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Abstract

Object detection and tracking are essential for reliable
decision-making in modern applications such as self-driving
cars, drones, and industry. Adverse weather can hinder ob-
ject detectability and pose a threat to the reliability of these
systems. As a result, there is an increasing need for efficient
image denoising and restoration techniques. In this study, we
investigate the use of image purification as a means of de-
fending against weather corruptions. Specifically, we focus
on the effect of snow on an object detector and the bene-
fits of efficient desnowification. We find that the performance
of a strong image purifying baseline (PreNet) is not constant
across different levels of snow intensity, leading to a reduced
overall performance in diverse situations. Through extensive
experimentation, we demonstrate that adding a lightweight
snow detector significantly improves the overall object detec-
tion performance without needing to modify the purification
model. Our proposed weather-robust architecture exhibits a
40% performance improvement compared to a strong image
purification baseline on the gas cylinder counting task. In ad-
dition, it leads to significant reductions of the computational
power required to run the purification pipeline with a minimal
added cost.

Introduction
Several real-world applications rely on vision-based sen-
sors to navigate and achieve different tasks through their
surroundings. Snow is a common weather condition that
can adversely affect the performance of deep learning-based
models on high-level vision tasks such as image classifica-
tion, object detection, and video surveillance. These effects
can include visual obstructions, changes in lighting condi-
tions, and changes in the background of the video footage,
which can all contribute to reduced accuracy and reliabil-
ity of the surveillance system. As weather conditions im-
pact these sensors, perception pipelines require considerable
training on diverse data to increase the robustness of down-
stream tasks, and it may not be practical to collect such
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large-scale datasets. Thus, it becomes essential to remove
these undesirable artefacts due to severe weather conditions
automatically. This problem has drawn the attention of sev-
eral researchers driven by the recent impact of deep learn-
ing on the computer vision domain. It results in many ap-
proaches for denoising and restoration of the corrupted im-
age (Image captured under weather conditions). Generative
models based on GANs and Denoising Auto Encoder(Theis,
Oord, and Bethge 2015; Zhang, Sindagi, and Patel 2020;
Teeti et al. 2022; Gherbi et al. 2019) are mainly proposed
as a proxy to purify the image as a preprocessing step for
the model responsible for the downstream task like counting
and recognising objects in videos. Those methods are often
evaluated using Image similarity metrics like PSNR, SSIM
(Wang et al. 2004) and not by their effectiveness in achieving
results for the targeted application. It is possible that the out-
put image of these methods has high image quality but also
learns more about corrupted images. Hence, it achieves good
results only on a corrupted image. In this work, we evaluate
the effectiveness of restoration techniques for image purifi-
cation to create a practical object detection pipeline suited
for real-time video surveillance. To this end :

• We investigate the use of image purification to defend
against weather corruption. We find that the purification
performance of PreNets varies across different levels of
snow intensity, leading to reduced overall performance in
cases of low snow intensity.

• Our experiments have shown that using a lightweight
weather monitor detector to trigger an image purification
baseline can significantly improve its performance with-
out requiring any modifications. This demonstrates the
effectiveness of the approach in purifying images.

• In our proposed weather-robust pipeline, we have
demonstrated a 40% improvement on the gas cylinder
counting task compared to a strong image purification
baseline. Additionally, this approach requires signifi-
cantly less computational power to run the purification
pipeline, while incurring minimal additional cost.



Related Work

This section briefly reviews the different components of a
weather-robust pipeline for a specific downstream task, such
as video object detection.

Weather corruption and restoration

Corrupted images, which are a mixture of pixel intensities
from a specific weather distortion (e.g. snowfall) and a clean
background image, can be decomposed into two separate
images. Traditional model-based restoration methods have
attempted to address this problem by incorporating regular-
izers on the background, and corruption images and solving
for the clean image using specific optimization algorithms
(Gu et al. 2017; Luo, Xu, and Ji 2015; Cantor 1978; Li
et al. 2016; Chen and Hsu 2013). Works such as the atmo-
spheric scattering model (Cantor 1978), Gaussian Mixture
Model (GMM) prior (Li et al. 2016), and patch rank prior
(Chen and Hsu 2013) have been adopted for modelling the
background image or specific corruption weather. However,
the actual composition is often more complex, and these ap-
proaches have been limited in their ability to accurately re-
store a clean image due to their insufficient characterization
of the background and weather-corruption layers.

With the rise of deep learning and generative models
(Theis, Oord, and Bethge 2015) in the computer vision field,
one natural approach involves learning a direct mapping
from corrupted images y to clean background images x,
and to achieve this, several techniques have been developed.
Approaches such as CNN-based and GAN-based image-to-
image translation models (e.g., pix2pix (Qu et al. 2019), Cy-
cleGAN (Teeti et al. 2022), and perceptual adversarial net-
works (Wang et al. 2018a)) have been successful in mod-
elling the underlying image background structures when ap-
plied to the problem of generating clean background images
from rainy images. As a result, specific generative models
have been developed for the purpose of weather restora-
tion tasks, such as multi-task CNN architecture designed
for joint detection and removal of rain streaks (Wang et al.
2018b), also in (Li et al. 2018) the author recurrently uti-
lize dilated CNN and squeeze-and-excitation blocks to re-
move heavy rain streaks. Image deraining conditional GANs
(Zhang, Sindagi, and Patel 2020) and conditional variational
image deraining (Du et al. 2020) based on VAEs. With the
recent success of diffusion models (Özdenizci and Legen-
stein 2022) propose Patch-Based Denoising Diffusion Mod-
els. There have also been efforts to develop lightweight deep
learning models to improve computational efficiencies, such
as the cascaded scheme (Fan et al. 2018) and the Lapla-
cian pyramid framework (Fu et al. 2020). However, these
approaches often result in a degradation of performance. In
contrast, the PRN and PReNet models (Ren et al. 2019) in-
troduce intra-stage recursive computation to reduce network
parameters while achieving state-of-the-art deraining perfor-
mance. In this study, we utilize PReNet as a baseline snow
purifier and investigate ways to improve its performance un-
der adverse conditions.

Object Detection in Adverse Weather Conditions

Object detection is a crucial task in computer vision and
can be divided into two categories: region proposal-based
methods and one-stage regression-based approaches (Zhao
et al. 2019). Region proposal-based methods, such as those
proposed by (Girshick et al. 2014; Girshick 2015), gen-
erate regions of interest (RoIs) from an image and clas-
sify them using neural networks. On the other hand, one-
stage regression-based approaches, such as YOLO (Redmon
et al. 2016; Redmon and Farhadi 2017, 2018; Bochkovskiy,
Wang, and Liao 2020; Zhu et al. 2021), predict object la-
bels and bounding box coordinates using a single convolu-
tional neural network (CNN). Although object detection is
well-studied, relatively few studies have focused on object
detection under adverse weather conditions. One common
approach to this problem is to preprocess the image using
classical image enhancement methods (Guo et al. 2020; He,
Sun, and Tang 2011), which are designed to remove spe-
cific weather corruption and improve image quality. How-
ever, this may not necessarily lead to improved detection
performance. Other prior-based methods (Li et al. 2017;
Dong et al. 2020) have attempted to jointly perform im-
age enhancement and detection to mitigate the effects of ad-
verse weather conditions. Under the assumption that there
is a domain shift between images captured under normal
and adverse weather conditions, some studies have also ex-
plored the use of domain adaptation to address this problem
(Hnewa and Radha 2021; Zhang et al. 2021).

In this study, we utilize the classic one-stage YOLOv5 de-
tector (Zhu et al. 2021) as a baseline and investigate ways to
improve its performance under adverse conditions by adding
a purifier model as preprocessing method of the input while
focusing on preserving the detector performance and intro-
ducing less computational overload.To this end we favor
lightweight solutions to build a practical pipeline.

Methodology

In order to address the issue of poor visibility in images
captured during adverse weather conditions such as heavy
snowfall, we propose a pipeline of image restoration algo-
rithms. Motivated by the recent progress achieved with state-
of-the-art conditional generative models, especially weather
purification based on diffusion models, we chose to im-
plement a lightweight alternative in our pipeline. Specifi-
cally, we use PReNet (Ren et al. 2019), which can be seen
as the Euler discretization of a particular neural differen-
tial equation (which we will not discuss in this work), as
a substitute for the diffusion model for performance rea-
sons to meet the practical industrial design specification.
This allows us to maintain a high level of image quality
while reducing the inference time to the order of the tenth
of a second. As discussed above, the goal is to provide a
lightweight pipeline that enables a well-trained object de-
tection (YOLOv5) model to achieve its task in adversary
weather conditions.



Figure 1: Proposed weather-robust cylinder counting pipeline.

Figure 2: Illustration of PReNet architecture, a progressive network composed of a convolution layer fin followed by an LSTM
layer frecurrent and ResBloacks fres into convolution layer output fout . (Ren et al. 2019)

Purification
In this paper, we propose a method for purifying images that
have been corrupted by the presence of snow. Our method,
called ”desnowification,” is based on the preprocessing tech-
nique described in (Ren et al. 2019), which uses a weight-
tied ResNet to restore a corrupted image to its original, un-
corrupted form. The ResNet is implemented as a shallow
network with a recurrent layer to capture the dependencies
of deep features across stages. The inference of PRNeNet
can be formulated as follow :

xt−0.5 = fin(x
t−1,y), (1)

st = frecurrent(s
t−1,xt−0.5), (2)

xt = fout(fres(s
t)), (3)

where the recurrent layer frecurrent takes both xt−0.5 and
the recurrent state st−1 as inputs at stage t − 1. The archi-
tecture is shown in Fig 2. A recursive procedure is used to
unfold a shallow ResNet and add a recurrent layer. The is
done in order to capture the dependencies of deep features
across stages in the process. This learning goal is to identify
the presence of snow as a corruption in the image and gradu-
ally restore a clean image by exploiting these dependencies.
The objective function of PReNet with T stages is :

Loss = −
T∑

t=1

λtSSIM(xt − xgt) (4)

where SSIM is the single negative structural similarity
loss objective, a measure of the similarity between two im-
ages proposed by (Wang et al. 2004), and λ is a tradeoff
parameter where λt=T > λt, the tradeoff parameter for the
final stage is larger than the others.

One challenge of using this method for desnowification
is the lack of paired data, i.e., a set of images that includes
both a corrupted and a clean version. Without this data, the
purifier may produce poor results on clean images, as it may
darken the image in an attempt to remove the snow, and leads
to an adverse examples input for YOLOv5 object detection
model.

Snow monitoring
To address the issue of snow corruption in our object count-
ing system, we have developed a real-time snow monitoring
system that can detect snow events and their intensities. We
have chosen to use a supervised learning approach, leverag-
ing the data corruption pipeline we previously developed for
the image purifier.

Our snow monitoring system consists of a weather-robust
cylinder counting pipeline that includes both a real-time
snow detector and a snow purifier. The snow purifier is ac-
tivated only when the snow detector classifies the image as
having an intermediate or high level of snow. For images
with little to no snow, the monitoring system sends the image
directly to the YOLOv5 counting classifier, saving inference



time and optimizing the overall performance of the pipeline.
The Proposed weather-robust cylinder counting pipeline is
illustrated in Figure 1.

For the snow detector component of our system, we have
trained a ConvMixer image classifier, as proposed in (Trock-
man and Kolter 2022). This architecture is well-suited to our
needs due to its high performance and low inference time.
A straightforward model that is similar to the ViT (Visual
Transformers) where it operates directly on patches as in-
put. By separating the mixing of spatial and channel dimen-
sions in the input (Patches), ConvMixer can maintain equal
size and resolution throughout the network. In contrast, the
ConvMixer uses only standard convolutions to achieve the
mixing steps. However, Convmixer outperforms the ViT-
based architectures and classical vision models such as the
ResNet. A detailed architecture is shown in figure 3. Con-
vMixer works following these steps see Figure:

• It uses a method called ”tensor layout” to embed image
patches in a way that keeps the information local.

• Then it applies a series of convolutional blocks, each
one consisting of two types of convolution: first, a large-
kernel convolution that operates on each channel sep-
arately, and second, a pointwise convolution that com-
bines the information from all the channels.

• The number of times this convolutional block is applied
is determined by the variable d.

• After all the convolutional blocks are applied, a global
pooling is applied to extract features from the entire im-
age, then A simple linear classifier is applied to make a
prediction on the image.

Experiments and results
In this study, we conducted ablation studies on the purifier
component to evaluate the performance of the restoration
process under adverse snow conditions. We then assessed
the effectiveness of our pipeline in improving the accuracy
of Cylunder-Counting using YOLOv5 in these challenging
conditions. The results of these experiments are presented
below.

Dataset
The Air Liquide’s cylinder counting dataset contains 40
videos of around 300 images of 780 x 1024 pixels each.
Images are drone-like views of trucks containing gas cylin-
ders of different sizes. A YoloV5 object detector pre-trained
on clean data to detect gas cylinders is provided as a base-
line. In addition, a tracking algorithm (Bewley et al. 2016) is
plugged on top of the detector to track gas cylinders across
the video frames ensure sure an object is counted once time :
the final count is obtained by counting the number of tracks.

To train the PReNet we select four random images from
each video batch, and we apply a fixed snow corruption of
high intensity see Figure 4. The images are normalized be-
tween 0 and 1 and then separated into 100x100 patches.
Flipped versions of them are also considered during train-
ing to avoid overfitting.

Purifier experiments
In this study, we trained a PReNet (with a LSTM block) to
purify images that had been corrupted using the image cor-
ruption framework provided by (Hendrycks and Dietterich
2019). The PReNet had a width of T=6, a batch size of 18,
and a learning rate of 1e-3 that was decayed three times by
a factor of 5 during training. We used the Structural Simi-
larity Index (SSIM) as the loss function to measure the per-
ceptual quality differences between the original and purified
images. The Adam optimizer was used, and the model was
trained for 100 epochs on two NVIDIA A100 GPUs with
32Gb of memory each. To evaluate the performance of the
trained PReNet, we applied three gradually increasing snow
intensity levels (low, intermediate, and high) to the test set
in a random order, following a uniform random distribution.
Figure 4 shows one example of an original image and its
corruptions. The results of the model’s performance on this
task are presented below.

In our experiment, we applied a model to two images from
a test set that were corrupted by high and intermediate inten-
sity snow. The results, shown in Figure 6, indicate that the
model was able to effectively remove the snow from the im-
ages, revealing small details of the cylinders that were previ-
ously hidden. This cleaning effect was consistent across dif-
ferent types of cylinders, regardless of their color and size,
and the cylinders were clearly distinguishable from the sur-
rounding context (e.g., floor, truck). These results suggest
that the model is effective at purifying images from snow
corruption.

In contrast, the purification performance the results in the
presence of little to no snow and on clean images shown
in Figure 5, indicate that the purification model resulted in
overall darker images with less clearly visible small details.
This is because, in the absence of snow, the purification
model tended to attack small white features in the image,
leading to an increase in counting error until it stabilized.
As a result, the performance of the purification model was
worse than the classifier alone, as shown Table 1. These re-
sults suggest that the purification model should only be ap-
plied in situations where snow is present in order to improve
accuracy.

stage
Snow level 0 1 2 3 4 5 6

Clean 0.95 7.48 10.13 8.16 7.37 6.83 6.29
Low 1.24 1.94 2.0 1.51 1.40 1.29 1.32

Intermediate 3.10 2.16 1.54 1.21 1.08 1.05 1.05
High 11.56 3.02 1.64 1.35 1.18 1.24 1.16

Table 1: Mean counting error of the pipeline
Counter+Purifier at increasing stage width of the puri-
fier and for increasing levels of snow severity.

Table 1 shows that, as the purification unfolds, the average
counting error shrinks from 3.1 cylinders/truck to reach a
minima of 1.16 and 1.05 for high and intermediate snow re-
spectively. The counting error tends to stabilize at T=4 after-
wards further iterations are not beneficial. The lower count-
ing error of intermediate snow indicates that the purification
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Figure 3: Illustration of ConvMixer architecture (Trockman and Kolter 2022)

Figure 4: Illustration of examples of the original image and
its corruption with different intensities of snowfall

task is easier. Comparing the obtained results with the ref-
erence clean data counting error of 0.951 cylinders/truck,
we conclude that the purifying model has not only provided
a perceptual but an operational advantage compared to the
classifier alone on corrupted data.

Real-time weather corruption monitoring:
In light of the above results, we developed a lightweight,
real-time snow monitoring that is able to detect snow
events and their intensities. We trained an image classifier
type ConvMixer, firstly proposed by (Trockman and Kolter
2022). This architecture is compelling due to its high per-
formance and low inference time.The input images were re-
sized and cropped, and the model was trained using Adam
optimization with a learning rate of 0.01 and weight decay
of 0.01. The model was trained on a dataset of images with
four classes: clean, low intensity snow, intermediate inten-
sity snow, and high intensity snow. To prevent overfitting,

Figure 5: Illustration of the PreNet purification through dif-
ferent stages on a clean image.

Figure 6: Illustration of the PreNet purification through dif-
ferent stages on a corrupted image.

we varied the corruption level of the images during training
and validation. After training, the model achieved an accu-
racy of 81.7% on a test set of 42 videos.

The trained model demonstrated the ability of ConvMixer
model to perform real-time snow intensity monitoring in im-
ages of trucks. An example of this is shown in Figure 7,
where the model correctly identified intermediate and high
intensity snow events with probabilities of 82% and 66%, re-
spectively. However, the model had some difficulty correctly
identifying a clean image, incorrectly labeling it as low in-
tensity snow. This is likely because the clean image was not
significantly altered by corruption, making the classification
task more challenging.



Figure 7: Examples of snow detection of several intensities.

Weather-robust Cylinder Counting pipeline results
In order to evaluate the impact of our weather-robust
pipeline, we conducted a series of tests. First, we es-
tablished the reference counting error and inference time
of YOLOv5. Next, we created a corrupted dataset con-
taining 10 clean videos and three collections of 10
videos with snow at intensities 1, 2, and 5, respectively.
On this corrupted dataset, we evaluated the performance
of YOLOv5 alone, YOLOv5 with PReNet purification
preprocessing at 4 stages (YOLOv5+PReNet(t=4)), and
YOLOv5+PReNet(t=4) passed through a trained ConvMix
model that determined whether the amount of snow in the
image required purification (i.e., if the snow intensity was
greater than or equal to 3). In particular, the ConvMix model
would send the image to PReNet(t=4) if the snow intensity
was sufficient to warrant purification. Table 2 summarizes
the obtained results.

Model Dataset MCE Inference time(s)
(ref) YOLO clean 0.9512 0.06

YOLO corrupt 3.4358 0.06
PReNet+YOLO corrupt 1.9743 0.13

Ours corrupt 1.1784 0.131

Table 2: Mean Counting Error (MCE) Benchmark on Air
Liquide Cylinder Counting comparing Ours pipline (Con-
vMix+PReNet+YOLO) with different preprocessing mod-
ules.

As shown in the table 2, ours method demonstrates su-
perior performance across both high and low snow intensity
regimes by lowering the MCE. This is particularly notewor-
thy as the improved accuracy of Cylinder Counting under
adverse weather conditions is achieved with minimal impact
on inference time compared to the PReNet+YOLO pipeline.
This highlights the effectiveness of our approach in provid-
ing accurate results while maintaining computational effi-
ciency.

Conclusion
Based on the results of our experiments, we have developed
a weather-robust pipeline that is able to improve the accu-
racy of cylinder counting in images of trucks with vary-
ing levels of snow. Our pipeline consists of a ConvMixer
model that is able to detect snow events in real-time and
a PReNet purification model that is effective at removing
snow corruption from images. In situations with intermedi-
ate and high-intensity snow, the combination of these two
models resulted in a significant reduction in counting error,

up to 10.4 cylinders per truck. However, in the absence of
snow or with low-intensity snow, the purification model had
a negative impact on accuracy. There are several potential di-
rections for future work. One possibility would be to further
optimize the ConvMixer, and PReNet model using condi-
tional trick (Mirza and Osindero 2014) to improve its accu-
racy in classifying low-intensity snow or clean images and
reduce the number of preprocessing components. Addition-
ally, it may be worthwhile to explore alternative purification
models or techniques that are more effective at preserving
image quality in the absence of snow (Özdenizci and Leg-
enstein 2022) despite their lazy inference time. Overall, our
weather-robust pipeline represents a promising approach for
improving the accuracy of cylinder counting in challenging
imaging conditions.
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