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ABSTRACT
To face market volatility, reconfigurable manufacturing systems (RMS) aim to effi-
ciently and cost-effectively react to changes. We focus on one characteristic of RMS:
the scalability (ability to adapt the volume of throughput). In the literature, the only
few indicators for scalability are not always formally defined and usually only con-
sider a partial view of scalability. Moreover, most of them are actually more suited
for the configuration planning rather than for the design. However, the design of the
RMS has a high impact on its scalability. We propose the first combinatorial defi-
nition of this problem and a new measure to fully assess the scalability of a system
at the design phase. This measure, based on a multi-objective approach, can assess
the scalability of single-product manufacturing systems, analyzing all configurations
that it can implement. We present numerical experiments to compare this indicator
with a state-of-the-art scalability indicator and with some classical production line
design indicators, and we show that future research should focus on scalability as
a specific criterion to optimize during the design of a RMS. In addition, the results
obtained allow us to infer some managerial insights on the best levers to use when
performing a reconfiguration for scalability purpose.

KEYWORDS
Scalability; Reconfigurable manufacturing systems; Multi-objective indicator;
Combinatorial analysis; Line Balancing

1. Introduction

Nowadays, one of the main challenge industrial companies are facing is to design
manufacturing systems that can deal with the volatile market and uncertain future
(see e.g., Aheleroff et al., 2021; Dolgui et al., 2022). They call for reduced time-to-
market as well as the ability to deal efficiently with numerous ramp-up phases. Koren
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et al. (1998) have introduced the Reconfigurable Manufacturing Systems (RMS) as
an answer to this need of reactivity. Basically, RMS aim at managing shorter product
lifecycles while keeping longer production system lifecycles. To achieve this goal, RMS
relies on six key features (Koren et al., 2018):

• Modularity, i.e. compartmentalization of operational functions into modules
• Integrability to rapidly and efficiently integrate modules
• Diagnosability allowing the automatic identification of problems in the produc-

tion system and real-time monitoring the product quality
• Customization to produce different parts in a family,
• Convertibility to enable the system to change for new products
• Scalability which is the ability to adapt the volume of production

The recent emergence of Industry 4.0 enables the implementation of such systems
by providing new solutions to implement these features (Zheng et al., 2018; Ivanov
et al., 2019; Napoleone et al., 2022). For example, Plug & Produce Cyber-physical
systems bring modularity and integrability, Internet of Things (IoT) and Digital Twins
work together to improve diagnosability, Collaborative robot (Cobot) and additive
manufacturing can provide the flexibility needed for the customization. . .

Beside the use of new digital technologies, the decision support systems used by
companies working with RMS have to be thought accordingly (see e.g., El Alaoui
El Abdellaoui et al., 2020). According to Andersen et al. (2017) and Dolgui et al.
(2022), due to the multiple variants and generations of product over the system life
cycle, the design of RMS is a challenge compared to the design of traditional manufac-
turing systems. Koren et al. (2017) states that scalability might be the most important
feature to deal with the uncertain demand or ramp-up phase. According to Putnik
et al. (2013), the scalability in manufacturing systems can be defined as “the capacity
for adding or removing the resources in a cost-effective manner, in order to adjust
the production capacity on a system in steps or stages”. Contrary to convertibility,
it concerns only the throughput volume and not a change in the specifications of the
product. The scalability assessment of a system must integrate components measur-
ing the ability to quickly adapt the system, with incremental steps, and cost-effective
changes, to answer to the need to provide at any time an efficient configuration with
the exact capacity needed. Such an adaptation is particularly useful during ramp-up
and product end-of-life phases.

RMS are typically composed of serial stages or stations with several identical parallel
resources, joined by a gantry and a conveyor to move the parts in this grid system.
The resources are generally Computer Numerical Control (CNC) or Reconfigurable
Manufacturing Tools (RMT) but can also be of other types (for instance workers
or cobots). Figure 1 schematizes this typical organization of RMS. Such layouts are
sometimes denoted in the literature as parallel-serial lines with crossover (see e.g.,
Freiheit et al., 2004).

A configuration is defined as the state of the system, determined by the resources
used, in terms of functionality, performance and number. Two levers can be involved in
a reconfiguration: adding or removing parallel resources on the stations, or processing a
full reconfiguration of the system by changing the tools used in RMT or CNC machines
(Putnik et al., 2013). In the former approach, the assignment of operations to stages
stays the same, thus the only organizational change in the system is the addition of
resources and their integration on the gantry. The latter enables us to change the
balancing of the system, implying a longer setup time, as many resources can be
impacted and the system must be purged of semi-finished products. In both cases,
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Figure 1. RMS layout as described by Koren et al. (2018)

the choice of equipment is a tactical decision that should be made when designing the
system to enable operational reconfigurations.

In this article, we investigate the scalability of RMS by considering the two afore-
mentioned levers. In particular, we consider two research questions:

(1) What is the relationship between the balancing of an RMS and its scalability,
both for the choice of the initial configuration and for further reconfigurations?

(2) How to compare the scalability of different possible initial configurations of man-
ufacturing system taking into account the policy to be applied for future recon-
figurations and considering an unknown demand evolution?

In order to address these questions, two main contributions are provided. First,
we give a formalization of the combinatorial optimization problem associated with
the balancing of an RMS such as defined by Koren et al. (1998), and we analyze its
complexity, which appear to be polynomial. Second, we propose a new measure to
assess the scalability of a single-product system since the design phase, based on a
multi-objective approach. In addition, the experiments performed to validate these
contributions allow us to infer some interesting managerial insights for practitioners
dealing with the design or the reconfiguration of an RMS.

The remainder of the paper is organized as the following: Section 2 presents the
related literature, Section 3 formalizes the combinatorial definition of the problem,
the proposed scalability measure is explained in Section 4 and experimental results are
analyzed in Section 5. Section 6 concludes this paper and discusses few perspectives.

2. Related literature

The scalability of manufacturing systems has been studied in different research com-
munities (optimization, model-based systems engineering,. . . ). Since this paper aims
to formalize the problem optimizing the scalability of a single-product manufacturing
system from the design phase, we choose to focus this literature review on papers
dealing with optimization approaches and scalability evaluation.

If the design of manufacturing systems has generated a lot of publications on various
balancing and facility layout problems, the specific characteristics of RMS make it an
original optimization problem requiring new methods. The first methods proposed
were heuristics (Youssef and ElMaraghy, 2006; Dou et al., 2011; Essafi et al., 2012;
Lahrichi et al., 2021) but exact models and algorithms have also been presented (Essafi
et al., 2010; Borisovsky et al., 2014). A recent review on the main optimization problem
associated with RMS has been provided by Yelles-Chaouche et al. (2021). In addition,
works on robotic assembly line balancing (see e.g., Borba et al., 2018) or parallel
stations (see Aguilar et al., 2020, for a recent survey) present some similar features
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with the case of RMS.
However, all these works only focus on the generation of a single configuration

minimizing the cost and do not take into account the possibility to further scale the
system.

Scalability in the context of RMS has been studied on two different levels: the
management of the scalability (on an operational level) and the design of a scalable
system (on a tactic level).

Regarding the management of the scalability, Deif and EIMaraghy (2006); Deif and
ElMaraghy (2007) were among the first to consider several reconfigurations, assessing
different reconfiguration policies on various scenarios of demand evolution. Wang and
Koren (2012) started to consider successive reconfigurations with a heuristic method
minimizing the number of machines required. An extension of this method has been
presented in Koren et al. (2017), integrating buffers in RMS. Several optimization
methods (Hees et al., 2017; Hu et al., 2017, e.g.) and simulation-based methods (Hsieh,
2018; Gola et al., 2021, e.g.) have been developed to handle the scalability during
the planning process. It is interesting to note that, even if some authors working on
this question do not accurately explain the nature of the changes performed during a
reconfiguration, most of them consider reconfigurations based on a new line balancing.

Some works have focused on the scalability since the design phase by analysing the
characteristics allowing an RMS to be scalable. Koren et al. (1998) and Spicer et al.
(2002) started to study the impact of various system configurations on throughput
capacity and scalability. Koren and Shpitalni (2010) went further and discussed the
relationship between the structure of RMS and the number of configurations available.
A similar idea was considered by Delorme et al. (2016) who suggested to evaluate the
solution of their heuristic by generating the set of trade-off configurations between
capacity throughput and number of resources needed. Son et al. (2001) questioned the
link between the balancing of a production system and its productivity and scalabil-
ity. They highlighted that unbalanced RMS can sometimes allow us to obtain smaller
steps of capacity changes. More recently, Napoleone et al. (2019) introduced a classi-
fication of the main root causes leading to scalability and convertibility, Rösiö et al.
(2019) provided a list of key enablers for scalability including the possibility to change
the line balancing and to add machines, and Beauville Dit Eynaud et al. (2022) pre-
sented a framework for the design of RMS and a reconfiguration strategy to answer
to a specific demand evolution. Finally, some works tried to integrate the design and
the planning problems. In Moghaddam et al. (2020), the problem of designing multi-
product and scalable RMS for multiple production periods has been addressed, mini-
mizing design and reconfiguration costs while fulfilling demand. The authors presented
two approaches: an up- and downgrading method based on approximate demand in
each period; and RMT selections and reconfigurations based on long-term demand
forecast. A similar problem of design and configuration planning was considered in
Cerqueus et al. (2020) where the authors used the scalability of a mono-product RMS
to minimize the energy cost in a time-of-use pricing scheme.

Finally, the evaluation of the scalability of an RMS has received little attention.
In Wang and Koren (2012), a first metric based on the smallest possible incremental
capacity change has been presented to evaluate a priori the scalability on the first
reconfiguration. However this metric is dependent on the current state of the system
and does not allow to take into account the subsequent reconfigurations. In addition,
the definition of the proposed metric can be confusing because incremental capacity
can be defined either as the gap in terms of resources used or in terms of capacity
throughput. Both definitions are equivalent in the examples presented in the paper but
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it is not true in the general case. In addition, the authors showed that the metric can be
coupled with a heuristic simulating the future reconfigurations (i.e. rebalancing of the
line and addition of resources) to forecast the production throughput gain of different
configurations. Based on the experimental results obtained, the authors observed that a
lower number of stages leads to higher throughput and gain, mainly because it leads to
a more reliable system. Nishith et al. (2013) has also proposed a slightly different metric
based on the same principle of potential capacity increase but they provided very few
details on the calculation. Indeed, Putnik et al. (2013) stated that new performance
measures of scalability were still needed. The first evaluation of the scalability based
on the set of possible configurations identified has been proposed by Wang et al.
(2017). Their function takes into account the gap between the minimum and maximum
throughput among all the configurations, as well as the average gap between the
configuration and the effort needed to go from one configuration to another (time,
cost, . . . ). However, the authors do not indicate how to identify the set of available
configurations and the numerous parameters used in the function. More recently, some
authors have proposed to extend the concept of scalability either to reconfigurable
supply chain (Zidi et al., 2021) or to process manufacturing (Accorsi et al., 2021).
Important to note is that the metrics proposed in these papers are similar to those
proposed for RMS, the former being defined as a combination of throughput capacity
amplitude and of latency, and the latter being calculated by the simulation of a given
curve of demand.

Overall, we can observe that scalability is rarely considered alone and most authors
consider it together with convertibility. Even if both features do not have the same
purpose, this choice may be explained by the fact that most authors use the same levers
(i.e. adding resources and rebalancing operations) to deal with them. This observation
is confirmed by Maganha et al. (2018) which report that there is a confusion among
industrials between these two features.

3. Combinatorial definition of the problem

We are considering the design of a paced reconfigurable manufacturing system. A set
N of operations to process is given and each operation n ∈ N has a processing time tn.
The set of operations have to be partitioned into a sequence of stations (i.e., we have a
line balancing problem), with n0 and m0 the upper bound on the number of operations
which can be assigned to the same station and on the number of stations, respectively.
The assignment of operations to stations should respect a set Prec ⊂ N × N of
precedence relations. The workload of a station is defined as the sum of the processing
times of the operations assigned and the production system is paced at a takt time
defined according to the station with the highest operating time. In order to increase
the production level, each station can be equipped with at most r0 resources working
in parallel and the whole sequence of stations can be duplicated while the total number
of resources used does not exceed r̄. The data are summarized in Table 1.

All definitions presented in this section will be illustrated on the same didactic
example composed of 7 operations (N = {1, . . . , 7}), given by the precedence graph
in Figure 2 on which the processing times are given above the node representing the
operation. We take n0 = 4,m0 = 4, r0 = 3 and r̄ = 7.

We call a sequenceB = (S1, . . . , Sm), Sk ⊆ N, ∀k ∈ 1, . . . ,m a feasible balancing (see
Figure 3) if all operations are assigned once (

⋃
k Sk = N), the precedence constraints

are respected ((i, j) ∈ Prec ∧ i ∈ Sk ⇒ j ∈
⋃
k′≥k Sk′), and the number of operations
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N The set of operations
tn Processing time of the operation n
n0 Maximum number of operations assigned to a same station
m0 Maximum number of stations
Prec Set of precedence constraints
r0 Maximum number of resources assigned to a same station
r̄ Maximum total number of resources assigned in the system

Table 1. Problem data

1 2

3

4

5 6

7

7 5

4

4

8 3

8

Figure 2. Precedence graph and processing times of the illustrative example

assigned per station as well as the number of stations do not exceed the upper bounds
n0 and m0 respectively. In the following, the notation B.Sk (resp. B.m) will be used to
refer to the kth component (resp. the cardinality) of a balancing B (the same notation
will be used for all other sequences or tuples). Let B denote the set of all feasible
balancing. We can consider each Sk as a subset of all n-tuples (e1, . . . , en) such that
1 ≤ n ≤ n0 and ei are all distinct elements from the set N , and the set B as a
subset of all m-tuples of distinct Sk such that 1 ≤ m ≤ m0. Alternatively, the set
B is a subset of all |N |-dimensional integer vectors with values in the range [1,m0].

Therefore, |B| ≤ O(min (|N |n0m0 ;m
|N |
0 )).

{1, 3, 5} {2, 6} {4, 7}

Station B.S1 Station B.S2 Station B.S3 Unused station

Figure 3. Example of a balancing B ∈ B for a problem with 7 operations and m0 = 4

We call a sequence of 2-tuples L = ((S1, r1), . . . , (Sm, rm)) a feasible line (see Figure
4) if (S1, . . . , Sm) is a feasible balancing, rk ∈ 1, . . . , r0, ∀k ∈ 1, . . . ,m and

∑m
k=1 rk ≤ r̄.

Let L denote the set of all feasible lines and L(B) ⊆ L denote the subset of lines using
the balancing B, i.e. L(B) = {L ∈ L|L.m = B.m and L.Sk = B.Sk, ∀k ∈ 1, . . . ,m}.
The components rk from L(B) correspond to a subset of all m-dimensional integer
vectors, m ∈ 1, . . . ,m0, with values in the range [1, r0], which implies that |L(B)| ≤
O(rm0

0 ). Reciprocally, let the singleton B(L) denote the balancing used by the line L.
The performance of each line L is a 2-dimensional vector z(L) = (τ(L), ρ(L)) which

can be calculated according to (1), where τ(L) (resp. ρ(L)) corresponds to the takt
time (resp. the total number of resources used).
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{1, 3, 5}

{1, 3, 5}

{2, 6} {4, 7}

{4, 7}
Production resource

Available slot
Station L.S1 Station L.S2 Station L.S3

Figure 4. Example of a line L ∈ L for a problem with 7 operations and r0 = 3. Here we have, τ(L) =
max {(7 + 4 + 8)/2; (5 + 3)/1; (4 + 8)/2} = 9.5 and ρ(L) = 5.



τ(L) = max
k∈1,...,L.m

{( ∑
n∈L.Sk

tn

)
/L.rk

}

ρ(L) =

L.m∑
k=1

L.rk

(1)

When comparing two lines from an economical perspective, the lower number of
resources and the lower takt time are preferred by decision-maker, so it is a bi-objective
problem and we can use the Pareto dominance (Pareto, 1896): a line L dominates
another line L′ if τ(L) ≤ τ(L′), ρ(L) ≤ ρ(L′) and we have τ(L) < τ(L′) or ρ(L) <
ρ(L′), denoted z(L) � z(L′).

We can focus only on the non-dominated lines. Let L∗(B) ⊆ L(B) denote the subset
of feasible lines using the balancing B which are not dominated by another line using B.
For any given B, the set L∗(B) can be constructed by starting from the line L ∈ L(B)
with L.rk = 1,∀k ∈ 1, . . . , L.m and then increasing iteratively of one unit the number
of resources of the bottleneck station (i.e., argmaxk∈1,...,L.m

{∑
n∈L.Sk

tn/L.rk
}

)2 until
either the upper bound r0 or r̄ is attained. Since the number of steps of this process is
bounded by r̄ and each step can be computed in O(n0m0), we have |L∗(B)| ≤ r̄ and
the process can be done in constant time since n0, m0 and r̄ are given constants.

We call a λ-tuple C = (L1, . . . , Lλ) a feasible configuration (see Figure 5) if all
Lq, q ∈ 1, . . . , λ are feasible lines which share the same balancing (i.e., ∀q, q′ ∈
1, . . . , λ, Lq.m = Lq′ .m and ∀k ∈ 1, . . . , Lq.m, Lq.Sk = Lq′ .Sk) and

∑
q

∑
k Lq.rk ≤

r̄. Let C denote the set of all feasible configurations and C(B) ⊆ C denote the
subset of configurations using the balancing B, i.e. C(B) = {C ∈ C|C.L1.m =
B.m and C.L1.Sk = B.Sk,∀k ∈ 1, . . . , C.L1.m}. Since all the components of C(B)
are elements from the set L(B) and λ ≤ r̄, we can deduce that |C(B)| ≤ O(rm0r̄

0 ).
Reciprocally, let the singleton B(C) denote the balancing used by the configuration C.

Similarly to the lines, the performance of a configuration C is a 2-dimensional vector
z(C) = (τ(C), ρ(C)) which can be calculated according to (2), where τ(C) (resp. ρ(C))
corresponds to the takt time (resp. total number of resources used). We can naturally

2Whenever there is not a single bottleneck station, we can arbitrarily pick one of them since the next steps

will consider the others. In this case, the line’s takt time will only decrease when the number of resources will
have been increased in all of the aforementioned stations. The set of solutions generated during these iterations

will differ according to the sequence of bottleneck stations considered (they would be denoted as equivalent
solutions in multi-objective optimization) but all these solutions will be dominated since they have the same

takt time but a higher number of resources.
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Line C.L1

{1, 3, 5}

{1, 3, 5}

{1, 3, 5}

{2, 6} {4, 7}

{4, 7}

Station C.L1.S1 Station C.L1.S2 Station C.L1.S3

Line C.L2

{1, 3, 5}

{1, 3, 5}

{2, 6} {4, 7}

Station C.L2.S1 Station C.L2.S2 Station C.L2.S3

Figure 5. Example of a configuration C ∈ C with 2 lines for a problem with 7 operations and r0 = 3. Here

we have τ(C) =
8× 12

8 + 12
= 4.8 and ρ(C) = 10.

extend the notion of Pareto-dominance to the configurations and only consider the
subset C∗(B) ⊆ C(B) of feasible configurations using the balancing B which are not
dominated by another configuration using B. Since such a configuration will only use
non-dominated lines from L∗(B), we have |C∗(B)| ≤ O(r̄r̄). Finally, let C∗ ⊆ C denote
the subset of non-dominated configurations, C∗ ⊆

⋃
B∈B C∗(B).



τ(C) =
1

C.λ∑
q=1

1

τ(Lq)

=

C.λ∏
q=1

τ(Lq)

C.λ∑
q=1

 ∏
u∈{1,...,C.λ}\q

τ(Lu)



ρ(C) =

C.λ∑
q=1

ρ(Lq)

(2)

Changing the system state from one configuration to another in order to answer
to an evolution of market demand is called a reconfiguration. Such changes generate
costs and require a reconfiguration time, which are usually non-decreasing functions
of the magnitude of the change, i.e. the gap between the old configuration Ĉ and the
new one C. The minimal change occurs when the same balancing is kept (B(C) =

B(Ĉ)) since such a reconfiguration does not impact the tools or modules used. On the
contrary, whenever there is a change in the balancing, some tools or modules must be
replaced. We call Np the set of neighborhoods (3) based on the number of operations
movements from one initial balancing. Starting from an initial configuration C ∈ C
these neighborhoods can thus define the subset

⋃
B∈Np(B(C)) C(B) of possible future

configurations reachable over the lifecycle of the RMS for a given threshold p of changes
allowed.
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N0(B) = {B}

N1(B) = {B′ ∈ B|B′.m = B.m and ∃n ∈ N, k1, k2 ∈ 1, . . . , B.m,
k1 6= k2, B

′.Sk1 = B.Sk1 ∪ {n}, B′.Sk2 = B.Sk2 \ {n},
B′.Sk = B.Sk∀k 6= k1, k2} ∪ {B}

Np(B) = {B′ ∈ B|B′.m = B.m and ∃((n1, k
1
1, k

1
2), . . . , (np, k

p
1, k

p
2)),

∀i ∈ 1, . . . , p, ni ∈ N, ki1, ki2 ∈ 1, . . . , B.m, ∀k ∈ 1, . . . , B.m,
B′.Sk = B.Sk ∪ {ni|ki1 = k} \ {ni|ki2 = k}}

N|N |(B) = {B′ ∈ B|B′.m = B.m}

(3)

Given the balancing B1 in Figure 3, the neighborhood N1(B1) is composed of seven
balancing:

B2 : B2.S1 = {3, 5}, B2.S2 = {1, 2, 6}, B2.S3 = {4, 7},
B3 : B3.S1 = {1, 2, 3, 5}, B3.S2 = {6}, B3.S3 = {4, 7},
B4 : B4.S1 = {1, 3, 5}, B4.S2 = {6}, B4.S3 = {2, 4, 7},
B5 : B5.S1 = {1, 3, 5}, B5.S2 = {2, 4, 6}, B5.S3 = {7},
B6 : B6.S1 = {1, 3}, B6.S2 = {2, 5, 6}, B6.S3 = {4, 7},
B7 : B7.S1 = {1, 3, 5, 6}, B7.S2 = {2}, B7.S3 = {4, 7},
B8 : B8.S1 = {1, 3, 5}, B8.S2 = {2}, B8.S3 = {4, 6, 7}.

According to these definitions, the optimization problem of maximizing the scal-
ability of an RMS at the design stage can be expressed as (4), where fs refers to a
scalability metric evaluating the set of configurations available for future reconfigura-
tion and p is a parameter defining the maximal level of changes allowed. Considering
that checking the feasibility of each balancing can be done in polynomial time, and as
long as the function fs can also be calculated in polynomial time, an approach based
on the enumeration of all feasible balancing and configurations will be polynomial,
i.e. theoretically efficient (Garey and Johnson, 1979), since we have |B| ≤ O(|N |n0m0),
|C| ≤ O(|N |n0m0rm0r̄

0 ) and |C∗| ≤ O(|N |n0m0 r̄r̄) with n0, m0 and r̄ being given con-
stants. However, in practice these constants usually take large values and such an
enumeration approach will only be applicable for small problems.

max
B∈B

fs

 ⋃
B′∈Np(B)

C(B′)

 (4)

Note that the design of a dedicated manufacturing system (DMS) would correspond
to a specific case where the set of configurations available would be restricted within
a subset of CDMS ⊂ C such that only one resource is assigned per station (C.Lq.rk =
1, ∀q ∈ 1, . . . , C.λ, k ∈ 1, . . . C.Lq.m).

After the design phase, each reconfiguration will correspond to another optimization
problem (5), where Ĉ is the initial configuration of the RMS and T is the new takt
time deduced from current market demand. When choosing a new configuration from
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the available set Np(B(Ĉ)), there can be several configurations with the same minimal
value of p but a rational decision-maker will prefer to select the non-dominated one.
As a consequence, we can discard the dominated configurations from the search space.

min
C∈C(B)

p

s.t. B ∈ Np(B(Ĉ))
τ(C) ≤ T
p ∈ 0, . . . , |N |

(5)

In the next section, we will focus on the definition of the scalability measure fs which
both take into account the whole set of reachable configurations and is calculable in
polynomial time.

4. Hypervolume based indicator for scalability

Based on the literature review, we extracted three main properties to evaluate the
scalability level of a set of reachable configurations:

(1) all the configurations should be as economically efficient as possible (i.e., we are
seeking configurations with the lowest possible values for both the number of
resources and the takt time).

(2) they should cover a large range of takt time to be able to answer both small and
large demands.

(3) the configurations should be well-spread on the two-dimensional performance
space (i.e., we prefer to have regular steps to increase the capacity throughput
incrementally).

The first one is omnipresent as soon as we consider the design of a manufacturing
system. The second one is linked to the work of Wang et al. (2017) taking into account
the gap between the minimum and the maximum throughput. The third one comes
from Wang and Koren (2012) searching for the smallest incremental capacity change
as well as the adaptation “in steps” in the definition of scalability of Putnik et al.
(2013). These three characteristics are actually very similar to those considered in
the evaluation of a multi-objective approximate method, where sets of potentially
non-dominated points have to be evaluated and compared. We can thus use multi-
objective indicators to assess the quality of a set of reachable configurations (and the
associated values of z).

Among the numerous multi-objective indicators, the most commonly used is prob-
ably the hypervolume (Zitzler et al., 2003). For any subset of configurations C̃ ⊆ C,
let us consider F (C̃) = {(τ(C), ρ(C)), C ∈ C̃}, the set of points which are the images
by z of each configuration from C̃. The hypervolume of F (C̃) is the area between the
points (τ(C), ρ(C)) and a reference point P . Its formula is given by Equation (6).

H(C̃) = A

⋃
C∈C̃

(τ(C), ρ(C))− R2
�

⋂(P + R2
�)

 (6)

A is the geometrical area. R2
� denotes the dominance cone {y ∈ R2 : y � (0, 0)}.y+
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R2
� stands for the vector addition of y ∈ R2 and any vector of R2

�, it defines the area

whose points weakly dominate y. y−R2
� is defined similarly as the area whose points

are weakly dominated by y.
Of course, the reference point P have to be such all (τ(C), ρ(C)) have lower values

on both τ and ρ. For our application, we can take

P =

 max
K⊆N,|K|≤n0

∑
j∈K

tj

+ ετ , r̄ + ερ


with ετ , ερ ∈ R+. Indeed, the takt time cannot be greater than the sum of the n0

highest processing times, since there are no more than n0 operations per stations, and
the number of resources used is bounded by r̄. Since the number of resources used is
necessarily an integer, we can take ερ = 1. To have a proportional gap for ετ , we take

ετ =
maxK⊆N,|K|≤n0{

∑
j∈K tj}

r̄ .
Figure 6 graphically illustrates the notion y + R2

� and the hypervolume of a set of

points F (C̃).

τ

ρ

×

×
×

z(C1)

z(C2)

z(C3)

4P

z(C2) + R2
�

H(F )

Figure 6. Illustration of the notion y + R2
� and the hypervolume of a set of points F (C̃) for a set of 3

configurations C̃ = {C1, C2, C3} (depicted by ×).

Then we can define the scalability function fs(C̃) = H(C̃). The hypervolume based
scalability indicator fs, in this bi-objective context, is the sum of |C̃| rectangles. Thus it
is computed in O(|C̃|). Considering that the dominated configurations can be discarded
from the set C̃, the cardinality of the set is bounded by r̄ since the performance on the
number of resources used ρ is integral and bounded by r̄ by definition. Thus fs can be
computed in constant time, O(r̄), and used to solve the problem (4).

However, the values taken by the function fs are difficult to interpret by the decision-
maker and do not really allow him to have a precise idea of the quality of a set of
configurations. Moreover, the values of fs can vary significantly from one instance to
another which makes it difficult to compare the results obtained for various instances.
As a consequence, it can be useful to have a relative value to compare the set of
reachable configurations with a reference set for the instance considered. By defini-
tion, the subset of non-dominated configurations considering any possible balancing
C∗ has the highest value for H. We can thus evaluate the quality of a set of reachable
configurations by comparing H(C̃) with the value of the hypervolume of the ideal set
H(C∗). We define the relative hypervolume based indicator f ′s in Equation (7). f ′s takes
values in [0,1] and a low value indicates that the set of reachable configurations are
close from those of the ideal set of configurations, indicating its good quality. Since
H(C∗) is constant for a given instance, maximizing fs and minimizing f ′s are equivalent
optimization problems.
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f ′s = 1− fs(C̃)
H(C∗)

(7)

5. Experimental results

The goals of this section are to: (i) to compare the hypervolume based indicator for
scalability to classical line balancing indicators and to the average of the scalability
measure proposed by Wang and Koren (2012), to see if the same RMS design are con-
sidered scalable by both metrics and what makes the difference for other designs; (ii)
to determine some characteristics of scalable systems, in order to help decision maker
in the design of their systems, and (iii) to analyse of the impact of the length of the
neighborhoods on the scalability of the system, to determine the gain in reconfiguring
a system by re-balancing it.

For the instances considered, we enumerated all balancing satisfying the precedence
constraints, under the following assumptions:

• There are no more than three resources on each station.
• The total number of resources is bounded by the number of operations in the

system.
• There are no more than 50% of the operations assigned to the same station.

The benchmark of instances used has been extracted from Scholl (1999) and Otto
et al. (2013). Since our experimental process is based on a total enumeration of all
feasible balancing, we chose to focus on a restricted set of instances: the ten smallest
instances of Scholl (1999) and ten from the instances with 20 operations of Otto et al.
(2013). For the latter, we arbitrarily chose the instances numbered {50, 100, . . . , 500},
and checked that they are representative of the whole set of instances, in terms of
values for the parameters on the structure of the graph, the order of strength (density
of the precedence graph) and time distribution. All experiments were implemented
in C++ and ran on an Ubuntu system using an Intel Xeon 6230 chip and 5 MO of
RAM. For the numerical experiments, we limited the computational time allocated to
the balancing enumeration to an hour. Only the five smallest instances completed the
process under the timeout. For the others, we randomly deleted operations until the
resulting instance completes the enumeration phase within the time limit. The initial
and reduced size of the instances are given in Table 2.

In Table 3, the correlations between the scalability indicator f ′s and the average
incremental measure of Wang and Koren (2012) are presented for all considered in-
stances. These correlations are computed on the sets of reachable configurations ex-
tracted from the same balancing (i.e. N0).

Since the scalability indicator presented in Wang and Koren (2012) is a local evalu-
ation of the scalability, we adapted it by computing the average of the smallest incre-
mental capacity in percentage. Sorting the non-dominated configurations by number
of resources, for two successive configurations, the increment is the difference between
the inverse of the takt time of two configurations. In the following, this indicator is
denoted avgScal. The two indicators avgScal and f ′s are to be minimized.

Table 3 shows that there is almost no correlation between the two scalability in-
dicators. This reflects a major difference in the computation of the two indicators
regarding what is a good increment. By definition, the measure of Wang and Koren
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Inst. name Orig. size Red. size
Mertens 7 -
Bowman8 8 -
Jaeschke 9 -
Jackson 11 -
Mansoor 11 -
Mitchell 21 13
Roszieg 25 13
Heskia 28 9
Buxey 29 12
Sawyer30 30 12

Inst. name Orig. size Red. size
Otto-50 20 11
Otto-100 20 12
Otto-150 20 10
Otto-200 20 11
Otto-250 20 12
Otto-300 20 10
Otto-350 20 9
Otto-400 20 10
Otto-450 20 15
Otto-500 20 14

Table 2. Description of the benchmark instances original and reduced size (number of operations), “Otto-i”
denotes the instances from Otto et al. (2013) named “instance n=20-i”

Instance avgScal
Mertens 0.289
Bowman8 0.039
Jaeschke 0.251
Jackson 0.154
Mansoor 0.138
Mitchell 0.090
Roszieg 0.201
Heskia 0.105
Buxey 0.024
Sawyer30 0.071

Instance avgScal
Otto-50 0.297
Otto-100 0.209
Otto-150 0.167
Otto-200 0.210
Otto-250 0.194
Otto-300 0.137
Otto-350 0.070
Otto-400 0.224
Otto-450 0.060
Otto-500 -0.107

Table 3. Correlation of the hypervolume with the average scalability from Wang and Koren (2012)

(2012) gives better values when the difference between the takt time of two consecutive
configurations is small. The increments being averaged, avgScal is lower if the spread
of the τ values for the whole set of reachable configuration is tighter. On the contrary,
the f ′s indicator favors the biggest increment it is possible to obtain when adding a
resource, i.e. the largest possible capacity increment for the lowest possible resource
cost. Moreover, the hypervolume computation gives better values if the values of ρ and
τ are spread on a large range. Thus it is not surprising to see that these two indicators
are not correlated.

In Table 4, we present the correlations between these scalability indicators and the
classical line balancing indicators (takt time, number of stations, idle time, smooth-
ness). We still suppose that the sets of reachable configurations are N0, i.e. all config-
urations of a reachable set are based on the same balancing. All indicators are to be
minimized, thus a value close to 1 indicates a strong positive correlation.

takt time nb stations idle time smoothness
avgScal 0.648 0.010 0.783 0.793
f ′s -0.403 0.979 0.393 0.160

Table 4. Correlation between the scalability indicators and classical line balancing indicators.

Table 4 shows that there are positive correlations between avgScal and all the classi-
cal line balancing indicators, except for the number of stations. On the contrary, there
is no correlation between the classical line balancing indicators and the indicator f ′s,
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except for the number of stations.
As mentioned earlier, the avgScal favors small capacity increments. When the sys-

tem is well-balanced, adding one resource will lead to a small increment. Indeed, by
adding a resource on the bottleneck station, the takt time will be reduced only to
achieve the workload of the second bottleneck station, which is most likely to be
close to the previous takt, since the stations are well-balanced. Thus the correlation of
avgScal with the smoothness ratio was expected. Even if there is a correlation between
avgScal and the smoothness, this correlation is not complete, which is coherent with
Son et al. (2001) stating that there can be unbalanced scalable systems.

Moreover, a well-balanced system has a low idle time, thus the correlation is similar
for this indicator. The indicator avgScal is also correlated with the takt time since the
well-balanced systems offering the smallest capacity increments are those with a low
takt time, leading to a long sequence in the sequential process of adding resources on
the same line. The absence of correlation with the number of stations is due to the
fact that the number of stations alone is not sufficient to obtain well-balanced systems,
and for the unbalanced balancing, some increments are high. In Koren et al. (2017),
the authors stated that the scalability is correlated to the number of stations, which
does not reflect with the indicator avgScal.

However this assertion seems correct for the indicator f ′s, since it presents a strong
positive correlation with the number of stations. This correlation can be explained
by the fact that having a low number of stations allows to derive a larger set of
configurations. Indeed, generally from a balancing, we can derive a configuration for
any number of resources between the number of stations of the balancing and the
maximum number of resources. The hypervolume being highly impacted by the number
of configurations, it tends to have higher values when the number of stations in the
balancing is low.
f ′s is slightly negatively correlated with the takt time. It can be seen as a consequence

of the strong positive correlation with the number of stations, since a low number of
stations implies a high takt time, also explaining that the correlation is negative.
However, it is mitigated by the fact that not all balancing with a high number of
stations has a low takt time. For balancing with a high takt time and a high number of
stations, the value of f ′s is very variable, some can have highly productive configurations
for the number of resources but others not.

The idle time being the product of the number of stations and the takt time, a
similar explanation can be given for the positive correlation between the idle time and
f ′s.

It is interesting to note that f ′s is not correlated with the smoothness, which means
that it is as likely to have a scalable system with a well-balanced system as it is for an
unbalanced one. This is a stronger statement than the one made in Son et al. (2001)
saying that some unbalanced systems could be scalable.

Indeed, Table 4 shows that the classical line balancing indicators cannot be used to
evaluate the scalability of a RMS, save for the number of stations. However, even if
there is a strong correlation between the number of stations and f ′s, we looked more
in-depth at the relationship between these two indicators and we statistically analyzed
the repartition of the f ′s values for the balancing with the lowest number of stations
and the neighborhood N0 (Table 5).

This table shows a significant difference between the minimum and the maximum
value of f ′s, since the maximum is 2 to 4 times more than the minimum value. The first
quartile represents on average an increase, regarding the minimum, of 1 percentage
point, 2 percentage points for the median, 4 percentage points for the third quartile
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Instance min 1st quartile median 3rd quartile max average
Mertens 9.49 11.65 12.95 15.54 28.57 14.36
Bowman8 6.57 8.01 9.69 12.00 17.16 10.26
Jaeschke 7.73 8.80 9.32 10.64 19.05 9.99
Jackson 5.63 6.13 6.88 7.73 14.09 7.30
Mansoor 4.93 5.48 6.37 8.07 12.85 7.00
Mitchell 4.32 5.26 5.85 7.48 11.31 6.42
Roszieg 4.29 4.98 5.76 6.85 12.23 6.31
Heskia 5.33 6.39 7.25 10.97 17.30 8.61
Buxey 4.32 5.17 5.85 7.83 14.36 6.61
Sawyer30 3.93 5.89 6.98 9.38 17.30 7.86
Otto-50 5.51 6.23 6.87 8.10 15.01 7.55
Otto-100 6.38 7.81 8.36 9.33 13.80 8.94
Otto-150 6.91 8.12 8.88 10.29 15.64 9.42
Otto-200 5.53 6.64 7.84 10.21 15.57 8.58
Otto-250 5.68 6.45 7.47 9.12 14.43 8.05
Otto-300 6.69 7.70 8.67 10.55 17.80 9.33
Otto-350 6.70 7.92 9.19 11.80 18.59 10.11
Otto-400 7.01 8.03 8.91 9.87 16.54 9.40
Otto-450 4.52 5.32 5.75 7.01 12.22 6.37
Otto-500 3.76 4.63 4.97 6.13 10.01 5.51
Average 5.76 6.83 7.69 9.44 15.69 8.40

Table 5. Statistical repartition of the value of f ′s (in percentage) restricted to the balancing with the lowest

number of stations for each instance

and 10 percentage points for the maximum. This shows that not all balancing with
the lowest number of stations has a good value for f ′s. Thus minimizing the number of
stations offers no guarantee regarding the scalability of the system, which means that
having a low number of stations is a necessary condition to have good scalability but
not a sufficient one.

All the previous experiments have focused on N0, i.e. deriving configurations with-
out re-assigning the operations to the stations. In the literature, most authors have
often considered reasonable to allow some operations to be reassigned during a recon-
figuration of RMS. In Table 6, we aim to evaluate the gain that could come from the
movement of one operation. It contains the minimum and average values of f ′s of all
balancing considering N0 and N1.

First of all, it can be observed that the average minimum value for N0 is 5.76%.
This value represents the gap between the scalability level achieved with an optimal
balancing when future reconfigurations will not allow to change the balancing and the
ideal scalability level obtained if any balancing could be considered for the reconfig-
urations (i.e., reconfigurations can fully redesign the system without considering its
initial or current configuration). It corresponds to the cost of imposing that all the
configurations of a reachable set must share the same balancing. This cost seems really
low by comparison with the additional costs of reconfiguration times associated with a
change of tools. By comparing the values with the minimum values of f ′s when focusing
only on the balancing with the lowest number of stations (Table 6), it can be noted
that the minimum always corresponds to a balancing with the fewest stations. This
emphasizes that to obtain scalable systems, the number of stations must be minimal.

When allowing one movement of operations (neighborhood N1), this average drops

15



Instance min f ′s on N0 avg fs on N0 min f ′s on N1 avg f ′s on N1

Mertens 9.49 34.98 1.73 27.62
Bowman8 6.57 34.87 1.45 30.36
Jaeschke 7.73 36.55 2.71 32.04
Jackson 5.63 36.89 0.96 33.45
Mansoor 4.93 38.60 1.63 35.81
Mitchell 4.32 39.84 0.74 37.39
Roszieg 4.29 39.74 1.22 37.00
Heskia 5.33 32.21 0.67 28.37
Buxey 4.32 37.81 0.69 35.24
Sawyer30 3.93 37.83 0.41 35.11
Otto-50 5.51 37.30 0.51 33.80
Otto-100 6.38 37.29 0.41 33.74
Otto-150 6.91 34.65 0.70 30.58
Otto-200 5.53 37.78 0.52 34.15
Otto-250 5.68 37.59 0.81 34.16
Otto-300 6.69 32.62 0.67 28.54
Otto-350 6.70 34.32 0.41 29.90
Otto-400 7.01 34.98 0.45 30.83
Otto-450 4.52 40.72 0.69 38.28
Otto-500 3.76 40.06 1.14 38.15
Average 5.76 36.83 0.93 33.23

Table 6. Minimum and average value of f ′s (in percentage) among all balancings, for N0 and N1

to 0.93%, meaning that reachable configurations are an approximation of good quality
of the ideal set. The cost of reconfiguration compared to the ideal set is expected to
be largely lower, since the ideal set could imply moving a large number of operations.

The average value of f ′s over all balancing is around 37 % for all instances when
considering N0 and is only reduced to 33 % when considering N1. It highlights that
the potential gain of optimizing this indicator during the design phase w.r.t. picking a
random solution for scalability (i.e. optimizing other criteria only), remains very close,
above 30 percentage points, whatever the neighborhood considered. Moreover, this
potential gain is much higher than the one obtained by switching from neighborhood
N0 to N1 (around 4 percentage points).

Figure 7 shows the evolution of the minimum value of f ′s with respect to the different
Ni, for the 5 smallest instances of our benchmark. We can notice that the minimum
f ′s quickly decreases when i increases and stabilises after i = 2 or 3. This shows that
allowing only of small number of movements is already enough to achieve the best
configurations.

Finally, we can note that for Jackson and Mansoor instances, the curve stabilises
to a value close but not equal to 0 (respectively 0.07% and 0.01%). This reveals that
the ideal set of configurations for those instances cannot be obtained entirely with
configurations based on a balancing with the same number of stations.

6. Conclusion

Despite scalability being considered to be one of the main characteristics of RMS, its
evaluation at the design phase has not yet received a lot of attention. The existing
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Figure 7. Evaluation of the minimum value of f ′s regarding the length i of the neighborhood Ni

measures in the literature are actually difficult to use, due to some imprecisions in the
definitions, to the multitude of parameters, or to the dependence to the initial state
of the system.

In this paper, we propose a new measure based on a classical multi-objective metric
to assess the scalability level of a balancing by taking into account all the configurations
which can be achieved. An important theoretical result is that, due to the nature of
the problem defined, we proposed a method to enumerate the whole set of balancing
in polynomial time.

The experimental results show that this hypervolume based indicator allows a dif-
ferent evaluation than the smallest increment measure proposed by Wang and Koren
(2012). They also reveal that the usual line balancing criteria are mainly unrelated
with the scalability, enhancing the need for dedicated metrics which could be used
to optimize the scalability at the design step. From a managerial point of view, to
obtain a scalable system, the decision maker does not need a balanced system, as it is
as likely to have a scalable system when implementing a balanced system as with an
unbalanced one. This offers a stronger statement than in Son et al. (2001). It is also
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interesting to note that, similarly to the conclusions reported in Koren et al. (2017),
in our setting, the designer should prefer a lower number of stages, as it is strongly
and positively correlated with the scalability, even without taking the reliability into
account.

Moreover, the experimental results demonstrate that the cost of keeping the same
balancing for the reachable configurations of a design is low if the scalability measure
is taken into account during the design. In addition, this cost rapidly decreases when
allowing few operations to be moved to a different machine when reconfiguring. Indeed,
allowing the move of a single operation is enough to achieve a scalability level with
a gap lower than 1% from the optimum. From a managerial point of view, we can
conclude that, contrary to a reconfiguration for convertibility, when implementing a
reconfiguration for scalability, decision-makers should focus on the first reconfiguration
lever consisting in the addition of resources rather than on rebalancing the operations.
Even if they want to use the second lever and change some of the tools used, they
could restrict their search at one operation moved (i.e. one or two tools impacted)
which will make the reconfiguration problem easier to solve and the reconfiguration
itself easier to process.

Thus further works should seek to develop methods to optimize the scalability indi-
cator when designing RMS, along with some classic economic performance measures.
The proposed measure can also be used to determine further the characteristics of
scalable systems and identify the parameters affecting scalability. As the scalability
characteristic may not be totally independent from the five other key features of RMS,
studying these interactions would be another research axis.

Data availability statement

The data that support the findings of this study are available from the corresponding
author, [AC], upon reasonable request.
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