 1976; Demoulin et al. 2019). Its 

modern counterpart, the coccoid cyanobacterium Entophysalis major, is one of the 

main mat-forming microorganisms (Golubic and Abed 2010). Yet, in many 

phylogenetic and phylogenomic studies on cyanobacterial evolution, trees are rooted 

using the rock-dwelling Gloeobacter violaceus, which has the unique ‘primitive’ 

characteristics to lack thylakoids (Fig. 3.1; Blank and Sánchez-Baracaldo 2010; 

Larsson et al. 2011; Mareš et al. 2013; Shih et al. 2013). Even if early cyanobacteria 

likely had a coccoid morphotype, filamentous forms must have evolved soon after, 

possibly during or just after the GOE, since they were prominent components of 

microbial mats during most of the Proterozoic Eon (2.5–0.54 Gy; Knoll and Semikhatov 

1998). The fact that marine planktonic cyanobacteria lineages are not monophyletic 

within the cyanobacterial radiation but dispersed among terrestrial, freshwater and 

marine benthic species in phylogenetic trees (Fig. 3.1; see also e.g. Shih et al. 2013) 

strongly suggests that ancestral cyanobacteria appeared first either in lakes or 

intertidal habitats and that the marine pelagic environment was colonized much later, 

through several independent colonization events (Blank and Sánchez-Baracaldo 2010; 

Larsson et al. 2011; Sánchez-Baracaldo and Cardona 2020). The first marine 

planktonic lineages of cyanobacteria were likely diazotrophs and evolved only during 

the Neoproterozoic (0.54-1.0 Gy; Sánchez-Baracaldo 2015), possibly explaining why 

the open ocean was anoxic during most of the Proterozoic Eon (Reinhard et al. 2013).  
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3.3.3 Adaptation to salinity 
  

Comparative genomics studies have brought important insights into how 

cyanobacteria have adapted to the marine habitat. In particular, they showed that 

adaptation to salinity has been made possible by the development of specific 

machineries allowing cells to actively export inorganic ions (the “salt-out-strategy”) and 

to increase the cellular osmolarity by accumulating small organic molecules, called 

compatible solutes (Pade and Hagemann 2014). The nature of these compatible 

solutes strongly varies depending on habitats and/or lineages, with i) glucosylglycerol, 

trehalose and/or sucrose found in brackish species, ii) glycine betaine in halophiles 

and stromatolite-forming cyanobacteria, iii) sucrose and glucosylglycerate in 

Prochlorococcus, and iv) trehalose in Crocosphaera watsonii (Scanlan et al. 2009; 

Klähn et al. 2010; Teikari et al. 2018b). While the marine Synechococcus model strain 

WH7803 was shown to be able to accumulate glucosylglycerol and possibly 

glucosylglycerate, and to take up glucosylglycerol, sucrose and glycine betaine 

(Scanlan et al. 2009), these compounds appear to be involved in osmoregulation at 

different times of the cell cycle and to respond to distinct environmental conditions 

(Guyet et al. 2020). For Trichodesmium, no known compatible solute biosynthesis 

genes had been identified during a first screening of the Trichodesmium genome (Pade 

and Hagemann 2014). Yet, in a strategy using NMR and liquid chromatography 

coupled to mass spectroscopy, the quaternary ammonium compound N,N,N-trimethyl 

homoserine (or homoserine betaine), a previously unknown compatible solute, was 

identified as the main compatible solute in cultures and natural populations of 

Trichodesmium (Pade et al. 2016). The structure of this compound made it likely that 

it was synthesized by stepwise, salt-regulated methylation of homoserine. Indeed, a 

transcriptomic analysis identified a single methyltransferase gene that was upregulated 

with increasing salinity, and biochemical assays of the recombinant protein, using L-

homoserine as the precursor and S-adenosylmethionine as the methyl group donor, 

showed that this enzyme produced homoserine betaine (Pade et al. 2016).  
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3.3.4 Adaptation to nitrogen depletion 
 

Another environmental factor that strongly influenced the evolution of marine 

cyanobacteria is the availability of nutrients. Nitrogen (N) limits marine productivity in 

the upper layer of ca. 75% of the global ocean, while limitation by phosphorus (P) or 

iron (Fe) prevails in other areas (Moore et al. 2001; Moore et al. 2013; Bristow et al. 

2017). Cyanobacteria have developed three main strategies to deal with inorganic N 

deprivation: i) to fix atmospheric N2, ii) to decrease their cell and genome size in order 

to limit their cellular requirement for N, and iii) to use organic N sources.  

The first strategy has led to many different physiological and morphological 

adaptations aimed at circumventing the main drawback of N2 fixation, i.e. the oxygen 

sensitivity of nitrogenase, an inhibition that might have hindered the rise of atmospheric 

oxygen levels during the Proterozoic Eon (Allen et al. 2019). The endosymbiotic, 

filamentous genera Richelia and Calothrix, which fix N2 during the day (Fig. 3.2), both 

form heterocysts, i.e., cells devoid of PSII and specialized in N2 fixation. These 

heterocysts occur at the basis of the trichomes of Richelia and Calothrix and are 

morphologically different from typical CO2-fixing cells, their thick wall providing a 

physical barrier against oxygen (Fig. 3.1; Hilton et al. 2013). The non-heterocystous 

Trichodesmium genus also primarily fixes N2 during the day (Fig. 3.2), but this process 

is both spatially and temporally sequestered from oxygenic photosynthesis. Indeed, 

nitrogenase is localized in ‘non-granulated’ cell types of the trichomes called 

‘diazocytes’, the frequency of which is lower at dawn and increased toward noon and 

is negatively regulated by the presence of inorganic N (Bergman et al. 2013). The 

unicellular Crocosphaera watsonii displays a much more stringent temporal separation 

than Trichodesmium between photosynthesis and N2 fixation, these processes being 

restricted to day and night, respectively (Fig. 3.2; Compaoré and Stal 2010; Shi et al. 

2010). At last, the symbiotic Candidatus Atelocyanobacterium thalassa (UCYN-A) 

literally lost its PSII, making it the sole cyanobacterium sensu Garcia-Pichel et al. 

(2020) known so far to be incapable of oxygenic photosynthesis, while it is an efficient 

N2-fixer during the day (Fig. 3.2; Zehr et al. 2008; Tripp et al. 2010). Interestingly, all 

non-heterocystous N2-fixing cyanobacteria were found to synthesize specific hopanoid 

lipids that may limit O2 diffusion across their membranes, thus protecting nitrogenase 
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from oxidation in O2-saturated surface oceanic waters (Cornejo-Castillo and Zehr 

2019).   

The second strategy, consisting in a drastic decrease in cell size, a process that 

confers cells an advantage for nutrient uptake by increasing their surface to volume 

ratio, is observed in the marine picocyanobacteria Synechococcus (average cell 

diameter ~1 µm) and is pushed to its limits in most Prochlorococcus lineages that have 

an average cell diameter of only about 0.7 µm (Chisholm et al. 1988; Waterbury et al. 

1979). This decrease in cell size went hand in hand with a drastic genome streamlining, 

since Prochlorococcus genomes decreased in size by about 30% compared to the size 

of their ancestor via an extensive streamlining process (cf. section 3.4.6; Dufresne et 

al. 2005; Kettler et al. 2007; Ting et al. 2007; Scanlan et al. 2009; Partensky and 

Garczarek 2010; Doré et al. 2020). 

The third strategy, often combined with one of the two others, is to assimilate 

organic forms of N, such as urea, amino acids or amino sugars. Indeed, although 

marine cyanobacteria were long considered to have a strict photoautotrophic lifestyle, 

there is more and more evidence that they are in fact mixotrophs, since they are 

capable of assimilating organic forms of nutrients and carbon via a light-stimulated 

process called ‘photoheterotrophy’ (Zubkov 2009; Gómez-Pereira et al. 2013; Muñoz-

Marín et al. 2013; Yelton et al. 2016; Duhamel et al. 2018; Muñoz-Marín et al. 2020). 

 

 

3.3.5 Adaptation to spectral niches 
 

A third factor that primitive cyanobacteria had to deal with over the course of 

their adaptation to the marine habitat is the wide range of light qualities encountered 

in the water column, the vibrational modes of the H2O molecule delineating five 

underwater spectral niches, extending from the red niche found in turbid coastal waters 

to the violet niche in the nutrient-poorest open ocean waters (Kirk 1994; Stomp et al. 

2007; Holtrop et al. 2020). Most cyanobacteria possess large, extrinsic light-harvesting 

complexes, called phycobilisomes, constituted of an allophycocyanin core surrounded 

by six to eight rods with variable phycobiliprotein composition, namely phycocyanin 

(PC) alone or in combination with phycoerythrocyanin (PEC), phycoerythrin-I (PEI) 

and/or phycoerythrin-II (PEII; Sidler 1994; Six et al. 2007; Bar-Eyal et al. 2018). These 
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phycobiliproteins exhibit distinct absorption properties depending upon the nature and 

relative proportions of covalently bound phycobilins, which can be phycourobilin (PUB; 

Amax: 495 nm), phycoerythrobilin (PEB; Amax: 550 nm), phycoviolobilin (PVB; Amax: 590 

nm) and/or phycocyanobilin (PCB; Amax: 620 nm). While all phycobilisomes contain 

PCB, PVB is specific to PEC, a pigment common in cyanobacteria thriving in soils, 

freshwater, hot springs and marine benthic habitats; PEB is the major phycobilin in 

cyanobacteria living in habitats where green light is predominant, such as coastal or 

mesotrophic marine waters; finally, PUB is the dominant cyanobacterial chromophore 

in blue pelagic waters (Lantoine and Neveux 1997; Grébert et al. 2018; Holtrop et al. 

2020). Both PCB and PEB derive from biliverdin IXa and exist as free pigments, 

whereas PVB and PUB necessarily result from the binding and isomerization of PCB 

and PEB, respectively (Zhao et al. 2000; Blot et al. 2009; Shukla et al. 2012; Sanfilippo 

et al. 2019). Interestingly, although PVB and PUB occur in different organisms, the 

lyase-isomerases PecE-F and RpcG that catalyze the binding and isomerization 

reactions at the equivalent binding site (α-84) of PEC and PC, respectively, are 

chemically similar and phylogenetically closely related. This is a nice example of 

adaptation to blue light likely resulting from lateral gene transfer followed by a change 

in gene function (Blot et al. 2009). All oceanic, free-living cyanobacteria possess PE-

rich phycobilisomes characterized by high (Crocosphaera) or intermediate PUB:PEB 

ratios (Trichodesmium), while algal symbionts such as Richelia have a low PUB:PEB 

ratio, possibly because this better complements the absorption properties of their host 

pigments (Ong and Glazer 1991; Neveux et al. 1999; Neveux et al. 2006; Six et al. 

2007). Synechococcus is likely the most diversified group of marine cyanobacteria with 

regard to its pigment content, with some PEII-containing strains exhibiting 

constitutively low, medium or high ratios of PUB:PEB, while others called Type IV 

chromatic acclimaters are capable of varying this ratio depending on the ambient light 

color (Palenik 2001; Everroad et al. 2006; Six et al. 2007; Shukla et al. 2012; Humily 

et al. 2013; Sanfilippo et al. 2019). This ability likely confers them a strong fitness 

advantage, since they were recently shown to represent more than half of all 

Synechococcus cells of the world ocean (Grébert et al. 2018). In this context, 

Prochlorococcus constitutes an exception among marine planktonic cyanobacteria in 

that it has no phycobilisomes but instead possesses membrane-intrinsic antenna 

complexes (Pcb) binding divinyl derivatives of Chl a and b, a unique pigment 
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complement allowing this microorganism to collect, with even more efficacy than PUB, 

the blue light prevailing at the bottom of the photic layer in open ocean waters 

(Goericke and Repeta 1992; Morel et al. 1993; Garczarek et al. 2000; Ting et al. 2002). 

Interestingly, Prochlorococcus has nevertheless retained a minimal set of 

phycobiliprotein genes from which small amounts of a chromophorylated phycoerythrin 

(PEIII) is produced (Hess et al. 1996; Hess et al. 1999; Hess et al. 2001). PEIII was 

shown to play a minor role in light harvesting in P. marinus SS120 and might rather act 

in light sensing in these cells, even though this hypothesis has not been experimentally 

validated yet (Steglich et al. 2005). A few other marine cyanobacteria have also lost 

their phycobilisomes either entirely, like Prochloron didemni, a symbiont of ascidians 

(Lewin 1984), despite the presence in its genome of a cpcBA operon (Donia et al. 

2011), or partially, like some strains of the benthic cyanobacterium Acaryochloris 

marina that contain phycobiliprotein aggregates (Miyashita et al. 2003). When present, 

these aggregates are localized in the inter-thylakoidal space and can efficiently transfer 

photon energy to PSII (Marquardt et al. 1997; Hu et al. 1999; Petrasek et al. 2005). 

Structurally, they are composed of phycocyanin and a vestigial allophycocyanin (APC) 

constituted of the sole β-APC subunit (Partensky et al. 2018). Like for Prochlorococcus, 

the main light-harvesting complexes —and even the sole in Prochloron and in A. 

marina strains CCME5410 and HCIR111A that lack phycobiliprotein aggregates (Chan 

et al. 2007; Partensky et al. 2018)— are Pcb proteins binding either Chl a and d at a 

molar ratio of ca. 0.06 in most Acayochloris species (Miyashita et al. 1997) or Chl a 

and b at a molar ratio of ca. 6 in Prochloron didemni and A. thomasi (Withers et al. 

1978; Partensky et al. 2018). The occurrence of such large amounts of the near-

infrared light absorbing Chl d (Amax: 705 nm) in most marine Acaryochloris species 

known so far is likely an adaptation to their shaded benthic niches. For instance, A. 

marina cells have been observed underneath Prochloron-containing didemnid 

ascidians, a habitat enriched in far-red light, since most visible light was filtered out 

(Kühl et al. 2005).  

 

After several billions of years of evolution, which led them to colonize any single 

niche of the marine habitat reached by solar light, cyanobacteria appear as truly 

fascinating organisms and are the matter of an ebullient research area. The following 

paragraphs will detail recent advances on the main marine cyanobacterial genera. 
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3.4 Prochlorococcus and Synechococcus 
 

3.4.1 Interest as model organisms in marine biology and ecology 
 

Despite their fairly recent discovery in the late 20th century, the non-diazotrophic, 

marine unicellular cyanobacteria Prochlorococcus (Chisholm et al. 1988; Chisholm et 

al. 1992) and Synechococcus (Waterbury et al. 1979) are nowadays the best known 

marine cyanobacteria at all scales of organization from the gene to the global ocean 

(Coleman and Chisholm 2007; Scanlan et al. 2009; Biller et al. 2015; Sohm et al. 2015; 

Farrant et al. 2016; Kent et al. 2019; Flombaum et al. 2020; Garcia et al. 2020; Doré 

et al. 2020). Indeed, they have a number of advantages that make them particularly 

relevant model organisms for ecological, physiological and evolutionary studies, 

including: i) their abundance and ubiquity and thence strong contribution to global 

marine chlorophyll biomass and primary productivity (Partensky et al. 1999b; 

Partensky et al. 1999a; Buitenhuis et al. 2012; Flombaum et al. 2013; Flombaum et al. 

2020), ii) their culturability (Waterbury and Willey 1988; Moore et al. 2007; Morris et al. 

2008; Hunter-Cevera et al. 2016) that allowed refined comparative physiology 

analyses of representative isolates (Moore and Chisholm 1999; Mella-Flores et al. 

2012; Humily et al. 2013; Krumhardt et al. 2013; Paz-Yepes et al. 2013; Bagby and 

Chisholm 2015; Pittera et al. 2015; Berube et al. 2015; Pittera et al. 2018; Breton et al. 

2019; Guyet et al. 2020), as well as iii) their small genome sizes, which favored the 

sequencing of a large number of genomes, SAGs and MAGs within the last decade 

(Malmstrom et al. 2013; Biller et al. 2014a; Kashtan et al. 2014; Berube et al. 2018; 

Pachiadaki et al. 2019; Engelberts et al. 2020; Doré et al. 2020; Garczarek et al. 2021).  

 

 

3.4.2 Global abundance and distribution 
 

With cell densities of up to 3×105 cells mL-1 in the upper layer of warm, nutrient-

poor central gyres, and a distribution area extending between 40°S and 45°N, 

Prochlorococcus is undoubtedly the most abundant photosynthetic organism on Earth, 
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its annual mean global abundance being estimated at 2.9 ± 0.1×1027 cells (Partensky 

et al. 1999b; Buitenhuis et al. 2012; Flombaum et al. 2013). It always co-occurs with 

Synechococcus, but the latter is even more widespread, since its distribution extends 

to sub-polar areas and to brackish waters, such as the Baltic Sea or estuary zones 

(Partensky et al. 1999a; Haverkamp et al. 2008; Cottrell and Kirchman 2009; Larsson 

et al. 2014; Xia et al. 2015; Paulsen et al. 2016; Xia et al. 2017b; Xia et al. 2017a; 

Hunter-Cevera et al. 2020). Synechococcus abundance is typically two orders of 

magnitude lower than Prochlorococcus in warm, central oceanic gyres, but it often 

outcompetes Prochlorococcus in nutrient-rich regions and can even reach cell 

densities above 106 cells mL-1 in the Costa Rica Dome, likely due to the high 

concentrations of cobalt and iron in this area (Saito et al. 2005; Ahlgren et al. 2014). 

Although Synechococcus is globally less abundant than Prochlorococcus, with an 

estimated mean global abundance of 7.0 ± 0.3×1026 cells, its contribution to the 

oceanic net production is estimated to be twice higher (16.7% vs. 8.5%, respectively) 

due to their larger cell sizes and higher CO2 fixation rates (Li 1994; Flombaum et al. 

2013). Synechococcus and its phages have also been shown to be key players of the 

plankton networks that drive carbon export and thence the oceanic biological pump 

(Guidi et al. 2016).  

 

 

3.4.3 Phylogeny 
 

Marine Synechococcus and Prochlorococcus are phylogenetically closely 

related and together with Cyanobium form a monophyletic branch, called ‘Cluster 5’ 

(Herdman et al. 2001), which long diverged from all other cyanobacteria, including 

several freshwater Synechococcus species. So, the Synechococcus ‘genus’ is clearly 

polyphyletic (Fig. 3.1; Scanlan et al. 2009; Shih et al. 2013; Sánchez-Baracaldo 2015; 

Salazar et al. 2020; Sánchez-Baracaldo and Cardona 2020; Doré et al. 2020). All 

members of Cluster 5 share the presence of α-carboxysomes encapsulating a Form-

IA RuBisCo (Badger and Price 2003). These proteins are phylogenetically more closely 

related to those of chemoautotrophic proteobacteria, such as thiobacilli, than to the β-

carboxysomes and Form-IB RuBisCO found in all other cyanobacteria. Yet, a 

comparative physiology study of strains possessing one or the other RuBisCo type 
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could not find any obvious functional differences between these two types of 

carboxysomes (Whitehead et al. 2014).  

The marine Synechococcus/Cyanobium radiation is divided into three deep-

branching groups, called sub-clusters (SC) 5.1 to 5.3 (Dufresne et al. 2008). All SC 5.1 

lineages except one (clade VIII) are strictly marine and this SC largely predominates 

in open ocean waters (Figs. 3.3b and 3.3d; see also Zwirglmaier et al. 2008; Sohm et 

al. 2015; Farrant et al. 2016; Ahlgren et al. 2020). SC 5.2 encompasses halotolerant 

species thriving in estuaries and near coastal areas (Chen et al. 2006; Xia et al. 2015; 

Hunter-Cevera et al. 2016; Xia et al. 2017a) but also strictly freshwater species, such 

as Cyanobium gracile PCC 6307 or Vulcanococcus limneticus (Shih et al. 2013; Di 

Cesare et al. 2018). Finally, SC 5.3 comprises both strictly marine members, locally 

constituting a significant component of Synechococcus communities in P-limited areas, 

such as the Mediterranean Sea or the Gulf of Mexico (Fig. 3.3d; see also Huang et al. 

2012; Sohm et al. 2015; Farrant et al. 2016), and freshwater members that can be very 

abundant in lakes (Cabello-Yeves et al. 2017; Cabello-Yeves et al. 2018). A major 

diversification event seemingly occurred in SC 5.1 soon after its divergence from SC 

5.2 and 5.3 (Urbach et al. 1998) so that, depending on the genetic marker, this SC 

nowadays accounts between 10 to 20 distinct clades (Penno et al. 2006; Scanlan et 

al. 2009; Ahlgren and Rocap 2012; Huang et al. 2012; Gutiérrez-Rodríguez et al. 2014; 

Xia et al. 2019), which can be further split into a number of sub-clades (Mazard et al. 

2012). 

 

 

3.4.4 The wide genomic diversity of marine picocyanobacteria and its 
taxonomic implications 
 

Genomes of marine picocyanobacteria sequenced thus far exhibit a 

tremendous diversity of both nucleotide sequences and gene content (Kettler et al. 

2007; Dufresne et al. 2008; Lee et al. 2019; Doré et al. 2020). Average amino acid 

identity (AAI) between pairs of genomes is ranging from 53.2 to 98.9% and intra-clade 

AAI is on average 91.0% (Doré et al. 2020). This large genomic diversity led one 

research team to split the Prochlorococcus branch into 5 distinct ‘genera’ (Tschoeke 

et al. 2020) and the Synechococcus SC 5.1, 5.2 and 5.3 into 2, 3 and 2 genera, 
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respectively, based on a ‘genus’ delimitation of ≥ 70% AAI, with further refinement 

using phylogenetic analyses. Yet, these taxonomic delineations were made without 

any attempt to match SC, clades and/or sub-clades previously defined by other teams 

(see below for details). Using 53 (including 32 previously unpublished) marine or 

brackish Synechococcus/Cyanobium genomes, Doré et al. (2020) drew a plot of AAI 

vs. 16S rRNA identity for the different pairs of genomes (Fig. 3.4) and showed that 

while there was a continuum of 16S rRNA identities ranging from 95.5 to 100%, two 

major discontinuities could be defined based on the AAI: the first one at ca. 80% AAI 

discriminated (with a few exceptions) pairs of strains belonging to the same clade from 

pairs of strains belonging to different clades; the second one at 65% AAI set apart 

Synechococcus strains of the same SC from strains of different SC. However, there 

was no discontinuity at 70% AAI, suggesting that this cut-off is irrelevant to define 

genera in this particular group (Fig. 3.4). The same holds true for the 95% AAI cut-off 

often used to delineate bacterial species (see e.g., Konstantinidis and Tiedje 2005) 

that, when blandly applied to marine picocyanobacteria, leads to a myriad of species 

with no apparent ecological, biochemical or physiological relevance (e.g., at least 137 

species within the set of Prochlorococcus genomes analyzed by Tschoeke et al. 2020). 

Clearly, the taxonomy of Cyanobacteria Cluster 5 sensu Herdman et al. (2001) needs 

to be revised, but in order to define meaningful and consensual families, genera and 

species within this group, it is important not only to take into account natural genomic 

delineations using key parameters such as the AAI, but also use solid phylogenies and 

have a good knowledge about the physiology and ecological niches occupied by the 

candidate taxa.  

 

 

3.4.5  Role of environmental factors in genetic and functional diversification 
 
3.4.5.1   Prochlorococcus 
 

The evolutionary history of marine picocyanobacteria has been strongly 

influenced by environmental factors (Scanlan et al. 2009; Biller et al. 2015; Martiny et 

al. 2015). For Prochlorococcus, Moore and co-workers were the first to demonstrate 

the key role played by light in the vertical niche partitioning of high-light (HL) adapted 
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ecotypes in the upper lit layer and low-light (LL) adapted ecotypes further down the 

euphotic layer (Moore et al. 1998). Yet, more recent studies have considerably refined 

this simplistic picture, by showing that there is a multiplicity of HL and LL ecotypes. 

Most LL clades (LLII-VII) are confined to the bottom of the euphotic layer, with LLV-VI 

being specific of oxygen minimum zones (Lavin et al. 2010), while the LLI clade is more 

photo-tolerant (Johnson et al. 2006; Malmstrom et al. 2010; Partensky and Garczarek 

2010; Huang et al. 2012). Indeed, in warm, stratified oligotrophic waters, LLI cells are 

most abundant at the base of the upper mixed layer and in temperate mixed waters 

they can even reach the surface, suggesting that they are capable to stand a temporary 

exposure to high irradiance (Johnson et al. 2006; Malmstrom et al. 2010; Thompson 

et al. 2018). 

The genetic diversification of Prochlorococcus HL clades has been influenced 

by different environmental factors than for LL lineages. Indeed, Fe availability has likely 

conditioned the differentiation between the HLI-II clades, which thrive in Fe-replete 

waters, and HLIII-IV clades that co-occur in warm, Fe-depleted areas, notably in high-

nutrient low-Chl (HNLC) areas of the Pacific Ocean (Fig. 3.3c; Rusch et al. 2010; West 

et al. 2011; Farrant et al. 2016). HNLC waters have been extensively explored during 

the Tara Oceans expedition, explaining the large proportion of HLIII-IV clades 

observed in this global metagenome dataset, even though HLII remains globally the 

most abundant clade (Fig. 3.3a). Temperature has seemingly favored the separation 

between the HLI ecotype, which predominates in temperate waters at high latitudes 

and the HLII ecotype that preferentially thrives in warm, (sub)tropical, oligotrophic 

waters, though it is worth noting that the minor ecotype in each thermal niche is never 

outcompeted to extinction (Johnson et al. 2006; Zinser et al. 2007; Chandler et al. 

2016). Shifts between HLI- and HLII-dominated Prochlorococcus communities 

sometimes occur over short geographical distances, e.g., between the Mediterranean 

Sea and the Red Sea (Farrant et al. 2016) or along the temperature gradient between 

the core and the outside of ‘Agulhas rings’, these huge anticyclonic eddies formed in 

the southern Indian Ocean and which then drift across the South Atlantic Ocean (Fig. 

3.3c; Villar et al. 2015). Lastly, P and N availability have also played a key role in the 

more recent evolutionary history of the Prochlorococcus genus. A number of studies 

have indeed shown that Prochlorococcus HL populations thriving in P-depleted areas 

possess many more genes involved in P metabolism or its regulation than populations 
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(or strains isolated) from P-replete areas (Martiny et al. 2006; Martiny et al. 2009a). A 

similar phenomenon, explained by vertical inheritance, gene loss, and homologous 

recombination, has also been observed for genes involved in nitrite and/or nitrate 

assimilation, the frequency of cells capable of assimilating these oxidized forms of 

nitrogen being positively correlated with decreased N availability (Martiny et al. 2009b; 

Astorga-Eló et al. 2015; Villar et al. 2015; Berube et al. 2015; Berube et al. 2016; 

Berube et al. 2019; Aldunate et al. 2020). Despite this apparent relationship between 

Prochlorococcus clades and community structure, several recent studies have shown 

the occurrence of a large genetic within-clade microdiversity. For instance, Kashtan et 

al. (2014) showed that Prochlorococcus HLII populations collected at three seasons at 

the BATS station off Bermuda islands were composed of hundreds of closely related 

subpopulations possessing distinct genomic ‘backbones’, each consisting of a different 

set of core genes associated with a defined set of accessory genes. These 

discrepancies were sufficient to allow differentiated responses of these sub-

populations to seasonal changes in the environment. Occurrence of within-clade sub-

populations exhibiting distinct ecological niches has also been observed in other 

Prochlorococcus clades. Using the high resolution marker petB, Farrant et al. (2016) 

have defined ‘ecologically significant taxonomic units’ (ESTUs) as within-clade 

operational taxonomic units (OTUs) at 94% nucleotide identity that occupied distinct 

niches along the Tara Oceans expedition transect. For instance, a minor 

Prochlorococcus LLI sub-population (ESTU LLIB) was found to be adapted to Fe-

limited surface waters, like the major HLIIIA-IVA ESTUs, whereas a minor HLI sub-

population (ESTU HLIC) was shown to thrive not only in cold temperate waters, as do 

typical HLI cells, but also in warm subtropical waters, thus extending the global niche 

occupied by these clades (Fig. 3.3c). Similarly, Larkin et al. (2016) observed that four 

different HLI sub-ecotypes had distinct seasonal and spatial patterns of diversity 

across latitudes. All these observations constitute strong pieces of evidence that 

genomic diversification is still ongoing within Prochlorococcus clades. 

 

 

3.4.5.2   Synechococcus 
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The temporal succession of physico-chemical parameters that have driven the 

evolution of the Synechococcus/Cyanobium radiation is more difficult to establish, 

because the rapid diversification of lineages that occurred within SC 5.1 (Urbach et al. 

1998) has resulted in a fuzzier relationship between phylogeny and adaptation to 

specific environmental factors than for Prochlorococcus. Yet, temperature has clearly 

also played a major selective role, since clades I and IV mainly occur in cold, nutrient-

rich waters, while clades II and III preferentially thrive in warm, oligotrophic waters 

(Zwirglmaier et al. 2008). Like for Prochlorococcus HLI and HLII clades, these 

differences in realized thermal niches can be explained by the distinct 

thermophysiologies of these phylotypes, as demonstrated by comparing temperature 

growth ranges and optima of representative isolates in culture (Mackey et al. 2013; 

Pittera et al. 2014; Varkey et al. 2016; Breton et al. 2019). Yet, it must be stressed that 

clade I and IV strains fall in distantly related branches in phylogenies made using 16S 

rRNA or other core gene markers (see e.g., Dufresne et al. 2008; Scanlan et al. 2009; 

Tai and Palenik 2009; Doré et al. 2020). Furthermore, a study of the global distribution 

of Synechococcus at high taxonomic resolution (Fig. 3.3d) showed that a minor ESTU 

within clade II (ESTU IIB) was able to colonize cold niches (Farrant et al. 2016). Like 

for Prochlorococcus, several recent studies have indicated that Fe availability could 

also be an important driving factor of the composition of Synechococcus communities. 

Indeed, CRD1 and EnvB clades —the latter, defined with the petB marker, corresponds 

to the CRD2 clade, as defined with ITS (Ahlgren et al. 2020)— were shown to co-

dominate in Fe-depleted areas (Ahlgren et al. 2014; Sohm et al. 2015; Farrant et al. 

2016). Finally, P availability also seems to have influenced Synechococcus genetic 

diversification since both ESTUs IIIA and 5.3A appear to be adapted to P-limited areas, 

such as the Mediterranean Sea and Gulf of Mexico (Fig. 3.3d), as confirmed by 

comparative genomics (Doré et al. 2020). The co-occurrence in the same niche of 

Synechococcus genotypes belonging to phylogenetically distant clades indicates that 

adaptation to specific environmental parameters (temperature, Fe and/or P availability) 

likely happened several times independently during the evolution of the 

Synechococcus radiation through convergent evolution. 

 

 

3.4.6 Prochlorococcus genome streamlining 
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The evolutionary history of the Prochlorococcus genus is also characterized by 

a major genome streamlining event that has affected most lineages (Dufresne et al. 

2003; Kettler et al. 2007; Partensky and Garczarek 2010; Biller et al. 2015; Doré et al. 

2020). While no comparable decrease in genome size has occurred during the 

evolution of marine Synechococcus, it is worth mentioning that members of one sub-

clade of clade II, representative of the most abundant Synechococcus population of 

the ocean, possess the smallest genomes known to date in this ‘genus’ (2.14 ± 0.05 

Mbp), suggesting that some genome reduction occurred in this subclade relative to the 

rest of the Synechococcus population (Lee et al. 2019). In Prochlorococcus, the 

streamlining process has led to an overall decrease of up to about one third of the 

genome size —corresponding to about 930 genes— compared to its most recent 

common ancestor with Synechococcus, with a concomitant drop of the GC content 

down to ca. 30% in HL clades (Dufresne et al. 2005; Kettler et al. 2007; Partensky and 

Garczarek 2010). It is important to note that while many gene gains and losses have 

taken place in all Prochlorococcus lineages, this gene flow was balanced in the basal 

LLIV lineage, whose members have genome sizes around 2.56 Mbp —i.e. in the range 

of Synechococcus SC 5.1 genomes: 2.11 to 3.31 Mbp— but strongly unbalanced 

toward losses in all other lineages, which have genome sizes between 1.48 and 1.92 

Mbp (Kettler et al. 2007; Biller et al. 2014a; Doré et al. 2020). Yet, only about one 

hundred protein-coding genes are shared between all complete Prochlorococcus LLIV 

and Synechococcus genomes but lacking from all streamlined Prochlorococcus 

genomes (according to ‘phyletic pattern’ searches in the Cyanorak v2.1 database; 

www.sb-roscoff.fr/cyanorak). This indicates that the different Prochlorococcus lineages 

have retained or lost different sets of genes.  

For a free-living phototroph, Prochlorococcus genomes encode only a small set 

of regulatory proteins, encompassing on average five different sigma factors, five to 

six two-component systems and eight types of other transcriptional regulators (Scanlan 

et al. 2009; Lambrecht et al. 2020). Although this appears to be a minimal regulatory 

system, it seems to be sufficient to address all relevant stress situations that 

Prochlorococcus cells have to face in the huge but relatively stable warm, open ocean 

environment in which they thrive. Furthermore, riboswitches and RNA-based 

http://www.sb-roscoff.fr/cyanorak
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regulation also likely play a significant role in the regulation of gene expression in 

Prochlorococcus (for a review, see Lambrecht et al. 2020). 

 

 

3.4.7 Core, accessory and pangenomes 
 

The core genome of Prochlorococcus and Synechococcus/Cyanobium 

encompasses 1,346 and 1,713 genes, respectively —these numbers correspond to 

the ‘large core’ genome, i.e. genes shared by more than 90% of members of the 

considered genus or group; Doré et al. (2020)—, while their accessory genome has a 

highly variable size (Kettler et al. 2007; Dufresne et al. 2008; Scanlan et al. 2009). A 

large fraction of accessory and unique genes, most of which  of unknown function, is 

localized in hypervariable regions called genomic islands, which are likely involved in 

adaptation to the local environment and/or the resistance against grazers or phages 

(Coleman et al. 2006; Palenik et al. 2006; Dufresne et al. 2008; Avrani et al. 2011). 

The recent comparison of 81 non-redundant picocyanobacterial genomes has 

revealed that closely related strains shared many more island genes than distantly 

related ones and that only a few gene exchanges had occurred between distantly 

related clades (Doré et al. 2020). By building a network of islands shared between 

different strains, these authors also showed that Prochlorococcus HL strains shared a 

large number of genomic regions that were already present in the common ancestor 

of all HL strains, then vertically transferred to all descendants, much like the 

phycobilisome region is shared by all Synechococcus strains (Six et al. 2007; Dufresne 

et al. 2008), while other islands are shared only by a subset of strains. As mentioned 

above, Prochlorococcus isolated from P-depleted areas possess a number of specific 

genes involved in organic P acquisition, which are located in genomic islands (Martiny 

et al. 2006; Martiny et al. 2009a). In Synechococcus, several strains possess island 

genes coding for ‘giant’ proteins (>1 MDa) that owe their huge size to a high number 

of repeats (Dufresne et al. 2008). This includes the cell wall protein SwmB that, 

together with SwmA, is required for a unique form of swimming motility (McCarren and 

Brahamsha 2005; McCarren and Brahamsha 2007). Interestingly, although this ability 

was known to be restricted to clade III members, Doré et al. (2020) have suggested 

that not all clade III strains are motile since two out of eight strains of this clade did not 
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possess swmA and swmB genes. Instead, they contained a 3-gene cluster composed 

of a nfeD homolog and two flotillin-like genes (floT1-2) that might be involved in the 

production of lipid rafts. 

While the core genome of picocyanobacteria is quite small, their pangenome is 

huge, since each new sequenced genome contains, on average, 277 new genes 

(Baumdicker et al. 2010). Using a quantitative, evolutionary model for the distributed 

genome, Baumdicker et al. (2012) predicted that the pangenome is finite and would 

contain 57,792 genes, but in a more recent study based on more genomes this number 

raised to 84,872 genes (Biller et al. 2015). Yet, this vast ‘collective genome’ might still 

miss some important gene functions, since Prochlorococcus cells were shown to 

depend upon free-living ‘helper’ bacteria from their immediate environment, such as 

Alteromonas, e.g. to mitigate oxidative stress using exogenous catalases (Morris et al. 

2008). Interestingly, this exchange might be reciprocal since Prochlorococcus cells can 

themselves release lipid vesicles containing proteins and nucleic acids that might be 

used for transferring material to their ‘helper’ bacteria, but also possibly be used as 

lures for cyanophages (Biller et al. 2014b).     

 

 

3.4.8 Potential biotechnological value  
 

Another advantage of the wealth of Prochlorococcus, Synechococcus and 

Cyanobium genomes currently available (Biller et al. 2014a; Garczarek et al. 2021) is 

to inform us about the ability of these picocyanobacteria to synthesize products of 

potential biotechnological interest. Due to their small genome size, they possess 

relatively few genes involved in the biosynthesis of secondary metabolites compared 

to their larger sized marine, freshwater or extremophile counterparts (Mandal and Rath 

2015). Yet, picocyanobacteria not only possess and express alkane biosynthesis 

genes (Klähn et al. 2014), but also produce and accumulate hydrocarbons, which may 

constitute between 0.02 and 0.37% of their dry cell weight (Schirmer et al. 2010; Lea-

Smith et al. 2015). Thus, at the global ocean scale, picocyanobacteria would produce 

about 540 million tons of hydrocarbons annually. A number of genes are involved in 

cell defense mechanisms, including antibiotic resistance genes (Hatosy and Martiny 

2015), and genes involved in the biosynthesis of microcin C, a ‘Trojan horse’ antibiotic 
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that was shown to have a role in allelopathy between Synechococcus strains (Paz-

Yepes et al. 2013). Some strains of Prochlorococcus and Synechococcus are prolific 

producers of prochlorosins, a particular class of lanthipeptides, ribosomally derived 

and posttranslationally modified peptide secondary metabolites. Lanthipeptides 

display diverse bioactivities (e.g., antifungal, antimicrobial, and antiviral) and therefore 

possess great potential for bioengineering and synthetic biology (Hetrick et al. 2018). 

Prochlorosins were discovered in Prochlorococcus sp. MIT9313, which possesses 29 

procA genes encoding the peptide skeletons, which then are transformed by a single 

promiscuous enzyme into a library of highly diverse prochlorosins (Li et al. 2010). All 

29 homologs were demonstrated to be transcribed (Voigt et al. 2014). Interestingly, 

several procA homologs contain a second transcriptional start site within the coding 

region, pointing at potential additional diversity due to a transcriptional mechanism 

(Voigt et al. 2014). The capacity for the production of prochlorosins is frequent in the 

LLIV clade of Prochlorococcus but also found in representatives of Synechococcus 

belonging to SC 5.1 clades I and IX (Cubillos-Ruiz et al. 2017). Genome sequencing 

of marine cyanobacteria from environmental samples led to the discovery of 1.6 million 

open reading frames encoding these lanthipeptides (Cubillos-Ruiz et al. 2017). Despite 

their impressive distribution and variability, the natural functions of prochlorosins have 

remained enigmatic thus far.  

Other high value products are phycobiliproteins that have a great potential for 

nutraceutical, pharmaceutical, cosmetic, feed and food industries (Pagels et al. 2019). 

Due to their high quantum yield and large Stokes shift, phycobiliproteins are also widely 

used as fluorophores in fluorescence biotechnologies, notably in antibody conjugates 

for surface labeling in flow cytometry and enzyme-linked immunosorbent assay 

(ELISA; Giepmans et al. 2006). In this context, although to our knowledge it has not 

been exploited for such purpose yet, it is noteworthy that PEII, a marine 

Synechococcus-specific phycobiliprotein with six chromophores per α−β monomer, is 

the most fluorescent of all phycobiliproteins and thus appears as a promising 

compound for fluorescence biotechnologies, especially PEII forms that bind large 

amounts of PUB whose optical properties match well with blue lasers (Ong et al. 1984). 

The fact that most enzymes involved in PEI and/or PEII biosynthesis have been 

characterized in the last two decades (Mahmoud et al. 2017; Sanfilippo et al. 2019; 

Carrigee et al. 2020a; Carrigee et al. 2020b; Grébert et al. 2021) should now make it 
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possible to produce these fluorophores using heterologous coexpression systems 

(Biswas et al. 2010). Also noteworthy, a small genomic island involved in Type IV 

chromatic acclimation, which exists in two configurations (CA4-A and -B; Humily et al. 

2013), was recently characterized in marine Synechococcus (Shukla et al. 2012; 

Sanfilippo et al. 2016; Grébert et al. 2021) and could potentially be used in 

heterologous systems to control the expression of recombinant genes in a reversible 

manner by changes in light color (blue to green light shifts or reciprocally) rather than 

by the usual irreversible chemical induction.  

Finally, metabolic modeling is an approach with great potential for better 

understanding cyanobacterial physiology and for optimizing the productivity of cultures 

in the perspective of biotechnological applications (Zavřel et al. 2019; Toyoshima et al. 

2020). Although it has not been widely applied yet to marine cyanobacteria, it is worth 

noting that a genome-scale metabolic model using a multi-omic machine learning 

pipeline has been proposed recently for Synechococcus sp. PCC 7002, a strain 

thought to have a large potential for renewable biofuels production (Vijayakumar et al. 

2020).  

 

 

3.5 Nitrogen-fixing cyanobacteria 
 

3.5.1 Ecological role and significance of diazotrophy in marine ecosystems 
 
Nitrogen (N) is the predominant limiting nutrient for primary productivity in the upper 

sunlit layer throughout much of low-latitude oceans (Falkowski 1997; Canfield et al. 

2010; Moore et al. 2013; Bristow et al. 2017). By assimilating dinitrogen (N2), the 

simplest and most abundant N form in the atmosphere and in seawater, microbial 

diazotrophs constitute an important source of bioavailable N to oceanic surface waters, 

and even the most important external N source before atmospheric and riverine inputs 

(Deutsch et al. 2007; Grokopf et al. 2012). Diazotrophy is a crucial marine 

biogeochemical process that compensates bioavailable N losses due to denitrification 

and anaerobic ammonium oxidation and sustains new primary production (Karl et al. 

1997; Karl et al. 2002; Zehr and Kudela 2011). Most observations of marine diazotroph 

abundances have been made in the N-depleted waters of the tropical Atlantic and 
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western tropical Pacific oceans, with sparse observations in the Indian and eastern 

Pacific oceans (Tang and Cassar 2019). However, two recent studies have revealed 

the occurrence of N2 fixation in the cold, nutrient‐rich waters of the Arctic Ocean 

(Harding et al. 2018; Shiozaki et al. 2018). Some oceanic zones constitute hot spots 

of N2 fixation, such as the western tropical South Pacific Ocean, with average fixation 

rates of 570 µmol N.m-2.d-1 over the whole area (Bonnet et al. 2017).  

Even though cyanobacteria are not the sole N2-fixers in marine ecosystems, the 

contribution of heterotrophic diazotrophs, such as some Gammaproteobacteria and 

Deltaproteobacteria, is only starting to be elucidated (see e.g., Cornejo-Castillo and 

Zehr 2020), and it is generally considered that the marine N2 fixation is mainly driven 

by diazotrophic cyanobacteria (Zehr and Kudela 2011; Turk-Kubo et al. 2014; Tang et 

al. 2019; Zehr and Capone 2020). A significant fraction of the N2 they fix is rapidly 

released in seawater as dissolved inorganic N and transferred to non-diazotrophic 

components of the microbial community (Berthelot et al. 2016; Knapp et al. 2016). The 

main genera of N2-fixing marine cyanobacteria are Trichodesmium, Nodularia, 

Richelia, Calothrix, Candidatus Atelocyanobacterium (UCYN-A) and Crocosphaera 

(UCYN-B and -C; Fig. 3.2). Comparative genomic analyses showed that genes 

encoding the N2 fixation machinery are generally clustered in a specific genomic region 

which, in some cases, may have been transferred laterally, causing diazotrophy to 

occur in taxa that are otherwise not known to fix nitrogen, such as in Microcoleus 

chthonoplastes (Bolhuis et al. 2010) or in Acaryochloris sp. HICR111A (Pfreundt et al. 

2012).  

A recent data-driven model of the biogeography of the major diazotrophic 

cyanobacteria (Tang and Cassar 2019) predicted that i) Trichodesmium is prevalent in 

the 30°N-30°S latitudinal range, dominating in the tropical Atlantic, western Indian and 

western Pacific oceans, ii) UCYN‐B exhibits a similar distribution but with smaller 

depth‐integrated abundances, iii) UCYN‐A distribution extends from tropical areas to 

temperate and polar regions, and iv) Richelia shows a relatively homogeneous 

distribution in the tropical ocean, with hot spots in the Amazon River plume, the central 

North Pacific and in the Mediterranean Sea. Abundance data for UCYN-C are still too 

scarce to get a global view of their distribution. Yet, local studies show that they can 

have a substantial impact even though they only represent a small share of the 

diazotrophic cells in the total microbial population. For instance, during the VAHINE 
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mesocosm experiment performed in 2013 in the shallow water of the New Caledonia 

lagoon (Bonnet et al. 2016b), N2 fixation rates reached >60 nmol N L-1 d-1, which are 

among the highest rates reported for marine waters (Luo et al. 2012; Bonnet et al. 

2016a). N2-fixing cyanobacteria of the UCYN-C type were found to dominate the 

diazotroph community in the mesocosms (Turk-Kubo et al. 2015). However, based on 

relative 16S rRNA gene copy numbers that were normalized by comparison against 

the flow cytometry counts of abundant marine picocyanobacteria, a maximum of only 

500 cells mL-1 was calculated for these diazotrophs (Pfreundt et al. 2016). This 

matched reasonably well to the maximum of 100 UCYN-C nifH copies mL-1 determined 

for the same population (Turk-Kubo et al. 2015), especially when taking into account 

that representative UCYN-C isolates, such as ATCC 51142 or TW3, usually contain 

two to three 16S rRNA gene copies per cell compared to the single-copy gene nifH 

(Taniuchi et al. 2008). In contrast, the total number of bacteria (heterotrophs and 

picocyanobacteria) was between 5 and 7x106 cells mL-1, hence UCYN-C diazotrophs 

had a share of <0.01% in the total microbial population but impacted its biogeochemical 

properties in a profound way. 

Like for Prochlorococcus and Synechococcus (cf. section 3.4.5), accumulating 

evidence from genomic analyses now suggests that these groups also consist of 

genetically diverse, physiologically and morphologically distinct sub-lineages that 

represent ecotypes adapted to specific conditions (Turk-Kubo et al. 2017; Henke et al. 

2018; Zehr and Capone 2020).  

 

 

3.5.2 Filamentous marine diazotrophs 
 

The major genera of multicellular, filamentous marine diazotrophs include: i) the non-

heterocystous, colony-forming Trichodesmium (Capone 1997; Karl et al. 2002), ii) the 

heterocyst-forming Richelia, which lives in symbiosis with the diatoms Rhizosolenia (a 

diatom-diazotroph association also referred to as Het-1) or Hemiaulus (Het-2; Villareal 

1991; Villareal 1992; Villareal 1994; Janson et al. 1999; Foster and Zehr 2006; Zeev 

et al. 2008; Goebel et al. 2010; Foster and Zehr 2019; Pyle et al. 2020), and iii) the 

heterocystous Calothrix (Het-3), which is commonly associated with the diatom 

Chaetoceros (Carpenter and Foster 2002; Foster and Zehr 2006; Goebel et al. 2010). 
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These diatom-diazotroph associations are thought to be highly host specific, one 

symbiont type associating with a single host genus, though the driver of this specificity 

remains to be elucidated.  

Other filamentous diazotrophs are found in coastal and reef environments, such 

as the non-heterocystous genus Lyngbya (Omoregie et al. 2004; Woebken et al. 2015). 

Heterocystous cyanobacteria belonging to the genus Nodularia thrive in brackish water 

environments, such as the Baltic Sea (Ploug et al. 2011). 

 

 

3.5.2.1  Trichodesmium  
 

Diazotrophic cyanobacteria of the genus Trichodesmium can form huge surface 

blooms of tens of thousands of km2 in the tropical and subtropical ocean (Dupouy et 

al. 1988), constituting an important source of new N to these oligotrophic environments 

(Capone 1997; Mahaffey et al. 2005; Davis and McGillicuddy Jr. 2006). Trichodesmium 

is taxonomically close to filamentous cyanobacteria of the genus Oscillatoria (Larsson 

et al. 2011). It possesses the unique property among diazotrophic filamentous 

cyanobacteria to express the oxygen-sensitive nitrogenase and to fix N2 during the day 

(Dugdale et al. 1961) concomitantly with photosynthetic oxygen evolution (Fig. 3.2). 

Nickel (Ni) availability seems to play a key role in regulating this process, since Ni-

replete Trichodesmium cells can fix N2 throughout most of the light:dark cycle 

(including the dark period) and fixation rates are several-fold higher in high-Ni than the 

low-Ni cultures (Rodriguez and Ho 2014). Whereas other diazotrophs such as 

Calothrix, Nodularia or Anabaena develop heterocysts, i.e. differentiated cells 

specialized for nitrogen fixation (Muro-Pastor and Hess 2012), Trichodesmium uses a 

different, not terminally differentiated cell type for this purpose, called diazocyte 

(Berman-Frank et al. 2001; El-Shehawy et al. 2003; Sandh et al. 2009; Sandh et al. 

2012). In addition, Trichodesmium can form colonies or multicellular aggregates of 

surprisingly varying morphologies, including threads (trichomes), radial puffs, vertically 

aligned fusiform tufts, and bowties (Post et al. 2002; Webb et al. 2007; Hynes et al. 

2012; Olson et al. 2015). Although the physiological relevance of these morphologies 

is not well understood (Eichner et al. 2019), there is clear evidence for true multicellular 
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behavior of Trichodesmium colonies, e.g., in the acquisition of mineral-rich dust 

particles (Rubin et al. 2011; Kessler et al. 2020). 

Different factors have been discussed to influence termination of 

Trichodesmium blooms, including bacteriophage-induced lysis (Ohki 1999; Hewson et 

al. 2004) or grazing by copepods (O’Neil and Roman 1994). An important factor seems 

to be the activation of an autocatalytic mechanism leading to programmed cell death, 

resembling apoptosis in metazoans. While this process is well documented in marine 

phototrophs (Bidle and Falkowski 2004; Franklin et al. 2006), details of the involved 

mechanisms have remained enigmatic. In Trichodesmium, programmed cell death 

may be triggered by several environmental factors, such as P or Fe starvation, high 

irradiance, or oxidative stress (Berman-Frank et al. 2004; Berman-Frank et al. 2007) 

and involves the activation of caspase-like activity (Berman-Frank et al. 2004). 

Analyses on Trichodesmium from the South Pacific Ocean demonstrated the 

stimulation of metacaspase expression and activity and the connection to programmed 

cell death induced mortality (Spungin et al. 2016; Spungin et al. 2019).  

With a size of 7.75 Mbp and 4,451 annotated genes, the genome of the 

reference strain Trichodesmium erythraeum IMS101 belongs to the larger 

cyanobacterial genomes known to date (Larsson et al. 2011; Shih et al. 2013). In sharp 

contrast with other free-living cyanobacteria genomes, which have an average coding 

capacity of ~85 %, only 64 % of the T. erythraeum genome encodes proteins (Larsson 

et al. 2011). This unusually high non-coding genome share is supported by 

metagenomic datasets (Walworth et al. 2015), hence it is typical for Trichodesmium. 

Transcription from such non-coding genome space can produce non-coding RNAs 

(sRNAs), which frequently have regulatory functions in cyanobacteria (Georg et al. 

2014; Klähn et al. 2015; Kopf and Hess 2015). Indeed, the analysis of the primary 

transcriptome of Trichodesmium erythraeum IMS101, i.e. the sequencing of enriched 

nascent transcript starts, revealed that at least 40% of all promoters that are active 

under standard laboratory conditions produce non-protein-coding transcripts and that 

these accumulate in much larger amounts than mRNA (Pfreundt et al. 2014).  

Amongst those non-coding transcripts is an actively splicing twintron (Pfreundt 

& Hess 2015), and a diversity generating retroelement (DGR). DGRs are widely 

distributed in the genomes of bacteria (Yan et al. 2019). They can generate mutations 

in their target genes and hence induce diversification of the encoded proteins, which 
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likely is beneficial. In analogy to retrons, another class of retroelements in bacteria, it 

might be speculated that these have defense-related functions (Millman et al. 2020). 

However, experiments on the precise role of DGRs in natural populations are still 

lacking.  DGRs consist of two components, a non-coding RNA called template repeat 

RNA that serves as a template for the second element, an error-prone reverse 

transcriptase that converts this template into cDNA for recombination into the protein-

coding region of the target gene(s) (Doulatov et al. 2004; Guo et al. 2008). Although 

there was previous evidence for the existence of this mechanism in Trichodesmium 

(Doulatov et al. 2004), the target genes remained unknown. The primary transcriptome 

enabled the exact definition of the DGR components in Trichodesmium and revealed 

12 putative target genes (Pfreundt et al. 2014), an unprecedented potential for in vivo 

protein diversification in bacteria. Although none of these genes possesses a clear 

functional assignment, some appear connected to putative signaling proteins 

(kinases), possibly constituting their receptor component. It can be speculated that at 

least some of the targeted proteins are involved in the defense against bacteriophages 

by systematic variation of a surface receptor. It is further possible that this system is 

involved in generating phenotypic variability by diversifying a few key genes. This could 

play a role, for instance, in the cell-cell recognition required for multicellular behavior 

and colony formation.  

Transcriptomic analyses was also the key to establish the biosynthetic pathway 

for the previously unknown compatible solute N,N,N-trimethyl homoserine 

(homoserine betaine) via a step-wise methylation from L-homoserine and using S-

adenosylmethionine as the methyl group donor (Pade et al. 2016; see also section 

3.3.3). To balance the typical open-ocean salinity of ∼35-37 grams per liter, the cells 

accumulate substantial amounts of this compound and hence require also substantial 

amounts of fixed carbon. S-adenosylmethionine is involved as the methyl group donor 

in many different reactions, including DNA methylation. In a seven-year evolution 

experiment, higher DNA methylation levels in Trichodesmium correlated with 

phenotypic adaptation to enhanced CO2, and increased N2 fixation rates (Hutchins et 

al. 2015). In a follow-up analysis, it was concluded that long-term m5C methylome 

modifications correlated with phenotypic adaptation to CO2 (Walworth et al. 2020). It is 

truly fascinating that in Trichodesmium the presence of massive amounts of a 

trimethylated compatible solute, epigenetic modification, i.e, DNA methylation, and 
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adaptation to enhanced CO2 fixation rates, coincide with each other. Future research 

will show whether this is purely coincidental or linked in more intricate ways. 

 

 

3.5.2.2  Nodularia, a bloom-forming cyanobacterium specifically adapted to 
salinity gradients 
 

Almost every summer, massive blooms of toxic cyanobacteria occur in the central 

regions of the Baltic Sea. These cyanobacteria cope well with the salinity gradient and 

brackish conditions that characterize the Baltic Sea. The dominating genera within 

these blooms are the filamentous, N2-fixing Aphanizomenon, Dolichospermum and 

Nodularia. Dolichospermum and Nodularia can produce toxins, such as microcystins 

or the hepatotoxin nodularin (Mazur-Marzec et al. 2012; Fewer et al. 2013) and 

protease inhibitors of the pseudoaeruginosin family (Liu et al. 2015). Excess P 

combined with low N concentrations in surface brackish waters are thought to favor 

the growth and bloom formation of diazotrophic cyanobacteria in summer (Sellner 

1997), particularly under stably stratified warm water conditions. Additionally, gas 

vesicles that provide buoyancy to Nodularia and related cyanobacteria lead to the 

formation of large surface scums in the absence of mixing.  

Nodularia appears to have a selective advantage under the brackish conditions 

of the Baltic Sea (Möke et al. 2013). The question of what these advantages could be 

was addressed by genomic and transcriptomic analyses of representative strains. The 

genome sequence of Nodularia UHCC 0039 is 5.38 Mbp and contains 5,108 protein-

coding genes (Teikari et al. 2018b). From these, 52.8% (2,699) were annotated to 

encode hypothetical proteins, illustrating the uniqueness of this group and that deeper 

functional analyses are required. Comparison to draft genome sequences of two other 

Nodularia isolates revealed a core genome consisting of 3,627 genes. Among the 

shared and strongly conserved genes is a gene cluster for the biogenesis of chaperone 

usher fimbriae, pointing at an unknown role of this type of fimbriae, possibly in 

adhesion, colony formation or during bloom development. Nodularia is known for its 

higher tolerance to periods of increased P starvation (Degerholm et al. 2006). 

Therefore, it is of interest that Nodularia genomes possess phn gene clusters 

potentially enabling the uptake, degradation and use of phosphonates as an alternative 
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P source (Voss et al. 2013; Teikari et al. 2018a). Indeed, the analysis of axenic 

Nodularia strains revealed that they can utilize methylphosphonates as the sole P 

source and concomitantly release methane (Teikari et al. 2018a). Together with earlier 

observations on Trichodesmium (Beversdorf et al. 2010) and other cyanobacteria 

(Bižić et al. 2020), these results suggest that certain marine cyanobacteria can release 

methane through the degradation of methylphosphonates, hence contributing to the 

oceanic methane paradox that posits that methane concentrations in surface waters 

can be above the atmospheric equilibrium (Repeta et al. 2016).  

 Further insights were gained from transcriptome analyses after exposure of 

Nodularia cultures to high light and oxidative stress, mimicking the extreme 

environmental conditions occurring in the surface layer of the Baltic Sea in summer 

(Kopf et al. 2015). The observed up-regulation of genes encoding enzymes for the 

biosynthesis of toxins implied that these compounds may play an important role in the 

acclimation of cells to conditions of bloom formation, consistent with similar 

observations for the freshwater cyanobacterium Microcystis (Zilliges et al. 2011). The 

photosynthetic activity of Nodularia spumigena CCY9414 trichomes remained high 

also at the highest irradiances of 1,200 µmol photons m-2 s-1, and there were signs of 

an increase in photorespiratory flux (Kopf et al. 2015). This observation is of interest 

for understanding the acclimation of cyanobacterial trichomes to the combination of 

high light, high O2 partial pressure and low nutrients, including low Fe and carbonates 

concentration in the surface layer. Indeed, in cyanobacteria, photorespiration 

cooperates with Mehler-like reactions catalyzed by flavodiiron proteins to dissipate 

excess absorbed energy (Hackenberg et al. 2009; Allahverdiyeva et al. 2011; 

Allahverdiyeva et al. 2013). The observed activation of photorespiratory flux was also 

consistent with the observation of many up-regulated genes encoding photorespiratory 

enzymes and flavodiiron proteins. Finally, the identification of many additional stress-

induced genes encoding proteins of unknown functions (Voss et al. 2013; Kopf et al. 

2015; Teikari et al. 2018a) further suggests the existence of stress-related 

mechanisms in surface cyanobacterial blooms occurring in the Baltic Sea, which 

remain to be identified.  
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3.5.2.3  Richelia and Calothrix 
 

Whereas Richelia is an obligatory symbiont, Calothrix are epiphytic on the surface of 

Chaetoceros cells (Carpenter and Foster 2002) and can even display a free-living 

lifestyle (Foster et al. 2010). These differences between obligatory or facultative 

interaction with their respective diatom host match distinct differences in the genetic 

capacity of these two cyanobacteria in a dramatic way. Indeed, the genome of the 

marine Calothrix rhizosoleniae strain SC01, isolated from outside the frustule of 

Chaetoceros, is at least 6.0 Mbp, a size similar to those of free-living heterocyst-

forming cyanobacteria, whereas Richelia intracellularis HH01, isolated from inside the 

siliceous frustule of Hemiaulus, has a genome size of only 3.2 Mbp. Moreover, the 

Richelia genome lacks genes for ammonium transporters, nitrate/nitrite reductases 

and glutamine:2-oxoglutarate aminotransferase, showing clear signs of adaptation as 

an obligate symbiont (Hilton et al. 2013). Modelling estimated that i) the rate of N2 

fixation in these diatom-diazotroph associations is 5.5 times higher than without N 

transfer to the host, ii) 25% of fixed C from the host diatom is transferred to the 

symbionts to support the high rate of N2 fixation, and iii) 82% of the N fixed ends up in 

the host (Inomura et al. 2020). The high degree of integration between symbiont and 

host was further demonstrated in the metatranscriptomic analysis of surface samples 

from the North Pacific Subtropical Gyre, revealing the coordination of gene expression 

in the diatom-Richelia symbiosis over day–night transitions (Harke et al. 2019).  

Despite some evidence of genome streamlining, it is currently unknown whether 

Richelia species that are found in the diatom-diazotroph association with Rhizosolenia 

(Het-1) are obligate symbionts as well (Villareal 1992; Hilton et al. 2013). 

 

 

3.5.3  Unicellular marine diazotrophs 
 

Marine unicellular cyanobacterial diazotrophs are phylogenetically divided into three 

groups (Fig. 3.1): i) the yet uncultivated unicellular cyanobacteria group A (UCYN-A), 

provisionally called Candidatus Atelocyanobacterium thalassa (Zehr et al. 2001; Zehr 

et al. 2008; Tripp et al. 2010), which lives in association with unicellular haptophyte 

algae (Zehr and Capone 2020), ii) Crocosphaera watsonii (UCYN-B), and iii) the 
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UCYN-C group, for which several representative isolates exist in culture, including 

CCY0110, ATCC 51142, ATCC 51472 and TW3 (Reddy et al. 1993; Taniuchi et al. 

2012). The taxonomy of the UCYN-C group was until recently particularly confusing 

since this group encompassed both strains named Cyanothece spp. and Gloeocapsa 

spp. (Taniuchi et al. 2012), so Mareš et al. (2019) have revised it and proposed that 

ATCC 51142 and 51472 be renamed Crocosphaera subtropica and CCY0110 be 

renamed Crocosphaera chwakensis (TW3 was not included in their analysis).  

UCYN-A is a major player in marine biogeochemical cycles, and particularly in 

the nitrogen cycle (Montoya et al. 2004; Goebel et al. 2010; Jardillier et al. 2010; Zehr 

and Kudela 2011; Cabello et al. 2015). Measurements in the tropical North Atlantic 

showed that it contributed to the total N2 fixation approximately as much as 

Trichodesmium (Martínez-Pérez et al. 2016). In pioneering work, the streamlined 

genome of UCYN-A was sequenced after isolating cells by flow cytometry cell sorting 

(Zehr et al. 2008; Tripp et al. 2010). The lack of all genes encoding the photosystem II 

complex, the Calvin-Benson-Bassham cycle, as well as other pathways that are 

normally essential, such as the tricarboxylic acid cycle, led these authors to 

hypothesize that UCYN-A lives in symbiotic interaction, an assumption that was later 

confirmed (Thompson et al. 2012; Hagino et al. 2013; Thompson et al. 2014). Many 

insights into the relevance of symbiotic interactions were further gained from the 

analysis of their association with their eukaryotic host (Krupke et al. 2014). Indeed, in 

this mutualistic relationship, UCYN-A provides fixed N to its host in exchange for fixed 

carbon. Yet, before any carbon is transported from the haptophyte to UCYN-A, transfer 

of N is required from UCYN-A to its host (Krupke et al. 2015). The UCYN-A group 

consists of at least four distinct clades (Thompson et al. 2014; Farnelid et al. 2016; 

Cornejo-Castillo et al. 2019), called UCYN-A1, UCYN-A2, UCYN-A3 and UCYN-A4 

and the whole group is monophyletic within the clade that also includes UCYN-B and 

UCYN-C species (Bombar et al. 2014). With regard to the symbiotic hosts, the small-

sized UCYN-A1 sublineage is associated with an open ocean picoplanktonic 

prymnesiophyte, while the larger-sized UCYN-A2 lives in a symbiosis with the coastal, 

nanoplanktonic coccolithophore Braarudosphaera bigelowii (Thompson et al. 2012; 

Hagino et al. 2013; Thompson et al. 2014; Cabello et al. 2020). Surprisingly, while 

UCYN-A2 shares 1,159 of the 1,200 UCYN-A1 protein-coding genes (96.6%) with high 

synteny, the average amino-acid sequence identity between these orthologs is only 
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86% (Bombar et al. 2014). These authors suggested that these two variants may reflect 

adaptation of their respective prymnesiophyte hosts to two different niches, namely 

coastal and open ocean habitats. In fact, phylogenomic and Bayesian relaxed 

molecular clock analyses suggested that UCYN-A has diverged and coevolved with its 

prymnesiophyte host for ~91 My, since the late Cretaceous (Cornejo-Castillo et al. 

2016). 

The UCYN-B group gathers Crocosphaera watsonii and related cyanobacteria, 

which are mostly free-living diazotrophs, but are also capable of colonial aggregation 

(Foster et al. 2013) and to form symbioses with the diatom Climacodium 

frauenfeldianum (Carpenter and Janson 2000; Foster et al. 2011). Otherwise, it is a 

typical N2-fixing cyanobacterium in the sense that it is photosynthetic during the day 

and fixes N2 during the night (Fig. 3.2), and the peak of nitrogenase gene expression 

occurs just prior to the dark period (Wilson et al. 2017). Currently, there are genome 

sequences of ten Crocosphaera watsonii strains available, with sizes ranging from 4.55 

Mbp for WH0401 to 6.24 Mbp for WH8501 (Webb et al. 2009; Bench et al. 2013). 

The ecology and genetic diversity of the UCYN-C group are less well known, 

except that this group seems to be adapted to warmer waters compared to its UCYN‐

A and -B counterparts (Berthelot et al. 2017). However, one strain representative of 

this group, ATCC 51142 (recently renamed to Crocosphaera subtropica; Mareš et al. 

2019), gained much attention as a platform strain in biotechnology and synthetic 

biology. Sequence analysis revealed a particular genome organization consisting of 

one major, circular and one linear chromosome and four small plasmids (Welsh et al. 

2008) The presence of two chromosomes from which one is linear is unique among 

cyanobacteria. Information on the 5.46 Mbp ATCC 51142 genome and its 5,304 

predicted protein-coding genes enabled a systems biology analysis of this UCYN-C 

group representative and popularized its use for applied research alike. Its 

transcriptome composition was addressed during diurnal cycles (Stöckel et al. 2008; 

Toepel et al. 2008; Elvitigala et al. 2009; McDermott et al. 2011) as was the dynamics 

of the  cellular protein complement (Stöckel et al. 2011; Aryal et al. 2018). Other 

analyses targeting the proteome were performed under constant light conditions (Aryal 

et al. 2012) or under conditions supporting enhanced hydrogen production (Aryal et al. 

2013). Studies addressing the metabolome were performed comparing mixotrophic 

and photoheterotrophic growth conditions (Feng et al. 2010). Variations were studied 
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in the rhythms of respiration and nitrogen fixation (Bandyopadhyay et al. 2013) and a 

temperature-dependent ultradian metabolic rhythm was discovered (Červený et al. 

2013). 

Findings that ATCC 51142 can produce considerable amounts of hydrogen (Min 

and Sherman 2010) boosted a series of studies in this direction describing it as one of 

the most prolific natural producers of hydrogen (Bandyopadhyay et al. 2010) and 

advancing the design of custom-built photobioreactors (Melnicki et al. 2012). The 

availability of multiple omics datasets facilitated modelling of light-driven reductant 

partitioning and carbon fluxes (Vu et al. 2012), of batch culture growth (Sinetova et al. 

2012) and of the relation between oxygenic photosynthesis and nitrogenase-mediated 

hydrogen production (Bernstein et al. 2015) More specialized work targeted α-glucan 

branching enzymes (Hayashi et al. 2015), the enzyme chlorophyllase as a biocatalyst 

(Chou et al. 2015), a novel α-dioxygenase suitable for the biotechnological production 

of odor-active methyl-branched aldehydes (Hammer et al. 2020) and a highly active 

extracellular carbonic anhydrase (Kupriyanova et al. 2019). ATCC 51142 has also 

served as a donor of genetic information. Already during the whole genome analysis, 

the strain was recognized to contain the largest intact contiguous cluster of nitrogen 

fixation-related genes (Welsh et al. 2008). This arrangement allowed engineering 

nitrogen fixation into a normally non-fixing cyanobacterium via transfer of this gene 

cluster (Mueller et al. 2016; Liu et al. 2018), providing promise for the engineering of 

more complex organisms, including crop plants (Thiel 2019).  

 

 

3.6 Concluding remarks                 
 

Numerous studies on various aspects of marine cyanobacteria have been published 

since the previous version of this chapter (Hess et al. 2016), illustrating the strong and 

continued interest of the scientific community in these fascinating microorganisms. Like 

most fields of biology, research on marine cyanobacteria has strongly benefited from 

the ever-increasing distribution and application of (meta)omics approaches. Thus, 

tremendous progress has notably been made in: i) elucidating the molecular bases of 

adaptations and regulatory circuitries used by marine cyanobacteria to deal with 

salinity or temperature gradients, high light or UV stress, light color variations, as well 
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as N, P and/or Fe limitation, which are the main abiotic factors that these 

photosynthetic microorganisms have to face in the marine environment, ii) better 

understanding biotic interactions with their predators (phages, phagotrophs, etc.), 

symbiotic hosts or co-occurring bacteria, and iii) deciphering the distribution patterns 

of the major phylotypes of cyanobacteria and how they relate to ecological niches. 

Given their ubiquity and natural abundance, marine cyanobacteria largely 

contribute to the biogeochemical cycles of two major elements, C and N, through their 

photosynthetic and, for many of them, diazotrophic abilities. It must be stressed that a 

number of studies modelling  the effects of the ongoing human-induced global change 

on phytoplanktonic communities predicted that Synechococcus and free-living 

diazotrophs should have higher growth rates and relative abundances in the future 

warmer (predicted temperature increase range: +1 to +8°C) and more acidic world 

Ocean (predicted pH decrease: -0.2 to -0.3 units), while adverse effects were predicted 

for eukaryotic microphytoplankton, such as diatoms or coccolithophores (Flombaum et 

al. 2013; Dutkiewicz et al. 2015; Schmidt et al. 2020). Interestingly, while Fe starvation 

is known to limit the growth of diazotrophs and therefore their occurrence in Fe-

depleted areas, it was recently shown that Trichodesmium cellular Fe content tends to 

decrease as temperature rises and that the optimum growth temperature of Fe-limited 

cells is ~5 °C higher than for Fe-replete cells (Jiang et al. 2018). Thus, the projections 

made by these authors predict that Fe use efficiencies of N2 fixers could increase by 

~76% by 2100 and potentially alleviate the prevailing Fe limitation. The situation is 

different for Prochlorococcus, since a doubling of the present-day CO2 concentration 

combined with higher temperature (+4°C) had no effect on Prochlorococcus cell 

division and photosynthetic rates, whereas in the same conditions Synechococcus 

grew more than twice faster and exhibited four times higher photosynthetic rates than 

the controls (Fu et al. 2007). This suggests that Prochlorococcus could have a 

competitive disadvantage compared to Synechococcus under the predicted year 2100 

CO2 and temperature regimes. Yet, this study was performed on uni-algal cultures and 

did not take into account a possible mutualistic effect between these two 

picocyanobacteria. Such an effect was recently evidenced by co-culturing 

experiments, in which the growth rate of Prochlorococcus correlated positively with the 

Synechococcus cell density at high CO2 concentrations (Knight and Morris 2020). 

Thus, as also previously demonstrated by the need of Prochlorococcus cells for 
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catalases synthesized by ‘helper’ heterotrophic bacteria to mitigate oxidative stress 

(Morris et al. 2008), it seems that Prochlorococcus strongly depends upon organisms 

co-occurring in its immediate vicinity, a probable result of the extensive genome 

streamlining that has affected most lineages.  

Interactions with other members of the microbial community have been 

recognized as an important factor in the lifestyle of other marine cyanobacteria as well. 

Trichodesmium has a complex associated microbiome (Gradoville et al. 2017), with 

which it coordinates the regulation of gene expression (Frischkorn et al. 2018). 

However, when a Trichodesmium bloom collapses, previously numerically 

underrepresented bacteria such as Alteromonas spp. may flourish (Hou et al. 2018). 

More generally, interactions occurring between cyanobacteria and other members of 

the marine planktonic community are only starting to be understood. They range from 

mutualistic interactions to saprophytism on the C and N fixed by cyanobacteria. In 

particular, the release of extracellular membrane vesicles into the marine environment, 

demonstrated for Prochlorococcus and Synechococcus (Biller et al. 2014b), is likely a 

general phenomenon in cyanobacteria and may play a role in carbon cycling, gene 

transfer, and viral defense, complementing more classical secretion modes. In this 

context, the analysis of marine Synechococcus exoproteome revealed the occurrence 

of transport systems for inorganic nutrients and of a large array of strain-specific 

exoproteins likely involved in mutualistic or hostile interactions (e.g., hemolysins, pilins, 

adhesins), as well as exoenzymes with a potential mixotrophic goal (e.g., exoproteases 

and chitinases; Christie-Oleza et al. 2015). Given the remarkable variety of lifestyles 

exhibited by marine cyanobacteria, it is very likely that the majority of the interactions 

they have forged with other members of the microbial community still awaits to be 

discovered, and this is clearly one of the next major challenges in this thriving research 

field.  
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Legends to Figures 
 

 
 
Fig. 3.1 Maximum-likelihood phylogenomic tree of selected sequenced 

cyanobacteria based on 29 concatenated core markers. Species names are color-

coded as follows: strictly marine planktonic strains (i.e., with obligate requirement for 

high salinities) are shown in lagoon blue, halotolerant planktonic strains (i.e., capable 

to grow over a large range of salinities) in green, marine benthic strains in beige and 

symbiotic strains in purple. All other strains (freshwater, soils, etc.) are shown in black. 

Cyanothece sp. ATCC 51142, a representative of the unicellular cyanobacteria Group 

C (UCYN-C), has recently been renamed Crocosphaera subtropica by Mareš et al. 

(2019). Only nodes supported with a bootstrap value higher than 60% are indicated. 

Morphologies are indicated for each strain or group of strains. Adapted with permission 

from Supplementary Fig. S1 in Partensky et al. (2018).  

 

Fig. 3.2 Major types of open-ocean N2-fixing cyanobacteria showing distinct 

physiological differences in the daily cycles of C and N metabolism, O2, and nutrients. 

Cyanobacteria differ in whether they fix N2 in the light or in the dark and have different 

adaptations for obtaining non-N nutrients that have implications for ecological 

distributions and magnitude of N2 fixation. Adapted with permission from Fig. 3 in Zehr 

& Capone (2020). 

 

Fig. 3.3 Relative abundance of Prochlorococcus and Synechococcus clades in 

surface (A-B) and global distribution along the Tara Oceans expedition transect of 

ecologically significant taxonomic units (ESTUs, defined as within-clade 94% OTUs 

sharing a similar distribution pattern; C-D). The size of circles is proportional to the 

number of Prochlorococcus or Synechococcus reads at the corresponding station. 

Reproduced with permission from Farrant et al. 2016 (A-B) or drawn using data from 

this study (C-D). 

 

Fig. 3.4 Relationships between 16S rRNA identity, AAI, and taxonomic 

information for Synechococcus/Cyanobium (A) and Prochlorococcus (B) genomes. 
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Dots correspond to comparisons between pairs of genomes belonging to the same 

clade, triangles between pairs of genomes belonging to the same SC (or phototype, 

HL or LL, for Prochlorococcus) but different clades and squares between pairs of 

genomes belonging to different SC or phototype. Continuous vertical lines correspond 

to the ‘natural’ AAI discontinuities mentioned by Doré et al. (2020), while the vertical 

dashed lines correspond to the limits for genus (70% AAI) and species (95% AAI) used 

by Tshoeke et al. (2020) for Prochlorococcus and Salazar et al. (2020) for the 

Synechococcus/Cyanobium group. Adapted from Fig. 3B in Doré et al. (2020).  
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