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Harmonic Balance based Nonsmooth Modal Analysis of

unilaterally constrained discrete systems

Tianzheng Lu & Mathias Legrand

Structural Dynamics and Vibration Laboratory, Department of Mechanical Engineering, McGill University, Canada

Nonsmooth Modal Analysis of a unilaterally constrained one-dimensional bar with constant cross-sectional

area was recently proposed. The corresponding formulation took advantage of the d’Alembert solution available

for such systems and does not require any space semi-discretization of the governing equations. However, it is

unable to cope with non-constant cross-sectional area bars, for instance. The present work suggests a formulation

relying on various space semi-discretization methodologies (such as finite elements, Rayleigh-Ritz techniques,

component mode synthesis, modal superposition and reduced-order models) where the complementarity Signorini

condition, reflecting the unilateral contact constraint, is enforced in a weighted residual sense in time through the

Harmonic Balance Method. Importantly, the Newton impact law, classically required for uniqueness purposes in a

dynamics framework, is here explicitly ignored in the formulation and attendant solution strategy and is, instead,

implicitly satisfied in a weighted residual sense. It corresponds to a restitution coefficient e D 1 as required for

energy preservation and existence of periodic solutions. Periodic responses are investigated in the form of classical

energy-frequency backbone curves along with the associated displacement fields. It is found that for the constant

cross-section benchmark system, the results compare well with existing works and the proposed methodology

stands as a viable option in the field of interest when semi-discretization in space is required.
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1 Introduction

Nonsmooth modal analysis (NSA) is one incarnation of nonlinear modal analysis dedicated to nonsmooth systems.

A few numerical schemes have been proposed to perform NSA of continuous systems. For instance, the Wave

Finite Element Method (WFEM) with a switch in the boundary conditions [34] could partially solve the case of a

one-dimensional bar system. Another solution based on the Time-Domain Boundary Element Method (TD-BEM)

is also available [31]. However, for the problem at hand, it requires challenging computations involving the

initial conditions and the attendant space semi-discretization of the domain of interest: this is not optimal since

it heavily reduces the computational efficiency of TD-BEM. In [15], the authors suggested a numerical scheme

which combines the boundary element method (BEM) to the Harmonic Balance Method (HBM), equivalent, for the

system of interest, to numerically approximating the periodic solutions to the governing equations expressed in the

frequency domain. Similarly to [34], the solution strategy is able to perform NSAs for bar systems with constant

cross-section by taking advantage of the existence of the d’Alembert solution expressed in the frequency domain.

However, for one-dimensional systems with space-dependent parameters, the methodology would fail. Accordingly,

the present work suggests a family of methods combining classical space semi-discretization along with HBM in

1

https://orcid.org/0000-0002-4455-6604


time. Such space semi-discretization has two major common consequences on the governing equations: (1) the

need of an impact law at the contact interface where “discrete” mass is generated by the discretization scheme and

(2) the detrimental perturbation of the spectrum of the system, all the more in the high-frequency range. Although

common, this second aspect is a challenge for the application of interest since it is known that the targeted nonlinear

modal motions are not everywhere differentiable progressive waves [34].

The present paper is organized as follows. In Section 2, the one-dimensional non-homogeneous system and

attendant governing equations are briefly introduced. Section 3 explains the proposed solution method, which

includes FEM-like semi-discretization in space, HBM in time and a weighted residual enforcement of the Signorini

condition at the contact boundary. Thorough convergence analysis is detailed in Section 4. Nonsmooth modal

analysis is conducted in Section 5 to illustrate the capabilities of the developed tool.

2 System of interest

As an extension of [15], the present work explores the modal response of one-dimensional academic systems with

unilateral conditions on the boundary, such as the one illustrated in Figure 1. As already said, the main novelty

g.t/

x u.x; t/

L

E; �; A.x/

Figure 1: System of interest: a one-dimensional bar with non-constant cross-sectional area.

compared to [15] is on the required semi-discretization of the governing equations in space, in addition to the already

existing semi-discretization in time implemented via HBM. Young’s modulus E and mass density � are assumed

space-independent but the cross-section area A.x/ is space-dependent. As already said, the novelty compared to

[15] is on the needed semi-discretization of the governing equations in space, in addition to the already existing

semi-discretization in time. The length of the bar system is denoted by L. Young’s modulus E and mass density �

are assumed space-independent but the cross-section area A.x/ is space-dependent.

A brief non-dimensional analysis is introduced to facilitate the exposition of the work and analysis. The

non-dimensional quantities come with an overbar notation such that N� is the non-dimensional version of �. Are

thus defined non-dimensional space Nx D x=L, time Nt D t=� and displacement Nu D u=L1 with the characteristic

time � D L=c where c D
p

E=�. Derivatives of u are found using the chains rule: ux D L Nu Nx Nxx D Nu Nx and

ut D L NuNt Ntt D L NuNt =� . Higher derivatives can be found in a similar way: uxx D Nu Nx Nx=L and ut t D L NuNt Nt =�2.

Meanwhile, non-dimensional NA.x/ is introduced via NA.x/ D A.x/=A0 where A0 is the average cross-section area

of the bar. In the remainder, the upper bar notation is dropped and all considered quantities are non-dimensional.

With the introduced notation, the governing equation of the system illustrated in Figure 1 reads

.A.x/ux.x; t//x � A.x/ut t .x; t/ D 0; x 2 �0 I 1Œ (1)

The system is not solicited by any other forces. The boundary conditions are as follows:

Dirichlet System clamped at x D 0 so that a homogeneous Dirichlet boundary condition u.0; t/ D 0 applies.

Signorini Unilateral contact at x D 1. Defining the gap g.t/ D g0 � u.1; t/ separating the bar tip to the rigid

foundation where g0 is the initial gap distance, the Signorini condition takes the classical form g.t/ � 0,

p.t/ � 0, and g.t/p.t/ D 0 where p.t/ is the contact force acting on the bar at x D 1. This boundary

condition could equivalently be expressed as the equality [1, 28]

r.u.1; t/; p.t// � p.t/ C maxŒ˛.u.1; t/ � g0/ � p.t/; 0� D 0: (2)

among other possible equality-based expressions. In Equation (2), ˛ is an arbitrary strictly positive number

that can be tuned to numerically ensure that the various terms in the expression have similar magnitudes.

3 Solution method

The present work targets the modal response of the system detailed above, as an extension of previous works

investigating bars with constant cross-sections [15, 30, 34]. Space semi-discrete systems were already explored in

[13, 29] where the proposed formulation had to include an energy-preserving impact law for the contacting mass.

This resulted in solutions exhibiting chattering-like responses with the additional difficulty of counting the number

of impacts per period in the solution method. Methodologies with regularization of the unilateral contact conditions

also exist, as discussed in [15]. In the present contribution, we adapt the solution strategy introduced in [15] to

discrete systems where the unilateral contact conditions are neither regularized nor complemented with an impact

law but satisfied in a weak sense only over a period of the energy-preserving modal motion.
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3.1 Space semi-discretization and shape functions

Since periodic responses are targeted, a frequency-domain formulation has appealing features and a Fourier

transform of the unknown displacement and contact force is used [15], which yields the Helmholtz equation

.A.x/ Oux.x; !//x C !2A.x/ Ou.x; !/ D 0; x 2 �0 I 1Œ: (3)

Note that this transformation is not really needed since the classical HBM applied on an Ordinary Differential

Equation would result in the same formulation. However, it simplifies the exposition of the derivations. Equation (3)

is first expressed in its weak form in space: Find Ou such that 8v with v.0/ D 0,

Z 1

0

vx.x/A.x/ Oux.x; !/ dx � !2

Z 1

0

v.x/A.x/ Ou.x; !/ dx D v.1/A.1/ Oux.1; !/: (4)

The Fourier transform of the contact force p.t/ is Op.!/ satisfying the identity

Op.!/ D A.1/ Oux.1; !/ (5)

used in the coming developments. The two quantities Ou and Op are linearly independent and considered as two

unknowns in the sequel. Space discretization of the trial and test functions reads

Ou.x; !/ � OuN .x; !/ D
N

X

iD1

�i .x/ Oui .!/ and v.x/ � vN .x/ D
N

X

iD1

�i .x/vi (6)

where �i .x/, i D 1; : : : ; N are the chosen shape functions stored in the vector �.x/ � Œ�1.x/; : : : ; �N .x/�>.

Inserting OuN .x; !/ and vN .x/ from Equation (6) into Equation (4) leads to the system of linear equations

Z 1

0

�

A.x/�x.x/>�x.x/ � !2A.x/�.x/>�.x/
�

dx Ou.!/ D Op.!/ (7)

with the frequency-domain displacement vector1 Ou.!/ � Œ Ou1.!/; : : : ; OuN .!/�> and the contact force vector

Op.!/ D �.1/ Op.!/. Evaluating the integral leads to

.K � !2M/ Ou.!/ D Op.!/: (8)

Equation (8) linearly connects the unknown discretized displacements to the unknown unilateral contact force. Let

us define G.!/ � K � !2M so that Equation (8) becomes

G.!/ Ou.!/ D Op.!/ (9)

that is Ou.!/ D G.!/�1 Op.!/ as soon as G.!/ is invertible, which is true here away from its eigenvalues, which are

the natural frequencies of the clamped-free bar. Accordingly, the internal displacements of the bar can be condensed

to the boundary x D 1 through the expression

OuN .1; !/ D �.1/> Ou.!/ D �.1/>G.!/�1�.1/ Op.!/ D GN .!/ Op.!/ (10)

with GN .!/ � �.1/>G.!/�1�.1/, approximation of the exact ratio G.!/ D Ou.1; !/= Op.!/ induced by the space

semi-discretization with the property limN !1 GN .!/ D G.!/ in some sense to be specified. For a constant cross-

section bar system, it is known that G.!/ D tan !=! [15, Eq. (23)]2. However, there is an important difference

in the construction of the functions G.!/ in [15] and GN .!/ in the present paper. The former is established on

the strong solution to the problem while the latter is established on the weak solution. This results in a distinct

definition of the strain term, ie ux and Oux , either strong or weak x-derivative of u and Ou, respectively, which has

consequences on the convergence of the proposed scheme, as explained later.

3.1.1 Lagrange linear finite elements

Equation (4) is discretized into N classical Lagrange P1 finite elements (labelled as ‘FE’ in the sequel) with N C 1

nodes xi , i D 0; : : : ; N and attendant hat shape functions

�i .x/ D 1

h

8

ˆ

<

ˆ

:

x � xi�1 x 2 Œxi�1; xi �;

xiC1 � x x 2 Œxi ; xiC1�;

0 otherwise.

(11)

1Note that the participation OuN .!/ of shape function �N .x/ should not be confused with the discretized displacement OuN .x; !/.
2Note that the scalar G.!/ should not be confused with the matrix G.!/.
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where the mesh size is h D 1=N . Accordingly, Oui .!/ � Ou.ih; !/, i D 0; : : : ; N . Finding the expression of GN .!/

in Equation (10) requires an inversion of the matrix G.!/ for every !, which might be computationally expensive.

This can be accelerated since G.!/ has a symmetric tridiagonal structure of the form

G.!/ D

2

6

6

6

6

4

d1 c1 0

c1

: : :
: : :

: : : cN �1

0 cN �1 dN

3

7

7

7

7

5

(12)

for the considered finite element family, where ci and di , i D 1; : : : ; N are abbreviations for ci .!/ and di .!/,

respectively. A formal Gaussian elimination leads to GN .!/ D 1=.dN � cN �1aN �1/ with a1 D c1=d1 and

ai D ci =.di � ci�1ai�1/ for i D 2; : : : ; N � 1.

3.1.2 Component mode synthesis: Craig-Bampton method

Component mode synthesis (CMS) techniques are widely employed to reduce the computational cost associated

to the analysis of complex engineering structures. Among many incarnations, an attractive option for the space

semi-discretization is the Craig-Bampton formulation [6], labelled as ‘CB’ in the remainder. To generate the CB

model, both fixed-interface normal modes and constraint modes of the considered structure are calculated. For

the problem at hand, the interface is located at x D 1 and the family consists in N � 1 natural modeshapes of the

clamped-clamped bar complemented by one static mode, which can be seen as a lifting function, induced by a

prescribed unit displacement at the interface. Collectively, for a constant cross-section bar, this reads

�i .x/ D sin.i�x/; i D 1; 2; : : : ; N � 1 and �N .x/ D x; x 2 Œ0; 1�: (13)

In case of a non-constant cross-section bar, the family is computed numerically instead, based on a FE discretization

of the formulation using a sufficiently fine mesh.

3.1.3 Linear normal modes

The last considered discretization lies on a truncated family of natural modes of the clamped-free bar, referred to as

‘LM’ in this work. For a constant cross-sectional area, the normalized natural modes read

�i .x/ D
p

2 sin.!i x/ with !i D .2i � 1/�=2; i D 1; 2; : : : ; N; x 2 Œ0; 1�: (14)

Such shape functions are inserted in Equation (6) and Equation (8) is updated accordingly: M D I and K is a strictly

diagonal matrix with entries !2
i , i D 1; 2; : : : ; N .

For a space-dependent cross-sections, the discretized modeshapes of the system are used instead, as exact

solutions are only known for limited cases [20]. Such modes are computed from the above FE approximation with
NN finite elements by solving the classical eigenvalue problem .K � !2M/u D 0. Only the first N � NN eigenpairs

.!i ; ui / are kept in the (modal) discretization of the equations.

The expansion family suggested in Equation (14), or its numerical counterpart, seems awkward for the problem

of interest, because its implies that the stress A.1/ OuN;x.1; !/ of the approximate solution vanishes. In other words,

the family satisfies an homogeneous Neumann boundary condition at x D 1 and is thus not appropriate to sustain

the unilateral contact force arising in the Signorini boundary condition. A classical approach is to introduce an

additional static mode induced by a unit prescribed force at x D 1 into Equation (14), similar to the CB static mode.

This is known as the Craig-Chang method [17, 22], labelled ‘CC’ below. For the considered bar system, it improves

the accuracy of the approximation compared to LM since it can cope with a non-vanishing stress at x D 1 thus

capturing the participation of the unilateral contact term. However, the diagonal structure of the reduced matrices is

lost.

3.2 Time-domain discretization for periodic solutions

Given Equations (9) and (10), the only unknowns of the problem are (1) the nodal displacement OuN .!/ and (2) the

corresponding nodal contact force Op.!/. Since periodic solutions are of interest, it is natural to expand both of them

as truncated Fourier series with a common fundamental frequency �, that is

p.t/ � pM .t/ D
M

X

kD0

ak cos.k�t/ D F.t/>a and uN .1; t/ � uNM .1; t/ D
M

X

kD0

bk cos.k�t/ D F.t/>b (15)

with the notation F.t/ D Œ1; cos.�t/; : : : ; cos.M�t/�. Only the cosine terms are considered in the Fourier series as

suggested in [15]. The corresponding Fourier transforms read

OpM .!/ D
M

X

kD0

akık� and OuNM .!/ D
M

X

kD0

bkık�: (16)
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Accordingly, the real coefficients .ak ; bk/, k D 0; : : : ; M are the unknowns of the problem now discretized in time,

along with �. Inserting Equation (16) into Equation (10) leads to

bk D GN .k�/ak ; k D 0; : : : ; M (17)

which can also be read as a Harmonic Balance version of Equation (10). Other time-domain families such as

wavelets [11, 12] could also be implemented in order to replace Fourier functions. However, Equation (17) would

have to be updated accordingly with a more complicated expression.

3.3 Unilateral contact condition

Through Equation (17), the coefficients bk are expressed in terms of the coefficients ak which are thus the only

remaining unknowns along with �. As suggested in [15], they can be solved for via a purely numerical version of

the Harmonic Balance Method performed on Equation (2) (unilateral contact conditions) and resulting in

gk.�; a/ D 1

T

Z T

0

cos.k�t/
�

maxŒ˛.uNM .1; t/ � g0/ C pM .t/; 0� � pM .t/
�

dt D 0; k D 0; : : : ; M (18)

where T D 2�=� is the period and where the expansions (15) are first inserted in the integrand. In order to

solve Equation (18) which bears M C 2 unknowns for M C 1 equations, sequential continuation is conducted

with � chosen as the continuation parameter [15]. The system of nonlinear equations (18) in the coefficients ak ,

k D 0; : : : ; M , is solved numerically using the trust-region dogleg solver available in Matlab® [15, 21]. The

integrals in Equation (18) are approximated numerically using classical quadrature schemes. The gradient of g.�; a/

is also expressed analytically in a piecewise manner and evaluated numerically in the nonlinear solver. It reads

@agk.�; a/ D 1

T

Z T

0

cos.k�t/
�

@a maxŒ˛.uNM .1; t/�g0/CpM .t/; 0��@apM .t/
�

dt; k D 0; 1; : : : ; M (19)

where the partial differentiation of the max operator is evaluated following Clarke’s subdifferential rule [5]:

@a maxŒ˛.uNM .1; t/�g0/CpM .t/; 0� D
(

˛@auNM .1; t/ C @apM .t/ if ˛.uNM .1; t/ � g0/ C pM .t/ > 0

0 otherwise.
(20)

The partial derivatives in Equations (19) and (20) have explicit expressions: @apM .t/ D F.t/ from Equation (15)

and @auNM .1; t/ D FG.t/ with FG.t/ � ŒGN .0/; cos.�t/GN .�/; : : : ; cos.M�t/GN .M�/� according to Equa-

tions (15) and (17). They are explicitly implemented in the nonlinear solver, which greatly reduces the computing

cost with a gain of about 50 % compared to a purely numerical procedure where the gradient of the nonlinear

function is approximated via numerical differentiation.

After the space semi-discretization exposed in Section 3.1, the formulation summarized by Equations (1) and (2)

would normally be supplemented with an impact law to guarantee uniqueness. This aspect is intentionally ignored

in the present work. Our conjecture is that by satisfying the Signorini conditions in a weighted residual sense only

within a space of periodic functions in time, the purely elastic Newton’s impact law with e D 1 is recovered as

the number N of shape functions tends to infinity. We are not aware of any mathematical proof of this statement.

However, in addition to the remainder of the paper, Appendix A shows some numerical evidence for one-dof

academic systems.

Solution strategies combining frequency and time domains for nonsmooth systems have already been proved

successful, such as the Dynamic Lagrangian Frequency–Time (DLFT) methodology [18] or the hybrid Shooting and

Harmonic Balance method for unilaterally constrained systems [25]. The DLFT was also shown to compare well

with experimental investigations [4] and extended to turbomachinery applications with fretting wear [23, 24]. The

solution method developed above for discrete systems with unilateral contact condition can be extended to systems

with friction since the latter can also be expressed in terms of nonsmooth equalities [9, 14, 27]. Even though the

above approach and the DLFT differ in the way they handle the contact term in the governing equation and the

solution algorithm, they share the common feature of generating solutions satisfying the unilateral constraint in an

integral rather than a pointwise sense. Another difference is that the DLFT explicitly requires the AFT procedure [3]

in order to navigate between the frequency domain where the equation of motion is solved and the time domain

(over a single period) where the unilateral contact and friction conditions are enforced. In the proposed method, this

operation is performed implicitly in the sense that the inverse (Fast) Fourier Transform of the AFT is equivalent to

Equation (15) while the direct (Fast) Fourier Transform is equivalent to Equation (18). Finally, the AFT is tightly

connected to Fourier functions, also chosen in the present work. However, in Equations (15) and (18), it would be

straightforward to implement other periodic families such as periodized wavelets for instance [11].

4 Convergence analysis

Errors introduced in the approximated solution are twofold: space discretization through the number of shape

functions N and time/frequency discretization through the number of harmonics M . They are not independent and

5



at least related via Expression (17) which acts as a necessary yet not sufficient condition to ensure an accurate

approximation. Once a frequency � and a number of harmonics M are specified, it is advised to accurately compute

GN .k�/ for k D 0; : : : ; M to properly satisfy Equation (17). In other words, N should increase with M .

4.1 Transfer function

The first part of the convergence analysis is on the “transfer function” G.!/, which captures the linear dynamics

within the clamped-free bar system, and its (various) approximation(s) GN .!/ defined in Equation (10). The

frequency range on which G.!/ is investigated is ! 2 �0 I 200Œ. This is dictated by the fact that the frequency of

the nonsmooth modes computed later lies near � D 5, along with M D 40 so that the highest harmonic is around

! D M� D 200, M being selected based on the full convergence analysis detailed in Section 4.2. Covering

such frequency range in the convergence analysis ensures the accuracy of the results. However, this range can be

reconsidered depending on the modal motion of interest. Also, as already said, convergence on the transfer function

is a necessary yet insufficient ingredient for the convergence of the proposed approximation.

Constant cross-section First, a constant cross-section bar is considered, for which G.!/ D tan !=!. Figure 2

shows a comparison for various N with FE discretization. The approximation with N D 128 shows a severely

growing phase shift with !. However, the FE approximation with N D 4096 compares very well with the exact

transfer function in the considered frequency interval.
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.!

/j
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�
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1
0

�
1

!

Figure 2: Constant cross-section bar transfer function: exact solution [ ], FE with N D 128 [ ] and N D 4096 [ ].

Figure 3 shows a comparison where the LM approximation embeds N clamp-free linear modes computed

numerically via FE with NN D 20N finite elements. For N D 50, the increasing phase shift between the exact an

approximate solutions remains limited in the considered frequency range. At frequencies higher than 150 rad/s,

the approximation is no longer meaningful and the number of modes in the reduction should be increased to

approximately N D 400 to recover accuracy.
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!

Figure 3: Constant cross-section bar transfer function: exact solution [ ], LM for N D 50 [ ] and N D 400 [ ]. With

N D 50, jGN .!/j goes out of bounds for ! > 155.
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Figure 4 provides a comparison with the CB approximation. The Craig-Bampton modes are computed numer-
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Figure 4: Constant cross-section bar transfer function: exact solution [ ], CB with N D 50 [ ] and N D 400 [ ].

ically via FE with NN D 20N finite elements. At N D 50, the approximate function GN .!/ matches the exact

transfer function well in the range ! 2 �0 I 110Œ rad/s. The accuracy quickly reduces in the range ! 2 �110 I 150Œ

rad/s. At frequency higher than 150 rad=s, the approximation diverges. Again, accuracy is recovered with N D 400

in the range ! 2 �0 I 200Œ rad/s.

The relative error

EN .!/ D
ˇ

ˇ

ˇ

ˇ

GN .!/ � G.!/

G.!/

ˇ

ˇ

ˇ

ˇ

(21)

is now introduced to better understand how the error depends on N and !. In Figure 5(a), the relative error at

! D 200 (the upper bound frequency in the considered interval where error is the largest) for increasing N is shown

for all three methods in addition to CC. Both LM and CB reduced-order models start to converge around N D 100

while the FE starts to converge around N D 1000. CB and FE converge at rate close to O.1=N 2/ whereas LM

converges at a rate close to O.1=N /. The lower convergence rate of LM is caused by the homogeneous Neumann

boundary condition used at x D 1 to construct the expansion family, as discussed above and investigated further in

Appendix B. As expected and shown in Figure 5(a), CC converges faster, at a rate close to O.1=N 2/. However at

! D 200, N D 400 CC’s relative error is not significantly better than that of LM with N D 400.
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Figure 5: Relative error on the transfer function for a constant cross-section bar: (a) in terms of N at ! D 200: FE [ ],

LM [ ], CC [ ] and CB [ ]; (b) in terms of !: FE with N D 4096 [ ], LM with N D 400 [ ], CC with

N D 400 [ ] and CB with N D 400 [ ]. Vertical asymptotes exist on every max and min (green curve) value but are not

shown for clarity purposes.

The relative error versus ! is shown in Figure 5(b) for a sufficiently large N , again for each of the proposed

methods, see Figures 2 to 4. All methods exhibit relative error spikes (vertical asymptotes) located at the clamped-

free and clamped-clamped system’s natural frequencies where G.!/ diverges or vanishes, respectively. The error

for FE, CB and CC increases at the rate O.!3/ whereas the error of LM increases at the rate O.!2/ which is better.

The relative error in the constant cross-section case is bounded by O.!3=N 2/ for FE, which matches known

results [2, 10] and CB behaves in the same way. LM error is bounded by O.!2=N / which indicates a slower

convergence versus N . CC improves over LM and is bounded by O.!3=N 2/. Overall, FE and CB converge the

fastest but CB exhibits a lower error at specified N and is thus considered the best option in the estimation of the

transfer function.
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Non-constant cross-section A non-constant cross-section case is also explored with A.x/ D 1:5 � x. The exact

expression for G.!/ is no longer available. Instead, it is approximated and defined as the “true” solution via FE with

N D 25600. The relative error is provided in Figure 6. The transfer function plots are skipped in this paragraph

since they are very similar to that of the constant cross-section case, see Figures 2 to 4. Overall, the convergence is

similar to that of the constant cross-section case. CB is still the optimal method. CC shares the same convergence

rate as CB but has lower accuracy at a specified N while its computational cost is almost the same as CB. It is no

longer considered in the remainder of this work.
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Figure 6: Relative error on the transfer function for the non-constant cross-section bar: (a) in terms of N at ! D 200: FE [ ],

LM [ ], and CB [ ]; (b) in terms of !: FE with N D 4096 [ ], LM with N D 400 [ ] and CB with N D 400 [ ].

4.2 Unilateral contact residual

The second convergence analysis focuses on the nonlinear Signorini condition introduced in Equation (2). A periodic

solution at a specified frequency is targeted for each configuration. Convergence is explored via the L2 error norm

RNM D
Z T

0

�

maxŒ˛.uNM .1; t/ � g0/ C pM .t/; 0� � pM .t/
�2

dt (22)

which depends on both N and M . A similar convergence analysis in terms of M only is provided in [15].

Constant cross-section This section considers the initial gap g0 D 0:001. The convergence analysis is conducted

on a periodic solution located on the branch of the first nonsmooth mode in Figure 16 at � D 1:788 � 1:138!1.

Also, in the sequel, the i th natural frequency of the linear clamped-free bar is labelled !i . Computed boundary

displacement and contact force are shown in Figure 7. The displacement plots via all three methods are similar, so

do the contact force plots. The corresponding error norm for each method is shown in Figure 8. As explained in
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Figure 7: Boundary displacement uNM .1; t/ [ ] and contact force pM .t/ [ ] along with the exact contact force solution

p.t/ [ ] for a periodic solution with active contact at � D 1:138!1, M D 40. Constant cross-section. (a) FE with N D 4096,

(b) LM with N D 400 LM model and (c) CB with N D 400.

[15], the error is affected by Gibbs’ phenomenon which arises along time in the contact force (and even in space for

LM), and could theoretically be reduced, in L2 sense, by increasing M . For a large specified N , the approximate

transfer function GN .!/ is sufficiently accurate and the error norm reduces with respect to M . For a specified M ,

the error norm reduces only for a sufficiently large N , above which the transfer function is well approximated, but

reaches a plateau, mainly because Gibbs’ phenomenon is dominant and dictated by M . Overall, convergence is

achieved with the convergence rate of O.1=M/ for a sufficiently high N .

Non-constant cross-section This section considers the non-constant cross-section A.x/ D 1:5 � x. Again, one

specific solution located on the branch of the first nonsmooth mode in Figure 17 at � D 1:102!1 is investigated.

The displacement and contact force at x D 1 are shown in Figure 9. All three methods converge to the same solution.

8



101

102

102

103

104

10�2

10�1

100

MN

R
N

M

(a)

101

102

102

103

10�2

10�1

100

MN

R
N

M

(b)

101

102

102

103

10�2

10�1

100

MN

R
N

M

(c)

Figure 8: Error norm RNM . Constant cross-section bar at � D 1:138!1. (a) FE, (b) LM and (c) CB.
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Figure 9: Boundary displacement uNM .1; t/ [ ] and contact force pM .t/ [ ] for a periodic solution with active contact

at � D 1:102!1, M D 40. Non-constant cross-section A.x/ D 1:5 � x. (a) FE with N D 4096, (b) LM with N D 400 and

(c) CB with N D 400.

The overall convergence behavior shown in Figure 10 is similar to that of the constant cross-section case. However,

it is worth noting that the error reduces faster than for the constant cross-section counterpart. The convergence

rate reaches approximately O.1=M 2/ for a sufficiently high N . This can be explained by the difference in the

“nature” of the contact force between the two solutions. For the constant cross-section configuration, the exact

contact force is known to be a step function, with attendant numerical difficulties induced by Gibbs’ phenomenon.

For the non-constant cross-section configuration, the contact force is instead a continuous function of time with

limited Gibbs’ effect. However, this is only for the chosen solution and various others are compared in Section 5.2.
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Figure 10: Convergence of error norm RNM . Non-constant cross-section system with A.x/ D 1:5 � x at � D 1:102!1. (a) FE,

(b) LM and (c) CB.

Overall, the suggested methodology exhibits appropriate convergence properties for both constant and non-

constant cross-sections along with the proposed space discretizations.

4.3 Unilateral contact condition

In this section, an accurate GN is assumed. The question to be addressed is on how the relationship between the

approximated contact force pM .t/ and the approximated stress A.1/uNM;x.1; t/ is enforced. The two quantities are

theoretically equal to each other, see in Equation (5) used in the weak formulation. However, the contact force is an

unknown of the problem while the stress term is retrieved from the displacement field through space differentiation

of the shape functions. The various space semi-discretizations have implications on how these quantities are actually

computed.

Constant cross-section and gap g0 D 0:001 are considered. The convergence analysis is conducted on a solution

located on the branch of the first nonsmooth mode at � D 1:138!1. In Figure 11, stress fields are displayed and

the focus is on comparing the solutions at x D 1. All plots exhibit oscillatory overshoot dominated by Gibbs’

phenomenon initiated at the contact interface by the Fourier approximation of the step-like contact force which

then propagates to the whole domain by wave propagation mechanisms. The approximation of the spectrum of the

9



(a) (b) (c)

Figure 11: Stress field of a periodic solution with unilateral contact at � D 1:788. Constant cross-section. (a) FE with

N D 4096, (b) LM with N D 400 and (c) CB with N D 400. Axis labels detailed in [15, Fig 3(a)].

wave equation differential operator might play a role as well but the differences between the plots being minimal,

it does not seem to be critical here. Gibbs’ pollution in the strain field can be reduced via filtering techniques for

instance [8]. This aspect is not discussed in the present work. Also, in contrat to the WFEM-based solution [34], the

same Gibbs’ phenomenon arises in the stress fields computed using the methodology exposed in [15] (again, with a

Fourier discretization in time only and not in space) even though they were not shown in the paper. FE and CB with

their respective discretization show almost no difference between pM .t/ and EAuNM;x.1; t/. However, with LM,

the two quantities can be clearly distinguished. Such a difference is due to the nature of the clamp-free modes used

in the LM discretization: each expansion mode satisfies �i;x.1/ D 0 such that uNM;x.1; t/ D 0 holds. However,

in the proposed plot, each spatial derivative is estimated numerically via finite difference with the consequence

that the approximated strain is approximately 0 only, as shown in Figure 12(b). Clarifying information is provided

in Appendix B. Away from the contact interface, for x < 1, the stress is approximated properly if we ignore the

discussed pollution effect.
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Figure 12: Boundary displacement uNM .1; t/ [ ] and contact force pM .t/ [ ] along with approximated contact force

A.1/uNM;x.1; t/ [ ] for a periodic solution with active contact at � D 1:138!1, M D 40. Constant cross-section. (a) FE

with N D 4096, (b) LM with N D 400 and (c) CB with N D 400.

Convergence analysis is conducted through the L2 error norm

RN D 1

T

Z T

0

.pM .t/ � A.1/uNM;x.1; t//2 dt (23)

which depends on N and M and measures how well Equation (5) is enforced. Since convergence with respect to N

is of interest, the number of harmonics is set to M D 40. The convergence plot is shown in Figure 13(a). The error

of both FE and CB behaves in O.1=N / with CB error below. LM does not converge due to the considered shape

functions. The L2-norm plot in Figure 13(b) for the non-constant cross-section case contact force convergence

analysis also leads to the same conclusion.
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Figure 13: Contact force error RN for NSM solution: FE [ ], LM [ ] and CB [ ]. (a) Constant cross-section, M D 40,

� D 1:138!1, (b) non-constant cross-section A.x/ D 1:5 � x, M D 40, � D 1:102!1.
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5 Nonsmooth modal analysis

In this section, the above solution strategy is used to perform nonsmooth modal analysis on a few bar systems

mainly to illustrate its capabilities. The classical sequential continuation technique [19] is implemented where � is

successively increased by a small given increment on a given interval of interest. Accordingly, the nonlinear system

is solved for the Fourier coefficients only.

Attendant subharmonics of the natural frequencies are also labelled to help identify potential nonlinear modal

behaviors. The backbone curve is normalized with respect to the energy of the first linear grazing mode of the

system. Finally, g0 D 0:001 and M D 40 are considered in all simulations.

5.1 Benchmark case: constant cross-section

A constant cross-section is considered as a benchmark. This configuration was investigated in previous works [15,

16, 30–34] using a different solution strategy. The FE discretizations N D 4096 and N D 128 are used to

capture high and low resolution solutions, and compared to FD-BEM/HBM results with the exact transfer function

G.!/ [15]. The purpose of NSA of the benchmark system is to show how the accuracy of GN .!/ at high frequency

affects the NSA.

Figure 14 shows the three shown backbone curves computed via sequential continuation using FE in the current

investigation. For a sufficiently large N , the results in Figure 14(a) agree well with the FD-BEM/HBM results
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Figure 14: First NSM backbone curve. Constant cross-section. (a) FE with N D 4096, (b) FE with N D 128 and (c)

FD-BEM/HBM.

exposed in Figure 14(c). However, the approximation with N D 128 cannot accurately follow the main back-bone

curve, as shown in Figure 14(b) which features a cloud of points. This phenomenon is induced by the error in GN

with a low N : high-frequency content in the solution is missed. Such statement is further supported by the plots of

the displacement and contact force in Figure 15. It should be noted that a number of internal resonances are known

to exist along this main backbone curve and are numerically challenging to track.
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Figure 15: Boundary displacement uNM .1; t/ [ ] and strain pM .t/ [ ] along with Signorini residual r [ ] for a periodic

solution with active contact at � D 1:146!1 (a) FE with N D 4096, (b) FE with N D 128 and (c) FD-BEM.

The backbone curves computed via FE, LM and CB are compared in Figure 16. In the vicinity of !1, all three

methods were unable to capture the grazing-like solutions similar in nature to the linear modes. In this region, the

nonlinear solver tends to converge to the trivial solution because the contact duration is short which would require

higher harmonics in the approximation to be well captured. Around 4!1=3, all three methods perform similarly.

FE and CB still exhibit thin clouds of points just above the main backbone curve as shown in Figure 16(a) and (c).

They actually represent many short vertical backbone branches induced by internal resonances in the system. LM

instead captures a few such vertical branches, on a larger energy range however, as shown in Figure 16(b).

All three methods with appropriate choice of N and M can correctly predict the topology of the low-energy

first backbone curve, and some of the subsequent ones as shown in the remainder, even though it is clear that FE

and even more CB perform better. The latter is thus selected in the nonsmooth modal analysis of the non-constant

cross-section bar detailed in Section 5.2.
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Figure 16: Backbone curve of first NSM. Constant cross-section bar: (a) FE with N D 4096, (b) LM with N D 400 and (c) CB

with N D 400.

5.2 Non-constant cross-section

In this section, the modal response of the system with A.x/ D 1:5 � x is explored via CB with N D 400. It should

be noted that the dynamics observed in the bar responses is very rich and a thorough examination is out-of-scope

of this paper. Instead, this part of the work plays the role of a proof-of-concept of the developed methodology.

Accordingly, the analysis is focused on the similarities shared with the constant cross-section system. To provide an

idea of the computational cost associated to these calculations, a personal laptop with a 3.8GHz CPU and 12 threads

was used and the computation of a single backbone curve with 1000 points required about one minute.

In Figure 17, the first [green] and second [red] nonsmooth modes along with subharmonic 2 of the second mode

[orange], in the vicinity of !2=2, are shown. In contrast to the constant cross-section bar, a major discontinuity
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Figure 17: Backbone curves of the non-constant cross-section case via CB, N D 400. First mode [ ], second mode [ ], and

subharmonic 2 of the second mode [ ].

in the first backbone curve arises between points labelled ‘a’ and ‘b’. The corresponding boundary displacement,

contact force and Signorini residual are compared in Figure 18(a) and (b). The displacement fields within the

bar are indicated in Figure 19(a) and (b) which also shows the displacement field of the second mode along with

subharmonic 2 of the second mode. The two modal motions a and b feature distinct patterns in displacement
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Figure 18: Boundary displacement uNM .1; t/ [ ] and contact force pM .t/ [ ] along with Signorini residual r [ ] of

different modes: (a) Mode ‘a’ in Figure 17, (b) Mode ‘b’ in Figure 17

and contact force. In order to better understand the underlying mechanism breaking the main backbone curve, the

nonlinear modal solution on the first backbone curve are projected on the linear modes of the system as suggested in

[32]. The projection on each linear mode is defined to be

ak.t/ D
R L

0
Uk.x/uNM .x; t/ dx

R L

0
Uk.x/Uk.x/ dx

(24)

where Uk.x/, k 2 1; 2; : : : are the linear modes of the clamped-free system. The first seven linear modes are

considered in this work. The average participation Pk of the k-th linear mode in the NSM over one period T of the
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Figure 19: Displacement field of the second mode: in Figure 17, (a) Mode ‘a’, (b) Mode ‘b’, (c) Mode ‘c’, (d) Mode ‘d’, (e)

Mode ‘e’, (f) Mode ‘f’. Axis labels detailed in [15, Fig 3(a)].

nonlinear motion is defined as

Pk D

s

1

T

Z T

0

a2
k
.t/ dt : (25)

Another metric is the computation of the harmonics Nak` of the periodic functions ak.t/, that is

ak.t/ D
1

X

`D0

Oak` cos.`�t/: (26)

Figure 20(a) shows the various modal participations Pk , k D 1; : : : ; 7, for the modal motions on the first

backbone curve. The first linear mode clearly dominates in the participation of the fundamental harmonic in the

nonlinear solution. This indicates that all solutions on the so-called first backbone curve actually share the same

spatial features: they have no nodal point along x with zero displacement, see Figure 19(a) and (b) as opposed

to Figure 19(c) and (d) (around x D 1=2) and even (e) and (f). Also, the following values provide an idea of the
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Figure 20: Average linear mode participations along the first backbone curve: mode 1 [ ], mode 2 [ ], mode 3 [ ], mode 4

[ ], mode 5 [ ], mode 6 [ ], mode 7 [ ]. (a) Participations Pk of each linear mode k, k D 1; : : : ; 7. Fourier harmonics of the

corresponding LNM projections: (b) Mode ‘a’ in Figure 17 and (c) Mode ‘b’ in Figure 17.

frequencies involved in the dynamics: !1 � 1:92, !3=4 � 1:98, ! � 2:07 and !b � 2:14. No subharmonics other

than !3=4 were found in the vicinity of the sudden change in the response, between !a and !b . It is also clear that
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for this system, !1 � !3=4. Figures 20(b) and (c) display the Fourier harmonics in every linear mode projection, at

the points ‘a’ and ‘b’ displayed in Figure 17, normalized with respect to the maximum amplitude. By comparing

Figures 20(b) and (c), a sudden drop of the participation of linear mode 3/harmonic 4 (LNM index=3, harmonic

index=4) and an increase of linear mode 2/harmonic 2 (LNM index=2, harmonic index=2) is observed, which agrees

with Figure 20(a). However, a detailed conclusion on the mechanism in place is too early but an internal resonance

between mode 1 and mode 3 is suspected.

From the above brief modal analysis we can say with confidence that CB is successful in finding NSM solutions

for a non-constant cross-section bar system which requires a space semi-discretization in the solution procedure.

Nonlinear phenomenons including frequency-energy dependency, internal resonance solution and subharmonic

solution are well captured even though more detailed investigations would be required on specific frequency intervals

depending on the need of the analyst.

6 Conclusion

In this paper, a solution methodology relying on a space semi-discretization scheme combined to the Harmonic

Balance Method (HBM) is introduced to perform Nonsmooth Modal Analysis of one-dimensional bar systems

satisfying a Signorini condition at one end. The non-constant cross-section is introduced here to motivate the need of

a space semi-discretization which might rely on any acceptable linear combination of well-chosen shape functions,

as classically done in the Finite Element method or the Component Mode Synthesis techniques (Craig-Bampton,

Craig-Chang and alike).

A systematic convergence analysis shows that the investigated methodologies exhibit a rate of convergence

O.1=M/, where M is the number of harmonics, as soon as the space semi-discretization is sufficiently fine. By

sufficiently fine, we mean that the integer N.M/, function of M , defining the number of shape functions in space

is sufficiently large. In other words, the space discretization is dictated by the time discretization (the number of

harmonics here). A fine time discretization with a coarse space discretization leads to a divergence whereas a coarse

time discretization with a fine space discretization generates an ‘acceptable’ approximation. It should be also noted

that in the proposed methodology, the Signorini condition mathematically reflecting a unilateral contact condition

is satisfied in a weighted-residual sense only within the HBM. As a notable consequence is that Newton’s law,

commonly introduced to retrieve uniqueness for such discrete mechanical systems, is here implicitly satisfied in

a distributional sense, for a restitution coefficient preserving energy, without being explicitly implemented in the

solution algorithm.

A brief nonsmooth modal analysis of the non-constant cross-section bar shows that the nonlinear spectrum can

be approximated through the construction of the well-known frequency-energy backbone curves. The extension of

the suggested solution technique to systems involving elaborate contact interfaces not limited to a unique point is

certainly possible at the cost of more CPU-expensive numerical simulations.

A Periodic solutions of one-dof systems

This appendix briefly discusses the proposed weak enforcement of the Signorini boundary condition for two

academic one-dof systems featuring exact solutions in the sense of distributions.

A.1 Forced one-dof system: the bouncing ball

A rigid mass m subject to gravity, illustrated in Figure A.1(a), is considered. The (partial) governing equations are:

m Ru.t/ D �mg C p.t/; u.t/ � 0; p.t/ � 0; u.t/p.t/ D 0; u.0/ D u0; v.0/ D 0 (A.1)

m

u
mg

Figure A.1: System of

interest: bouncing ball.

where u.t/ is the displacement of the ball; g stands for gravity and p.t/ is the contact

force. The unilateral contact condition is supplemented with an impact law reading: for

all t such that u.t/ D 0 with Pu.t�/ < 0, then Pu.tC/ D �e Pu.t�/ to guarantee solution

uniqueness [7]. The restitution coefficient is set to e D 1 to preserve energy and thus

existence of periodic solution. Normalization Nu D u=2u0, Nt D t=
p

2u0=g and Np D p=mg

yields Ru.t/ D �g C p.t/, u.0/ D 0:5, v.0/ D 0 and g D 1. The exact solution, shown

in Figure A.2(a), is periodic with period T D 2 and the solution in the range of t 2 Œ0; T �

reads

u.t/ D
� � 0:5t2 C 0:5 0 � t � 1

� 0:5t2 C 2t � 1:5 1 < t � 2
(A.2)

along with p.t/ D ı.t � 1/ where ı.�/ is the Dirac delta distribution. The corresponding Fourier series are

u.t/ D 1

3
� 2

�2

1
X

mD1

.�1/m

m2
cos.m�t/ and p.t/ D 1 C 2

1
X

mD1

.�1/m cos.m�t/ (A.3)
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where p.t/ is also the time derivative of u.t/ twice, termwise. Pointwise convergence is achieved for the displace-

ment and distributional convergence for the contact force even away from the delta.

The methodology detailed in Sections 3.2 and 3.3 is now used with

u.t/ � uM .t/ D
M

X

mD0

Oum cos.m�t/; p.t/ � pM .t/ D
M

X

mD0

Opm cos.m�t/: (A.4)

The unknowns of the problem are the 2M C 3 quantities f Oum; Opm; �g, m D 0; : : : ; M . A Fourier transform on

Equation (A.1) leads to the M C 1 equations Opm D �.m�/2 Oum, m D 1; : : : ; M along with Op0 D g. The weak

enforcement of the Signorini condition as developed in the paper leads to the M C 1 additional equations

gm. Ou; Op; �/ � 1

T

Z T

0

cos.m�t/.�pM .t/ C maxŒ��uM .t/ C pM .t/; 0�/dt D 0; m D 0; 1; : : : ; M; (A.5)

where Ou D . Ou0; Ou1; : : : ; OuM / and Op D . Op0; Op1; : : : ; OpM /. The last equation is
PM

mD0 Oum D u0 since the initial

displacement of the bouncing ball is prescribed and the frequency of the response is unknown. The initial velocity

v0 D 0 is implicitly enforced since Fourier series are limited to cos terms only. The above equations are collectively

solved using a nonlinear solver. In practice f�; Oug are the sole independent unknowns and Equation (A.5) only

should now be solved. We set � D 10.

The resulting numerically approximated contact force and displacement are shown in Figure A.2. For a low

M � 10, the approximation exhibits a slightly longer period compared to the exact solution and the instantaneous

impact is not accurately captured. For a higher M � 40, the approximate contact force converges to Dirac delta

function (in a distributional sense). Convergence on the displacement and period is also achieved. Frequency-

domain convergence analysis is illustrated in Figure A.3. It is self-explanatory and it is concluded that the proposed

solution strategy to enforce a Signorini boundary condition via HBM is able to reproduces, in a weak sense, an

energy-preserving impact law.
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Figure A.2: Time-domain system response: (a) displacement, (b) contact force. Exact solution [ ] and approximation with

M D 10 [ ], 20 [ ] and 40 [ ].
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Figure A.3: Frequency-domain system response: (a) displacement, (b) contact force. Exact solution [ ] and approximation

with M D 10 [ ], 20 [ ] and 40 [ ].

A.2 Autonomous one-dof system

m

u

g0

k

Figure A.4: 1-dof spring-mass system

with unilateral contact.

Another simple spring-mass example, illustrated in Figure A.4, closer in

spirit to the one considered in the present paper is briefly explored. A mass m

is attached to a spring k and subject to a unilateral condition with initial gap

g0. Normalized quantities are: time Nt D
p

k=m t , displacement Nu D u=g0

and impact force Np D p=.g0k/. The corresponding normalized governing

equation reads u.t/ C Ru.t/ D p.t/ where the upper bar notation is dropped.

Unilateral contact is governed by the complementarity Signorini condition

along with the Newton impact law with e D 1. The main difference with

the previous system is the absence of external forcing. Accordingly, the exact solution feature a continuum of
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(nonlinear) natural frequency � 2�1; 2Œ and reads

u.t/ D 1

cos.T=2/

�

cos.t/ 0 � n � T=2

cos.t � T / T=2 < n � T
(A.6)

with T D 2�=� and p.t/ D 2 tan.T=2/ı.T=2/. The exact solution for T D 4:5 is shown in Figure A.5. The

corresponding Fourier series read

u.t/D2tan.T=2/

T

�

1C
1

X

mD1

2.�1/m

1�m2�2
cos.m�t/

�

and p.t/D2tan.T=2/

T

�

1C
1

X

mD1

2.�1/mcos.m�t/
�

: (A.7)

The governing equations are again solved using the proposed solution strategy with T D 4:5. A total of 2M C 2

unknowns f Ou; Opg are to be found by solving the M C 1 equations ..1 � .m�/2/ Oum D Opm, m D 0; 1; 2; : : : ; M and

the M C 1 additional Signorini conditions in the form (A.5) where �, and thus T , is specified.

The displacement and contact force are shown in Figure A.5 for various M (assuming a discretization of the

type (A.4)). Pointwise convergence is achieved for the displacement and distributional convergence for the contact

force with a rate slightly slower than O.1=M/ (not shown). Frequency-domain convergence analysis is illustrated

in Figure A.6. Again, the proposed scheme finds approximate periodic solutions satisfying the impact law e D 1 in

a weak sense, in agreement with results exposed in [26].
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Figure A.5: Time-domain system response: (a) displacement, (b) contact force. Exact solution [ ] and approximation with

M D 10 [ ], 20 [ ], and 40 [ ].
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Figure A.6: Frequency-domain system response: (a) displacement, (b) contact force. Exact solution [ ] and approximation

with M D 10 [ ], 20 [ ], and 40 [ ].

B Linear mode expansion convergence analysis

In this paper, the LM method was developed by considering a family of clamped-free (homogeneous Dirichlet-

homogeneous Neumann) modeshapes. It is here shown how the method can generate an approximate solution to a

bar problem with homogeneous Dirichlet-non-homogeneous Neumann boundary condition. To this end, we reduce

the Helmholtz equation to a time-independent configuration. It the becomes u;xx.x/ D 0, x 2�0; 1Œ, with u.0/ D 0

and ux.1/ D 1 (non-homogeneous Neumann BC). The exact solution is u.x/ D x, x 2 Œ0; 1�. The clamp-free

modes of the bar are listed in Equation (14). Using them to expand the approximation leads to the weak form

Z 1

0

�

�x.x/>�x.x/
�

dx u D �.1/ (B.1)

with3 u � Œa1; : : : ; aN �> storing the contributions of the shape functions (ie, the linear modes) collected in

�.x/ � Œ�1.x/; : : : ; �N .x/�>. The system of linear equations simplifies to !2
i ai D .�1/i�1

p
2, i D 1; : : : ; N so

that ai D .�1/i�1
p

2=!2
i and the approximated displacement solution of the system reads

uN .x/ D
N

X

iD1

.�1/i�1 2

!2
i

sin.!i x/; !i D 2i � 1

2
�; (B.2)

3The notation ai , i D 1; : : : ; N is used instead of ui to avoid any possible confusion with the term uN .x/ in Equation (B.2). Also the

terms ai in this section should not be confused with coefficients ak in Section 3.2.
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which converges pointwise to the exact solution u.x/ D x as N ! 1.

The approximate transfer function defined in the paper reduces here to GN D uN .1/ since it is assumed that

p D 1.Accordingly, the convergence of uN .1/ as N ! 1 is clarified. Equation (B.2) yields

lim
N !1

uN .1/ D 8

�2

1
X

iD1

1

.2i � 1/2
D 1 D u.1/: (B.3)

The error caused by truncation at order N is

EN D ju.1/ � uN .1/j D 8

�2

1
X

iDN C1

1

.2i � 1/2
(B.4)

with the following bounds:

Z 1

N C1

1

.2x � 1/2
dx �

1
X

iDN C1

1

.2i � 1/2
�

Z 1

N

1

.2x � 1/2
dx: (B.5)

Further evaluation of the upper and lower bounds leads to

8

�2

1

4N C 2
< EN <

8

�2

1

4N � 2
(B.6)

indicating that the sequence fuN .1/g for N sufficiently large has the rate of convergence O.1=N / and so has GN ,

which matches the derivations reported in Section 4.1.

Although uN .x/ converges pointwise to the exact solution, see Figure B.7(a), the approximated strain

uN;x.x/ D 2

N
X

iD1

cos.!i x/

!i

; !i D 2i � 1

2
� (B.7)

only converges in L2 sense to ux . Obviously, the approximated strain vanishes at x D 1, that is uN;x.1/ D 0,

which is independent of N , and does not converge to the exact strain ux.1/ D 1. A Gibbs phenomenon is thus

generated (here in space) around x D 1. The conclusion is the following: in the approximate solution, the LM

method generates a Gibbs phenomenon in space which adds to the Gibbs phenomenon in time induced by HBM.

The associated expansion family is clearly not optimal for the problem at hand but convergence is still achieved in a

weak sense.
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Figure B.7: Convergence analysis: (a) displacement, (b) strain. Exact solution [ ] and LM solution with N D 5 [ ] and

N D 20 [ ].
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