

Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years

Gwendaline Le Hen, Paride Balzani, Peter Haase, Antonín Kouba, Chunlong Liu, Leopold a J Nagelkerke, Nikola Theissen, D Renault, Ismael Soto, Phillip J. Haubrock

▶ To cite this version:

Gwendaline Le Hen, Paride Balzani, Peter Haase, Antonín Kouba, Chunlong Liu, et al.. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. Science of the Total Environment, 2023, 867, pp.161486. 10.1016/j.scitotenv.2023.161486 hal-03971311

HAL Id: hal-03971311 https://hal.science/hal-03971311

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Alien species and climate change drive shifts in a riverine fish community and trait
 compositions over 35 years

3

Gwendaline Le Hen^{1,2}, Paride Balzani³, Peter Haase^{2,4}, Antonín Kouba³, Chunlong Liu⁵,
Leopold A. J. Nagelkerke⁶, Nikola Theissen⁷, David Renault^{1,8}, Ismael Soto^{3*}, Phillip J.
Haubrock^{2,3,9*}

7

8 Affiliations

- 9 ¹ Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR
- 10 6553, 35000 Rennes, France
- ¹¹ ² Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River
- 12 Ecology and Conservation, Gelnhausen, Germany
- ³ University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of
- 14 Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses,
- 15 Zátiší 728/II, 389 25 Vodňany, Czech Republic
- ⁴ Faculty of Biology, University of Duisburg–Essen, Essen, Germany
- ⁵ Institute of Hydrobiology, Chinese Academy of Sciences, No.7 Donghu South Road, Wuhan,
- 18 Hubei Province, 430072 China
- ⁶ Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, The
- 20 Netherlands
- ⁷ North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection,
- 22 Hauptsitz, Leibnizstraße 10, 45659 Recklinghausen, Germany
- ⁸ Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France

⁹ CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait

24 *equally contributing senior author

25 Abstract

26 Alien fish substantially impact aquatic communities. However, their effects on trait 27 composition remain poorly understood, especially at large spatiotemporal scales. Here, we used 28 long-term biomonitoring data (1984-2018) from 31 fish communities of the Rhine river in 29 Germany to investigate compositional and functional changes over time. Average total 30 community richness increased by 49%: it was stable until 2004, then declined until 2010, before 31 increasing until 2018. Average abundance decreased by 9%. Starting from 198 individuals/m² 32 in 1984 abundance largely declined to 23 individuals/m² in 2010 (-88%), and then consequently 33 increased by 678% up to 180 individuals/m² until 2018. Increases in abundance and richness 34 starting around 2010 were mainly driven by the establishment of alien species: while alien 35 species represented 5% of all species and 0.1% of total individuals in 1993, it increased to 30% 36 (7 species) and 32% of individuals in 2018. Concomitant to the increase in alien species, 37 average native species richness and abundance declined by 26% and 50% respectively. We 38 identified increases in temperature, precipitation, abundance and richness of alien fish driving 39 compositional changes after 2010. To get more insights on the impacts of alien species on fish 40 communities, we used 12 biological and 13 ecological traits to compute four trait metrics each. 41 Ecological trait dispersion increased before 2010, probably due to diminishing ecologically 42 similar native species. No changes in trait metrics were measured after 2010, albeit relative 43 shares of expressed trait modalities significantly changing. The observed shift in trait 44 modalities suggested the introduction of new species carrying similar and novel trait 45 modalities. Our results revealed significant changes in taxonomic and trait compositions following alien fish introductions and climatic change. To conclude, our analyses show 46 47 taxonomic and functional changes in the Rhine river over 35 years, likely indicative of future 48 changes in ecosystem services.

- 49
- 50 Keywords: Rhine river, freshwater fish, long-term study, alien species, functional ecology,
- 51 traits

52 Introduction

Extinction and speciation processes constitute the natural renewal of biodiversity (Johnson *et al.*, 2017). At global scales, the growing extent of human impacts on ecosystems worldwide, including changes in climatic conditions and land-use, overexploitation of resources, or introduction of alien species (Sala *et al.*, 2000; Cowx & Collares-Pereira, 2002), increases the frequency of occurrence of these processes. At regional scales, the man-made alterations of habitat quality greatly favour the increase of extinction rates, and cause a staggering decline in biodiversity (Dirzo *et al.*, 2014; Johnson *et al.*, 2017; IPBES, 2019).

60 Among the above-mentioned drivers of biodiversity decline, biological invasions play 61 a central role, as growing numbers of alien species are introduced (deliberately or accidentally) 62 beyond their native range (Blackburn et al., 2014; Turbelin et al., 2017; Seebens et al., 2018). 63 Once successfully established, some alien species can proliferate locally before spreading 64 geographically, and colonising new habitats, causing ecological and socio-economic impacts on recipient ecosystems (Arim et al., 2006). Invasive alien species can threaten biodiversity at 65 66 all organisational scales, in all regions, ecosystems, or habitats (Bellard et al., 2016; Mollot et al., 2017; Blackburn et al., 2019; Pilotto et al., 2020; Pyšek et al., 2020). Biodiversity from 67 freshwater ecosystems is no exception: in addition to being critically affected by anthropogenic 68 69 activities (e.g. change in land use, climatic changes), environmental stressors can magnify the 70 deleterious impacts of alien species, potentially leading to species extinction and to the loss of 71 ecosystem functions (Sala et al., 2000; Gherardi & Acquistapace, 2007; Villéger et al., 2011; 72 Haubrock et al., 2020).

Invasive alien fishes have been known to modify aquatic ecosystems (*e.g.* by altering community structure and the trophic web) and displace native species through competition and/or predation (Cambray, 2003; Gherardi *et al.*, 2011; Haubrock *et al.*, 2020, 2022). These impacts have been recently monetised, and economic losses incurred by alien fishes were

3

reported as being mainly related to damages, resource losses, and impaired social welfare
(Haubrock *et al.*, 2022). Alien fish species can also negatively affect taxonomic diversity
(Cambray, 2003; Gallardo *et al.*, 2016), with potential consequences for the functional structure
of the community. In these circumstances, the loss of native species can result in the
concomitant losses of certain traits, whereas new species are prone to introduce "novel" traits
or even replace those lost (Nock *et al.*, 2016; Renault *et al.*, 2022).

83 Information on ecological preferences and biological (*i.e.* functional) traits (later on 84 referred to as simply ecological and biological traits) are characteristic to each individual or 85 species, determining its biology and functioning within a community, as well as shaping the 86 ecological space it occupies. Traits are often considered plastic, in several cases slowly 87 changing either by developmental acclimation or by on-time adjustments, allowing their 88 constant optimisation or the maintenance of biological performance, even when environmental 89 factors vary qualitatively or quantitatively (Hooper et al., 2005; Mason et al., 2005; Nock et 90 al., 2016). In invaded habitats, the loss of individuals and species can be associated with the 91 loss of traits, and this can have profound impacts on community structure and functioning when 92 unique and/or specialised traits are lost (Clavel et al., 2011; Dias et al., 2021; Pilotto et al., 93 2022). In several instances, taxonomic and functional changes induced by alien species, and 94 the consecutive loss of native species, have resulted in the homogenisation of freshwater 95 communities. Indeed, ~40% of European fish assemblages that experienced taxonomic 96 differentiation were also functionally homogenised (Olden & Rooney, 2006; Villéger et al., 97 2011, 2014; Haubrock et al., 2020). Functional homogenisation of all local communities within 98 a region (e.g. metacommunities) can increase vulnerability to large-scale environmental events 99 by synchronising local biological responses across individual communities (Olden et al., 2004; 100 Clavel et al., 2011; Villéger et al., 2014). Although some taxonomic and functional changes -101 commonly described with a series of trait metrics (see Baker et al., 2021) - induced by alien

fish are known to occur in European lakes (Zhao *et al.*, 2019), not much is known about riverine ecosystems. Furthermore, changing climatic or environmental conditions can induce shifts in the establishment rates and concomitantly abundance of alien fish (Strayer *et al.*, 2017). This also induces functional changes—an aspect pertaining to the compositional and functional dimension of biological invasions that has not been studied in depth (but see Crozier & Hutchings, 2014).

108 The Rhine river, one of the most heavily anthropogenically impacted freshwater rivers 109 in Europe with a total length of 1,250 km (Tittizer, 1997; Van der Velde et al., 2000; Uehlinger 110 et al., 2009), provides numerous services such as transportation, power generation and drinking 111 water (Cioc, 2002; Uehlinger et al., 2009). The opening of the Rhine-Main-Danube canal in 112 1992 links the Rhine catchment via the Main tributary with the Danube river, and serves as a 113 major pathway facilitating the spread of alien species (Tittizer, 1997; Bij de Vaate et al., 2002; 114 Balzani et al., 2022). However, while information on the taxonomic identity of alien species 115 present in highly anthropogenically altered ecosystems like the Rhine river is available, not 116 much is known about the changes in the community and trait composition that have occurred 117 as a response to these introductions (Nehring & Klingenstein, 2008; Rabitsch et al., 2013), nor 118 how environmental changes over time drove these.

In the current era of globalisation, ongoing climatic changes, and an increased interest 119 120 in the protection of natural resources, long-term studies have become increasingly necessary to 121 provide a better understanding of introduction processes, reconstruct introduction events, and 122 community dynamics (Franklin, 1989; Hooper et al., 2005; Strayer et al., 2006). Yet, long-123 term data has rarely been used to disentangle the effects of alien species on the taxonomic and 124 trait diversity of fish communities, nor to investigate effects of climatic or environmental 125 changes (but see Guareschi et al., 2021). Using long-term biomonitoring data from the Rhine 126 river in western Germany (1984–2018), we investigated changes in the taxonomic and trait

127 composition in invaded fish communities over time. To this end, we specifically investigated 128 if changes in the communities' taxonomic and trait composition were driven by disappearances 129 of native fishes or by replacements by alien fishes as well as climatic changes over time and 130 consequently, if identifiable changes were indicative of taxonomic and functional (*i.e.* trait) 131 homogenisation and subsequently, responding to environmental changes. We tested the 132 following hypotheses: (i) the increase in alien fish abundance will be at the expense of native species, resulting in a decrease in the overall native communities' abundance, (ii) the arrival 133 134 and establishment of alien fishes will introduce novel functional traits, reshaping the ecological 135 space occupied by the community, (iii) changes in environmental parameters, and more 136 particularly climatic factors, will drive compositional changes.

137

138 Methods

139 Data collection

140 To investigate the changes in composition of freshwater fish communities over spatiotemporal 141 scales, we used a time series of fish abundance from the Rhine river in western Germany. Fish samplings were conducted in the Rhine river between 1984–2018, although not continuously 142 143 (Table S1), over different seasons (*i.e.* spring and summer) and from 31 sites. In total, the 144 samplings covered ~170 km of the Rhine river from the border to the Netherlands upstream (6°12'55''N-7°11'55''N; 50°39'49''E-51°49'46''E; Figure 1). Fish were collected at each 145 146 site following a standardised protocol by bank fishing from the right river bank through 147 continuous electrofishing. Over the study period, 403 samplings were conducted, capturing a 148 total of 43,888 individuals identified at the species level. For each fish species, abundance (i.e. 149 number of individuals per sampling) data were averaged across sites for each year.

- 150
- 151 **Figure 1.** Representation of 31 fish sampling sites along the Rhine river (Germany).
- 152
- 153 Fish biological and ecological traits

The sampled fish species were characterised with traits extracted from three resources: *www.freshwaterecology.info* (Schmidt-Kloiber & Hering, 2015), *www.fishbase.org* (Froese & Pauly, 2010) and *scholar.google.com* (Google Scholar sources). When trait data were missing at the species level, information was retrieved from the genus. We retained a total of 25 traits

split into: (i) 13 ecological traits, sub-divided into 43 'modalities' (*e.g.* if the considered ecological trait is 'habitat', the different modalities correspond to the diversity of habitats which the species can occupy; Table S2) describing the environmental tolerance of species, and (ii) 12 biological traits with 37 modalities reflecting characteristics of species (Table S2; Devin & Beisel, 2007).

163

164 *Community metrics*

165 To investigate changes in the composition of the fish community over the investigated period 166 (1984–2018), five commonly used taxonomic metrics were computed for each site and year: (i) total abundance, (ii) species richness, (iii) Shannon diversity, (iv) Pielou evenness and (v) 167 168 temporal species turnover (Table S3; Baranov et al., 2020). Taxonomic metrics were computed 169 using the R package 'vegan' (Oksanen et al., 2020). The turnover of overall communities, 170 native communities and alien communities were calculated using the turnover function 171 implemented in the R package 'codyn' (Hallett et al., 2020). In addition, we calculated the 172 beta-diversity (*i.e.* as a measure of the ratio between regional and local species diversity) across 173 all sites sampled within each year as a proxy for taxonomic homogenisation using 174 beta.div.comp function implemented in the R package 'adespatial' (Dray et al., 2022).

175

176 Trait metrics

To investigate trait changes in fish communities over time, all trait modalities (*i.e.* ecological and biological) were 'fuzzy coded' with the *prep.fuzzy.var.function* following Chevenet *et al.* (1994) using the R package 'ade4' (Dray & Dufour, 2007). The fuzzy coding procedure indicates to which extent a taxon exhibits each trait category by proportionally scaling them between 0 and 1 (Schmera *et al.*, 2015). This is essential as it simplifies the synthesis of trait information and enables the synthesis of diverse kinds of biological information (Baker *et al.*,

2021). Then, four trait metrics: trait richness (TRic), trait divergence (TDiv), trait dispersion
(TDis) and trait evenness (TEve; Table S3; Baker *et al.*, 2021; Renault *et al.*, 2022) were
calculated using the *alpha.fd.multidim* function from the R package 'mFD' (Magneville *et al.*,
2022). Trait metrics were computed for ecological and biological traits separately.

187

188 Abiotic and biotic predictors

Site-specific characteristics were used to investigate the spatiotemporal changes in fish communities. To assess the effects of climatic variables, we extracted the average daily temperature and precipitation of the 12 months before the sampling event from a gridded European-scale observation-based dataset for each year and site (spatial resolution: 0.1 °C; www.ecad.eu/E-OBS/; Cornes *et al.*, 2018). Lastly, we estimated the richness and abundance of alien species in each year of each time series as biotic predictors to investigate their effects on the community.

196

197 Statistical analyses

198 To investigate changes in taxonomic and trait composition of communities over time, canonical 199 analysis of principal coordinates (CAPs) were performed based on the Bray-Curtis dissimilarity 200 index (Bray & Curtis, 1957). The CAPs were based on (i) species abundance and the 201 community weighted means (CWM, *i.e.* the mean value for each trait for the whole community 202 weighted by the abundance of the species carrying the trait) of (ii) ecological and (iii) biological 203 traits for each year. Further, permutational multivariate analysis of variance (PERMANOVA, 204 permutations = 9,999) based on the Bray-Curtis dissimilarity index were performed using 205 adonis2 function of the R package 'vegan' (Oksanen et al., 2020) on the species abundance 206 matrix to identify the significance of abiotic (i.e. latitude, temperature, precipitation) and biotic 207 predictors (*i.e.* alien species abundance and richness) and then the significance of ecological

and biological trait modalities. Then, two PERMANOVAs (Bray-Curtis dissimilarity index,
 permutations = 9,999) were separately performed on the matrices of the ecological and
 biological traits CWM to identify the significance of abiotic and biotic predictors.

211 Finally, taxonomic and trait metrics as well as climatic variables were modelled as the 212 response variables over time. In addition, we identified periods in which community and trait-213 based metrics significantly changed over time by fitting an autoregressive AR (1) process 214 (Nathan et al., 1999) for the residuals enabled the computation of derivatives of fitted splines 215 using the method of finite differences to estimate the rate of change (slope) in the fitted 216 smoother. This produced diagnostic plots of the time series with which periods of significant 217 changes were identified and superimposed within the respective time series upon the respective 218 trends over time (Simpson, 2018). Based on the results from the autoregressive models we 219 identified significant changes to have occurred in ~2010. Accordingly, we splitted the study 220 period into two (1984–2010: 25 years; 2010–2018: 8 years; Figure S1) to identify the effects 221 of alien fishes in the community. Taxonomic and trait metrics were modelled using the gam 222 function from the R package 'mgcv' (Wood, 2021). All metrics were modelled using a negative 223 binomial distribution except for species abundance and richness, modelled using a poisson and 224 gaussian distribution respectively. Hence, each model was composed of the specific response variable (*i.e.* taxonomic, biological and ecological trait metrics) and the explanatory variables: 225 226 'year', 'latitude', 'temperature' and 'precipitation'. Considering non-linear trends over time, 227 our models included a cubic regression smooth spline for the predictor "year" (Wood, 2006) 228 and a smoothed spline for abiotic predictors.

All analyses were conducted in the R environment, version 4.1.1 (R Core Team, 2021). The level of significance was set at $\alpha < 0.05$.

231 **Results**

232 Over the 35 years of this study, 43 fish species (32 native and 11 alien species) were caught in 233 the lower part of the Rhine river (Table S4). The Cyprinidae was the most diverse family in 234 terms of species (20 out of the 43 sampled species), followed by Salmonidae (4 species), Gobiidae (4 species) and Percidae (3 species). The 12 remaining families were represented by 235 236 a single species (Table S4; Figure S2). Over the studied period, the average annual temperature and precipitation increased by ~0.94 $^{\circ}$ C (~ 0.03 $^{\circ}$ C year⁻¹) and ~0.26 mm (~0.008 mm year⁻¹), 237 238 respectively. While temperature fluctuated throughout the period, peaking in 2006, 239 precipitation steeply inclined after 2010 (Figure S3).

240

241 Compositional changes in communities over time

242 Between 1984 and 2018, total community richness increased by 49%, albeit declining between 243 2004 and 2010 before increasing again until 2018 (Figure 2a). Starting from 198 individuals/m² 244 in 1984, the overall community abundance largely declined to 23 individuals/m² in 2010 (-245 88%), and then consequently increased by 678% up to 180 individuals/m² until 2018 (Figure 246 2b). Despite the slow increase at the beginning of the studied period, the richness and 247 abundance of alien species considerably increased after 2010 (Figure 2) and peaked in 2013 with a maximum of 8 alien species and again in 2018 with 7 alien species. The common carp 248 249 Cyprinus carpio (first recorded in 1993), the rainbow trout Oncorhynchus mykiss (first 250 recorded in 1998) and the European catfish Silurus glanis (first recorded in 2004) were the first 251 alien species that were detected and successfully established in the studied stretch of the Rhine 252 river (Table S4). While C. carpio, O. mykiss, and S. glanis represented 5.0-8.3% of the total 253 species richness before 2006 (Figure 3a), their abundance remained negligible (0.1–0.4%; 254 Figure 3b). In 2010, the abundance of five identified alien fish species increased to 14.9%. In 255 the period 2010-2013, six novel alien fish species established in the river: the pumpkinseed

Lepomis gibbosus, the monkey goby *Neogobius fluviatilis*, the bighead goby *Ponticola kessleri*, the round goby *N. melanostomus*, the topmouth gudgeon *Pseudorasbora parva*, and the European bitterling *Rhodeus amarus* (Table S4), constituting a total of 29.6% of the total species richness and 52.1% of the total communities abundance in 2013 (Figure 3).

Figure 2. (a) Total species richness and (b) total community abundance of the Rhine river fish community from 1984 to 2018 indicating the average values ± the respective standard deviation for each sampled year and the respective share of native (blue) and alien species (red). Numbers on the right indicate the (a) total species richness and the (b) total community abundance of native and alien fish in 2018.

Figure 3. (a) Relative species richness and (b) relative community abundance of native (in blue) and alien (in red) fish species
of the Rhine river from 1984 to 2018.

268

265

The establishment of the six novel species increased alien species richness, which peaked in 2018 (30.4%; Figure 3a), alongside with their abundance, totalling 69.9% in 2015 (Figure 3b). Considering solely the alien community, species from the genus *Neogobius* sp. were first detected in 2010. In this genus, *N. melanostomus* dominated the alien fish community

¹³

in 2018 (98.25% of the total alien communities abundance, Figure 4b). For the native fish communities, the roach *Rutilus rutilus* was the most abundant species at the beginning of the study period (75.14%, Figure 4a) and declined sharply in 2010 (2.30%). The bleak *Alburnus alburnus*, which represented 1.76% of the total native community abundance in 1984, and the ide *Leuciscus idus*, 1.52% in 1993, became more abundant in 2018, respectively occupying 24.47% and 22.00% (Figure 4a).

Figure 4. Relative abundance of the six most abundant (a) native and (b) alien fishes during the study period. Number on top
of each bar indicates the total abundance of all (a) native and (b) alien species collected in that respective year.

279

The communities' beta-diversity increased until 2010 before decreasing towards 2018 (Figure S4). The total community turnover remained constant over time (Figure 5a), with the turnover of the native fish communities slightly increasing in recent years from 0.48 to 0.60, albeit being non-significant ($R^2 = 0.135$; p = 0.238; Figure 5b). The turnover of the alien fish community decreased significantly after 2006, from 0.89 to 0.34 ($R^2 = 0.210$; p = <0.01; Figure 5c).

Figure 5. Temporal turnover rate displaying appearances and disappearances of fish species in the Rhine river from 1984 to 2018. (a) Overall turnover in the whole community. (b) Turnover for native fishes. (c) Turnover for alien fishes. Please note that there was no detectable turnover in the alien community before 2006 despite the presence of several, continuously present alien fish species.

293

The applied ordination suggested a clear segregation in the community's taxonomic composition, with years after 2010 characterised by a significant increase in alien species richness and abundance, as well as changes in temperature and precipitation, as confirmed by the applied PERMANOVA (Figure 6a; Table S5). Moreover, the applied PERMANOVA identified all community weighted means CWM (both ecological and biological) to

299 significantly vary over time (Table S6), as within each trait, modalities of both ecological 300 (Figure S5) and biological traits (Figure S6) changed in their relative prevalence, showing 301 notable differences in their respective proportion before and after 2010. After 2010, the 302 community was dominated by species characterised by smaller adult fishes and larvae, shorter 303 life span, moderate relative fecundity, bigger eggs, and provision of parental care (Figure S6; 304 Table S6). Regarding ecological traits, the post-2010 community was characterised by fishes preferring rheophilic conditions in a demersal habitat, and feeding in benthic habitats (Figure 305 306 S5; Table S6). A comparable pattern was identified for the CWMs of ecological and biological 307 trait compositions (Figure 6b,c), as confirmed by the PERMANOVA (Table S7). Changes after 308 2010 were significantly related to an increase in alien species' richness and abundance as well 309 as increases in temperature and precipitation (Figure S3).

311 Figure 6. Canonical analysis of principal coordinates (CAP) on (a) the taxonomic community composition (based on species

- 312 abundances), the community weighted means (CWMs) of (b) ecological and (c) biological traits across years. Blue arrows
- 313 indicate significant abiotic and biotic predictors. Values along the arrows indicate the correlation with the dominant axis.
- 314

315 Temporal patterns in the community taxonomic and trait metrics

316 Without separating the time series into two distinct periods, we identified a fluctuation in 317 richness (*i.e.* a low around the year 2010 encompassed by two periods of high species richness), 318 a decline in abundance, and an incline in Shannon diversity as well as inclines in both 319 ecological and biological trait dispersion (p < 0.05; Figure S7). Between 1984 and 2010, 320 species richness did not change significantly (Figure 7a; Table S8), whereas species abundance 321 significantly decreased from on average 198 (± 82) to 23 (± 28) individuals/m² ($R^2 = 0.624$; p 322 = <0.01; Figure 7b). Species richness and abundance were significantly positively affected by 323 latitude, temperature and precipitation (Table S8). No significant changes in Shannon diversity and Pielou's evenness were detected (Figure 7c,d). With regard to trait metrics, only an increase 324 in trait dispersion (TDis) of ecological traits was detected ($R^2 = 0.292$; p = 0.01; Figure 7g). 325

326 After 2010, species richness and abundance increased significantly from approximately 327 six to ten species, and from on average 23 (\pm 28) to 180 (\pm 176) individuals/m² (richness: R^2 = 328 0.425; $p = \langle 0.01;$ abundance: $R^2 = 0.731; p = \langle 0.01;$ Figure 7a,b). No further significant change 329 was detected (Figure 7; Table S8). While species richness after 2010 was positively related 330 with latitude, the identified increase in abundance was primarily driven by the increasing 331 richness (and abundance) of alien species as well as an increase in temperature, precipitation, and latitude. Changes in Shannon diversity and Pielou's evenness were only significantly 332 333 negatively related to the abundance of alien species (Table S8).

Figure 7. Generalised additive models (GAMs) exploring the relationship between (a-d) taxonomic and (e-h) trait metrics of the studied communities. Trait metrics are divided into ecological (black lines) and biological (blue lines) traits. Solid lines indicate significant change over time, whereas dashed lines represent non-significant trends. See table S8 for other significant predictors.

339

340 **Discussion**

341 The direct and indirect impacts of alien fishes and meteorological conditions are major drivers 342 of biodiversity loss in freshwater ecosystems worldwide (Villéger et al., 2014; Gallardo et al., 343 2016; Bellard et al., 2018; Haubrock et al., 2020), often leading to taxonomic homogenisation 344 (Olden et al., 2004; Pilotto et al., 2020; Haubrock et al., 2022). Our data, collected with a 345 standardised protocol over the period 1984-2018, revealed significant changes in taxonomic and trait composition following the introduction of alien fishes after 2010 and concomitant 346 changes in climatic conditions. We further identified changes in community composition 347 348 following declines in the richness and to some extent also the abundance of native communities 349 until 2010, before indicating taxonomic homogenisation, while in the case of the abundance-350 after alien fish species were detected to dominate in 2015- reached levels comparable to those

19

measured in the first year, while richness reached a considerably higher level. While climatic changes (*i.e.* in temperature and precipitation) likely benefited some alien species reflecting characteristic traits, these however did not determine the transition to a community dominated by aliens as both variables expressed no period of significant change during the study period (Figure S1m, n).

356

357 Patterns in community composition before 2010

358 Trends in the abundance and richness of alien species can shift following external changes 359 (Rahel & Olden, 2008; Früh et al., 2012), and have destabilising effects on invaded 360 communities (Cardoso & Free, 2008; Strayer et al., 2011). The three alien fish species already 361 present before 2010 in the Rhine river (C. carpio, O. mykiss, and S. glanis) are well-known for 362 their substantial impacts on ecosystems and native species (e.g. through habitat degradation, 363 competition, predation and the spread of diseases; Cambray, 2003; Copp et al., 2009; Gherardi 364 et al., 2011; Guillerault et al., 2015). Yet, their abundances remained at relatively low levels 365 (<0.5%) of the overall community abundance), whereas these species can reach considerably 366 high biomasses with detectable impacts (Driver, 2005). The overall and significant decline in 367 native species abundances by -90% is however unlikely to have occurred due to their presence 368 (Copp et al., 2009). Consistent with this assumption, several studies have reported that the 369 impacts of poorly abundant alien species on communities are often undetectable or absent 370 (Parker et al., 1999; Ricciardi, 2003; Thiele et al., 2010). Rather, there could be additional 371 stressors not encompassed by our data, *e.g.* anthropogenic alterations in the water quality of 372 the Rhine river (Tittizer, 1997; Van der Velde et al., 2000), leading to a decline in native species 373 and increasing diversity across sites. Changes in climatic conditions or the nutrient load of the 374 Rhine following improvements in the sewage treatment plants in the early 1990s (Malle, 1996) 375 have limited the availability of prey (e.g. zoo- and phytoplankton), and this may partially

explain the community composition pattern found (pers. comm. Nikola Theissen). The opening
of the Rhine-Main-Danube canal in 1992 likely contributed further to the observed decline in
native fish communities, as their composition and numbers considerably changed from 1993
onwards. While the direct presence of Ponto-Caspian species is unlikely, increased shipping
and perturbation have likely contributed to the identified declines.

381

382 Patterns in community composition after 2010

383 In the Rhine river, the arrival of new alien species was likely linked to the opening of the Rhine-384 Main-Danube canal in 1992 (Tittizer, 1997; Bij de Vaate et al., 2002). Indeed, three out of the 385 six alien fish species (N. fluviatilis, P. kessleri and N. melanostomus) are native to the Ponto-386 Caspian region, and it took 18 years before they arrived and established (Kottelat & Freyhof, 387 2007; Froese & Pauly, 2010). The introduction of other alien fishes (L. gibbosus, P. parva and 388 *R. amarus*) is most likely linked to intensified aquaculture and angling (Kottelat, 2006; Kottelat 389 & Freyhof, 2007; Froese & Pauly, 2010). It is, therefore, not surprising that our results suggest 390 compositional changes (driven by the spatiotemporal spread of highly abundant Ponto-Caspian 391 fish species) to have progressed along a latitudinal gradient. This finding however highlights 392 the effectiveness of riverine ecosystems to facilitate the spread of alien species through the 393 increase of propagule pressure (Lockwood et al., 2005; Cassey et al., 2018). Furthermore, the 394 introduction of these alien species after 2010 led to profound changes in the taxonomic 395 composition and homogenisation of invaded communities. While this is in line with previous 396 studies (Van der Veer & Nentwig, 2015; Olden & Rooney, 2006), the overall communities' 397 turnover remained stable due to a slight increase in the native species' turnover, and a decrease 398 in alien species' turnover after 2010, depicting the process of alien species reshaping invaded 399 communities.

400 After 2010, the richness of alien fish increased to $\sim 30\%$ of the overall community 401 richness, constituting up to 70% of the overall abundance (an increase in the overall 402 communities abundance from 2010 by +1,031% in 2014 or +678% in 2018) before declining 403 by \sim 33% and possibly stabilising at lower abundance levels in 2018, resembling typical invader 404 boom-bust dynamics (Strayer et al., 2017; Soto et al., in press). Compositional changes have 405 often been observed in the invasion of freshwater ecosystems (Clavero & García-Berthou, 406 2006; Gallardo et al., 2016; Haubrock et al., 2020). In our study, the observed changes can be 407 ascribed to the establishment of six additional alien species between 2010 and 2013, with L. 408 gibbosus, N. fluviatilis, P. kessleri, N. melanostomus, P. parva, and R. amarus contributing 409 69.9% of the total community abundance in 2015. Although all of these are comparably small 410 species (≤ 20 cm), they can reach high densities and thus, biomass, accompanied by notable 411 impacts to invaded ecosystems (see e.g. Britton et al., 2010; Števove & Kováč, 2016). These 412 alien species probably benefited from previous declines of native species and environmental 413 changes (Marvier et al., 2004; Früh et al., 2012; Heringer et al., 2020), while their added 414 abundance has resulted in the overall community reaching comparable abundances to those 415 measured in 1984 – underlining the turnover from native to alien species communities 416 (Haubrock et al., 2020) - suggesting that total community abundances are somewhat limited 417 due to the productivity of the ecosystem (Storch et al., 2018). Indeed, as ectothermic animals, 418 fish species are sensitive to environmental changes (Magnuson et al., 1979). Several studies 419 have highlighted the negative impacts of temperature increases and precipitation shifts on 420 native fish communities (Magnuson et al., 1979; Marchetti & Moyle, 2001; Lamouroux & 421 Cattanéo, 2006) but also on aquatic communities in general (Durance & Ormerod, 2007; 422 Chessman, 2009; Heino et al., 2009). Yet, their effects remain difficult to predict (Haase et al., 423 2019; Baranov et al., 2020). Concomitantly, we found temperature and precipitation to incline 424 over the studied period, consequently driving compositional changes in the investigated

425 community. Although observed increases in temperature (~ 0.94 °C) and precipitation (~ 0.26
426 mm) seem low, even minor changes – as well as fluctuations – can lead to substantial (*i.e.*427 seasonal) changes in native communities (Magnuson *et al.*, 1979; Lamouroux & Cattanéo,
428 2006) and benefit alien species (Rahel & Olden, 2008; Radinger & García- Berthou, 2020).
429 As such, the increase in water temperature has likely permitted invasive fish species to cross
430 physiological thresholds that were formerly limiting or slowing down their biology.

431 The introduction of alien species after 2010 induced further changes in the community's 432 traits composition. These were mainly driven by the alien species N. melanostomus, which 433 dominated the communities' abundance since the first year it was observed by contributing up 434 to ~98% of the total abundance of alien fish in 2018. The dominance of N. melanostomus which 435 can severely impact invaded ecosystems (Kipp & Ricciardi, 2012), may be linked with the 436 demonstrated presence of Asian clam Corbicula fluminea in Rhine river (Merschel & Bau, 437 2015), used as its main food resource (Nagelkerke et al., 2018; Coughlan et al., 2022). Other 438 alien fish species not belonging to the Neogobius genus were observed with less than 100 439 individuals throughout the entire period. This dominance of N. melanostomus suggests that 440 comparably less abundant species occupied a less dominant role (Grabowska et al., 2019). 441 However, it is possible that the sampling method applied here (*i.e.* electrofishing) was not adequate to capture the total abundance, e.g. C. carpio or S. glanis, which tend to occupy deep 442 443 benthic zones. For this reason, it is possible that the abundances of these species were 444 underestimated (compared to the abundances observed by Singh et al., 2010 or Šmejkal et al., 2015). 445

446

447 *Patterns in trait composition*

448 Taxonomic changes in communities over time are often accompanied by trait changes (Baker
449 *et al.*, 2021; Haubrock *et al.*, 2020; Liu *et al.*, 2022). Here, we found trait changes to follow a

450 similar pattern to the shift in taxonomic composition, with the communities' trait structuring 451 driven by alien species richness and abundance, as well as changes in temperature and 452 precipitation. On the other hand, no significant changes in trait metrics were observed in 453 parallel to compositional changes. This result is peculiar, as it contrasts with other studies showing alien species simultaneously leading to both taxonomic changes and functional 454 455 homogenisation (Pool & Olden, 2012; Villéger et al., 2014; Pilotto et al., 2022). However, 456 functional homogenisation may be hard to detect in the early stages of an invasion, in particular 457 during the establishment and possible lag phase, which may explain the discrepancy of our 458 results with the available literature. This additionally stresses the importance of computing 459 different diversity indices to properly prove impacts of alien invasions on recipient 460 communities.

461 In the present work, the only trait metric changing over time was trait dispersion (TDis) 462 of ecological traits before 2010. Often, TDis is expected to increase at the onset of the invasion 463 process, in particular when alien species introduce novel traits which extend trait space 464 (Renault et al., 2022). Yet, this metric rose before alien species started to invade the 465 investigated communities, and rather accompanied the increase in beta-diversity. Beta-466 diversity is widely known to increase when the studied habitats become more heterogeneous, augmenting dissimilarity, and likely increasing the dispersion of species traits that cope with a 467 468 large diversity of environmental conditions. The demise (at least in abundance, also evidenced 469 by the temporal species turnover analysis) of ecologically similar species in the native 470 community is consistent with this assumption. This has increased trait divergence (TDiv) 471 among species from the different habitats, in addition to removing the less adapted individuals 472 (species). After 2010, TDis remained stable, even if beta-diversity declined, and confirmed the maintenance of species' TDiv among habitats. 473

Other ecological and biological trait metrics were stable over time, providing 474 475 unexpected, yet interesting insights. The non-significant changes in trait richness indicate that 476 the demise of species carrying a certain set of traits is accompanied by acquiring new (alien) 477 species carrying new sets of trait modalities not expressed by the native community (McGeoch 478 & Jetz, 2019). Furthermore, it should be considered that due to its zoogeographic history, the 479 natural fish communities of western Europe are relatively species-poor (Kottelat & Freyhof, 480 2007). As such, it is possible that introductions of alien species, which are often functionally and especially morphologically different (e.g. the asp Leuciscus aspius) as compared with other 481 482 fish species, lead to an initial increase in trait diversity and richness. This does not mean that 483 the demised species were functionally replaced, but rather that the losses in traits were 484 counterbalanced by the invader carrying the same or similar traits, as well as bringing new 485 traits into the community, resulting in a similarly occupied trait space. In other words, invaders 486 may have a high degree of functional identity as compared with native species, suggesting, 487 here again, that environmental filtering may have been strong and contributed to the selection 488 of particular traits.

489 The shifts in ecological and biological traits observed after 2010 were mainly driven by 490 one abundant alien species, namely N. melanostomus. This can explain trait metrics not 491 indicating significant changes, albeit the high abundance (and thus also biomass and density) 492 of this species likely impacting the studied sites. This lack of an identifiable trait change, 493 however, could also be caused by a high redundancy between the traits of native and alien 494 species (Loreau, 2004; Baiser & Lockwood, 2011; Villéger et al., 2011) or by alien species 495 compensating for declining alien species by invading empty niches (Herbold & Moyle, 1986; 496 Liew et al., 2016; Nagelkerke et al., 2018). High functional redundancy has been shown to 497 increase both community resilience and ecological stability (Pillar et al., 2013; Biggs et al.,

498 2020), and likely arises when environmental conditions are restricting (reduced phenotypic 499 variation in trait expression and characteristics). The possibility of a high functional 500 redundancy between alien and native species in the Rhine river could indicate that ecosystem 501 functions (Vilà *et al.*, 2010, 2011) were maintained despite the detected taxonomic turnover 502 and alterations in the ratio of several expressed biological and ecological traits. This further 503 suggests that alien species can, while simultaneously altering invaded habitats and recipient 504 biodiversity when becoming abundant, maintain functional roles or fill previously arisen voids. 505 By contributing to stabilise community resilience in perturbed habitats, alien species may 506 seemingly help to preserve an ecosystem's functioning in the short-term, although the long-507 term effects remain unknown raising the controversy of the effects of alien species (Schlaepfer 508 et al., 2011; Russell & Blackburn, 2017). Finally, our study advocates the need for the inclusion 509 of additional or new traits introduced with the establishment of alien fish species which are not 510 considered in www.freshwaterecology.info (Schmidt-Kloiber & Hering, 2015), further 511 increasing the resolution of functional changes (D'Andrea & Ostling, 2016).

512

513 Conclusion

514 Our results underline the importance of analysing long-term trends in invasion dynamics and 515 facilitating drivers, which has often been limited by a lack of adequate long-term data or the 516 non-continuity of annual sampling over time (Daufresne et al., 2004; Durance & Ormerod, 517 2007; Comte & Grenouillet, 2013; Jourdan et al., 2018; Haubrock et al., 2020, 2022). This has 518 concomitantly limited insights into changing community functioning or ecological changes due 519 to changes in alien species' trait composition. This was also the case in this work, as highlighted 520 by the lack of information on the fish community between 1984 and 1993. Yet, having 521 identified a disconnect between visible responses in taxonomic composition, and no detectable 522 changes in functional metrics due to the invasion of alien species, suggests that both aspects

523 pertaining to fish invasions must be considered in conjunction and separated at the same time. 524 More specifically, taxonomic changes directly reflect biodiversity alterations, often at the 525 expense of native species, which possibly cause changes in the occurrence of trait modalities 526 and hence, potentially also functional changes, which can, but may not necessarily impact 527 ecosystem functioning.

528 Our results further lead to the question, why native species declined pre-2010 and communities 529 became more diverse, before alien species became abundant and increased taxonomic 530 homogenisation. This finding highlights the importance of considering further variables to 531 investigate the temporal effects of species introductions. These variables could reflect habitat fragmentation (Cowx & Collares-Pereira, 2002), the regulation of water flow (Poff et al., 1997; 532 533 Albert et al., 2021), changes in the land use (Albert et al., 2021), pollution (Matthews et al., 534 1992; Taylor et al., 1993; Lappalainen & Soininen, 2006), the pressure of fishing (Cowx & 535 Collares-Pereira, 2002; Butchart et al., 2010) – predictors which were not adequately available 536 over the entire period to be considered in our models.

537

538 Acknowledgements

The authors express their sincere thanks to Michele Mugnai for helpful comments on a previous version of this manuscript and the "Commission Bourses de Mobilité à l'Étranger de l'Université de Rennes 1" and the ERASMUS + program for their financial support. The authors further acknowledge the help of Dr. Lep Omis. PH and PJH received funding from the EU Horizon 2020 project eLTER PLUS (Grand Agreement No 871128). IS is supported by the Grant Agency of the University of South Bohemia, project number 065/2022/Z.

27

545 **References**

- 546 Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K.O., &
- 547 Ripple, W. J. (2021). Scientists' warning to humanity on the freshwater biodiversity crisis. *Ambio*, 50(1), 85-94.
- 548 Arim, M., Abades, S. R., Neill, P. E., Lima, M., & Marquet, P. A. (2006). Spread dynamics of invasive species.
- 549 *Proceedings of the National Academy of Sciences*, 103(2), 374-378.
- 550 Baiser, B., & Lockwood, J. L. (2011). The relationship between functional and taxonomic homogenization. Global
- 551 *Ecology and Biogeography*, 20(1), 134-144.
- 552 Baker, N. J., Pilotto, F., Haubrock, P. J., Beudert, B., & Haase, P. (2021). Multidecadal changes in functional diversity
 553 lag behind the recovery of taxonomic diversity. *Ecology and Evolution*, *11*(23), 17471-17484.
- 554 Balzani, P., Cuthbert, R. N., Briski, E., Galil, B., Castellanos-Galindo, G., Kouba, A., Kourantidou, M., Leung, B.,
- 555 Soto, I., & Haubrock, P. J. (2022). Knowledge needs in economic costs of invasive species facilitated by
- 556 canalization. 19 April 2022, PREPRINT (Version 1) available at *Research Square*.
- 557 Baranov, V., Jourdan, J., Pilotto, F., Wagner, R., & Haase, P. (2020). Complex and nonlinear climate- driven changes
 in freshwater insect communities over 42 years. *Conservation Biology*, *34*(5), 1241-1251.
- 559 Bellard, C., Cassey, P., & Blackburn, T. M. (2016). Alien species as a driver of recent extinctions. *Biology Letters*,
 560 12(2), 20150623.
- 561 Bellard, C., Jeschke, J. M., Leroy, B., & Mace, G. M. (2018). Insights from modeling studies on how climate change
 affects invasive alien species geography. *Ecology and Evolution*, 8(11), 5688-5700.
- 563 Biggs, C. R., Yeager, L. A., Bolser, D. G., Bonsell, C., Dichiera, A. M., Hou, Z., Keyser, S. R., Khursigara, A. J., Lu,
- 564 K., Muth, A. F., Negrete, B., & Erisman, B. E. (2020). Does functional redundancy affect ecological stability and
- resilience? A review and meta- analysis. *Ecosphere*, *11*(7), e03184.
- 566 Bij de Vaate, A., Jazdzewski, K., Ketelaars, H. A., Gollasch, S., & Van der Velde, G. (2002). Geographical patterns
- 567 in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and
- 568 Aquatic Sciences, 59(7), 1159-1174.
- 569 Blackburn, T. M., Bellard, C., & Ricciardi, A. (2019). Alien versus native species as drivers of recent extinctions.
 570 *Frontiers in Ecology and the Environment*, 17(4), 203-207.
- 571 Blackburn, T. M., Essl, F., Evans, T., Hulme, P. E., Jeschke, J. M., Kühn, I., Kumschick, S., Marková, Z., Mrugała,
- 572 A., Nentwig, W., Pergl, J., Pyšek, P., Rabitsch, W., Ricciardi, A., Richardson, D. M., Sendek, A., Vilà, M., Wilson,
- 573 J. R. U., Winter, M., Genovesi, P., & Bacher, S. (2014). A unified classification of alien species based on the
- 574 magnitude of their environmental impacts. *PLoS Biology*, *12*(5), e1001850.

- 575 Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. *Ecological*576 *Monographs*, 27(4), 326-349.
- 577 Britton, J. R., Davies, G. D., & Harrod, C. (2010). Trophic interactions and consequent impacts of the invasive fish
 578 *Pseudorasbora parva* in a native aquatic foodweb: a field investigation in the UK. *Biological Invasions*, 12(6),
 579 1533-1542.
- 580 Butchart, S. H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P., Almond, R. E., Baillie, J. E. M.,
- 581 Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., Chanson, J., Chenery, A. M., Csirke, J.,
- 582 Davidson, N. C., Dentener, F., Foster, M., Galli, A., Galloway, J. N., Genovesi, P., Gregory, R. D., Hockings, M.,
- 583 Kapos, V., Lamarque, J., Leverington, F., Loh, J., McGeoch, M. A., McRae, L., Minasyan, A., Hernandez
- 584 Morcillo, M., Oldfield T. E. E., Pauly, D., Quader, S., Revenga, C., Sauer, J. R., Skolnik, B., Spear, D., Stanwell-
- 585 Smith, D., Stuart, S. N., Symes, A., Tierney, M., Tyrrell, T. D., Vié, J., & Watson, R. (2010). Global biodiversity:
- indicators of recent declines. *Science*, 328(5982), 1164-1168.
- 587 Cambray, J. A. (2003). Impact on indigenous species biodiversity caused by the globalisation of alien recreational
 freshwater fisheries. *Hydrobiologia*, 500(1), 217-230.
- 589 Cardoso, A. C., & Free, G. (2008). Incorporating invasive alien species into ecological assessment in the context of
- 590 the Water Framework Directive. Aquatic Invasions, 3(4), 361-366.
- 591 Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S., & Blackburn, T. M. (2018). Dissecting the null model for
- 592 biological invasions: A meta-analysis of the propagule pressure effect. *PLoS Biology*, *16*(4), e2005987.
- 593 Chessman, B. C. (2009). Climatic changes and 13- year trends in stream macroinvertebrate assemblages in New
- 594 South Wales, Australia. *Global Change Biology*, *15*(11), 2791-2802.
- 595 Chevenet, F., Doleadec, S., & Chessel, D. (1994). A fuzzy coding approach for the analysis of long- term ecological
 596 data. *Freshwater Biology*, *31*(3), 295-309.
- 597 Cioc, M. (2002). The Rhine: an eco-biography, 1815-2000. University of Washington Press (Seattle & London).
- 598 Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: toward a global functional
- bomogenization?. Frontiers in Ecology and the Environment, 9(4), 222-228.
- 600 Clavero, M., & García-Berthou, E. (2006). Homogenization dynamics and introduction routes of invasive freshwater
- 601 fish in the Iberian Peninsula. *Ecological Applications*, *16*(6), 2313-2324.
- 602 Comte, L., & Grenouillet, G. (2013). Do stream fish track climate change? Assessing distribution shifts in recent
- 603 decades. *Ecography*, *36*(11), 1236-1246.

- 604 Copp, G. H., Robert Britton, J., Cucherousset, J., García- Berthou, E., Kirk, R., Peeler, E., & Stakenas, S. (2009).
- 605 Voracious invader or benign feline? A review of the environmental biology of European catfish *Silurus glanis* in
- 606 its native and introduced ranges. *Fish and Fisheries*, *10*(3), 252-282.
- 607 Cornes, R. C., van der Schrier, G., van den Besselaar, E. J., & Jones, P. D. (2018). An ensemble version of the E-
- 608 OBS temperature and precipitation data sets. *Journal of Geophysical Research: Atmospheres*, *123*(17), 9391-609 9409.
- 610 Coughlan, N. E., Dickey, J. W., Dick, J. T., Médoc, V., McCard, M., Lacroix, G., Fiorini, S., Millot, A., & Cuthbert,
- 611 R. N. (2022). When worlds collide: Invader-driven benthic habitat complexity alters predatory impacts of invasive
- 612 and native predatory fishes. *Science of the Total Environment*, 843, 156876.
- 613 Cowx, I. G., & Collares-Pereira, M. J. (2002). Freshwater fish conservation: options for the future. Conservation of
- 614 *Freshwater Fishes: Options for the Future.*, 443-452.
- 615 Crozier, L. G., & Hutchings, J. A. (2014). Plastic and evolutionary responses to climate change in fish. *Evolutionary*616 *Applications*, 7(1), 68-87.
- 617 D'Andrea, R., & Ostling, A. (2016). Challenges in linking trait patterns to niche differentiation. *Oikos*, *125*(10), 1369618 1385.
- 619 Daufresne, M., Roger, M. C., Capra, H., & Lamouroux, N. (2004). Long- term changes within the invertebrate and
 620 fish communities of the Upper Rhône River: Effects of climatic factors. *Global Change Biology*, *10*(1), 124-140.
- 621 Devin, S., & Beisel, J. N. (2007). Biological and ecological characteristics of invasive species: a gammarid study.
- 622 Biological Invasions, 9(1), 13-24.
- 623 Dias, R. M., de Oliveira, A. G., Baumgartner, M. T., Angulo- Valencia, M. A., & Agostinho, A. A. (2021). Functional
- erosion and trait loss in fish assemblages from Neotropical reservoirs: The man beyond the environment. *Fish and Fisheries*, 22(2), 377-390.
- 626 Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., & Collen, B. (2014). Defaunation in the Anthropocene.
 627 *Science*, *345*(6195), 401-406.
- 628 Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P.,
- Madi, N., & Wagner, H. (2022). {adespatial}: Multivariate Multiscale Spatial Analysis. R package version 0.316.
- 631 Dray, S., & Dufour, A. B. (2007). {ade4}: implementing the duality diagram for ecologists. *Journal of Statistical*632 *Software*, 22, 1-20.

- 633 Driver, P. D. (2005). The effects of size and density of carp (Cyprinus carpio L.) on water quality in an experimental
- 634 pond. Archiv für Hydrobiologie, 163, 117-131.
- 635 Durance, I., & Ormerod, S. J. (2007). Climate change effects on upland stream macroinvertebrates over a 25- year
 636 period. *Global Change Biology*, *13*(5), 942-957.
- 637 Franklin, J. F. (1989). Importance and justification of long-term studies in ecology. In Long-term studies in ecology
- 638 (pp. 3-19). Springer, (New York).
- 639 Froese, R., & Pauly, D. (2010). FishBase. World Wide Web electronic publication. Retrieved from 640 <u>www.FishBase.org</u>.
- 641 Früh, D., Stoll, S., & Haase, P. (2012). Physicochemical and morphological degradation of stream and river habitats
- 642 increases invasion risk. *Biological Invasions*, 14(11), 2243-2253.
- 643 Gallardo, B., Clavero, M., Sánchez, M. I., & Vilà, M. (2016). Global ecological impacts of invasive species in aquatic
 644 ecosystems. *Global Change Biology*, 22(1), 151-163.
- 645 Gherardi, F., & Acquistapace, P. (2007). Invasive crayfish in Europe: the impact of *Procambarus clarkii* on the littoral
 646 community of a Mediterranean lake. *Freshwater Biology*, *52*(7), 1249-1259.
- 647 Gherardi, F., Britton, J. R., Mavuti, K. M., Pacini, N., Grey, J., Tricarico, E., & Harper, D. M. (2011). A review of
- 648 allodiversity in Lake Naivasha, Kenya: Developing conservation actions to protect East African lakes from the

649 negative impacts of alien species. *Biological Conservation*, 144(11), 2585-2596.

- 650 Grabowska, J., Zięba, G., Przybylski, M., & Smith, C. (2019). The role of intraspecific competition in the dispersal
 651 of an invasive fish. *Freshwater Biology*, 64(5), 933-941.
- 652 Guareschi, S., Laini, A., England, J., Johns, T., Winter, M., & Wood, P. J. (2021). Invasive species influence
- macroinvertebrate biomonitoring tools and functional diversity in British rivers. *Journal of Applied Ecology*,
 58(1), 135-147.
- 655 Guillerault, N., Delmotte, S., Boulêtreau, S., Lauzeral, C., Poulet, N., & Santoul, F. (2015). Does the non- native
 656 European catfish *Silurus glanis* threaten French river fish populations?. *Freshwater Biology*, 60(5), 922-928.
- 657 Haase, P., Pilotto, F., Li, F., Sundermann, A., Lorenz, A. W., Tonkin, J. D., & Stoll, S. (2019). Moderate warming
- over the past 25 years has already reorganized stream invertebrate communities. *Science of the Total Environment*,
 659 658, 1531-1538.
- 660 Hallett, L., Avolio, M., Carroll, I., Jones, S., MacDonald, A., Flynn, D., Slaughter, P., Ripplinger, J., Collins, S.,
- 661 Gries, C., & Jones, M. (2020).{codyn}: Community Dynamics Metrics. R package version 2.0.5.

- 662 Haubrock, P. J., Bernery, C., Cuthbert, R. N., Liu, C., Kourantidou, M., Leroy, B., Turbelin, A. J., Andrew, M. K.,
- Verbrugge, L. N. H., Daigne, C., Courchamp, F., & Gozlan, R. E. (2022). Knowledge gaps in economic costs of
- 664 invasive alien fish worldwide. *Science of the Total Environment*, 803, 149875.
- Haubrock, P. J., Pilotto, F., Innocenti, G., Cianfanelli, S., & Haase, P. (2020). Two centuries for an almost complete
 community turnover from native to non- native species in a riverine ecosystem. *Global Change Biology*, 27(3),
- 667 606-623.
- Heino, J., Virkkala, R., & Toivonen, H. (2009). Climate change and freshwater biodiversity: detected patterns, future
 trends and adaptations in northern regions. *Biological Reviews*, 84(1), 39-54.
- 670 Herbold, B., & Moyle, P. B. (1986). Introduced species and vacant niches. *The American Naturalist*, *128*(5), 751671 760.
- 672 Heringer, G., Thiele, J., do Amaral, C. H., Meira- Neto, J. A. A., Matos, F. A. R., Lehmann, J. R. K., Buttschardt, T.
- K., & Neri, A. V. (2020). Acacia invasion is facilitated by landscape permeability: The role of habitat degradation
- 674 and road networks. *Applied Vegetation Science*, 23(4), 598-609.
- 675 Hooper, D. U., Chapin Iii, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau,
- 676 M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of
- biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecological Monographs*, 75(1), 3-35.
- 678 IPBES (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of
- the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, eds. S. Díaz, J. Settele,
- 680 E.S. Brondízio, H.T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, et al., 56 pp. IPBES secretariat, Bonn.
- 681 Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., & Wilmshurst, J. M. (2017).
- 682 Biodiversity losses and conservation responses in the Anthropocene. *Science*, *356*(6335), 270-275.
- 683 Jourdan, J., O'Hara, R. B., Bottarin, R., Huttunen, K. L., Kuemmerlen, M., Monteith, D., Muotka, T., Ozoliņš, D.,
- 684 Paavola, R., Pilotto, F., Springe, G., Skuja, A., Sundermann, A., Tonkin, J.D., & Haase, P. (2018). Effects of
- 685 changing climate on European stream invertebrate communities: A long-term data analysis. *Science of the Total*
- 686 *Environment*, 621, 588-599.
- Kipp, R., & Ricciardi, A. (2012). Impacts of the Eurasian round goby (*Neogobius melanostomus*) on benthic
 communities in the upper St. Lawrence River. *Canadian Journal of Fisheries and Aquatic Sciences*, 69(3), 469486.
- 690 Kottelat, M. (2006). Fishes of Mongolia. A check-list of the fishes known to occur in Mongolia with comments on691 systematics and nomenclature. *The World Bank*, (Washington).

- 692 Kottelat, M., & Freyhof, J. (2007). Handbook of European freshwater fishes. Publications Kottelat, Cornol and 693 Freyhof, (Berlin).
- 694 Lamouroux, N., & Cattanéo, F. (2006). Fish assemblages and stream hydraulics: consistent relations across spatial
 695 scales and regions. *River Research and Applications*, 22(7), 727-737.
- 696 Lappalainen, J., & Soininen, J. (2006). Latitudinal gradients in niche breadth and position—regional patterns in 697 freshwater fish. *Naturwissenschaften*, *93*(5), 246-250.
- 698 Liew, J. H., Tan, H. H., & Yeo, D. C. (2016). Dammed rivers: impoundments facilitate fish invasions. *Freshwater*699 *Biology*, 61(9), 1421-1429.
- 700 Liu, C., Wolter, C., Courchamp, F., Roura- Pascual, N., & Jeschke, J. M. (2022). Biological invasions reveal how
- niche change affects the transferability of species distribution models. *Ecology*, e3719.
- 702 Lockwood, J. L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in explaining species invasions.
- 703 *Trends in Ecology & Evolution*, 20(5), 223-228.
- 704 Loreau, M. (2004). Does functional redundancy exist? Oikos, 104(3), 606-611.
- 705 Magneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T., Escalas, A., Leprieur, F., Maire, E., Mouillot, D.,
- % Villéger, S. (2022). {mFD}: an R package to compute and illustrate the multiple facets of functional diversity. *Ecography*, 2022(1).
- 708 Magnuson, J. J., Crowder, L. B., & Medvick, P. A. (1979). Temperature as an ecological resource. *American*709 *Zoologist*, 19(1), 331-343.
- 710 Malle, K. G. (1996). Cleaning up the river Rhine. Scientific American, 274(1), 70-75.
- 711 Marchetti, M. P., & Moyle, P. B. (2001). Effects of flow regime on fish assemblages in a regulated California stream.
- 712 Ecological Applications, 11(2), 530-539.
- 713 Marvier, M., Kareiva, P., & Neubert, M. G. (2004). Habitat destruction, fragmentation, and disturbance promote
- invasion by habitat generalists in a multispecies metapopulation. *Risk Analysis: An International Journal*, 24(4),
 869-878.
- 716 Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and
 717 functional divergence: The primary components of functional diversity. *Oikos*, *111*, 112-118.
- 718 Matthews, W. J., Hough, D. J., & Robison, H. W. (1992). Similarities in fish distribution and water quality patterns
- 719 in streams of Arkansas: congruence of multivariate analyses. *Copeia*, 1992, 296-305.
- 720 McGeoch, M., & Jetz, W. (2019). Measure and reduce the harm caused by biological invasions. One Earth, 1(2),
- 721 171-174.

- 722 Merschel, G., & Bau, M. (2015). Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea
- and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Science of the Total

724 Environment, 533, 91-101.

725 Mollot, G., Pantel, J. H., & Romanuk, T. N. (2017). The effects of invasive species on the decline in species richness:

a global meta-analysis. *Advances in Ecological Research*, *56*, 61-83.

- 727 Nagelkerke, L. A., van Onselen, E., van Kessel, N., & Leuven, R. S. (2018). Functional feeding traits as predictors
- 728 of invasive success of alien freshwater fish species using a food-fish model. *PLoS One*, *13*(6), e0197636.
- 729 Nathan, R.J., Nandakumar, N., & Smith, W.E. (1999). On the application of generalised additive models to the
- 730 detection of trends in hydrologic time series data. In: Water 99: Joint Congress; 25th Hydrology & Water
- 731 Resources Symposium, 2nd International Conference on Water Resources & Environment Research; Handbook
- 732 and Proceedings. Institution of Engineers, Australia., p. 169.
- 733 Nehring, S., & Klingenstein, F. (2008). Aquatic alien species in Germany–listing system and options for action.
 734 *Neobiota*, 7, 19-33.
- 735 Nock, C. A., Vogt, R. J., & Beisner, B. E. (2016). Functional traits. eLS, 1-8.
- 736 Oksanen, J., Blanchet, G. F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B.,
- Simpson, G. L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., & Wagner, E. (2020). {vegan}: Community
 Ecology Package. R package version 2.5-7.
- 739 Olden, J. D., Poff, N. L., Douglas, M. R., Douglas, M. E., & Fausch, K. D. (2004). Ecological and evolutionary
 740 consequences of biotic homogenization. *Trends in Ecology & Evolution*, *19*(1), 18-24.
- 741 Olden, J. D., & Rooney, T. P. (2006). On defining and quantifying biotic homogenization. *Global Ecology and*742 *Biogeography*, *15*(2), 113-120.
- 743 Parker, I. M., Simberloff, D., Lonsdale, W. M., Goodell, K., Wonham, M., Kareiva, P. M., Williamson, M. H., Von
- Holle, B., Moyle, P. B., Bryers, J. E., & Goldwasser, L. (1999). Impact: toward a framework for understanding
- the ecological effects of invaders. *Biological Invasions*, *1*(1), 3-19.
- 746 Pillar, V. D., Blanco, C. C., Müller, S. C., Sosinski, E. E., Joner, F., & Duarte, L. D. (2013). Functional redundancy
 747 and stability in plant communities. *Journal of Vegetation Science*, *24*(5), 963-974.
- 748 Pilotto, F., Haubrock, P. J., Sundermann, A., Lorenz, A. W., & Haase, P. (2022). Decline in niche specialization and
- 749 trait β-diversity in benthic invertebrate communities of Central European low-mountain streams over 25 years.
- 750 Science of the Total Environment, 810, 151770.

- 751 Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C., Bäck, J., Barbaro, L., Beaumont, D., Beenaerts,
- N., Benham, S., Boukal, D. S., Bretagnolle, V., Camatti, E., Canullo, R., Cardoso, P. G., Ens, B. J., Everaert, G.,
- 753 Evtimova, V., Feuchtmayr, H., García-González, R., Gómez García, D., Grandin, U., Gutowski, J. M., Hadar, L.,
- Halada, L., Halassy, M., Hummel, H., Huttunen, K., Jaroszewicz, B., Jensen, T. C., Kalivoda, H., Kappel Schmidt,
- H., Kröncke, I., Leinonen, R., Martinho, F., Meesenburg, H., Meyer, J., Minerbi, S., Monteith, D., Nikolov, B. P.,
- 756 Oro, D., Ozolins, D., Padedda, B. M., Pallett, D., Pansera, M., Angelo Pardal, M., Petriccione, B., Pipan, T.,
- 757 Pöyry, J., Schäfer, S. M., Schraub, M., Schneider S. C., Skuja, A., Soetaert, K., Springe, G., Stanchev, R., Stockan,
- 758 J. A., Stoll, S., Sundqvist, L., Thimonier, A., Van Hoey, G., Visser, M. E., Vorhauser, S., & Haase, P. (2020).
- 759 Meta-analysis of multidecadal biodiversity trends in Europe. *Nature Communications*, 11(1), 1-11.
- 760 Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., & Stromberg, J. C. (1997). The
- 761 natural flow regime. *BioScience*, 47(11), 769-784.
- 762 Pool, T. K., & Olden, J. D. (2012). Taxonomic and functional homogenization of an endemic desert fish fauna.
 763 *Diversity and Distributions*, 18(4), 366-376.
- 764 Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft,
- L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A.,
- 766 Pergl, J., Roy, H. E., Seebens, H., van Kleunen, M., Vilà, M., Wingfield, M. J., & Richardson, D. M. (2020).

767 Scientists' warning on invasive alien species. *Biological Reviews*, 95(6), 1511-1534.

- 768 Rabitsch, W., Milasowszky, N., Nehring, S., Wiesner, C., Wolter, C., & Essl, F. (2013). The times are changing:
- temporal shifts in patterns of fish invasions in central European fresh waters. *Journal of Fish Biology*, 82(1), 1733.
- 771 Radinger, J., & García- Berthou, E. (2020). The role of connectivity in the interplay between climate change and the
- spread of alien fish in a large Mediterranean river. *Global Change Biology*, 26(11), 6383-6398.
- 773 Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. *Conservation*774 *Biology*, 22(3), 521-533.
- 775 R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
 776 Computing, Vienna.
- 777 Renault, D., Hess, M. C., Braschi, J., Cuthbert, R. N., Sperandii, M. G., Bazzichetto, M., Chabrerie, O., Thiébaut, G.,
- 778 Buisson, E., Grandjean, F., Bittebiere, A., Mouchet, M., & Massol, F. (2022). Advancing biological invasion
- hypothesis testing using functional diversity indices. *Science of the Total Environment*, 834, 155102.
- 780 Ricciardi, A. (2003). Predicting the impacts of an introduced species from its invasion history: an empirical approach
 781 applied to zebra mussel invasions. *Freshwater Biology*, 48(6), 972-981.
- 782 Russell, J. C., & Blackburn, T. M. (2017). The rise of invasive species denialism. *Trends in Ecology & Evolution*,
 783 32(1), 3-6.
- 784 Sala, O. E., Stuart Chapin, F. I. I. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E.,
 785 Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Leroy
- 786 Poff, N., Sykes, M., Walker, B. H., Walker, M., & Wall, D. H. (2000). Global biodiversity scenarios for the year
- 787 2100. Science, 287(5459), 1770-1774.
- 788 Schlaepfer, M. A., Sax, D. F., & Olden, J. D. (2011). The potential conservation value of non- native species.
 789 *Conservation biology*, 25(3), 428-437.
- Schmera, D., Podani, J., Heino, J., Erős, T., & Poff, N. L. (2015). A proposed unified terminology of species traits in
 stream ecology. *Freshwater Science*, *34*(3), 823-830.
- 792 Schmidt-Kloiber, A., & Hering, D. (2015). *www.freshwaterecology*. info–An online tool that unifies, standardises
 793 and codifies more than 20,000 European freshwater organisms and their ecological preferences. *Ecological*794 *Indicators*, 53, 271-282.
- 795 Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pysek, P., van
- Kleunen, M., Winter, M., Ansong, M., Arianoutsou, M., Bacher, S., Blasius, B., Brockerhoff, E. G., Brundu, G.,
- 797 Capinha, C., Causton, C. E., Celesti-Grapow, L., Jäger, H., Kartesz, J., Kenis, M., Kühn, I., Lenzner, B., Liebhold,
- A. M., Mosena, A., Moser, D., Nentwig, W., Nishino, M., Pearman, D., Pergl, J., Rabitsch, W., Rojas-Sandoval,
- J., Roques, A., Rorke, S., Rossinelli, S., Roy, H. E., Scalera R., Schindler, S., Stajerova K., Tokarska-Guzik, B.,
- 800 Walder, K., Ward, D. F., Yamanaka, T., & Essl, F. (2018). Global rise in emerging alien species results from
- 801 increased accessibility of new source pools. *Proceedings of the National Academy of Sciences*, *115*(10), E2264802 E2273.
- 803 Simpson, G. L. (2018). Modelling palaeoecological time series using generalised additive models. *Frontiers in* 804 *Ecology and Evolution*, 6, 149.
- 805 Singh, A. K., Pathak, A. K., & Lakra, W. S. (2010). Invasion of an exotic fish-common carp, Cyprinus carpio
- 806 L.(Actinopterygii: Cypriniformes: Cyprinidae) in the Ganga River, India and its impacts. Acta Ichthyologica et
- 807 *Piscatoria*, 40(1), 11-19.

- 808 Šmejkal, M., Ricard, D., Prchalová, M., Říha, M., Muška, M., Blabolil, P., Čech, M., Vašek, M., Jůza, T., Monteoliva
 809 Herreras, A., Encina, L., Peterka, J., & Kubečka, J. (2015). Biomass and abundance biases in European standard
- 810 gillnet sampling. *PLoS One*, 10(3), e0122437.
- 811 Soto, I., Cuthbert, R.N., Ahmed, D.A., Kouba, A., Domisch, S., Marquez, J. R. G., Beidas, A., Amatulli, G., Keisel,
- 812 J., Shen, L. Q., Florencio, M., Lima, H., Briski, E., Aterlmatt, F., Archambaud-Suard, G., Borza, P., Csabai, Z.,
- 813 Datry, T., Floury, M., Forcellini, M., Fruget, J-F., Leitner, P., Lizée, M-H., Maire, A., Ricciardi, A., Schäfer, R.
- 814 B., Stubbington, R., Van der Lee, G. H., Várbíró, G., Verdonschot, R. C. M., Haase, P., & Haubrock, P. J. Tracking
- 815 the killer shrimp: *Dikerogammarus villosus* invasion dynamics across Europe. *Diversity & Distributions*, in press.
- 816 Števove, B., & Kováč, V. (2016). Ontogenetic variations in the diet of two invasive gobies, Neogobius melanostomus
- 817 (Pallas, 1814) and Ponticola kessleri (Günther, 1861), from the middle Danube (Slovakia) with notice on their
- 818 potential impact on benthic invertebrate communities. *Science of the Total Environment*, 557, 510-519.
- 819 Storch, D., Bohdalková, E., & Okie, J. (2018). The more- individuals hypothesis revisited: the role of community
- abundance in species richness regulation and the productivity–diversity relationship. *Ecology letters*, 21(6), 920937.
- 822 Strayer, D. L., Cid, N., & Malcom, H. M. (2011). Long-term changes in a population of an invasive bivalve and its
 823 effects. *Oecologia*, *165*(4), 1063-1072.
- 824 Strayer, D. L., D'Antonio, C. M., Essl, F., Fowler, M. S., Geist, J., Hilt, S., Jarić, I., Jöhnk, K., Jones, C. G., Lambin,
- 825 X., Latzka, A. W., Pergl, J., Pyšek, P., Robertson, P., von Schmalensee, M., Stefansson, R. A., Wright, J., &
- Jeschke, J. M. (2017). Boom- bust dynamics in biological invasions: towards an improved application of the
 concept. *Ecology letters*, 20(10), 1337-1350.
- 828 Strayer, D. L., Eviner, V. T., Jeschke, J. M., & Pace, M. L. (2006). Understanding the long-term effects of species
- 829 invasions. *Trends in Ecology & Evolution*, 21(11), 645-651.
- 830 Taylor, C. M., Winston, M. R., & Matthews, W. J. (1993). Fish species- environment and abundance relationships
- 831 in a Great Plains river system. *Ecography*, *16*(1), 16-23.
- 832 Thiele, J., Kollmann, J., Markussen, B., & Otte, A. (2010). Impact assessment revisited: improving the theoretical
 basis for management of invasive alien species. *Biological Invasions*, *12*(7), 2025-2035.
- 834 Tittizer, T. (1997). Ausbreitung aquatischer Neozoen (Makrozoobenthos) in den europäischen Wasserstrassen,
- 835 erläutert am Beispiel des Main-Donau-Kanals. In Güteentwicklung der Donau, Rückblick und Perspektiven.
- 836 Schriftenreihe des Bundesamtes für Wasserwirtschaft (Wien), 4, 113–134.

- 837 Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping the global state of invasive alien species: patterns
 838 of invasion and policy responses. *Global Ecology and Biogeography*, 26(1), 78-92.
- 839 Uehlinger, U. F., Wantzen, K. M., Leuven, R. S., & Arndt, H. (2009). The Rhine river basin. *In Tockner, Klement*,
 840 *Rivers of Europe*. Acad. Pr. (London), 199-245.
- 841 Van der Veer, G., & Nentwig, W. (2015). Environmental and economic impact assessment of alien and invasive fish
 842 species in Europe using the generic impact scoring system. *Ecology of Freshwater fish*, 24(4), 646-656.
- 843 Van der Velde, G., Rajagopal, S., Kelleher, B., Musko, I. B., & de Vaate, A. B. (2000). Ecological impact of 844 crustacean invaders: general considerations and examples from the Rhine River. *Crustacean Issues*, *12*, 3-34.
- 845 Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy,
- 846 D., Hulmes, P. E., & DAISIE partners. (2010). How well do we understand the impacts of alien species on
- 847 ecosystem services? A pan- European, cross- taxa assessment. *Frontiers in Ecology and the Environment*, 8(3),
 848 135-144.
- 849 Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J., Schaffner, U., Sun, Y., & Pyšek,
- 850 P. (2011). Ecological impacts of invasive alien plants: a meta- analysis of their effects on species, communities
- and ecosystems. *Ecology letters*, 14(7), 702-708.
- 852 Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T., & Brosse, S. (2011). Homogenization patterns of the world's
 853 freshwater fish faunas. *Proceedings of the National Academy of Sciences*, *108*(44), 18003-18008.
- 854 Villéger, S., Grenouillet, G., & Brosse, S. (2014). Functional homogenization exceeds taxonomic homogenization
- among European fish assemblages. *Global Ecology and Biogeography*, 23(12), 1450-1460.
- 856 Wood, S. N. (2006). Generalized additive models: an introduction with R. Chapman and hall/CRC. (New York).
- 857 Wood, S. N. (2021). {mgcv}: mixed GAM computation vehicle with automatic smoothness estimation. R Package
 858 version 1.8-34.
- 859 Zhao, T., Villéger, S., & Cucherousset, J. (2019). Accounting for intraspecific diversity when examining relationships
- between non-native species and functional diversity. *Oecologia*, 189(1), 171-183.

861 Supplements

862 Figure S1. Diagnostic plots of the time series models concerning changes in (a-d) taxonomic metrics, (e-h) ecological traits

867 Figure S3. Generalised additive models (GAMs) exploring the relationship between (a) temperature and (b) precipitation868 during the study period. Solid lines indicate significant change over time.

- 870 Figure S4. Beta-diversity over time using the Jaccard similarity Index (solid black lines) and the response of GAM model
- (blue line) using "year" as a unique predictor. Dashed line split the period into before the arrival of alien species (< 2010) and
 after (> 2010).

42

874 Figure S5. Relative abundance of each ecological trait modalities over time.

875

Figure S6. Relative abundance of each biological trait modalities over time.

Figure S7. Generalised additive models (GAMs) exploring the relationship between (a-d) taxonomic and (e-h) trait metrics of
the studies communities. Trait metrics are divided into ecological (black lines) and biological (blue lines) traits. Solid lines
indicate significant change over time, whereas dashed lines represent non-significant trends.

881

45

Table S1. Description of each time series

Time series	Sampling years	Total sampled years	Period
1	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
2	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
3	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
4	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
5	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
6	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
7	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
8	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
9	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
10	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
11	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
12	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
13	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
14	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
15	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
16	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013,	13	1984-2018

	2014, 2015, 2017, 2018		
17	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
18	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
19	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
20	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
21	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
22	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
23	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
24	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
25	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
26	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
27	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
28	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
29	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
30	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
31	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018

884 **Table S2.** Definitions of all ecological and biological traits used in this study; extracted from <u>www.freshwaterecology.info</u>

885 (Schmidt-Kloiber & Hering, 2015).

Biological		Ecological	
Body length	Body length in cm	Habitat	Where species living and feeding
Shape factor	Ratio between the length and the width	Habitat (fiBS)	Flow conditions of the habitat
Swimming factor	Ratio of the minimum depth of the caudal peduncle to the maximum caudal fin depth	Feeding habitat	Feeding in the bottom or in the water column
Life span	Life span in years	Reproduction (fiBS)	Habitat reproduction
Female maturity	Age of females mature for the first time	Spawning habitat	Flow conditions of the spawning habitat
Absolute fecundity	Number of oocytes produces per female	Habitat degradation	Tolerance or not to habitat degradation
Relative fecundity	Number of oocytes produces per gram	Water quality tolerance	Tolerance to usual water quality parameters
Egg diameter	Egg diameter in mm	Temperature tolerance	Eury- or stenothermal
Spawning time	Season of fish spawning	Oxygen tolerance	Tolerance to low oxygen concentration
Reproductive behaviour	One or several spawning events in the potential season	Toxicity tolerance	Tolerance to toxic contamination
Parental care	Protection of eggs and/or larvae or not	Acid tolerance	Tolerance to acidification
Larval length	Length of larval fish in cm	Salinity	Salinity habitat
		Feeding diet (adult)	Type of feeding diet

886

Table S3. Definitions of all metrics and measurements used in this study.

Metric	Definition
Species richness	Number of species (Baker et al., 2021)
Abundance	Number of individuals per species
Shannon diversity	A function of both richness and evenness (Maurer & McGill, 2011)
Pielou evenness	Distribution of abundances across all species within a community (Baker et al., 2021)
Trait	The amount of niche space occupied by all species within a given community (Mason <i>et al.</i> , 2005)
richness (TRic)	
Trait	The degree to which the abundance distribution utilises differences in traits within the community
divergence (TDiv)	(a measure of how spread or clumped species are within the niche space, weighted by the relative
	abundance) (Mason et al., 2005; Villéger et al., 2008)
Trait	The average distance of individual species to the group centroids of all species (Villéger et al., 2008)
dispersion (TDis)	
Trait	The regularity in the distribution of the abundance in trait space of the organisms composing an
evenness (TEve)	ecological unit (Villéger et al., 2008; Schleuter et al., 2010)

889 **Table S4.** Species sampled in the Rhine river between 1984 and 2018, their family, status (native/alien, the latter highlighted

890 in red) and sampled occurrences.

Species	Family	Status	Period
Abramis brama	Cyprinidae	Native	1984-2018
Alburnoides bipunctatus	Cyprinidae	Native	2017
Alburnus alburnus	Cyprinidae	Native	1984-2018
Anguilla anguilla	Anguillidae	Native	1984-2018
Barbatula barbatula	Nemacheilidae	Native	2004-2017
Barbus barbus	Cyprinidae	Native	1984-2018
Blicca bjoerkna	Cyprinidae	Native	1984-2004
Carassius carassius	Cyprinidae	Native	1984
Carassius gibelio	Cyprinidae	Native	2013-2015
Chondrostoma nasus	Cyprinidae	Native	1984-2018
Cobitis taenia	Cobitidae	Native	2013
Cottus gobio	Cottidae	Native	2004
Cyprinus carpio	Cyprinidae	Alien	1993-2018
Esox lucius	Esocidae	Native	1984-2017
Gasterosteus aculeatus	Gasterosteidae	Native	2015-2017
Gobio gobio	Cyprinidae	Native	1984-2010
Gymnocephalus cernua	Percidae	Native	1993-2015
Lampetra fluviatilis	Petromyzontidae	Native	2004
Lepomis gibbosus	Centrarchidae	Alien	2013-2017
Leuciscus aspius	Cyprinidae	Native	1993-2018
Leuciscus idus	Cyprinidae	Native	1993-2018
Leuciscus leuciscus	Cyprinidae	Native	1984-2018
Lota lota	Lotidae	Native	2000-2018
Neogobius fluviatilis	Gobiidae	Alien	2013-2018
Ponticola kessleri	Gobiidae	Alien	2010-2018
Neogobius melanostomus	Gobiidae	Alien	2010-2018
Oncorhynchus mykiss	Salmonidae	Alien	1998-2010
Perca fluviatilis	Percidae	Native	1984-2018
Platichthys flesus	Pleuronectidae	Native	1993-2018
Proterorhinus marmoratus	Gobiidae	Alien	2006

Pseudorasbora parva	Cyprinidae	Alien	2013-2018
Rhodeus amarus	Cyprinidae	Alien	2013
Rutilus rutilus	Cyprinidae	Native	1984-2018
Salmo salar	Salmonidae	Native	2000-2017
Salmo trutta fario	Salmonidae	Native	1984-2018
Salmo trutta trutta	Salmonidae	Native	1984-2015
Sander lucioperca	Percidae	Native	1984-2018
Scardinius erythrophthalmus	Cyprinidae	Native	2006-2018
Silurus glanis	Siluridae	Alien	2004-2018
Squalius cephalus	Cyprinidae	Native	1984-2018
Thymallus thymallus	Thymallidae	Native	2010-2017
Tinca tinca	Cyprinidae	Native	1984
Vimba vimba	Cyprinidae	Alien	2017-2018

Table S5. Results of the PERMANOVA on community species composition using abiotic and biotic predictors.

	Df	SumOfSqs	R2	F	Pr(>F)
Latitude	1	5.670	0.063	35.044	0.0001
Alien species abundance	1	10.454	0.115	64.617	0.0001
Alien species richness	1	7.222	0.080	44.640	0.0001
Precipitation	1	1.283	0.014	7.929	0.0001
Temperature	1	1.854	0.020	11.460	0.0001
Residual	397	64.229	0.708		
Total	402	90.711	1.000		

- 894 Table S6. Results of the PERMANOVA on community species composition using abundance-weighed ecological and
- biological traits as predictors.

Ecological traits

	Df	SumOfSqs	R2	F	Pr(>F)
habitat_ben	1	16.739	0.185	384.976	0.0001
habitat_dem	1	2.324	0.026	53.450	0.0001
habitat_fibs_indifferent	1	11.853	0.131	272.589	0.0001
habitat_fibs_rheophil	1	0.213	0.002	4.908	0.0001
feeding_habitat_ben	1	7.496	0.083	172.392	0.0001
reproduction_lithopelagophilic	1	0.196	0.002	4.508	0.0001
reproduction_lithophilic	1	6.982	0.077	160.575	0.0001
reproduction_marine	1	5.686	0.063	130.772	0.0001
reproduction_ostracophilic	1	0.076	0.001	1.742	0.048
reproduction_phytolithophilic	1	1.149	0.013	26.431	0.0001
reproduction_phytophilic	1	0.632	0.007	14.534	0.0001
reproduction_psammophilic	1	0.154	0.002	3.535	0.0001
spawning_habitat_eury	1	2.360	0.026	54.278	0.0001
spawning_habitat_limno	1	0.624	0.007	14.339	0.0001
hab_degr_tol_im	1	1.273	0.014	29.281	0.0001
hab_degr_tol_intol	1	1.323	0.015	30.431	0.0001
wat_qual_tol_im	1	0.366	0.004	8.409	0.0001
wat_qual_tol_intol	1	1.521	0.017	34.980	0.0001

temp_tol_eury	1	0.949	0.010	21.831	0.0001
oxy_tol_im	1	5.006	0.055	115.140	0.0001
oxy_tol_intol	1	3.665	0.040	84.299	0.0001
tox_tol_im	1	0.917	0.010	21.100	0.0001
tox_tol_intol	1	0.841	0.009	19.352	0.0001
acid_tol_im	1	0.281	0.003	6.453	0.0001
acid_tol_intol	1	0.457	0.005	10.507	0.0001
salinity_fbm	1	0.367	0.004	8.446	0.0001
salinity_fbr	1	0.461	0.005	10.595	0.0001
diet_invert	1	0.165	0.002	3.790	0.0001
diet_omni	1	0.368	0.004	8.470	0.0001
diet_parasit	1	0.091	0.001	2.099	0.0388
Residual	372	16.175	0.178		
Total	402	90.711	1.000		
Biological traits					
body_length_bl1	1	16.563	0.183	372.089	0.0001
body_length_bl2	1	8.241	0.091	185.126	0.0001
shape_factor_sh1	1	6.093	0.067	136.878	0.0001
shape_factor_sh2	1	7.764	0.086	174.419	0.0001
shape_factor_sh3	1	6.112	0.067	137.295	0.0001
swimming_factor_sw1	1	4.451	0.049	99.983	0.0001
	1	1.416	0.016	31.805	0.0001

life_span_ls1	1	3.136	0.035	70.445	0.0001
life_span_ls2	1	2.527	0.028	56.758	0.0001
maturity_ma1	1	0.712	0.008	15.988	0.0001
maturity_ma2	1	1.195	0.013	26.843	0.0001
maturity_ma3	1	2.069	0.023	46.474	0.0001
maturity_ma4	1	1.310	0.014	29.420	0.0001
abs_fecundity_fe1	1	6.164	0.068	138.471	0.0001
abs_fecundity_fe2	1	0.942	0.010	21.168	0.0001
rel_fecundity_fr1	1	0.925	0.010	20.771	0.0001
rel_fecundity_fr2	1	0.451	0.005	10.127	0.0001
egg_ed1	1	1.082	0.012	24.304	0.0001
egg_ed2	1	0.681	0.008	15.296	0.0001
spawning_time_st1	1	0.429	0.005	9.638	0.0001
repr_behav_fra	1	0.379	0.004	8.508	0.0001
repr_behav_pro	1	0.563	0.006	12.653	0.0001
parental_care_no	1	0.266	0.003	5.971	0.0001
larval_length_ll1	1	0.271	0.003	6.089	0.0001
larval_length_ll2	1	0.190	0.002	4.260	0.0001
Residual	377	16.782	0.185		
Total	402	90.711	1.000		

897 **Table S7.** Results of the PERMANOVA on abundance-weighed ecological and biological traits using abiotic and biotic

898 predictors.

Ecological traits					
	Df	SumOfSqs	R2	F	Pr(>F)
Latitude	1	0.622	0.044	25.237	0.0001
Alien species abundance	1	2.282	0.162	92.612	0.0001
Alien species richness	1	0.813	0.058	33.006	0.0001
Precipitation	1	0.080	0.006	3.234	0.0193
Temperature	1	0.490	0.035	19.869	0.0001
Residual	397	9.782	0.695		
Total	402	14.068	1.000		
Biological traits					
Latitude	1	0.661	0.032	22.641	0.0001
Alien species abundance	1	5.882	0.286	201.484	0.0001
Alien species richness	1	2.164	0.105	74.129	0.0001
Precipitation	1	0.091	0.004	3.128	0.0341
Temperature	1	0.209	0.010	7.172	0.001
Residual	397	11.590	0.563		
Total	402	20.598	1.000		

899

56

900 Table S8. Coefficients of significant predictors in generalised additive models (gam) exploring the relationship between

901 taxonomic and trait metrics over study time. Abbreviations "NS" indicate non significative predictors and "AS" refer to alien

- 902 species.
 - Period Metrics R² Year Latitude Temperature Precipitation AS abundance AS richness NS 1984 to 2006 Richness 0.110 NS 0.81 1.54 3.60 NS Abundance 0.624 5.92 8.56 7.86 8.33 NS NS FDis ecological 0.292 0.84 NS NS NS NS NS 2010 to 2018 Richness 0.425 4.06 1.65 NS NS NS 1.00 Abundance 0.731 4.93 7.64 8.21 7.70 2.97e-03 6.83e-02 -0.003 NS Shannon diversity 0.353 NS NS NS NS Pielou evenness 0.477 NS NS NS NS -0.003 NS

903

904 **References**

- 905 Baker, N. J., Pilotto, F., Haubrock, P. J., Beudert, B., & Haase, P. (2021). Multidecadal changes in functional diversity
- lag behind the recovery of taxonomic diversity. *Ecology and Evolution*, 11(23), 17471-17484
- 907 Maurer, B. A., & McGill, B. J. (2011). Measurement of species diversity in *Biological Diversity: Frontiers in* 908 *Measurement and Assessment*, eds. Oxford University Press, 55-65.
- 909 Mason, N. W. H., Mouillot, D., Lee, W. G., & Wilson, J. B. (2005). Functional richness, functional evenness and
- 910 functional divergence: The primary components of functional diversity. *Oikos*, *111*, 112-118.
- 911 Schleuter, D., Daufresne, M., Massol, F., & Argillier, C. (2010). A user's guide to functional diversity indices.
 912 *Ecological Monographs*, 80(3), 469-484.
- 913 Schmidt-Kloiber, A., & Hering, D. (2015). www.freshwaterecology. info-An online tool that unifies, standardises
- 914 and codifies more than 20,000 European freshwater organisms and their ecological preferences. *Ecological*
- 915 *Indicators*, 53, 271-282.
- 916 Villéger, S., Mason, N. W., & Mouillot, D. (2008). New multidimensional functional diversity indices for a
- 917 multifaceted framework in functional ecology. *Ecology*, 89(8), 2290-2301.

Time series	Sampling years	Total sampled years	Period
1	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
2	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
3	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
4	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
5	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
6	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
7	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
8	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
9	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
10	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
11	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
12	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
13	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
14	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018

Table S1. Description of each time series

	1		l
15	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
16	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
17	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
18	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
19	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
20	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
21	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
22	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
23	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
24	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
25	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
26	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
27	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
28	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018
29	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018

30	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018	
31	1984, 1993, 1995, 1998, 2000, 2004, 2006, 2013, 2014, 2015, 2017, 2018	13	1984-2018	

Biological		Ecological	
Body length	Body length in cm	Habitat	Where species living and feeding
Shape factor	Ratio between the length and the width	Habitat (fiBS)	Flow conditions of the habitat
Swimming factor	Ratio of the minimum depth of the caudal peduncle to the maximum caudal fin depth	Feeding habitat	Feeding in the bottom or in the water column
Life span	Life span in years	Reproduction (fiBS)	Habitat reproduction
Female maturity	Age of females mature for the first time	Spawning habitat	Flow conditions of the spawning habitat
Absolute fecundity	Number of oocytes produces per female	Habitat degradation tolerance	Tolerance or not to habitat degradation
Relative fecundity	Number of oocytes produces per gram	Water quality tolerance	Tolerance to usual water quality parameters
Egg diameter	Egg diameter in mm	Temperature tolerance	Eury- or stenothermal
Spawning time	Season of fish spawning	Oxygen tolerance	Tolerance to low oxygen concentration
Reproductive behaviour	One or several spawning events in the potential season	Toxicity tolerance	Tolerance to toxic contamination
Parental care	Protection of eggs and/or larvae or not	Acid tolerance	Tolerance to acidification
Larval length	Length of larval fish in cm	Salinity	Salinity habitat
		Feeding diet (adult)	Type of feeding diet

Table S2. Definitions of all ecological and biological traits used in this study; extracted fromwww.freshwaterecology.info(Schmidt-Kloiber & Hering, 2015).

Table S3. Definitions of all metrics and measurements used in this study.

Metric	Definition			
Species richness	Number of species (Baker et al., 2021)			
Abundance	Number of individuals per species			
Shannon diversity	A function of both richness and evenness (Maurer & McGill, 2011)			
Pielou evenness	Distribution of abundances across all species within a community (Baker <i>et al.</i> , 2021)			
Trait richness (TRic)	The amount of niche space occupied by all species within a given community (Mason <i>et al.</i> , 2005)			
Trait divergence (TDiv)	The degree to which the abundance distribution utilises differences in traits within the community (a measure of how spread or clumped species are within the niche space, weighted by the relative abundance) (Mason <i>et al.</i> 2005; Villéger <i>et al.</i> , 2008)			
Trait dispersion (TDis)	The average distance of individual species to the group centroids of all species (Villéger <i>et al.</i> , 2008)			
Trait evenness (TEve)	The regularity in the distribution of the abundance in trait space of the organisms composing an ecological unit (Villéger <i>et al.</i> , 2008; Schleuter <i>et al.</i> , 2010)			

· · · · · · · · · · · · · · · · · · ·	88	,	
Species	Family	Status	Period
Abramis brama	Cyprinidae	Native	1984-2018
Alburnoides bipunctatus	Cyprinidae	Native	2017
Alburnus alburnus	Cyprinidae	Native	1984-2018
Anguilla anguilla	Anguillidae	Native	1984-2018
Barbatula barbatula	Nemacheilidae	Native	2004-2017
Barbus barbus	Cyprinidae	Native	1984-2018
Blicca bjoerkna	Cyprinidae	Native	1984-2004
Carassius carassius	Cyprinidae	Native	1984
Carassius gibelio	Cyprinidae	Native	2013-2015
Chondrostoma nasus	Cyprinidae	Native	1984-2018
Cobitis taenia	Cobitidae	Native	2013
Cottus gobio	Cottidae	Native	2004
Cyprinus carpio	Cyprinidae	Alien	1993-2018
Esox lucius	Esocidae	Native	1984-2017
Gasterosteus aculeatus	Gasterosteidae	Native	2015-2017
Gobio gobio	Cyprinidae	Native	1984-2010
Gymnocephalus cernua	Percidae	Native	1993-2015
Lampetra fluviatilis	Petromyzontidae	Native	2004
Lepomis gibbosus	Centrarchidae	Alien	2013-2017
Leuciscus aspius	Cyprinidae	Native	1993-2018
Leuciscus idus	Cyprinidae	Native	1993-2018
Leuciscus leuciscus	Cyprinidae	Native	1984-2018
Lota lota	Lotidae	Native	2000-2018
Neogobius fluviatilis	Gobiidae	Alien	2013-2018
Neogobius kessleri	Gobiidae	Alien	2010-2018
Neogobius melanostomus	Gobiidae	Alien	2010-2018
Oncorhynchus mykiss	Salmonidae	Alien	1998-2010
Perca fluviatilis	Percidae	Native	1984-2018
Platichthys flesus	Pleuronectidae	Native	1993-2018
Proterorhinus marmoratus	Gobiidae	Alien	2006
Pseudorasbora parva	Cyprinidae	Alien	2013-2018
Rhodeus amarus	Cyprinidae	Alien	2013
Rutilus rutilus	Cyprinidae	Native	1984-2018
Salmo salar	Salmonidae	Native	2000-2017
Salmo trutta fario	Salmonidae	Native	1984-2018
Salmo trutta trutta	Salmonidae	Native	1984-2015
Sander lucioperca	Percidae	Native	1984-2018
Scardinius erythrophthalmus	Cyprinidae	Native	2006-2018
Silurus glanis	Siluridae	Alien	2004-2018
Squalius cephalus	Cyprinidae	Native	1984-2018
Thymallus thymallus	Thymallidae	Native	2010-2017
Tinca tinca	Cyprinidae	Native	1984

Table S4. Species sampled in the Rhine River between 1984 and 2018, their family, status (native/alien, the latter highlighted in red) and sampled occurrences.

Vimba yimba	Currinidaa	Alion	2017 2018	
vimba vimba	Cyprindae	Alleli	2017-2018	

	Df	SumOfSqs	R2	F	Pr(>F)
Latitude	1	5.67	0.063	35.044	0.0001
Alien species abundance	1	10.454	0.115	64.617	0.0001
Alien species richness	1	7.222	0.08	44.64	0.0001
Precipitation	1	1.283	0.014	7.929	0.0001
Temperature	1	1.854	0.02	11.46	0.0001
Residual	397	64.229	0.708		
Total	402	90.711	1		

Table S5. Results of the PERMANOVA on community species composition using abiotic and biotic predictors.

Table S6. Results of the PERMANOVA on community species composition using abundance-weighed ecological

 and biological traits as predictors.

Ecological traits									
	Df	SumOfSqs	R2	F	Pr(>F)				
habitat_ben	1	16.739	0.185	384.976	0.0001				
habitat_dem	1	2.324	0.026	53.45	0.0001				
habitat_fibs_indifferent	1	11.853	0.131	272.589	0.0001				
habitat_fibs_rheophil	1	0.213	0.002	4.908	0.0001				
feeding_habitat_ben	1	7.496	0.083	172.392	0.0001				
reproduction_lithopelagophilic	1	0.196	0.002	4.508	0.0001				
reproduction_lithophilic	1	6.982	0.077	160.575	0.0001				
reproduction_marine	1	5.686	0.063	130.772	0.0001				
reproduction_ostracophilic	1	0.076	0.001	1.742	0.048				
reproduction_phytolithophilic	1	1.149	0.013	26.431	0.0001				
reproduction_phytophilic	1	0.632	0.007	14.534	0.0001				
reproduction_psammophilic	1	0.154	0.002	3.535	0.0001				
spawning_habitat_eury	1	2.36	0.026	54.278	0.0001				
spawning_habitat_limno	1	0.624	0.007	14.339	0.0001				
hab_degr_tol_im	1	1.273	0.014	29.281	0.0001				
hab_degr_tol_intol	1	1.323	0.015	30.431	0.0001				
wat_qual_tol_im	1	0.366	0.004	8.409	0.0001				
wat_qual_tol_intol	1	1.521	0.017	34.98	0.0001				
temp_tol_eury	1	0.949	0.01	21.831	0.0001				
oxy_tol_im	1	5.006	0.055	115.14	0.0001				
oxy_tol_intol	1	3.665	0.04	84.299	0.0001				
tox_tol_im	1	0.917	0.01	21.1	0.0001				
tox_tol_intol	1	0.841	0.009	19.352	0.0001				
acid_tol_im	1	0.281	0.003	6.453	0.0001				
acid_tol_intol	1	0.457	0.005	10.507	0.0001				
salinity_fbm	1	0.367	0.004	8.446	0.0001				
salinity_fbr	1	0.461	0.005	10.595	0.0001				
diet_invert	1	0.165	0.002	3.79	0.0001				
diet_omni	1	0.368	0.004	8.47	0.0001				
diet_parasit	1	0.091	0.001	2.099	0.0388				
Residual	372	16.175	0.178						
Total	402	90.711	1						
Biological traits									
body_length_bl1	1	16.563	0.183	372.089	0.0001				
body_length_bl2	1	8.241	0.091	185.126	0.0001				
shape_factor_sh1	1	6.093	0.067	136.878	0.0001				
shape_factor_sh2	1	7.764	0.086	174.419	0.0001				
shape_factor_sh3	1	6.112	0.067	137.295	0.0001				
swimming_factor_sw1	1	4.451	0.049	99.983	0.0001				
swimming_factor_sw2	1	1.416	0.016	31.805	0.0001				
life_span_ls1	1	3.136	0.035	70.445	0.0001				
life_span_ls2	1	2.527	0.028	56.758	0.0001				

maturity_ma1	1	0.712	0.008	15.988	0.0001
maturity_ma2	1	1.195	0.013	26.843	0.0001
maturity_ma3	1	2.069	0.023	46.474	0.0001
maturity_ma4	1	1.31	0.014	29.42	0.0001
abs_fecundity_fe1	1	6.164	0.068	138.471	0.0001
abs_fecundity_fe2	1	0.942	0.01	21.168	0.0001
rel_fecundity_fr1	1	0.925	0.01	20.771	0.0001
rel_fecundity_fr2	1	0.451	0.005	10.127	0.0001
egg_ed1	1	1.082	0.012	24.304	0.0001
egg_ed2	1	0.681	0.008	15.296	0.0001
spawning_time_st1	1	0.429	0.005	9.638	0.0001
repr_behav_fra	1	0.379	0.004	8.508	0.0001
repr_behav_pro	1	0.563	0.006	12.653	0.0001
parental_care_no	1	0.266	0.003	5.971	0.0001
larval_length_ll1	1	0.271	0.003	6.089	0.0001
larval_length_ll2	1	0.19	0.002	4.26	0.0001
Residual	377	16.782	0.185		
Total	402	90.711	1		

Table S7. Results of the PERMANOVA on abundance-weighed ecological and biological traits using abiotic

 and biotic predictors.

Ecological traits								
	Df	SumOfSqs	R2	F	Pr(>F)			
Latitude	1	0.622	0.044	25.237	0.0001			
Alien species abundance	1	2.282	0.162	92.612	0.0001			
Alien species richness	1	0.813	0.058	33.006	0.0001			
Precipitation	1	0.08	0.006	3.234	0.0193			
Temperature	1	0.49	0.035	19.869	0.0001			
Residual	397	9.782	0.695					
Total	402	14.068	1					
Biological traits								
Latitude	1	0.661	0.032	22.641	0.0001			
Alien species abundance	1	5.882	0.286	201.484	0.0001			
Alien species richness	1	2.164	0.105	74.129	0.0001			
Precipitation	1	0.091	0.004	3.128	0.0341			
Temperature	1	0.209	0.01	7.172	0.001			
Residual	397	11.59	0.563					
Total	402	20.598	1					

Table S8. Coefficients of significant predictors in generalised additive models (gam) exploring the relationship between taxonomic and trait metrics over study time. Abbreviations "NS" indicate non significative predictors and "AS" refer to alien species.

Period	Metrics	R ²	Year	Latitude	Temperature	Precipitation	AS abundance	AS richness
	Richness	0.11	NS	0.81	1.54	3.6	NS	NS
1984 to 2006	Abundance	0.624	5.92	8.56	7.86	8.33	NS	NS
	FDis ecological	0.292	0.84	NS	NS	NS	NS	NS
	Richness	0.425	4.06	1.65	NS	NS	NS	1
	Abundance	0.731	4.93	7.64	8.21	7.7	2.97E-03	6.83E-02
2010 to 2018	Shannon diversity	0.353	NS	NS	NS	NS	-0.003	NS
	Pielou evenness	0.477	NS	NS	NS	NS	-0.003	NS

(a) Native fish

2014 2019 2017 2018

2013

Year

1984,987,989,989,989,000,004,

1.5

1984

*,9³⁵,9³⁵,9³⁶,9³⁶,0¹⁰,0¹⁰,0¹⁰,0¹⁰,0¹⁰, Year

2010

2014

2018 2017 2018

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

CRediT authorship contribution statement

GLH: Methodology, Formal analysis, Data Curation, Writing - Original Draft, Writing - review & editing.

IS, PJH, PB: Conceptualization, Supervision, Formal analysis, Writing - Original Draft, Writing - review & editing

PH, AK, CL, LN, NT, DR: Resources, Writing - Review & Editing.

ACCEPTED MANUSCRIPT / CLEAN COPY