
HAL Id: hal-03970805
https://hal.science/hal-03970805v1

Submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correlating Test Events With Monitoring Logs For Test
Log Reduction And Anomaly Prediction
Bahareh Afshinpour, Roland Groz, Massih-Reza Amini

To cite this version:
Bahareh Afshinpour, Roland Groz, Massih-Reza Amini. Correlating Test Events With Monitoring
Logs For Test Log Reduction And Anomaly Prediction. 2022 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), Oct 2022, Charlotte, United States. pp.274-
280, �10.1109/ISSREW55968.2022.00079�. �hal-03970805�

https://hal.science/hal-03970805v1
https://hal.archives-ouvertes.fr

Correlating Test Events With Monitoring Logs For
Test Log Reduction And Anomaly Prediction

1st Bahareh Afshinpour
Univ. Grenoble Alpes, CNRS,

Grenoble INP
Grenoble, France

bahareh.afshinpour@univ-grenoble-alpes.fr

2nd Roland Groz
Univ. Grenoble Alpes, CNRS,

Grenoble INP
Grenoble, France

Roland.Groz@univ-grenoble-alpes.fr

3rd Massih-Reza Amini
Univ. Grenoble Alpes, CNRS

Grenoble INP
Grenoble, France

Massih-Reza.Amini@univ-grenoble-alpes.fr

Abstract—Automated fault identification in long test logs is a
tough problem, mainly because of their sequential character and
the impossibility of constructing training sets for zero-day faults.
To reduce software testers’ workload, rule-based approaches
have been extensively investigated as solutions for efficiently
finding and predicting the fault. Based on software system
status monitoring log analysis, we propose a new learning-based
technique to automate anomaly detection, correlate test events
to anomalies and predict system failures. Since the meaning of
fault is not established in system status monitoring-based fault
detection, the suggested technique first detects periods of time
when a software system status encounters aberrant situations
(Bug-Zones). The suggested technique is then tested in a real-
time system for anomaly prediction of new tests. The model may
be used in two ways. It can assist testers to focus on faulty-like
time intervals by reducing the number of test logs. It may also
be used to forecast a Bug-Zone in an online system, allowing
system administrators to anticipate or even prevent a system
failure. An extensive study on a real-world database acquired by
a telecommunication operator demonstrates that our approach
achieves 71% accuracy as a Bug-Zones predictor.

Index Terms—Software testing, Log analysis, Anomaly predic-
tion.

I. INTRODUCTION

A classical viewpoint on software testing assumes that for
each given input entry (which could be a vector or sequence
of inputs), the software returns an output (or a log event)
record which is distinct from the other input-output (or input-
log-event) pairs. Accordingly, there is a “Pass” or “Fail”
verdict associated with each such input(s)-output(s) pair. A
test campaign using a test suite would collect all such pairs
and associated verdicts in a test log. The separated “input-
output” or “input-log” pairs form a basis to test a software
artifact or perform some post-processing steps on test suites,
like “regression testing” or “test-suite reduction” [1]. From
this perspective, the effect of a single or a set of inputs is
mapped to a limited set of outputs or log events. A shopping
software is an example of this type of software, in which,
every action (adding items to the basket, check-out, payment)
is associated with its own outputs or log events [1]. When an
erroneous output is detected, software developers investigate
the corresponding input to find out where, in the code, it

This work was supported by the French National Research Agency:
PHILAE project (N° ANR-18-CE25-0013).

triggers the error. Also, distinguishing the erroneous from
the correct outputs/logs allows proposing supervised machine
learning approaches for test/log analysis, prediction, modeling
or reduction [2]. This situation is referred to as direct logging
in this paper.

Actually, there can be some delay between a fault and its
propagation to a visible output. In this case, the internal faults
drive the computer system into a period of anomalous behavior
which may end up in a system failure. Many complex software
systems experience similar situations. For instance, a network
appliance, a cellphone, or a multi-user operating system may
experience a period of anomaly that ends up in a system freeze
or reboot.

For a mature software system, failures may be rare. They
might occur only on long software runs, either in testing
conditions (e.g., with a so-called soak or endurance testing)
or during system exploitation. In that case, when gathering
direct logs and outputs is not feasible or impractical, a practical
way to find anomalous behavior and their root cause input is
monitoring logging. In monitoring logging, software testers
sample the device’s status or system monitoring information
(called telemetry data [3], e.g: memory/CPU usage, number
of processes, etc.) and then study this status information to
find anomalous behavior. In this situation, finding anomalies
and root causes are long and tedious tasks, if they are done
manually due to the large number of log files and rare periods
of anomalies [4].

In this paper, we present a chain of machine learning model
creation steps, to find anomalies in status monitoring logs, link
the input tests to the detected anomalies and make a system
failure predictor based on the created model. The outcome
is a collaborative learning approach with minimum empirical
parameters that can scale up and down with the various status
features and rates of sampling. This approach can be used in
many applications with monitoring logging and operates in
two steps. First, it ties some anomaly detection methods and
aggregates their outputs to find anomalous periods with a high
density of anomaly status, identifying them as “Bug-Zones”.
Then the system automatically extracts some tests leading to
Bug-Zones and outside these zones at random to create a
training set and a classifier is trained to associate between
tests and their obtained outputs from the previous step.

The proposed method has two application goals. First, it
filters out large test logs and extracts only the tests that are
linked to anomalous behavior. This goal is favored by system
developers, integrators, testers and operators as it helps them
focus only on the specific periods of testing that contribute
to the system failure. Second, it makes an online predictor to
alert system administrators about an imminent system failure.

The proposed method was deployed to process logs of
network appliances acquired by Orange (telecommunication
operator), a partner of our PHILAE project. The results are
presented in this paper. Based on the work carried out for this
project, a tool is published on GitHub 1 repository issued by
the ANR PHILAE project.

The rest of this paper is organized as follows. Section II
overviews the work related to our study. In section III, we
present the Telecom case study. In section IV, we explain
our proposed method in detail. Section V explains our im-
plementation and empirical result of our case study. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

Due to the costly effort of manual log analysis, automating
the testing process is highly desirable, and a great deal of
research has been conducted on log analysis automation.
However, in spite of their efforts, the authors of this paper
failed to find related works whose proposed methods match
the assumptions of this paper entirely. Therefore they can not
be adopted to solve the introduced problem and be compared
with the proposed method. For example, model extraction
methods from log files are not applicable in the monitoring
logging domain due to the different nature of the log outputs.
Authors of [5] present an approach to automate log file
analysis and root cause detection by creating a finite state
automaton (FSA) model from successful test sessions and
comparing the developed model against failed test sessions.
This and other similar methods would not be effective on
status monitoring logs. Due to the huge number of events
and their possible combinations before each status record, the
created model will be significant and complex. However, FSA
and similar workflow abstraction methods are shown to offer
limited advantages for complex models [6].

Furthermore, in the majority of approaches, the definition of
fault is apparent [4] [7], while in our case, abnormal behavior
of the software artifact is the only lead to diagnosing the
system’s internal unhealthy condition. Accordingly, supervised
approaches employed to analyze these software logs based on
their fail and pass labels are not helpful in our case.

Among limited published research on status monitoring
logs, authors of [3] find a relation between system events
and the changes in monitoring metrics by using statistical
correlation methods. However, the approach is limited to
incident diagnosis and how a single event affects monitoring
metrics. Applying machine learning helps to promote simple

1https://github.com/PHILAE-PROJECT/Bug Zone Finder

and single-event diagnosis to mining events-metrics correlation
and have fault detection and prediction.

Different from other works, this paper is one of the few
works that exploit system status monitoring observation for
bug detection and prediction in software testing. The research
is applicable to logs that can come from long test runs on
mature software systems or production logs. The goal of
this research was motivated by a telecommunication case
study, in which glassbox testing of the embedded third-party
software of a network appliance was neither possible nor
indeed desirable as it was supposed to have been carried out by
the software developers; and the software was mature enough
to exhibit faults only in the long run. The implementation of
the proposed method can be applied to many similar cases,
either in testing or production.

III. THE TELECOM CASE STUDY

The proposed method development was motivated by a
telecom case study, in which an end-user home internet box
had been tested daily during six months by a large number
of remote requests. The monitoring information was recorded
meanwhile. The log files had two categories:

• Test logs: They record test events that arrived at the inter-
net appliance. One log file per day contained thousands
of remote requests, each of which with its timestamp.
The recorded requests were from different categories of
network activities such as Web surf, Digital TV, VoIP,
WiFi, Software Install, P2P, Etc. For example, this is a
sample of a test event recorded in the Test logs:
”timestamp”: ”2018-10-08T08:01:27+00:00”, ”metric”: ”load-
ing time”, ”bench”: ”XX1”, ”target”: ”http://fr.wikipedia.org”,
”status”: ”PASS”, ”value”: 1121.0, ”node”: ”client03”.

• Monitoring Logs: The effect of the tests on in-
ternal resources like memory, CPU, processes and
network traffic captured by sampling the under-the-
test device. Here is a sample of monitoring event:
”value”: 17384.0, ”node”: ”monitoring”, ”timestamp”: ”2019-
01-14T23:00:18+00:00”,”domain”: ”Multi-services”, ”target”:
”X1”,”metric”: ”stats->mem cached”,”bench”: ”X3”.

While the intervals of the test events are variable and in
order of seconds, the intervals of the monitoring samples are
(approximately) constant and in order of minutes, namely: 1, 5
and 10 minute(s) depending on the benches and targets, as the
monitoring log collects information from several parts of the
test bench. Therefore, in the period between the timestamps of
two consecutive sampled statuses, hundreds of test events are
recorded in the test logs. From time to time, some rare reboots
occurred due to system failure. Actually, in the logs that were
available, some reboots had not been caused by failure, but
by a decision from the test system or test administrators. The
manufacturer of the appliance was interested in identifying
the cause of system failure among the numerous test events.
Moreover, telecom operators would like to know if they can
detect and anticipate anomalies in the online system.

IV. BACKGROUND

To elaborate more on the above-mentioned problems, we
assume that a software system receives a chain of test events.
Examples of the test events could be network packets, database
queries, http requests, or API calls. Fig. 1 illustrates such a
system monitoring logging conditions.

Test events are denoted by I=[I1, . . . ,IN], a sequence of N
events. Since the events are recorded at their arrival time, each
test event Ii is a pair of event type which is a member of all
possible test events, along with a timestamp that determines
when the test event arrives or is executed on the system. On the
observation side, the system status is recorded. That is what
we call the monitoring logging from now on. After several test
events, a monitoring logging observation event Oj happens
that records system’s status information (e.g., memory, CPU
usage, etc) in an array of values or metrics. Each monitoring
logging event Oj is an array of metric values and a timestamp.
The monitoring log also reports some system failures noted by
their timestamps. The period of status sampling is τ (Fig.1).

The goal of our method is twofold: Bug-Zone Finder as an
indicator of the system’s anomalous behavior and Bug-Zone
Predictor as a tool to predict the imminent risk of system
failure.

A. Bug-Zone Finder

The first part of the proposed method is the Bug-Zone
Finder. As presented before, a Bug-Zone is a period of time
when the software system exposes an anomalous behavior.
Finding Bug-Zones is done in several steps:

1) Anomaly Detection: To find these periods, the first
step is to deploy outlier detection functions to preprocess
the monitoring data. We use a small set of different outlier
functions. Each outlier detection function ODq must accept
a multivariate array of monitoring data; it outputs anomalous
entries by a Boolean array of outlier records:

Aq = ODq(M) (1)

In (1), M= (O1,. . . ,OJ) is the sampled multivariate mon-
itoring data, in which, each sample Oj contains an array of
metric values. Aq , the output of the outlier detection method
is an array of size J denoted by Aq= [a1,. . . ,aJ]. Each an is a
Boolean value coded by an integer 0 (for false) or 1 (for true)
that indicates whether Oj is an anomalous record according
to outlier detection ODq .

2) Sliding Windows: As shown in Fig. 2, each ODq gives
us one Boolean array Aq . Hence, after deploying outlier
detection functions, we have several Boolean arrays with the
same size (J). A sliding window can accumulate all Boolean

Fig. 1. A software system with input and monitoring events

arrays into one array Aac. The sliding window simply counts
all “1” or “True” values in all Boolean arrays lying inside a
specific window :

Aac[j] =
∑
∀Aq

j+(W/2)∑
k=j−(W/2)+1

Aq[k] (2)

j = {1, . . . , J}, Aq[x] = 0 for x < 1 & x > J

The sliding window has a size that is denoted by W . Aac[t]
is the number of all “1”s in a window by the size of W
centered at t. Counting ’1’ s in the sliding windows must be
repeated and accumulated for all the outlier detection output
arrays Aq . In Fig. 2, we assumed that we have used three
outlier detection methods and we have A1, A2 and A3 Boolean
outlier arrays. The sliding window outputs higher values when
the number of outliers in that period of time increases.

3) Standardization and Generating Outlier Density Curve:
The properties of the output of the sliding window, Aac,
depend on several factors: number of recorded monitoring fea-
tures, number of deployed outlier detection functions and the
window size. To find Bug-Zones, one needs to set a threshold
on Aac. To have a constant threshold and simpler design with
fewer empirical values, we propose to standardize Aac (the
output of the sliding windows). Standardization removes the
mean value of Aac and alters its standard deviation to 1. The
output is what we call Outlier Density Curve (ODC), from
now on. ODC=standardization(Aac)

4) Bug-Zone Threshold and Extraction: After standardiza-
tion, Bug-Zones are detectable from ODC. Bug-Zones are
the moments when the outlier density curve rises above the
horizontal threshold line (the bottom-right of Fig. 2).

Each Bug-Zone is a pair of timestamps of the beginning
and the ending events of the Bug-Zone denoted by BZ → TB

and BZ → TE .

B. Learning Phase

The learning phase has three steps: Test event extraction,
Model construction and Sequence representation by concept
space creation. Each step will be covered in the following
subsections.

1) Test event extraction: At this step, one needs to extract
test events in a time range before the Bug-Zone (Pre-Bug-
Zone) to investigate its root cause. But we will also need to
have some Non-Pre-Bug-Zone inputs to compare with the Pre-
Bug-Zone inputs. This can be done by extracting random-time
intervals from time ranges outside the Pre-Bug-Zone periods.

The input extraction time range depends on the observations
that system developers make on the outlier density curve,
considering the root cause may happen how long before the
Bug-Zone. In our case, we extract test events in a range of
3τ before the center of the Bug-Zone (BZi→TB+BZi→TE

2),
where τ is the sampling period of the monitoring log(Fig. 1).
Determining the value of τ depends on the duration that a test
effect lasts on monitoring data, and it varies from one system
to another. In other words, we must determine how long the
test before a Bug-Zone should be taken into consideration. 3τ
proved to exhibit the best results in our case, where sampling

Fig. 2. An overview of the proposed method.

is done at a relatively low rate; it can be adapted to other rates
of monitoring sampling w.r.t the flow of input events.

Likewise, by creating random timestamps and verifying that
they don’t fall in the Pre-Bug-Zone periods, we would have a
set of random test sequences (Random-Zones):

PreBZ = {PreBZ1, . . . , P reBZZ} (3)
PreBZz = [Iz1, . . . , IzP] (4)

Rand = {RND1, . . . , RNDZ} (5)
RNDz = [Iz1, . . . , IzR] (6)

In (4) and (6), IzP and IzR are test inputs in the designated
Pre-Bug-Zone or Random-Zone sets. The number of the
Random-Zone sequences is equal to the number of the Bug-
Zones in order to have a balanced training set. The size of
Random-Zone periods was equally chosen to be 3τ .

2) Model construction: At this stage, the extracted Pre-
Bug-Zone test events are used to construct a model. Each
Random-Zone or Pre-Bug-Zone input array is treated as a
sequence. Likewise, each test event in that array is treated
as one hot coding vector. We employed a contextual sequence
model proposed by [8] to learn the representation of each test
event. The model then maps each type of test event into a
vector. The array size is |ϕ|, in which, ϕ is a set of all possible
test event types, called vocabulary.

3) Sequence representation by concept space creation: The
created model gives vectors that represent the test events in
the vocabulary. Therefore, a Pre-Bug-Zone test array PreBZz

or Random-Zone test array Randz could be represented by
an array of vectors (a sequence) denoted by RandVz =
[IVz1, . . . , I

V
zP] and PreBZV

z = [IVz1, . . . , I
V
zR]. The represen-

tation above is an array of vectors. To create a single-vector
representation for each sequence, we need to combine all
the sequence vectors in a way that effectively reflects the
semantics of the sequence. To this aim, we create a concept
space from the test events by clustering them into groups of
similar events and referring to each group as a concept based
on a similar idea expressed in [9]. Then, sequences of events

are mapped in the space induced by these clusters.
After creating the concepts, it is possible to determine the

conceptual presentation of a sequence by observing its events
and the concepts to which they belong. Hence, a Pre-Bug-
Zone sequence PreBZV

z is represented by a vector of C
dimensions:

PreBZConcept
z = [conz1, . . . , conzc] (7)

In which, conzc indicates how many events from a con-
cept Conceptc exist in the Pre-Bug-Zone sequence PreBZz .
Random sequences of events that are not in the Bug-zones are
represented in the same manner RandConcept

z .

C. Online ML-based Bug-Zone Prediction

Online Bug-zone prediction gives an advance warning to
system administrators about imminent anomalies and probable
system failure. The last step to have the online predictor is to
train a classifier with the PreBZConcept

z and RandConcept
z

sets. The classifier learns the classes of sequences that are
likely to be Pre-Bug-Zone and distinguishes them from the
normal (Random-Zone) sequence.

V. EVALUATION ON THE TELECOM CASE STUDY

In this section, we evaluate the effectiveness of our ap-
proach. The aim is to answer the following research questions:
Q1: How accurately can our model distinguish between Pre-

Bug-Zone and Random-Zone sequences?
Q2: How effective is the proposed approach in predicting

Bug-Zones?
Q3: What is the complexity of the proposed approach?

A. Experimental Setup

We developed a python 3.x script to orchestrate and chain
the proposed steps. We processed the monitoring and test data
from the telecom case study by the proposed engine.

For the first step, the outlier detection engines processed
the multivariate status information and determined the outlier
entries. Figure 3(a) shows arrays of the “CPU” multivariate

(a) (b)
Fig. 3. (a) The first five arrays of the “CPU” status information recorded in a day, (b) Outlier density curve and detected Bug-Zones

status information in a light green color recorded in one day.
Each array has 288 samples taken on 5-min periods during
the day (288×5min = 24 hours). The CPU status information
had 26 multivariate arrays, but for illustration purpose, only
the first five were chosen to be plotted.

During this study, we used two different outlier detection
methods, Local Outlier Factor and Isolation Forest [10], [11].
Isolation Forest is more efficient in finding global outliers and
is weak in detecting local outliers. The outlier samples are
depicted in Fig. 3(a) in short blue and red lines. The blue
ones come from the Local Outlier Factor outlier detection and
the red ones are from Isolation Forest. Noticeably, we can
observe anomalies around peaks in some metrics sketches. As
it is observable, in some regions, the two-outlier detection
detect the same samples and in some other regions, they
detect different samples. Fig. 3(a) shows how the two outlier
detection methods complement each other, while there is no
limit for the number of outlier detections to be used, and
more outlier detections can help to accumulate all methods’
detection strength.

Figure 3(b) illustrates the outlier density curve after ap-
plying the sliding windows and standardization steps. There
are four rows of colorful dots scattered on top of the figures
which are the outliers detected by LOF and IF outlier detection
tools. Each row of dots belongs to a multivariate series of
status monitoring. The fall on the uptime curves in red show
a reboot in each day. The yellow curve shows the outlier
density before standardization and the green shows the same
after standardization. The horizontal line on 2 is the Bug-Zone
threshold. Obviously around the reboot events, the threshold
cuts the green curve and detects a Bug-Zone.

Based on our observation, 70% of the reboots were detected
inside a Bug-Zone; that indicates the Bug-Zones finder is
effective in predicting system failures and the relation between
anomalous behavior and status monitoring is detectable by the
Bug-Zone finder. The undetected reboots may have implica-
tions. They may be triggered by a hardware (or more often
in that case network) failure and not be detectable by the
proposed method. And we know that some of the reboots are
even not bugs, they have been triggered by testers to restart

sessions. Some other detected Bug-Zones were not near a
reboot. Therefore, they may come from transient periods of
anomalous behavior that ended without a total system failure.
After getting the Bug-Zones, we extracted the Pre-Bug-Zone
and Random-Zone sequences from the input sets. In total, we
had 175 different elementary test events (that become vocabs
for our NLP based approach), 589 Pre-Bug-Zone sequences
and 568 Random-Zone sequences. We deployed the word
embedding technique to create the NLP model. Afterward, by
using K-means in combination with Elbow method [12], we
created 20 concepts from the 175 vocabularies. Finally, the
Pre-Bug-Zone and Random-Zone sequences are converted to
their corresponding concept-space vectors, which enables us
to use them for Bug-Zone prediction.

B. Q1: How accurately can our model distinguish between
Pre-Bug-Zone and Random-Zone sequences?

Here, we seek to find how accurately our model can distin-
guish between Pre-Bug-Zone and Random-Zone sequences. A
supervised classifier can determine how the Pre-Bug-Zone and
Random-Zone sequences are different from one another. Since,
the clusters are not linearly separated, we chose three different
types of non-linear classifiers to separate them. More precisely,
in this step we used concept space vectors (dim=20) of Pre-
Bug-Zone and Random-Zone sequences. We employed three
common classifiers in our study: Support Vector Machines
(SVM), Random Forest (RF) and Multi-Layer Perceptron
(MLP) from the Scikit-learn library implementations. Since
the boundaries on our dataset are hypothesized to be non-
linear, we chose RBF (radial basis function) as the SVM
kernel function. Their accuracy to classify the Pre-Bug-
Zone and Random-Zone sequences are presented in Table I.
Random Forest, with 75% accuracy, has the highest rank. Fig.

TABLE I
CLASSIFICATION METHODS APPLIED ON PRE-BUG-ZONE AND

RANDOM-ZONE SEQUENCES

Method Accuracy
MLP 64%
SVM(RBF) 62%
RF 75%

Fig. 4. The Roc curve for Random Forest, SVM and MLP classifiers

4 presents the ROCs obtained for these three classifiers. ROC
curves are mostly used in binary classification to study the
accuracy of a classifier [13]. This plot shows the ratio of True
Positive Rate of every classifier to its False Positive Rate. The
results show that the Random Forest classifier outperforms the
other ones, since the AUC value for Random Forest is 0.75,
while the AUC value for SVM and MLP classifier is 0.62 and
0.64, respectively.

C. Q2: How effective is the proposed approach in predicting
Bug-Zones?

To train the Bug-Zone predictor, we randomly divided our
concept-space dataset (both Pre-Bug-Zone and Random-Zone
sequences) into 80% and 20% to train and test the predictor.
We chose Random Forest for prediction since it was the most
effective among the other methods in the previous subsection.
Random Forest, after training, succeeded in correctly classi-
fying 71% of the test dataset. This implies that it can be used
to predict Bug-Zones based on real-time incoming test data.

Moreover, we computed common classification metrics,
namely, precision, recall, and F1-score which are routinely
used in similar work [14] [15] for analyzing accuracy. Preci-
sion is the percentage of correctly predicted Bug-Zones (True-
Positive) over all Bug-Zone prediction (True-Positive+False-
Positive): (TP

TP+FP). Recall is the percentage of Bug-Zones
that are correctly predicted in advance among all the Bug-
Zones (True-Positive+False-Negative): (TP

TP+FN). We calcu-
lated this metric because a false negative is much severer
than a false positive for Bug-Zone prediction, since the cost
of missing a Bug-Zone is much higher than that of inves-
tigating a false Bug-Zone. As presented in [15], F1-score
(2∗TP
2∗TP+FN+FP) is the most used singleton metric which

serves as an indicator of the model’s performance. Table II
shows the precision, recall and F1-score on the telecom case
study by using RF classifier as classification method.

TABLE II
PERFORMANCE OF BUG-ZONE PREDICTION ON TELECOM CASE STUDY

Precision Recall F1-score
0.67 0.82 0.74

D. Q3: What is the complexity of the proposed approach?

The complexity of the Bug-Zone finder phase is bounded
by the outlier detection algorithms, in which, the local outlier
factor algorithm has the highest complexity order of O(J2)
and J is the number of monitoring samples. Likewise, the
learning phase complexity is limited by the complexity of the
model creation step, which is O(N.logV). N is the number
of words (test events) in the Pre-Bug-Zone and Random
sentences, and V is the vocabulary size.

VI. CONCLUSION

System status information can be exploited for software
testing to find the root cause of system failures and predict
them in an online system. In this paper, we presented the
Bug-Zone finder and Bug-Zone predictor, two approaches
for detecting and predicting anomalous periods in a software
system. First, the Bug-Zone finder, by using different anomaly
detection methods, detects anomalous periods and enables
testers to only focus on the test events near the Bug-Zones.
Thus, this reduces the testers’ efforts and provides valuable
information on the events and their causes. Second, by using
an ML technique to create a conceptual model from the
semantics of the test sequences, the online predictive model
enables us to identify sequences of tests that lead to a system
failure. Thus, it helps system administrators to foresee system
failures in the future. The effectiveness of the two proposed
methods were evaluated on a real case study from the Orange
company. The detected Bug-Zones cover at least 70% of
the systems failures (reboots); and the Bug-Zone predictor
succeeded in correctly predicting 71% of Bug-Zones in an
80-to-20 learn/test scenario. The figures are tainted by the fact
that our ground truth for failures, namely system reboots, is
actually overestimated, since a number of reboots (close to
30%) are indeed not linked to failures, but can be triggered
by testers and test bench restarts, so we expect that our Bug-
Zone finder and predictor are indeed performing even better
than those figures show.

REFERENCES

[1] Bahareh Afshinpour, Roland Groz, Massih-Reza Amini, Yves Ledru,
and Catherine Oriat. Reducing regression test suites using the word2vec
natural language processing tool. In SEED/NLPaSE@ APSEC, pages
43–53, 2020.

[2] Tatsuaki Kimura, Akio Watanabe, Tsuyoshi Toyono, and Keisuke
Ishibashi. Proactive failure detection learning generation patterns of
large-scale network logs. IEICE Transactions on Communications,
102(2):306–316, 2019.

[3] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei
Zhang, and Zhe Wang. Correlating events with time series for incident
diagnosis. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1583–1592,
2014.

[4] Cheolmin Kim, Veena B Mendiratta, and Marina Thottan. Unsupervised
anomaly detection and root cause analysis in mobile networks. In 2020
International Conference on COMmunication Systems & NETworkS
(COMSNETS), pages 176–183. IEEE, 2020.

[5] Leonardo Mariani and Fabrizio Pastore. Automated identification of
failure causes in system logs. In 2008 19th International Symposium on
Software Reliability Engineering (ISSRE), pages 117–126. IEEE, 2008.

[6] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and
Guofei Jiang. Cloudseer: Workflow monitoring of cloud infrastructures
via interleaved logs. ACM SIGARCH Computer Architecture News,
44(2):489–502, 2016.

[7] Anunay Amar and Peter C Rigby. Mining historical test logs to predict
bugs and localize faults in the test logs. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 140–
151. IEEE, 2019.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[9] Jean-François Pessiot, Young-Min Kim, Massih R Amini, and Patrick
Gallinari. Improving document clustering in a learned concept space.
Information processing & management, 46(2):180–192, 2010.

[10] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg
Sander. Lof: identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international conference on Management of
data, pages 93–104, 2000.

[11] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
2008 eighth ieee international conference on data mining, pages 413–
422. IEEE, 2008.

[12] Robert L. Thorndike. Who belongs in the family. Psychometrika, pages
267–276, 1953.

[13] Andrew P Bradley. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern recognition,
30(7):1145–1159, 1997.

[14] J. Zhao, N. Chen et al. Real-time incident prediction for online service
systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 315–326, 2020.

[15] David MW Powers. Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation. arXiv preprint
arXiv:2010.16061, 2020.

