
HAL Id: hal-03970692
https://hal.science/hal-03970692

Preprint submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jupyter notebooks maintenance tips and tricks
Manon Marchand, Stefania Amodeo, Mark Allen

To cite this version:
Manon Marchand, Stefania Amodeo, Mark Allen. Jupyter notebooks maintenance tips and tricks.
2022. �hal-03970692�

https://hal.science/hal-03970692
https://hal.archives-ouvertes.fr


Jupyter notebooks maintenance tips and tricks

Manon Marchand1, Stefania Amodeo1, and Mark Allen1

1,Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg,
UMR 7550, F-67000 Strasbourg, France.; manon.marchand@astro.unistra.fr

Abstract. Published computational notebooks are rarely reproducible, mainly be-
cause software development is not an easy and well documented task for non profes-
sional developers. In this communication we provide a comprehensive list of re-usable
workflows and good practice tips that we hope can help maintainers of repositories of
computational notebooks. This framework is illustrated in a re-usable demonstration
repository developed within the ESCAPE and EOSC projects.

1. Introduction

Mixing together code and text in a nice human readable interface makes a good recipe
for sharing our work (Knuth 1984). This might explain the growing popularity of com-
putational notebooks since the release of Jupyter notebooks in 2013, an open source
alternative to the previously existing ones. More than 10M public notebooks are cur-
rently hosted on GitHub,1 a cloud hosting service for git repositories.

Sharing computational notebooks could be an extremely good news for repro-
ducible data analysis (Piccolo & Frampton 2016) or computational tutorials (Perkel
2018), but in reality, a pioneering study by (Pimentel et al. 2019) showed that most of
the notebooks on GitHub are not reproducible. They harvested and studied a sample of
1M notebooks. Among this subset, only 24% could be executed without errors and 4%
reproduced the results provided by the authors!

While for research notebooks a solution is to provide a container in which every-
thing works (Piccolo & Frampton 2016; Clyburne-Sherin et al. 2019), this approach
cannot be adopted for tutorials or showcase notebooks. Indeed, we want the newcom-
ers and learners to be able to extract whatever function or workflow they find useful in
the notebooks and apply them seamlessly in their own research. This cannot be done
with outdated modules or language versions and calls for a maintenance workflow.

Here, we compile a list of tips and tricks for repositories of Python notebooks that
we illustrate with the Euro-VO/ESCAPE tutorials repository (Marchand et al. 2022).
We focus on reducing the most frequent errors measured in the study of (Pimentel et al.
2019), ImportError, NameError, and ModuleNotFoundError, clearly highlighting
the need of declaring build and dependencies and of basic testing of the software exe-
cution. Our workflows are deployed GitHub, but are applicable to local git repositories

1see daily GitHub API query of the nbestimate project https://github.com/parente/nbestimate

1

mailto:manon.marchand@astro.unistra.fr
https://github.com/parente/nbestimate


2 Marchand, Amodeo and Allen

.github

workflows

Notebooks

README.md

postBuild

requirements.txt

runtime.txt

dependabot.yml

notebooks-check.yml

.pre-commit-config.yaml

runtime.txt

python-3.8.8

requirements.txt

astroplan==0.8

astropy==5.1.1

astroquery==0.4.*

ipyaladin==0.1.*

MOCpy==0.11.*

plotly==5.11.*

pyvo==1.4

regions==0.7

seaborn==0.12.*

specutils==1.9.*

postBuild

jupyter nbextension enable --py widgetsnbextension

jupyter nbextension enable --py --sys-prefix ipyaladin

a. b.

c.

d.

./

Figure 1. Providing environment specifications. (a.) File structure of a reposi-
tory hosted on GitHub with (b.) a runtime.txt file providing a python version, (c.) a
requirements.txt file with a list of dependencies, and (d.) a postBluid file containing
bash commands to be executed once the environment is set up.

and other hosting platforms with the exception of the dependency bot and the pytest
check that uses the GitHub actions and would need adaptation for other tools.

2. Providing enough information to build virtual environments

The minimal set of information needed to run a notebook is a compatible Python ver-
sion, a declared set of dependencies, and any specific module or widget installation
steps (Wilson et al. 2017). Since notebooks format does not encode the version require-
ments, this information is often lacking (Wang et al. 2021). Moreover, environment
specifications are not only useful to know how to execute the notebooks on a personal
machine, but also for automatic containerization or environment building tools such
as repo2docker or the virtual science analysis platforms that are currently developed
by different scientific projects.2 Different conventions exist for human and machine
readable environment files, with all of them requiring to add specific files in the root
directory (Fig 1a.). In this project, we chose to use a combination of runtime.txt to
provide a compatible Python version, requirement.txt to declare dependencies and
postBuild to specify bash commands to be executed once the virtual environment is
set, as illustrated in figure 1b., c. and d. The most important point in these three files
is that the requirements.txt specifies versions explicitly, with the exception of the
minor release wildcard * to allow for bug fixes but not for API modifications.

Keeping dependencies up-to-date. Declaration of dependencies is not sufficient.
The notebooks should also use recent modules and libraries to avoid that the tutori-
als or the examples end up outdated. This would prevent any interested reader from
extracting a function or piece of software from the notebooks and applying it on their
own research environment. However, this maintenance of up-to date modules is a gar-

2see https://github.com/jupyterhub/repo2docker and https://notebooks.egi.eu

https://github.com/jupyterhub/repo2docker
https://notebooks.egi.eu


Jupyter notebooks maintenance tips and tricks 3

Figure 2. Dependencies management (a.) With the exponential number of de-
pendencies of any project, dependency management requires bots that can be con-
figured (b.) in an easy workflow (c.) to trigger an automatic pull request each time
a new compatible dependency is available in a specified package index – such as the
pip registry for Python projects.

c.

Figure 3. Testing framework (a.) Configuration files for a pre-commit running
black – a python formater – (b.) Example of a commit rejected by flake8 because one
of the notebooks imports an unused module. (c.) The results of the GitHub actions
are automatically updated in the repository README page.

gantuan task due to the large number of dependencies of any python project, see Fig2a.
We manage the dependencies with DependaBot,3 a tool available for GitHub, GitLab
and Azure DevOps. It only requires adding a configuration file in the .github folder,
see fig 2b., and allowing the bot in GitHub settings in the security section. In our case,
the bot is instructed to scan every week for a more recent compatible set of versions.
This process opens automatic pull requests, as shown in figure 2c. These pull requests
also trigger our testing workflows, as described in the following section. It allows to
accept in one click if every test is successful or to investigate the needed changes of bug
fixes to support the last version of dependencies.

3. Testing framework

Catch syntax and coding errors with git before pushing. Every git repository has
a .git/hooks/ folder that contains scripts executed at every commit, push or any
other git event. In our repository, we used pre-commit that can be configured in a

3https://github.com/dependabot

https://github.com/dependabot


4 Marchand, Amodeo and Allen

.pre-commit-config.yaml file (see fig 1a. and 3a.) and installed via the pip pack-
age manager. We run the Python formatter Black and the code quality checker Flake8
through all the notebooks modified in each commits 4. Figure 3b. shows a rejection
message for a commit with an unused module import in one notebook. This frame-
work should prevent most of the NameError and also ensures good code quality and
readability.

Multi-platform testing with GitHub actions. Once the commit goes through the
pre-commit tests, it can be added to the repository. On GitHub, we can add actions
in the .github/workflows/ folder that we chose to trigger on each push and pull
requests, see (Marchand et al. 2022). These tests build environments for Windows,
Linux and MacOS and for all currently active python versions by using the environ-
ment information provided in the repository as in the precedent section and then runs
a pytest command pytest --nbmake -n=auto that tests wether all notebooks can be
executed and fail if any errors is raised. The results of these tests are automatically
displayed on the README page of the project, see fig 3c. This last check should catch
all the remaining errors not covered by the pre-commits tests.

4. Summary/Conclusion

This maintenance workflow works as an ensemble, where the information provided to
build a running environment for the notebooks is used directly in the tests and where
any dependency update is probed by the same tests automatically before being manually
accepted. This ensures minimal human interaction while continuously testing that all
notebooks are all good and running. This work can be explored and re-used from the
Euro-VO/ESCAPE repository of tutorials (Marchand et al. 2022).

Acknowledgments. This work has been supported by the ESCAPE project (the
European Science Cluster of Astronomy & Particle Physics ESFRI Research Infras-
tructures) that has received funding from the European Union’s Horizon 2020 research
and innovation program under the Grant Agreement n. 824064. The EOSC Future
project is co-funded by the European Union Horizon Program call INFRAEOSC-03-
2020 - Grant Agreement Number 101017536.

References

Clyburne-Sherin, A., Fei, X., & Green, S. A. 2019, Meta-psychology, 3
Knuth, D. E. 1984, The Computer Journal, 27, 97
Marchand, M. C., et al. 2022. URL https://zenodo.org/record/7358070
Perkel, J. M. 2018, Nature, 563, 145
Piccolo, S. R., & Frampton, M. B. 2016, GigaScience, 5. S13742-016-0135-4
Pimentel, J. F., Murta, L., Braganholo, V., & Freire, J. 2019, in 2019 IEEE/ACM 16th interna-

tional conference on mining software repositories (MSR) (IEEE), 507
Wang, J., Li, L., & Zeller, A. 2021, in 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE), 1622
Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T. K. 2017, PLOS

Computational Biology, 13, 1

4https://pre-commit.com, https://black.readthedocs.io, and https://github.com/pycqa

https://zenodo.org/record/7358070
https://pre-commit.com
https://black.readthedocs.io
https://github.com/pycqa

