
HAL Id: hal-03970597
https://hal.science/hal-03970597v1

Preprint submitted on 2 Feb 2023 (v1), last revised 17 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Disorientation faults in CSIDH
Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz

Panny, Krijn Reijnders, Jana Sotáková, Monika Trimoska

To cite this version:
Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer, Lorenz Panny, et al.. Disorientation
faults in CSIDH. 2023. �hal-03970597v1�

https://hal.science/hal-03970597v1
https://hal.archives-ouvertes.fr

Disorientation faults in CSIDH

Gustavo Banegas1, Juliane Krämer2, Tanja Lange3,4, Michael Meyer2,
Lorenz Panny4, Krijn Reijnders5, Jana Sotáková6, and Monika Trimoska5

1 Inria and Laboratoire d’Informatique de l’Ecole polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
2 University of Regensburg, Germany

juliane.kraemer@ur.de, michael@random-oracles.org
3 Eindhoven University of Technology, the Netherlands

tanja@hyperelliptic.org
4 Academia Sinica, Taipei, Taiwan

lorenz@yx7.cc
5 Radboud University, Nijmegen, The Netherlands

krijn@cs.ru.nl, monika.trimoska@ru.nl
6 University of Amsterdam and QuSoft, Amsterdam, The Netherlands

j.s.sotakova@uva.nl

Abstract. We investigate a new class of fault-injection attacks against
the CSIDH family of cryptographic group actions. Our disorientation
attacks effectively flip the direction of some isogeny steps. We achieve
this by faulting a specific subroutine, connected to the Legendre symbol
or Elligator computations performed during the evaluation of the group
action. These subroutines are present in almost all known CSIDH im-
plementations. Post-processing a set of faulty samples allows us to infer
constraints on the secret key. The details are implementation specific,
but we show that in many cases, it is possible to recover the full secret
key with only a modest number of successful fault injections and modest
computational resources. We provide full details for attacking the origi-
nal CSIDH proof-of-concept software as well as the CTIDH constant-time
implementation. Finally, we present a set of lightweight countermeasures
against the attack and discuss their security.

∗ Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. This work began at the online Lorentz Center workshop
“Post-Quantum Cryptography for Embedded Systems” held in February 2022. This
research was funded in part by the European Commission through H2020 SPARTA
(https://sparta.eu/), the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy—EXC 2092 CASA—390781972
“Cyber Security in the Age of Large-Scale Adversaries”, the Taiwan’s Executive Yuan
Data Safety and Talent Cultivation Project (AS-KPQ-109-DSTCP), the German
Federal Ministry of Education and Research (BMBF) under the project Quantum-
RISC (ID 16KIS1039), the Dutch Research Council (NWO) through Gravitation-
grant Quantum Software Consortium – 024.003.037, and a gender balance subsidy
of the Faculty of Science, Radboud University, project number 6201362. This work
was done in part while Tanja Lange was visiting the Simons Institute for the Theory
of Computing. Date of this document: 2022-09-12.

https://ams.org/profession/leaders/CultureStatement04.pdf
https://ams.org/profession/leaders/CultureStatement04.pdf

2 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

Keywords: Fault-injection attack · isogenies of elliptic curves · post-
quantum cryptography

1 Introduction

Isogeny-based cryptography is a contender in the ongoing quest for post-quantum
cryptography. Perhaps the most attractive feature is small key size, but there
are other reasons in favor of isogenies: Some functionalities appear difficult to
construct from other paradigms. For instance, the CSIDH [15] scheme gives
rise to non-interactive key exchange. CSIDH uses the action of an ideal-class
group on a set of elliptic curves to mimic (some) classical constructions based
on discrete logarithms, most notably the Diffie–Hellman key exchange. Recently,
more advanced cryptographic protocols have been proposed based on the CSIDH
group action: the signature schemes SeaSign [23] and CSI-FiSh [8], threshold
schemes [24], oblivious transfer [27], and more. The main drawback of isogeny-
based cryptography is speed: CSIDH takes hundreds of times longer to complete
a key exchange than pre-quantum elliptic-curve cryptography (ECC).

The group action in CSIDH and related schemes is evaluated by computing
a sequence of small-degree isogeny steps; the choice of degrees and “directions”
is the private key. Thus, the control flow of a straightforward implementation
is directly related to the secret key, which complicates side-channel resistant
implementations [3, 7, 12,26,30,31].

In a side-channel attack, passive observations of physical leakage (such as
timing differences, electromagnetic emissions, or power consumption) during the
execution of sensitive computations help an attacker infer secret information.
A more intrusive class of physical attacks are fault-injection attacks or fault
attacks: By actively manipulating the execution environment of a secure device
(for instance, by altering the characteristics of the power supply, or by exposing
the device to electromagnetic radiation), the attacker aims to trigger an error
during the execution of sensitive computations and later infer secret information
from the now incorrect, faulty outputs.

Two major classes of faults are instruction skips and variable modifications.
Well-timed skips of processor instructions can have far-reaching consequences,
for example, omitting a security check entirely, or failing to erase secrets which
subsequently leak into the output. Depending on the attack model, variable mod-
ifications may reach from simply randomized CPU registers to precisely targeted
single-bit flips. They cause the software to operate on unexpected values, which
(especially in a cryptographic context) may lead to exploitable behavior. In
practice, the difficulty of injecting a particular kind of fault (or combination of
multiple faults) depends on various parameters; generally speaking, less targeted
faults are easier.

Our contributions. We analyze the behavior of existing CSIDH implementa-
tions under a new class of attacks that we call disorientation faults. These faults
occur when the attacker confuses the algorithm about the orientation of a point

Disorientation faults in CSIDH 3

used during the computation: The effect of such an error is that a subset of
the secret-dependent isogeny steps will be performed in the opposite direction,
resulting in an incorrect output curve.

The placement of the disorientation fault during the algorithm influences the
distribution of the output curve in a key-dependent manner. We explain how an
attacker can post-process a set of faulty outputs to fully recover the private key.
This attack works against almost all existing CSIDH implementations.

To simplify exposition we first assume access to a device that applies a secret
key to a given public key (i.e., computing the shared key in CSIDH) and returns
the result (for instance a hardware security module providing a CSIDH acceler-
ator). We also discuss variants of the attack with weaker access; this includes a
hashed version where faulty outputs are not revealed as-is, but passed through
a key-derivation function first, as is commonly done for a Diffie–Hellman-style
key exchange, and made available to the attacker only indirectly, e.g., as a MAC
under the derived key.

Part of the tooling for the post-processing stage of our attack is a some-
what optimized meet-in-the-middle path-finding program for the CSIDH isogeny
graph, dubbed pubcrawl. This software is intentionally kept fully generic with
no restrictions specific to the fault-attack scenario we are considering, so that it
may hopefully be usable out of the box for other applications requiring “small”
neighborhood searches in CSIDH in the future.

Applying expensive but feasible precomputation can speed up post-processing
for all attack variants and is particularly beneficial to the hashed version of the
attack.

To defend against disorientation faults, we provide a set of countermeasures.
We show different forms of protecting an implementation and discuss the pros
and cons of each of the methods. In the end, we detail two of the protections
that we believe give the best security. Both of them are lightweight, and they do
not significantly add to the complexity of the implementation.

Related work. Prior works investigating fault attacks on isogeny-based cryp-
tography mostly target specific variants or implementations of schemes and are
different from our approach.

Loop-abort faults on the SIDH cryptosystem [25], discussed for CSIDH in [10],
lead to leakage of an intermediate value of the computation rather than the final
result. Replacing torsion points with other points in SIDH [36, 37] can be used
to recover the secret keys; faulting intermediate curves in SIDH [2] to learn if
secret isogeny paths lead over subfield curves can also leak information on secret
keys. But the two latter attacks cannot be mounted against CSIDH due to the
structural and mathematical differences between SIDH and CSIDH.

Recently, several CSIDH-specific fault attacks were published. One can mod-
ify memory locations and observe if this changes the resulting shared secret [11].
A different attack venue is to target fault injections against dummy computa-
tions in CSIDH [10, 28]. We emphasize that these are attacks against specific
implementations and variants of CSIDH. To the best of our knowledge, our

4 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

work features the first generic fault attack exploiting an operation and data flow
present in almost all current implementations of CSIDH.

1.1 Note on security

We emphasize that CSIDH, its variants, and the protocols based on the CSIDH
group action are not affected by the recent attacks that break the isogeny-based
scheme SIDH and its instantiation SIKE [14,29,34]. These attacks exploit specific
auxiliary information which is revealed in SIDH but does not exist in CSIDH.

CSIDH is a relatively young cryptosystem, being introduced only in 2018,
but it is based on older systems due to Couveignes [21] and Rostovtsev and
Stolbunov [35] which have received attention since 2006. The best non-quantum
attack is a meet-in-the-middle attack running in O(4

√
p); a low-memory version

was developed by Delfs and Galbraith in [22]. On a large quantum computer
Kuperberg’s attack can be mounted as shown by Childs, Jao, and Soukharev
in [19]. This attack runs in L√

p(1/2) calls to a quantum oracle. The number of
oracle calls was further analyzed in [9] and [33] for concrete parameters while [7]
analyzes the costs per oracle call in number of quantum operations. Combining
these results shows that breaking CSIDH-512 requires around 260 qubit opera-
tions on logical qubits, i.e., not taking into account the overhead for quantum
error correction. Implementation papers such as CTIDH [3] use the CSIDH-512
prime for comparison purposes and also offer larger parameters. Likewise, we
use the CSIDH-512 and CTIDH-512 parameters for concrete examples.

2 Background

CSIDH [15] is based on a group action on a certain set of elliptic curves. We
explain the setup of CSIDH in Section 2.1 and relevant algorithmic aspects in
Section 2.2. We assume some familiarity with elliptic curves and isogenies; the
reader may consult [15] for more details.

2.1 CSIDH

We fix a prime p of the form p = 4 · ℓ1 · · · ℓn − 1 with distinct odd primes ℓi.
We define E to be the set of supersingular elliptic curves over Fp in Montgomery
form, up to Fp-isomorphism. All such curves admit an equation of the form
EA : y2 = x3 + Ax2 + x with a unique A ∈ Fp. For EA ∈ E , the group of rational
points EA(Fp) is cyclic of order p+1. The quadratic twist of EA ∈ E is E−A ∈ E .

Isogeny steps. For any ℓi and any EA ∈ E there are two ℓi-isogenies, each lead-
ing to another curve in E . One has kernel generated by any point P+ of order ℓi

with both coordinates in Fp. We say this ℓi-isogeny is in the positive direction
and the point P+ has positive orientation. The other ℓi-isogeny has kernel gen-
erated by any point P− of order ℓi with x-coordinate in Fp but y-coordinate in

Disorientation faults in CSIDH 5

Fp2 \ Fp. We say this isogeny is in the negative direction and the point P− has
negative orientation. Replacing EA by the codomain of a positive and negative
ℓi-isogeny from EA is a positive and negative ℓi-isogeny step, respectively. As the
name suggests, a positive and a negative ℓi-isogeny step cancel.

Fix i ∈ Fp2\Fp with i2 = −1 ∈ Fp and note that a negatively oriented point
is necessarily of the form (x, iy) with x, y ∈ Fp. Moreover, x ∈ F∗

p defines a
positively oriented point on EA whenever x3 + Ax2 + x is a square in Fp, and a
negatively oriented point otherwise.

The group action. It is a non-obvious, but extremely useful fact that the
isogeny steps defined above commute: Any sequence of them can be rearranged
arbitrarily without changing the final codomain curve [15].

Thus, taking a combination of various isogeny steps defines a group action
of the abelian group (Zn, +) on E : The vector (e1, . . . , en) ∈ Zn represents
|ei| individual ℓi-isogeny steps, with the sign of ei specifying the orientation.
In other words, letting li denote a single positive ℓi-isogeny step, acting by
(e1, . . . , en) ∈ Zn on a curve E encodes the sequence of steps:

(le1
1 · · · len

n) ∗ E .

We refer to (e1, . . . , en) as an exponent vector.

2.2 Algorithmic aspects

Every step is an oriented isogeny, so applying a single l±1
i step requires a point P

on E with two properties: It must have order ℓi and the correct orientation. The
codomain of the corresponding isogeny from P is computed using either the
Vélu [39] or

√
élu [5] formulas.

Determining orientations. All state-of-the-art implementations of CSIDH
use x-only arithmetic and completely disregard y-coordinates. So, we typically
sample a point P by sampling an x-coordinate in Fp. To determine the orien-
tation of P , we then find the field of definition of the y-coordinate, for instance
through a Legendre symbol computation. An alternative method is given by the
“Elligator 2” map [6] which generates a point of the desired orientation.

Sampling order-ℓ points. There are several methods to compute points of
given order ℓ. The following Las Vegas algorithm is popular for its simplicity
and efficiency: As above, sample a uniformly random point P of either positive
or negative orientation, and compute Q := [(p + 1)/ℓ]P . Since P is uniformly
random in a cyclic group of order p+1, the point Q has order ℓ with probability
1− 1/ℓ. With probability 1/ℓ, we get Q =∞. Retry until Q ̸=∞. Filtering for
points of given orientation is straightforward.

6 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

Multiple isogenies from a single point. To amortize the cost of sampling
points and determining orientations, implementations usually pick some set S
of indices belonging to exponents of the same sign, and attempt to compute one
isogeny per degree ℓi with i ∈ S from one point. If d =

∏
i∈S ℓi and P a random

point, then the point Q = [p+1
d]P has order dividing d. We can multiply Q by

d/ℓi to construct an isogeny step for ℓi ∈ S. The image of Q under the isogeny
has the same orientation as P and Q and order dividing d/ℓi, so we continue
with the next ℓj .

In CSIDH and its variants, the set S of isogeny degrees depends on the secret
key and the orientation s of P . For example in Algorithm 1, for the first point
that is sampled with positive orientation, the set S is {i | ei > 0}.

The order of a random point P is not divisible by ℓi with probability 1/ℓi.
This means that in many cases, we will not be able to perform an isogeny for
every i ∈ S, but only for some (large) subset S′ ⊂ S due to P lacking factors
ℓi in its order for those remaining i ∈ S \ S′. In short, a point P performs the
action

∏
i∈S′ lsi for some S′ ⊂ S, with s the orientation of P (interpreted as ±1).

Sampling a point and computing the action
∏

i∈S′ lsi is called a round; we
perform rounds for different sets S until we compute the full action a =

∏
lei
i .

Strategies. There are several ways of computing the group action as efficiently
as possible, usually referred to as strategies. The strategy in Algorithm 1 is called
multiplicative strategy [7,15,31]. Other notable strategies from the literature are
the SIMBA strategy [30], point-pushing strategies [18], and atomic blocks [3].

1-point and 2-point approaches. The approach above and in Algorithm 1
samples a single point, computes some isogenies with the same orientation, and
repeats this until all steps l±1

i are processed. This approach, introduced in [15],
is called 1-point approach. In contrast, one can sample two points per round,
one with positive and one with negative orientation, and attempt to compute
isogenies for each degree ℓi per round, independent of the sign of the ei [32].
Constant-time algorithms require choosing S independent of the secret key, and
all state-of-the-art constant-time implementations use the 2-point approach, e.g.,
[3, 17].

Keyspace. In both CSIDH and CTIDH, each party’s private key is an inte-
ger vector (e1, . . . , en) sampled from a bounded subset K ⊂ Zn, the keyspace.
Different choices of K have different performance and security properties.

The original scheme [15] uses a keyspace Km = {−m, . . . , m}n ⊂ Zn; for
CSIDH-512 the bound is typically m = 5 [15]. As suggested in [15, Remark 14]
and shown in [30], using different bounds mi for each i can improve speed. The
shifted keyspace K+

m = {0, . . . , 2mi}n was used in [30]. Other choices of K were
made in [16,17,32], and CTIDH [3] (see Section 5.2).

Disorientation faults in CSIDH 7

3 Attack scenario and fault model

Throughout this work, we assume physical access to some hardware device con-
taining an unknown CSIDH private key a. In the basic version of the attack,
we suppose that the device provides an interface to pass in a CSIDH public-key
curve E and receive back the result a ∗ E of applying a to the public key E as
in the second step of the key exchange.

Remark 1. Diffie–Hellman-style key agreements typically hash the shared secret
to derive symmetric key material, instead of directly outputting curves as in our
scenario. Our attacks are still applicable in this hashed version of the attack,
although the complexity for post-processing steps from Section 4 will increase
significantly. To simplify exposition, we postpone this discussion to Section 7.

We assume that the attacker is able to trigger an error during the compu-
tation of the orientation of a point in a specific round of the CSIDH algorithm:
whenever a point P with orientation s ∈ {−1, 1} is sampled during the algo-
rithm, we can flip the orientation s 7→ −s as shown below. This leads to some
isogenies being computed in the opposite direction throughout the round. The
effect of this flip will be explored in Section 4.

Square check. In CSIDH, cf. Algorithm 1, the point P is generated in Step 2
and its orientation s is determined in Step 3. The function IsSquare determines
s by taking as input the non-zero value z = x3 + Ax2 + x, and computing the
Legendre symbol of z. Hence, s = 1 when z is a square and s = −1 when z is
not a square. Many implementations simply compute s ← z

p−1
2 . A successful

fault injection in the computation z ← x3 + Ax2 + x, by skipping an instruction
or changing the value randomly, ensures random input to IsSquare and so in
about half of the cases the output will be flipped by s 7→ −s. In the other half of
the cases, the output of IsSquare remains s. The attacker knows the outcome
of the non-faulty computation and can thus discard those outputs and continue
with those where the orientation has been flipped successfully.

Remark 2. There are other ways to flip the orientation s. For example, one can
also inject a random fault into x after s has been computed, which has a similar
effect. The analysis and attack of Sections 4 and 5 apply to all possible ways to
flip s, independent of the actual fault injection. The countermeasures introduced
in Section 9 prevent all possible ways to flip s that we know of.

Faulting the Legendre symbol computation in IsSquare, in general, leads to
a random Fp-value as output instead of ±1. The interpretation of this result is
heavily dependent on the respective implementation. For instance, the CSIDH
implementation from [15] interprets the output as boolean value by setting s = 1
if the result is +1, and −1 otherwise. In this case, faults mostly flip in one
direction: from positive to negative orientation. Thus, faulting the computation
of z is superior in our attack setting.

8 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

Elligator. Implementations using a 2-point strategy often use Elligator 2 [6].
On input of a random value, Elligator computes two points P and P ′ of opposite
orientations. An IsSquare check is used to determine the orientation of P . If P
has positive orientation, we set P+ ← P and P− ← P ′. Otherwise, set P+ ← P ′

and P− ← P . Again, we can fault the input to this IsSquare check, which flips
the assignments to P+ and P−; hence, the orientation of both points is flipped.

As before, this means that all isogenies computed using either of these points
are pointing in the wrong direction. A notable exception is CTIDH, where two
independent calls to Elligator are used to produce points for the 2-point strategy.
This is due to security considerations, and the algorithmic and attack implica-
tions are detailed in Section 5.2.

4 Exploiting orientation flips

In this section, we analyze disorientation attacks in the context of generic 1-point
and 2-point approaches for CSIDH (see Section 2.2).

A typical 1-point strategy implementation is given in Algorithm 1: first we
sample a point P with orientation s, and then we determine a set S of indices
(with the same orientation) for which we still need to compute isogenies.

Algorithm 1: Evaluation of CSIDH group action
Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp such that

∏
[li]ei ∗ EA = EB

1: while some ei ̸= 0 do
2: Sample a random x ∈ Fp, defining a point P .
3: Set s← IsSquare(x3 + Ax2 + x).
4: Let S = {i | ei ̸= 0, sign(ei) = s}. Restart with new x if S is empty.
5: Let k ←

∏
i∈S

ℓi and compute Q← [p+1
k

]P .
6: for each i ∈ S do
7: Set k ← k/ℓi.
8: Compute R← [k]Q. If R =∞, skip this i.
9: Compute ϕ : EA → EB with kernel ⟨R⟩.

10: Set A← B, Q← ϕ(Q), and ei ← ei − s.
11: return A.

In Section 3, we defined an attack scenario that allows us to flip the orienta-
tion s in Line 3. If this happens, the net effect is that we will select an incorrect
set S′ with opposite orientation, and hence perform an isogeny walk in the oppo-
site direction for all the indices in S′. Equivalently, the set S selected in Line 3
has opposite orientation to the point P . For simplicity, we will always fix the
set S first and talk about the point P being flipped. We assume that we can
successfully flip the orientation in any round r, and that we get the result of the
faulty evaluation, which is some faulty curve Et ̸= a ∗ E.

Disorientation faults in CSIDH 9

We first study the effect of orientation flips for full-order points in Section 4.2,
and then discuss effects of torsion in Section 4.3 and Section 4.4. We organize
the faulty curves into components according to their orientation and round in
Section 4.5 and study the distance of components from different rounds in Sec-
tion 4.6. In Section 4.7, we use faulty curves to recover the secret key a.

4.1 Implications of flipping the orientation of a point

In this section, all points will have full order, so Line 8 never skips an i.
Suppose we want to evaluate the group action

∏
i∈S li ∗ EA for some set

of steps S. Suppose we generate a negatively oriented point P , but flipped its
orientation. This does not change the point (still negatively oriented), but if we
use P to evaluate the steps in what we believe is the positive direction, we will
in fact compute the steps in the negative direction: Ef =

∏
i∈S l−1

i ∗ EA. More
generally, if we want to take steps in direction s and use a point of opposite
orientation, we actually compute the curve Ef =

∏
i∈S l−s

i ∗ EA.
Suppose we flip the orientation of a point in one round of the isogeny com-

putation EB = a ∗ EA and the rest of the computation is performed correctly.
The resulting curve Et is called a faulty curve. If the round was computing steps
for isogenies in S with direction s, the resulting curve satisfies

EB =
∏
i∈S

l2s
i ∗ Et,

that is, the faulty curve differs from the correct curve by an isogeny whose degree
is given by the (squares of) primes ℓi for i ∈ S, the set S in the round we faulted.
We call S the missing set of Et.

Distance between curves. We define the distance d between two curves E
and E′ as the lowest number of different degrees for isogenies ϕ : E → E′.
Note that the distance only tells us how many primes we need to connect two
curves, without keeping track of the individual primes ℓi or their multiplicity.
Specifically for a faulty curve with EB =

∏
i∈S l2s

i ∗ Et, we define the distance
to EB as the number of flipped steps |S|. Note that each li appears as a square;
this gets counted once in the distance.

Positive and negative primes. Suppose the secret key a is given by the
exponent vector (ei). Then every ℓi is used to take ei steps in direction sign(ei).
Define the set of positive primes L+ := {i | ei > 0}, negative primes L− := {i |
ei < 0}, and neutral primes L0 := {i | ei = 0}.

For 1-point strategies and any faulty curve Et with missing set S, we always
have S ⊂ L+ or S ⊂ L−. However, using 2-point strategies, the sets S may
contain positive and negative primes.

Example 1. Take CSIDH-512. Assume we flip the orientation s 7→ −s of the first
point P . From Algorithm 1, we see the elements of S are exactly those i such
that |ei| ≥ 1 and sign(ei) = −s. Therefore, we have S = L−s.

10 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

4.2 Faulty curves and full-order points

We continue to assume that all points have full order, so Line 8 never skips an i,
and analyze which faulty curves we obtain by flipping the orientation in round r.
We treat the general case in Section 4.3 and Section 4.4.

Effective curves. For any strategy (cf. Section 2.2), the computation in round
r depends on what happened in previous rounds. In a 2-point strategy, we sample
both a negative and a positive point and use them to perform the isogenies in
both directions. So assuming points of full order, the round-r computation and
the set S do not depend on the previous round but only the secret key.

In a 1-point strategy, we sample 1 point per round, and only perform isogenies
in the direction of that point. So the set S in round r depends on what was
computed in previous rounds, not just the orientation of the sampled point.
However, the computation in round r only depends on previous rounds with the
same orientation, leading to the following definition.

Notation. Let + and − denote the positive and negative orientation, respec-
tively. For a 1-point strategy, encode the choice of the orientation of the steps
by a sequence of ±. We denote the round r in which we flip the orientation by
parentheses (·). We truncate the sequence at the moment of the fault because the
rest of the computation is always computed correctly. Hence, ++(−) means any
computation starting with the following three rounds: the first two rounds were
positive, the third one should have been negative, but we flipped the orientation
of the 3rd step and those negative steps were computed in the positive direction
instead.

Consider a flip in the second round. There are four possible scenarios:

+(+). Two positive rounds, but the second positive round was flipped and we
took the steps in negative direction instead.

+(−). One positive round, one negative round flipped to the positive direction.
−(+). One negative round, one positive round flipped to the negative direction.
−(−). Two negative rounds, the second one flipped to the positive direction.

All four cases are equally likely to appear for 1-point strategies, but result in
different faulty curves. Since the computation only depends on previous rounds
with the same orientation, the case +(−) is easily seen to be the same as (−) and
++(−). However, the cases +(+) and −(+) are different: the latter is equivalent
to (+). For example, in CSIDH, the set S for (+) is {i | ei ≥ 1}, and the set S′

for +(+) is {i | ei ≥ 2}, differing exactly at the primes for which ei = 1.

Effective round. Let Er,+ be the faulty curve produced by the sequence +· · ·+(+)
of length r, and Er,− the curve produced by sequence −· · ·−(−). We call the
curves Er,± effective round-r curves.

Note that effective round-r curves can be produced from other sequences as
well: +(−) produces the effective round 1 curve E1,−. Similarly, the sequence
++−−+(−) is an effective round-3 sample E3,−.

Disorientation faults in CSIDH 11

To get an effective round-r sample Er,+ from a round n, the last sign in the
sequence needs to be (+), and the sequence contains a total of r pluses. We
immediately get the following.

Lemma 4.1. Assume we use a 1-point strategy. The probability to get an effec-
tive round-r sample if we successfully flip in round n is equal to

(
n−1
r−1

)
· 1

2n−1 .

Remark 3. For a 2-point strategy, all curves resulting from a fault in round r
are effective round-r curves.

Torsion sets Sr,+ and Sr,−. Define the set Sr,s as the missing set of the
effective round-r curve with orientation s, i.e., EB =

∏
i∈Sr,s l2s

i ∗ Er,s.

Example 2 (CSIDH). The sets S1,± were already discussed in Example 1. In
general, Sr,+ = {i | ei ≥ r} and Sr,− = {i | ei ≤ −r}.

4.3 Missing torsion: faulty curves and points of non-full order

In Section 4.2, we worked under the unrealistic assumption that all points we
encounter have full order. In this section, we relax this condition somewhat: we
assume that every point had full order (and hence all isogenies were computed)
up until round r, but the point P generated in round r potentially has smaller
order. We call this the missing torsion case. The remaining relaxation of non-full
order points in earlier rounds will be concluded in Section 4.4.

If the point P used to compute isogenies in round r does not have full order,
the faulty curve Et will differ from the effective round-r curve Er,s by the primes
ℓi with i ∈ Sr,s which are missing in the order of P .

Round-r faulty curves. For simplicity, assume that we are in round r, in the
case +· · ·+(+), and that none of the isogenies in the previous rounds failed. In
round r, a negative point P is sampled, but we flip its orientation, so all the
positive steps will be computed in the wrong direction.

If the point P has full order, we obtain the curve Er,+ at the end of the
computation, which differs from EB exactly at primes contained in Sr,+. If,
however, the point P does not have full order, a subset S ⊂ Sr,+ of steps will
be computed, leading to a different faulty curve Et. By construction, the curve
Et is related to EB via EB =

∏
i∈S l2i ∗ Et.

Assume we repeat the fault T times, leading to different faulty curves Et.
Let n(Et) be the number of times the curve Et occurs among the T samples.

For each such Et, we know EB =
∏

i∈St
l2s
i ∗Et, where St ⊂ Sr,+ is determined

by the order of Pt. As Pt is a randomly sampled point, it has probability ℓi−1
ℓi

that its order is divisible by ℓi, and so probability 1
ℓi

that its order is not divisible
by ℓi. This gives us directly the probability to end up at Et: the order of the point
Pt should be divisible by all ℓi for i ∈ St, but not by those ℓi for i ∈ Sr,+ \ St.
This is captured in the following result.

12 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

Proposition 4.2. Let Pt be a random negative point, where we flip the ori-
entation s to positive. The probability that we compute the faulty curve Et =∏

i∈St
l−2
i ∗ EB is exactly pt =

∏
i∈St

ℓi−1
ℓi
·
∏

i∈Sr,+\St

1
ℓi

.

Proof. The probability of obtaining Et is equal to the probability that the order
of the point Pt is divisible by all the primes in St and not divisible by all the
primes in Sr,+ \ St. The first happens with probability

∏
i∈St

ℓi−1
ℓi

; the second
is an independent event happening with probability

∏
i∈Sr,+\St

1
ℓ .

Remark 4. Note that the CTIDH implementation artificially lowers the success
probability of each point to match that of the smallest prime in the batch to
hide which prime is handled. A result similar to Proposition 4.2 can be proven
for fixed batches.

The expected number of appearances n(Et) of a curve Et is n(Et) ≈ pt · T
for T runs. As ℓi−1

ℓi
≥ 1

ℓi
for all ℓi, the probability pt is maximal when St = Sr,+.

We denote this probability by pr,+. Hence, the curve that is likely to appear the
most in this scenario over enough samples, is the curve Er,+ which we defined
as precisely that curve with missing set Sr,+. For now, we focused solely on the
positive curves. Taking into account the negative curves too, we get:

Corollary 4.3. Let Er,+ =
∏

i∈Sr,+ l−2
i ∗ EB and let Er,− =

∏
i∈Sr,− l2i ∗ EB.

Then Er,+ and Er,− have the highest probability to appear among the effective
round-r faulty curves. As a consequence, the largest two values n(E) of all ef-
fective round-r curves are most likely n(Er,+) and n(Er,−)

Example 3 (CSIDH). Take the set S1,+ = {i | ei ≥ 1} and let p1,+ denote the
probability that a random point P has order divisible by all primes in S1,+. This
probability depends on the secret key (ei), but can be estimated if we collect
enough faulty curves. Moreover, if e1 ̸= 0, then ℓ1 = 3 dominates either p1,+ or
p1,− through the relatively small probability of 2/3 that P has order divisible
by 3. Thus, if the largest pile of faulty curves is E1,±, we expect S1,± not to
contain 1. For instance, if e1 is positive, p1,− is larger than p1,+ and so we expect
n(E1,−) to be larger than n(E1,+). In this case, we would expect to see another
faulty curve Et with n(Et) half the size of n(E1,+); this curve Et has almost full
missing set S1,+, but does not miss the 3-isogeny. That is, St = S1,+ \ {1}, with
probability pt := 1

ℓ1
· ℓ1

ℓ1−1 · p
1,+ = 1

2 · p
1,+. This curve Et is very “close” to E1,+;

they are distance 1 apart, precisely by l21.

Remark 5. The precise probabilities pr,+ and pr,− depend highly on the specific
implementation. Given an implementation, the precise values of pr,+ and pr,−

allow for concrete estimates on the sizes of n(E) for specific curves E.

Remark 6. Because primes that are missing in the order of Pt skip the misori-
ented steps, the curves in the neighborhood of Er,+ differ by two ℓi-isogenies
for i ∈ Sr,+ \ St in positive direction while those around Er,− differ by two
ℓi-isogenies for i ∈ Sr,− \ St in negative direction.

Disorientation faults in CSIDH 13

Distance between samples. We can generalize the above example for any
two faulty curves Et and Et′ that are effective round-r samples of the same
orientation, using Proposition 4.2. This describes which Et are close to each
other.

Corollary 4.4. Let Et and Et′ both be effective round-r samples with the same
orientation and missing torsion sets St and St′ . Let S∆ denote the difference in
sets St and St′ , i.e., S∆ = (St \ St′) ∪ (St′ \ St). Then Et and Et′ are distance
|S∆| apart, by

Et =

 ∏
i∈St′ \St

l2s
i ·

∏
i∈St\St′

l−2s
i

 ∗ Et′ .

In particular, any effective round-r curve Et with orientation s is very close to
Er,s: since St ⊂ Sr,s, the difference S∆ is small.

Example 4 (CSIDH). For a secret key (2, 3, 1, 2) in CSIDH with primes L =
{3, 5, 7, 11}, the first positive point with full torsion P will perform a 3, 5, 7
and 11-isogeny, so S1,+ = {1, 2, 3, 4} (with S2,+ = {1, 2, 4} and S3+ = {2}). In
one run, the first point Pt1 might only have {5, 7, 11}-torsion, while in another
run the first point Pt2 might only have {3, 7, 11}-torsion. The faulty curves Et1

and Et2 differ from E+ by two 3-isogenies and two 5-isogenies, respectively, and
have a distance 2 towards each other: their S∆ is {1, 2}, so they are two {3, 5}-
isogenies apart. The two samples Et1 and Et2 therefore show that both 1 and 2
are in S+ and show that e1 ≥ 1 and e2 ≥ 1.

Corollary 4.4 will be essential to recover information on Sr,+ out of the
samples Et, in a similar manner as the above example: Recovering small isogenies
between samples allows us to deduce which i are in Sr,+ or Sr,−, and so leaks
information about ei.

4.4 Torsion noise

Orthogonally to Section 4.3, we now examine the case that missing torsion oc-
curred in an earlier round than the round we are faulting.

Example 5 (CSIDH). Suppose that e1 = 1 and that in the first positive round,
the point generated in Line 2 of Algorithm 1 had order not divisible by ℓ1, but
all other points have full order. Thus, the ℓ1-isogeny attempt fails in the first
positive step. Consider now the second positive round. From Section 4.2, we
would expect to be computing steps in S2,+ = {i | ei ≥ 2}. But no ℓ1-isogeny
has been computed in the first round, so it will be attempted in this second
positive round. If we now fault the second round, we obtain a faulty curve that
is also missing ℓ1, that is, Et = l−2

1 ∗ E2,+. Notice also that unlike the faulty
curves from 4.3, the positively oriented isogeny goes from Et towards E2,+

Note also that in this scenario if e1 = 2, a fault in round 2 would still result
in the curve E2,+, because the set S2,+ contains ℓ1 already, and so the missed
ℓ1-isogeny from round 1 will be computed in later rounds.

14 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

We refer to the phenomenon observed in Example 5 as torsion noise. More
concretely, torsion noise happens when we fault the computation in round r for
a run which is computing an ℓi-isogeny in round r for |ei| < r because it was
skipped in a previous round.

Torsion noise is rarer than missing torsion but can still happen: the isogeny
computation needs to fail and the fault must come when we are “catching up”
with the computation. For CSIDH, torsion noise can only happen if r > |ei| and
the computation of the ℓi-isogeny failed in at least r− |ei| rounds. Torsion noise
is unlikely for large ℓi because the probability that an isogeny fails is about 1/ℓi.

For small primes, such as ℓi ∈ {3, 5, 7}, we observe a lot of torsion noise. This
can slightly affect the results as described in Section 4.3, but has no major impact
on the results in general. Concretely, torsion noise may make it impossible to
determine the correct ei for the small primes given a small number of faulted
curves. Nevertheless, their exact values can be brute-forced at the end of the
attack.

Remark 7 (Orientation of torsion noise). Faulty curves affected by torsion noise
require contrarily oriented isogenies to the curves Er,s than the remaining faulty
curves. Therefore, if torsion noise happens and we find a path from such a curve
Et → Er,s, then we can infer not just the orientation of the primes in this path,
but often also bound the corresponding exponents ei.

4.5 Connecting curves from the same round

Suppose we have a set of (effective) round-r faulty curves with the same orien-
tation s, and that r and s are fixed. In Corollary 4.4, we show that such curves
are close to each other. In particular, the path from Et to Er,s uses only de-
grees contained in the set Sr,s. Finding short paths among faulty curves gives
us information about Sr,s, and hence about the secret key.

Component graphs. Starting from a set {Et} of round-r faulty curves with
orientation s, we can use them to define the graph Gr,s as follows: The vertices
of Gr,s are given by {Et}, and the edges are steps between the curves, labeled
by i if the curves are connected by two ℓi-isogenies.

For convenience, we sparsify the graph Gr,s and regard it as a tree with the
curve Er,s as the root.

Edges. Starting from a set of faulty curves, it is easy to build the graphs Gr,s.
We can identify the roots of these graphs Er,s using Corollary 4.3. Then the
distance from the root to any round-r faulty curve with the same orientation
is small (cf. Corollary 4.4). Therefore, we can find the edges by applying short
walks in the isogeny graph. Note that edges of Gr,s give information on Sr,s.

Remark 8 (Missing vertices). If we do not have enough faulty curves {Et}, it
may not be possible to connect all the curves with single steps (understood as
isogenies of square degree, see Corollary 4.4). For convenience, we assume that

Disorientation faults in CSIDH 15

we have enough curves. In practice, we include in the graph Gr,s any curve on
the path between Et to Er,s (again, taking steps with square prime degree).

Remark 9 (Components). We imagine the graphs Gr,s as subgraphs of the isogeny
graph of supersingular elliptic curves with edges given by isogenies. Computing
short paths from Er,s will give us enough edges so that we can consider the
graphs Gr,s to be connected. Hence we call them components.

Secret information An effective round-r faulty curve Et with torsion set St ⊂
Sr,+ can easily be connected by a path with labels Sr,+ \ St. Moreover, the
orientation Er,+ → Et is positive. Therefore, we can identify which components
are positive, and all the labels of the edges are necessarily in Sr,+, that is, the
prime ℓi is positive.

Torsion noise can be recognized from the opposite direction of the edges (see
Remark 7). For such an edge, the label i ̸∈ Sr,+ but the prime ℓi is still positive.

In either case, the components Gr,s give us the orientation of all the primes
occurring as labels of the edges.

Sorting round-r samples. Suppose we are given a set of round-r faulty curves
{Et}, but we do not have information about the orientation yet. We can again
use Corollary 4.3 to find the root of the graph; then we take small isogeny steps
until we have two connected components G1, G2. It is easy to determine the
direction of the edges given enough samples; ignoring torsion noise, the positively
oriented root will have outgoing edges.

In summary, we try to move curves Et from a pile of unconnected samples
to one of the two graphs by finding collisions with one of the nodes in Gr,+

resp. Gr,−. The degrees of such edges reveal information on Sr,+ and Sr,−: An
edge with label i in Gr,+ implies i ∈ Sr,+, and analogously for Gr,− and Sr,−.
Figure 1 summarizes the process, where, e.g., Er,+ → E7 shows missing torsion
and E8 → Er,+ is an example of torsion noise.

4.6 Connecting the components Gr,s

Now, we describe how we can connect the components Gr,s for different rounds
r. The distance of these components is related to the sets Sr,+ and Sr,−. We
then show that it is computationally feasible to connect the components via
a meet-in-the-middle attack. Connecting two components gives us significantly
more knowledge on the sets Sr,+ and Sr,−, such that connecting all components
is enough to reveal the secret a in Section 4.7.

Information from two connected components. We start with an example;

Example 6 (CSIDH). Recall that we have Sr,+ = {i | ei ≥ r}, and so Er,+ =∏
i∈Sr,+ l−2

i ∗ EB . This means that, e.g., we have S3,+ ⊂ S2,+, and E2,+ has a

16 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

E2 E10

E1 E1 E1

E1

E9 E9 E9 E9

E5 E5 E5

E5

E4 E4

E4

ℓ2

E4

E8 E8 E8

E8

E6 E6 E6

E6

E7 E7

E7

ℓ1

E7

E3 E3

E3

ℓ3

E3

Er,+ Er,+ Er,+

Er,− Er,− Er,−

Gr,+

Gr,−

Cor. 4.3 Cor. 4.4 Exhaust

Fig. 1: Building up the component graphs of faulty curves.

larger distance from EB than E3,+. The path between E3,+ and E2,+ then only
contains steps of degrees ℓi such that i ∈ S2,+\S3,+, so ei = 2. In general, it is
easy to see that finding a single isogeny that connects a node Et3 from G3,+ and
a node Et2 in G2,+ immediately gives the connection from E3,+ to E2,+. Hence,
we learn all ℓi with ei = 2 from the components G3,+ and G2,+.

In the general case, if we find an isogeny between two such graphs, say Gr,+

and Gr′,+, then we can compute the isogeny between the two roots Er,+ and
Er′,+ of these graphs. The degree of this isogeny Er,+ → Er′,+ describes pre-
cisely the difference between the sets Sr,+ and Sr′,+. The example above is the
special case r′ = r + 1, and in CSIDH we always have S(r+1),+ ⊂ Sr,+, so that
the difference between Sr,+ and S(r+1),+ is the set of ℓi such that ei = r. In
other CSIDH-variants, such sets are not necessarily nested, but connecting the
components still reveals ei as Section 4.7 will show. In general, we connect two
subgraphs by a distributed meet-in-the-middle search which finds the shortest
connection first.

Distances between connected components. As we have shown, connecting
two components Gr,+ and Gr′,+ is equivalent to finding the difference in sets
Sr,+ and Sr′,+. The distance between these sets heavily depends on the imple-
mentation, as these sets are determined by the key a and the evaluation of this
key. For example, in CSIDH-512, the difference between Sr,+ and S(r+1),+ are
the ei = r, which on average is of size 74

11 ≈ 6.7. In practice, this distance roughly
varies between 0 and 15. For an implementation such as CTIDH-512, the sets
Sr,+ are smaller in general, on average of size 7, and the difference between
such sets is small enough to admit a feasible meet-in-the-middle connection.
See Section 6 for more details on how we connect these components in practice.

Disorientation faults in CSIDH 17

4.7 Revealing the private key

So far, we showed how connecting different components Gr,+ and Gr′,+ reveals
information on the difference between the sets Sr,+ and Sr′,+. In this section,
we show that assuming that all components are connected, we are able to derive
the secret a. This wraps up Section 4: Starting with orientation flips in certain
rounds r, we can derive the secret a from the resulting graph structure, assuming
enough samples.

From differences of sets to recoveries of keys. By connecting the graphs of
all rounds, including the one-node-graph consisting of just the correct curve EB ,
we learn the difference between the sets Sr,+ and S(r+1),+ for all rounds r (as well
as for Sr,− and S(r+1),−). A single isogeny from some Gr,+ to EB = a ∗EA then
recovers Sr,+ for this round r: Such an isogeny gives us an isogeny from Er,+ =∏

i∈Sr,+ l−2
i ∗EB to EB , whose degree shows us exactly those ℓi ∈ Sr,+. From a

connection between the components Gr,+ and Gr′,+, we learn the difference in
sets Sr,+ and Sr′,+. From Sr,+, we can then deduce Sr′,+.

Therefore, if all graphs Gr,+ for different r are connected, and we have at
least one isogeny from a node to EB , we learn the sets Sr,+ for all rounds r (and
equivalently for Sr,−). From the knowledge of all sets Sr,+ and Sr,− we then
learn a = (ei): the sign of ei follows from observing in which of the sets Sr,+

or Sr,− the respective ℓi appears, and |ei| equals the number of times of these
appearances.

In practice however, due to missing torsion and torsion noise, connecting all
components may not give us the correct sets Sr,+ resp. Sr,−. In such a case, one
can either gather more samples to gain more information, or try to brute-force
the difference. In practice, we find that the actual set Sr,+ as derived from a and
the set S̃r,+ derived from our attack (leading to some a′) always have a small
distance. A simple meet-in-the-middle search between a′ ∗ EA and a ∗ EA then
quickly reveals the errors caused by missing torsion and torsion noise.

4.8 Complexity of recovering the secret a

The full approach of this section can be summarized as follows:

1. Gather enough effective round-r samples Et per round r, using Lemma 4.1.
2. Build up the components Gr,+ and Gr,− using Corollaries 4.3 and 4.4.
3. Connect components to learn the difference in sets Sr,+ and Sr′,+.
4. Compute the sets Sr,+ and Sr,− for every round and recover a.

The overall complexity depends on the number of samples per round, but is in
general dominated by Step 3. For Step 2, nodes are in most cases relatively close
to the root Er,+ or to an already connected node Et, as shown in Corollary 4.4.

For Step 3, components are usually further apart than nodes from Step 2. In
general, the distance between components Gr,+ and Gr′,+ depends heavily on
the specific design choices of an implementation. In a usual meet-in-the-middle

18 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

approach, where n is the number of ℓi over which we need to search and d is
the distance between Gr,+ and Gr′,+, the complexity of finding a connection is
O(

(
n

d/2
)
). Note that we can use previous knowledge from building components

or finding small-distance connections between other components to reduce the
search space and thus minimize n for subsequent connections. We analyze this
in detail for specific implementations in Section 5.

5 Case studies: CSIDH and CTIDH

We previously defined a general strategy in four steps. In practice, those steps are
dependent on the actual implementation. Concretely, we select two main imple-
mentations: CSIDH-512 and CTIDH-512. We discuss CSIDH-512 in Section 5.1,
CTIDH-512 in Section 5.2, and we analyze other implementations in Section 5.3.

In this section we will specialize to inputting E0 into the target which thus
computes a faulty version of EB = a ∗ E0, its own public key.

5.1 Breaking CSIDH-512

The primes used in CSIDH-512 [15] are L = {3, 5, . . . , 377, 587}, and exponent
vectors are sampled as (ei) ∈ {−5, . . . , 5}74 uniformly at random. For any k ∈
{−5, . . . , 5} we expect about 1

11 · 74 primes ℓi with ei = k; this count obeys a
binomial distribution with parameters (74, 1/11). In particular, we expect to see
about 5

11 · 74 ≈ 33.6 positive and negative primes each, and about 1
11 · 74 ≈ 6.7

neutral primes.
In CSIDH-512, the group action is evaluated as displayed in Algorithm 1,

using a 1-point strategy. In particular, after generating a point with orientation
s, we set S = {i | ei ̸= 0, sign(ei) = s}. If the value of s is flipped, we set
S = {i | ei ̸= 0, sign(ei) = −s}, but we perform the steps in direction s.
The secret-key recovery follows the four steps defined in Section 4.8, with the
following specifications.

Building components Gr,+ and Gr,−. Step 2 of the attack on CSIDH-512
works exactly as described in Section 4.5. If Et and Et′ are effective samples from
the same round with the same orientation, their distance is small (Corollary 4.4).
We can thus perform a neighborhood search on all of the sampled curves until we
have 10 connected components Gr,± for r ∈ {1, . . . , 5}, as in Figure 1. This step
is almost effortless: most curves will be distance 1 or 2 away from the root Er,s.
In practice, using round information and number of occurrences, we identify
the 10 curves Er,± for r = 1, . . . , 5, and explore all paths of small length from
those 10 curves, or connect them via a meet-in-the-middle approach (e.g., using
pubcrawl, see Section 6).

The degrees of the isogenies corresponding to the new edges in Gr,± reveal
information on the sets Sr,±, which can be used to reduce the search space when
connecting the components Gr,±.

Disorientation faults in CSIDH 19

Filter-and-break it, until you make it. Step 3 is the most computationally
intensive step, as it connects 11 components (Gr,± and EB) into a single large
connected component. We argue that it is practical for CSIDH-512.

More specifically, we want to find connections between Gr,± and G(r+1),±, as
well as connections from G5,± to EB . This gives us 10 connections, corresponding
to the gaps {i | ei = k} for k ∈ [−5, 5] \ {0}. Figure 2 shows an abstraction of
this large connected component. Since there are 74 primes in total, and only 10

EB

S5,+

S5,−

G1,+

G1,−

G2,+

G2,−

G3,+

G3,−

G4,+

G4,−

G5,+

G5,−

S4,+ \ S5,+

S4,− \ S5,−

S3,+ \ S4,+

S3,− \ S4,−

S2,+ \ S3,+

S2,− \ S3,−

S1,+ \ S2,+

S1,− \ S2,−

Fig. 2: Large connected component associated to an attack on CSIDH-512.

gaps, at least one of these gaps is at most 7 primes. If we assume that at least 5
of the exponents are 0 (we expect ≈ 7 to be 0), then the smallest distance is at
most 6 steps. Such gaps are easily found using a meet-in-the-middle search, see
Section 6.

Let us call support the set of isogeny degrees used in a meet-in-the-middle
neighborhood search. We can certainly connect all the components by a naive
meet-in-the-middle search with support {ℓ1, . . . , ℓ74}. However, for larger dis-
tances, trying out all possible isogenies is infeasible.

We search for the longer paths by adaptively changing the support. We start
by finding short connections, and then use the information we learn from those
to pick a smaller support for searching between certain components, i.e., filter
some of the ℓi out of the support. We describe the procedure below.

First, we learn which components are positive and which are negative by
identifying the components G1,± and considering the direction of the edges.
Since effective round-1 samples do not have torsion noise, the root E1,+ has
only outgoing edges, whereas the root E1,− has only incoming edges. The labels
of the edges of G1,+ are necessarily positive primes, and all components with
a matching label are necessarily positive, and the edges in that component are
again positive primes. The same reasoning follows for negative components. So
orienting the components is typically easy, given enough samples.

Next, all the i that appear as degrees of edges in Gr,+ for any r are necessarily
positive, similarly, all primes appearing in edges in Gr,− are necessarily negative.
But positively oriented components can only be connected by positive primes,
so when searching for paths, we can remove from the support all the primes that
we know are negative.

After finding the first connection we restrict the support even more: we know
that any i appears in at most one connection. Hence, whenever we find a connec-

20 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

tion, we get more information about orientation and can reduce the support for
further searches, allowing us to find larger connections. We repeat this procedure
with more and more restrictions on the support until we find the full connected
component.

Recovering the secret key. From the connected components, we recover all
of the sets Sr,± and we compute the secret key as described in Section 4.7.

2
18

6
3

8
10

14

4

5

4

3

8

7
10

14

12

2

5 20

1

1
17

9

4

15

2

6

7

15

1

53

4

3
19

13 11

7

16

Fig. 3: Example isogeny graph of faulty curves obtained from attacking the fic-
titious CSIDH-103 implementation from Example 7. An edge labeled i denotes
the isogeny step li. The EB curve and the root faulty curves Er,s are rendered in
black (from left to right: E1,+, E2,+, E3,+, EB , E3,−, E2,−, E1,−), other faulty
curves appearing in the dataset are gray, and white circles are “intermediate”
curves discovered while connecting the components.

Example 7 (Toy CSIDH-103). Figure 3 shows the resulting connected graph for
a toy version of CSIDH using Algorithm 1 with the first n = 21 odd primes and
private keys in {−3, . . . , +3}n. Each round was faulted 10 times.

The distances between the components are very small and hence connecting
paths are readily found. We sparsify the graph to plot it as a spanning tree;
the edges correspond to positive steps of the degree indicated by the label. This
graph comes from the secret key

(−1, +1, +2, +3, −2, +3, +2, +3, +1, +2, −3, −3, +2, +3, −2, −3, −2, +2, +1, −3, 0).

Required number of samples. Recovering the full secret exponent vector
in CSIDH-512 equates to computing the sets Sr,+ and Sr,− for r ∈ {1, . . . , 5}.
Recall that to compute these sets we need to build a connected component
including subcomponents Gr,+ and Gr,− for r ∈ {1, . . . , 5}, and EB (the one-
node-graph consisting of just the public key). We build the components Gr,+

and Gr,− by acquiring enough effective round-r samples. More effective round-r
samples may give more vertices in Gr,±, and more information about Sr,±.

Disorientation faults in CSIDH 21

We denote the number of successful fault injections in round r by Tr and the
total number of samples by T =

∑
Tr. A first approach is to inject in round

r until the probability is high enough that we have enough effective round-r
samples. For CSIDH-512, we take T1 = 16, T2 = 16, T3 = 32, T4 = 64 and
T5 = 128, so that T = 256. From Lemma 4.1, we then expect 8 round-5 samples
(4 per orientation) and the probability that we do not get any of the elements
of G5,+ or G5,− is about 1.7%.

This strategy can be improved upon. Notice that we need round-5 samples,
and so in any case we need T5 rather large (in comparison to Ti with i < 5) to
ensure we get such samples. But gathering samples from round 5 already gives
us many samples from rounds before. Using Lemma 4.1 with T5 = 128, we get
on average 8 effective round-1 samples, 32 effective round-2 samples, 48 effective
round-3 samples, 32 effective round-4 samples and 8 effective round-5 samples.
In general, attacking different rounds offers different tradeoffs: attacking round
9 maximizes getting effective round-5 samples, but getting a round-1 sample in
round 9 is unlikely. Faulting round 1 has the benefits that all faulty curves are
effective round-1 curves, making them easy to detect in later rounds; that no
torsion noise appears; and that missing torsion quickly allows to determine the
orientation of the small primes, reducing the search space for connecting the
components.

5.2 Breaking CTIDH-512

CTIDH [3] partitions the set of primes ℓj into b batches, and bounds the number
of isogenies per batch. For a list N ∈ Zb

>0 with
∑

Nk = n and a list of non-
negative bounds m ∈ Zb

≥0 define the keyspace as

KN,m :=
{

(e1, . . . , en) ∈ Zn
∣∣ ∑Ni

j=1 |ei,j | ≤ mi for 1 ≤ i ≤ b
}

,

where (ei,j) is a reindexed view of (ei) given by the partition into batches.
CTIDH-512 uses 14 batches with bounds mi ≤ 18, requiring at least 18

rounds. In every round, we compute one isogeny per batch; using a 2-point
strategy, we compute isogenies in both positive and negative direction. So, all
round-r samples are effective round-r samples.

Injecting faults. To sample oriented points, CTIDH uses the Elligator-2 map
twice. First, Elligator is used to sample two points P+ and P− on the starting
curve EA. A direction s is picked to compute an isogeny, the point Ps is used to
take a step in that direction to a curve EA′ , and the point Ps is mapped through
the isogeny. Then another point P ′

−s is sampled on EA′ using Elligator.
We will always assume that we inject a fault into only one of these two

Elligator calls (as in Section 3). Hence, as for CSIDH and 1-point strategies, we
again always obtain either positively or negatively oriented samples.

22 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

Different rounds for CTIDH-512. Per round, CTIDH performs one ℓi,j

per batch Bi. Within a batch, the primes ℓi,j are ordered in ascending or-
der: if the first batch is B1 = {3, 5} and the exponents are (2,−4), then we
first compute 2 rounds of 3-isogenies in the positive direction, followed by 4
rounds of 5-isogenies in the negative direction. We can visualize this as a queue
[3+, 3+, 5−, 5−, 5−, 5−] (padded on the right with dummy isogenies for the re-
maining rounds up to m1). CTIDH inflates the failure of each isogeny to that
of the smallest prime in the batch to hide how often each prime is used; in our
example, the failure probability is 1/3.

This implies that the sets Sr± contain precisely the r-th prime in the queue
for the batch Bi. With 14 batches and an equal chance for either orientation, we
expect that each Sr± will contain about 7 primes. Furthermore, each set Sr±

can contain only one prime per batch Bi.
The small number of batches and the ordering of primes within the batches

make CTIDH especially easy to break using our disorientation attack.

Components for CTIDH-512. Given enough samples, we construct the graphs
Gr,s; the slightly higher failure probability of each isogeny (because of inflating)
somewhat increases the chances of missing torsion and torsion noise.

The distance of the root curves Er,s to the non-faulted curve EB is bounded
by the number of batches. Per round r, the sum of the distances of Er,± to EB

is at most 14, so we expect the distance to be about 7.
The distance between two graphs Gr,s and G(r+1),s is often much smaller.

We focus on positive orientation (the negative case is analogous). The distance
between Gr,+ to G(r+1),+ is given by the set difference of Sr,+ and S(r+1),+.
If these sets are disjoint and all primes in round r and r + 1 are positive, the
distance is 28, but we expect significant overlap: The set difference contains the
indices i such that either the last ℓi-isogeny is computed in round r or the first
ℓi-isogeny is computed in round r + 1. Note that these replacements need not
come in pairs. In the first case, the prime ℓi is replaced by the next isogeny ℓj

from the same batch only if ℓj is also positive. In the second case, the prime ℓi

might have followed a negative prime that preceded it in the batch.
Therefore, given Sr,+, one can very quickly determine S(r+1),+ by leaving

out some ℓi’s or including subsequent primes from the same batch. In practice,
this step is very easy. Finding one connection EB → Er,+ determines some set
Sr,+, which can be used to quickly find other sets Sr′,+. This approach naturally
also works going backwards, to the set S(r−1),+.

Directed meet-in-the-middle. Using a meet-in-the-middle approach, we com-
pute the neighborhood of EB and all the roots Er,± (or components Gr,±) of
distance 4. This connects EB to all the curves at distance at most 8. Disregard-
ing orientation and information on batches, if we have N curves that we want
to connect, the naive search will require about 2 ·

(74
4

)
· N ≈ 221 · N isogenies.

The actual search space is even smaller as we can exclude all paths requiring
two isogenies from the same batch.

Disorientation faults in CSIDH 23

Moreover, isogenies in batches are in ascending order. So, if in round r we see
that the 3rd prime from batch Bi was used, none of the rounds r′ > r involves
the first two prime, and none of the rounds r′ < r can use the fourth and later
primes from the batch for that direction.

Late rounds typically contain many dummy isogenies and the corresponding
faulty curves are especially close to the public key. We expect to rapidly recover
Sr,± for the late round curves, and work backwards to handle earlier rounds.

Required number of samples. In CTIDH, we can choose to inject a fault
into the first call of Elligator or the second one. We do not see a clear benefit
of prioritizing either call. Unlike for CSIDH and 1-point strategies, there is no
clear benefit from targeting a specific round.

Assume we perform c successful faults per round per Elligator call, expecting
to get samples for both orientations per round. As CTIDH-512 performs 18
rounds (in practice typically up to 22 because of isogeny steps failing), we require
T = 18 · 2 · c successful flips. It seems possible to take c = 1 and hence T = 36
(or up to T = 44) samples.

With just one sample per round r (and per orientation s), the torsion effects
will be significant and we will often not be able to recover Sr,s precisely. Let S̃r,s

denote the index set recovered for round r and sign s. We can correct for some
of these errors, looking at S̃r′,± for rounds r′ close to r. Consider only primes
from the same batch B, then the following can happen:

– No prime from B is contained in either S̃r,+ or S̃r,−: all primes from B are
done or missing torsion must have happened. We can examine the primes
from the batch B which occur in neighboring rounds S̃(r±1),± and use the
ordering in the batch to obtain guesses on which steps should have been
computed if any.

– One prime from B is contained in S̃r,+ ∪ S̃r,−: we fix no errors.
– Two primes from B are contained in S̃r,+ ∪ S̃r,−: the smaller one must have

come from torsion noise in a previous round and can be removed.

Remark 10. It is possible to skip certain rounds to reduce the number of samples,
and recover the missing sets Sr,s using information from the neighboring rounds.
We did not perform the analysis as to which rounds can be skipped, we feel that
already two successful faults per round are low enough.

Even a partial attack (obtaining information only from a few rounds) reveals
a lot about the secret key thanks to the batches being ordered, and can reduce
the search space for the secret key significantly. One may also select the rounds
to attack adaptively, based on the information recovered from Sr,s.

Recovering the secret key. Once we recover all the sets Sr,s, the secret key
can be found as a =

∏
r

(∏
i∈Sr,+ li ·

∏
j∈Sr,− l−1

j

)
. Note that as before, if we

misidentify Sr,s due to torsion effects, we may have to perform a small search
to correct for the mistakes.

24 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

5.3 Other variants of CSIDH

In this section, we discuss some of the other implementations of CSIDH: all of
these use IsSquare checks in the process of point sampling and are vulnerable
to our attack. We analyze SIMBA [30], dummy-free implementations [1,16,18],
and SQALE [17].

SIMBA. Implementations using SIMBA [30] can be attacked similarly to CSIDH
(cf. Section 5.1). SIMBA divides the n primes ℓi into m prides (batches), and
each round only computes ℓi-isogenies from the same pride. That is, each round
only involves up to ⌈n/m⌉ isogenies, and the setup of the prides is publicly
known.

In each round, fewer isogenies are computed, the sets Sr,s are smaller and
the distances between the components Gr,s are shorter. It is therefore easier to
find isogenies connecting the components, and recover the secret key.

Dummy-free CSIDH. Dummy-free implementations [1,16,18] replace pairs of
dummy ℓi-isogenies by pairs of isogenies that effectively cancel each other [16].
This is due to the fact that li ∗ (l−1

i ∗ E) = l−1
i ∗ (li ∗ E) = E. Thus, computing

one ℓi-isogeny in positive direction and one ℓi-isogeny in negative direction has
the same effect as computing two dummy ℓi-isogenies. However, this approach
requires fixing the parity of each entry of the private key ei, e.g., by sampling
only even numbers from [−10, 10] to reach the same key space size as before. The
implementation of [16] therefore suffers a slowdown of factor 2. Nevertheless, such
dummy-free implementations mitigate certain fault attacks, such as skipping
isogenies, which in a dummy-based implementation would directly reveal if the
skipped isogeny was a dummy computation and give respective information on
the private key.

Dummy-free CSIDH [1] computes |ei| ℓi-isogenies per i in the appropriate
direction, and then computes equally many ℓi isogenies in both directions which
cancel out, until all required isogenies have been computed. For instance, for an
even ei sampled from [−10, 10], choosing ei = 4 would be performed by applying
l1i in the first 5 rounds, applying l−1

i in round 6 and 7, applying l1i again in round
8 and 9, and finishing with l−1

i in round 10.
Notice that all isogenies start in the correct direction, and that we learn |ei|

from disorientation faults if we know in which round the first li is applied in
the opposite direction. Therefore, if we apply the attack of Section 4 and learn
all sets Sr,+ and Sr,−, we can determine ei precisely. Even better, it suffices to
only attack every second round: It is clear that each prime will have the same
orientation in the third round as in the second round, in the fifth and fourth, et
cetera. Due to the bounds used in [1], large degree ℓi do not show up in later
rounds, which decreases the meet-in-the-middle complexity of connecting the
components Gr,+ and G(r+1),+ for later rounds r.

Disorientation faults in CSIDH 25

SQALE. SQALE [17] only uses exponent bounds ei ∈ {−1, 1}. To get a large
enough key space, more primes ℓi are needed; the smallest instance uses 221 ℓi.
SQALE uses a 2-point strategy and only requires one round (keeping in mind
the isogeny computation may fail and require further rounds).

Set S+ = S1,+ = {i | ei = 1} and S− = S1,− = {i | ei = −1}. If the sampled
points in round 1 have full order, the round 1 faulty curves are either:

– the ‘twist’ of EB : all the directions will be flipped (if both points are flipped),
– or the curve E+ = (

∏
S+ l−2

i) ∗ EB , if the positive point was flipped,
– or the curve E− = (

∏
S− l2i) ∗ EB , if the negative point was flipped.

As |S+| ≈ |S−| ≈ n/2 > 110, we will not be able to find an isogeny to either of
these curves using a brute-force or a meet-in-the-middle approach.

However, SQALE samples points randomly, and some of the isogeny compu-
tation will fail, producing faulty curves close to E± (and curves with the same
orientation will be close to each other, as in Section 4.5). Getting enough faulty
curves allows the attacker to get the orientation of all the primes ℓi, and the ori-
entation of the primes is exactly the secret key in SQALE. We note that [18] in
another context proposes to include points of full order into the system param-
eters and public keys such that missing torsion and torsion noise do not occur.
If this is used for SQALE, our attack would not apply.

6 The pubcrawl tool

The post-processing stage of our attack relies on the ability to reconstruct the
graph of connecting isogenies between the faulty CSIDH outputs. We solve this
problem by a meet-in-the-middle neighbourhood search in the isogeny graph,
which is sufficiently practical for the cases we considered. In this section, we
report on implementation details and performance results for our pubcrawl soft-
ware.7

We emphasize that the software is not overly specialized to the fault-attack
setting and may therefore prove useful for other “small” CSIDH isogeny searches
appearing in unrelated contexts.

Algorithm. pubcrawl implements a straightforward meet-in-the-middle graph
search: Grow isogeny trees from each input node simultaneously and check for
collisions; repeat until there is only one connected component left. The set of
admissible isogeny degrees (“support”) is configurable, as are the directions of
the isogeny steps (“sign”, cf. CSIDH exponent vectors), the maximum number of
isogeny steps to take from each target curve before giving up (“distance”), and
the number of prime-degree isogenies done per graph-search step (“multiplicity”,
to allow for restricting the search to square-degree isogenies).

7 The name refers to crawling the graph of public keys, and a tour taking in several
pubs or drinking places, with one or more drinks at each.

26 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

Size of search space. The number of vectors in Zn of 1-norm ≤ m is [20, § 3]

Gn(m) =
m∑

k=0

(
n

k

)(
m− k + n

n

)
.

Similarly, the number of vectors in Zn
≥0 of 1-norm ≤ m equals

Hn(m) =
m∑

k=0

(
k + n− 1

n− 1

)
.

Implementation. The tool is written in C++ using modern standard library
features, most importantly hashmaps and threading. It incorporates the latest
version of the original CSIDH software as a library to provide the low-level
isogeny computations. Public-key validation is skipped to save time. The shared
data structures (work queue and lookup table) are protected by a simple mutex;
more advanced techniques were not necessary in our experiments.

We refrain from providing detailed benchmark results for the simple reason
that the overwhelming majority of the cost comes from computing isogeny steps
in a breadth-first manner, which parallelizes perfectly. Hence, both time and
memory consumption scale almost exactly linearly with the number of nodes
visited by the algorithm.

Concretely, on a server with two Intel Xeon Gold 6136 processors (offering a
total of 24 hyperthreaded Skylake cores) using GCC 11.2.0, we found that each
isogeny step took between 0.6 and 0.8 core milliseconds, depending on the degree.
Memory consumption grew at a rate of ≈ 250 bytes per node visited, although
this quantity depends on data structure internals and can vary significantly.
Example estimates based on these observations are given in Table 1.

There is no doubt that pubcrawl could be sped up if desired, for instance by
computing various outgoing isogeny steps at once instead of calling the CSIDH
library as a black box for each individually.

Code. The pubcrawl software is available at https://yx7.cc/code/pubcrawl/
pubcrawl-latest.tar.xz.

7 Hashed version

As briefly mentioned in Remark 1, the attacker-observable output in Diffie–
Hellman-style key agreements is not the shared elliptic curve, but a certain
derived value. Typically, the shared elliptic curve is used to compute a key k using
a key derivation function, which is further used for symmetric key cryptography.
So we cannot expect to obtain (the Montgomery coefficient of) a faulty curve
Et but only a derived value such as k = SHA-256(Et) or MACk(str) for some
known fixed string str.

The attack strategies from Section 4 and Section 5 exploit the connections be-
tween the various faulty curves. In this section, we argue that our attack extends

https://yx7.cc/code/pubcrawl/pubcrawl-latest.tar.xz
https://yx7.cc/code/pubcrawl/pubcrawl-latest.tar.xz

Disorientation faults in CSIDH 27

Table 1: Example cost estimates per target curve for various pubcrawl instances,
assuming each isogeny step takes 0.7 milliseconds and consumes 250 bytes. For
example, an isogeny walk of length up to 10 between two given curves can be
recovered using approximately 10 core days and 300 gigabytes of RAM.

sign |support| distance cardinality of search space core time memory

both 74 ≤ 2 11,101 ≈ 213.44 7.8 s 2.8 MB
both 74 ≤ 3 551,449 ≈ 219.07 6.4 min 137.9 MB
both 74 ≤ 4 20,549,801 ≈ 224.29 4.0 h 5.1 GB
both 74 ≤ 5 612,825,229 ≈ 229.19 5.0 d 153.2 GB
both 74 ≤ 6 15,235,618,021 ≈ 233.83 123.4 d 3.8 TB
both 74 ≤ 7 324,826,290,929 ≈ 238.24 7.2 y 81.2 TB
both 74 ≤ 8 6,063,220,834,321 ≈ 242.46 134.6 y 1.5 PB
both 74 ≤ 9 100,668,723,849,029 ≈ 246.52 2234.5 y 25.2 PB

one 74 ≤ 2 2,850 ≈ 211.48 2.0 s 712.5 kB
one 74 ≤ 3 73,150 ≈ 216.16 51.2 s 18.3 MB
one 74 ≤ 4 1,426,425 ≈ 220.44 16.6 min 356.6 MB
one 74 ≤ 5 22,537,515 ≈ 224.43 4.4 h 5.6 GB
one 74 ≤ 6 300,500,200 ≈ 228.16 2.4 d 75.1 GB
one 74 ≤ 7 3,477,216,600 ≈ 231.70 28.2 d 869.3 GB
one 74 ≤ 8 35,641,470,150 ≈ 235.05 288.8 d 8.9 TB
one 74 ≤ 9 328,693,558,050 ≈ 238.26 7.3 y 82.2 TB

both 37 ≤ 2 2,813 ≈ 211.46 2.0 s 703.2 kB
both 37 ≤ 3 70,375 ≈ 216.10 49.3 s 17.6 MB
both 37 ≤ 4 1,321,641 ≈ 220.33 15.4 min 330.4 MB
both 37 ≤ 5 19,880,915 ≈ 224.24 3.9 h 5.0 GB
both 37 ≤ 6 249,612,805 ≈ 227.90 2.0 d 62.4 GB
both 37 ≤ 7 2,691,463,695 ≈ 231.33 21.8 d 672.9 GB
both 37 ≤ 8 25,450,883,345 ≈ 234.57 206.2 d 6.4 TB
both 37 ≤ 9 214,483,106,715 ≈ 237.64 4.8 y 53.6 TB

one 37 ≤ 3 9,880 ≈ 213.27 6.9 s 2.5 MB
one 37 ≤ 4 101,270 ≈ 216.63 1.2 min 25.3 MB
one 37 ≤ 5 850,668 ≈ 219.70 9.9 min 212.7 MB
one 37 ≤ 6 6,096,454 ≈ 222.54 1.2 h 1.5 GB
one 37 ≤ 7 38,320,568 ≈ 225.19 7.5 h 9.6 GB
one 37 ≤ 8 215,553,195 ≈ 227.68 1.7 d 53.9 GB
one 37 ≤ 9 1,101,716,330 ≈ 230.04 8.9 d 275.4 GB

28 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

to this more realistic setting as long as the observable value is deterministically
computable from Et and collisions do not occur.

For simplicity, we will refer to the observable values as hashes of the faulty
curves. Starting from a faulty curve Et, we assume we can easily compute the
hashed value H(Et), but we cannot recover Et from the hash h = H(Et).

Recall the general strategy from Section 4: generate faulty curves, figure out
the orientation of the primes from the torsion phenomena, generate neighbor-
hood graphs, and find connecting paths between these graphs. Knowing the
orientation of some primes helped reduce the possible degrees of the isogenies
when applying pubcrawl, thus making the neighborhood search more efficient.

If we only see hashes of the faulty curves, we will not be able to easily form
the neighborhood graphs and determine orientation. But from the frequency
analysis (Corollary 4.3), we can identify the two most frequent new hashes h1, h2
per round as the probable hashes of H(Er,±).

Example 8 (CSIDH). When faulting in the first round, the two most common
hashed values are our best guesses for the hashes of E1,±. Considering faults
in round 2, we guess H(E2,±) to be the most common hashes that have not
appeared in round 1. Similarly for later rounds.

To identify the curves from the hashes, we run (one-sided) pubcrawl starting
from EB and hash all the curves found. We run pubcrawl with one orientation
(or both, in parallel) until we recognize H(Er,±) among the hashes. Then we
have identified a curve Er,s, and can run a small neighborhood search around
Er,s. We always hash all the curves and check whether any occurred as hashes
of faulty curves, possibly gaining orientation information on some primes, which
will make the next pubcrawl steps more efficient.

Most importantly: we can only do one-sided searches starting from a known
curve to the hashes of faulty curves. This is in contrast to doing meet-in-the-
middle attacks also starting from the faulty curves as in the previous sections.
In particular, the only known curve at the beginning of the attack is EB .

Example 9 (CSIDH-512). The distance of the curves Er,s to EB is given by
|{i | s · ei ≥ r}|. Therefore, the curves E5,± have the smallest distance to EB .
Starting from the public key EB , we thus first search the paths to the curves
E5,±. We do this by growing two neighborhoods (with positive and negative
orientation) from EB . Recall from Section 5.1 that the expected distance of the
faulty curves is about 74/11 ≈ 7. But the distance from EB to E5,s can be
a lot larger (it is equal to |{ei | s · ei = 5}|). Such large distances are rare:
the probability of both E5,± having distance larger than 10 from EB is, e.g.,∑74−11

n=11
∑74−n

m=11
((74

n

)(74−n
m

)
974−n−m

)
/1174 ≈ 0.3%. Hence, we do expect to find

a connection to at least one of the curves E5,± within distance 10, meaning that
we expect the first connection to cost no more than 2

∑10
i=0

(74
i

)
≈ 240.6 isogeny

step evaluations and likely less for at least some H(Et) in the neighborhood.
From there, we will identify orientation for some primes, hence the search will
be more efficient at each successive step because we need to search through fewer
than 74 primes.

Disorientation faults in CSIDH 29

Example 10 (CTIDH-512). The faulty curves for any round in CTIDH are closer
to the public key EB than in the CSIDH case: it is 14 in the worst case (one
prime per batch all having the same orientation) and the distance is 7 on average
(Section 5.2). So the directed pubcrawl searches up to distance ≈ 7 (one with
positive and one with negative orientation) are very likely to identify many of
the hashed curves. Once we identify some faulty curves, we can identify other
faulty curves quickly by small neighborhood searches thanks to the extra ordered
structure of the CTIDH keyspace. We also benefit from the slightly increased
probability of failure leading to more curves in the neighborhood of Er,s.

Summary. In the hashed version, the main difference compared to the case
in Section 5 is that we cannot mount a meet-in-the-middle attack starting from
EB and all faulty curves but can only search starting from EB . Hence, we do
not get the square-root speedup. Despite the increase in the costs it still possible
to attack the hashed version.

Other sizes and variants work the same way with the concrete numbers ad-
justed. The brute-force searches to connect the effective round-r curves in large
CSIDH versions do get very expensive but will still remain cheaper than the
security level for average gaps between EB and Er,s for the maximum r values.

8 Exploiting the twist to allow precomputation

In this section, we use quadratic twists and precomputation to significantly
speed up obtaining the private key a given enough samples Et, especially for
the “hashed” version described in Section 7.

Using the twist. The attack target is a public key EB = a ∗ E0. Previously
(Section 3), we attacked the computation of a ∗E0 with disorientation faults. In
this section, we will use E−B as the input curve instead: Negating B is related
to inverting a because E−B = a−1 ∗ E0. Moreover, applying a to E−B gives us
back the curve E0 and faulting this computation then produces faulty curves
close to the fixed curve E0. As E−B is the quadratic twist of EB , we will refer
to this attack variant as using the twist.

The main trick is that twisting induces a symmetry around the curve E0.
This can be used to speed up pubcrawl: the opposite orientation of Et (starting
from E0) reaches E−t, so we can check two curves at once.

By precomputing a set C of curves of distance at most d to E0, a faulty
curve Et at distance d′ ≤ d is in C and can immediately be identified via a table
lookup. Note that C can be precomputed once and for all, independent of the
target instance, as for any secret key a′ the faulty curves end up close to E0.
The symmetry of E−t and Et also reduces storage by half.

Finally, this twisting attack cannot be prevented by simply recognizing that
E−B is the twist of EB and refusing to apply the secret a to such a curve: An
attacker can just as easily pick a random masking value z and feed z∗E−B to the
target device. The faulty curves Et can then be moved to the neighborhood of

30 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

E0 by computing z−1 ∗ Et at some cost per Et, or the attacker can precompute
curves around z ∗ E0. The latter breaks the symmetry of Et and E−t and does
not achieve the full speedup or storage reduction, but retains the main benefits.

Twisting CTIDH. The twisting attack is at its most powerful for CTIDH. As
noted before, the sets Sr,± are small in every round for CTIDH. The crucial
observation is that in each round and for each orientation, we use at most one
prime per batch (ignoring torsion noise, see Section 4.4). For a faulty curve Et,
the path Et → E0 includes only steps with the same orientation and uses at
most one prime per batch. With batches of size Ni, the total number of possible
paths per orientation is

∏
i(Ni +1), which is about 235.5 for CTIDH-512. Hence,

it is possible to precompute all possible faulty curves that can appear from
orientation flips from any possible secret key a.

Extrapolating the performance of pubcrawl (Section 6), this precomputation
should take no more than a few core years. The resulting lookup table occupies
≈ 3.4 TB when encoded naively, but can be compressed to less than 250 GB
using techniques similar to [38, § 4.3].

Twisting CSIDH. For this speed-up to be effective, the distance d we use to
compute C must be at least as large as the smallest |Sr,±|. Otherwise, no faulty
curves end up within C. For CSIDH, the smallest such sets are Srmax,±, where
rmax is the maximal exponent permitted by the parameter; e.g., for CSIDH-512
rmax = 5 and S5,± have an expected size ≈ 7. Precomputing C for d ≤ 7 creates a
set containing

∑7
i=0

(74
i

)
≈ 231 curves. Such a precomputation will either identify

S5,± immediately, or allow us to find these sets quickly by considering a small
neighbourhood of the curves E5,±.

Note that for all the earlier rounds r < rmax, the sets Sr,s include Srmax,s.
Therefore, if we have the orientation s and have the set Srmax,s, we can shift all
the faulty curves by two steps for every degree in Srmax,s. If we have misidentified
the orientation, this shift moves the faulty curves in the wrong direction, even
further away from E0. This trick is particularly useful for larger r because even-
tually, many isogenies need to be applied in the shifts and we will have identified
the orientation of enough primes so that the search space for pubcrawl becomes
small enough to be faster.

Twisting in the hashed version. Precomputation extends to the hashed
version from Section 7: we simply precompute C′ which instead of Et includes
H(Et) for all Et in the neighborhood of E0.

Again, this works directly for attacking a hashed version of CTIDH and
the effective round-rmax curves in CSIDH. To use precomputation for different
rounds, one can replace the starting curve E−B that is fed to the target device
by the shift given exactly by the primes in Srmax,s (or, adaptively, by the part of
the secret key we have already figured out). This has the same effect as above:
shifting all the curves Et with the same orientation closer towards E0, hopefully

Disorientation faults in CSIDH 31

so that the H(Et) are already in our database. If they are not then likely the
opposite orientation appeared when we faulted the computation.

Summary. The benefit of using the twist with precomputation is largest for
the hashed versions: we need a brute force search from E0 in any case, and so we
would use on average as many steps per round as the precomputation takes. For
the non-hashed versions, the expensive precomputation competes with meet-in-
the-middle attacks running in square root time. This means that in the hashed
version we do not need to amortize the precomputation cost over many targets
and have a clear tradeoff between memory and having to recompute the same
neighborhood searches all over again and again.

9 Countermeasures

In this section, we present countermeasures against disorientation fault attacks
from Section 3. We first review previous fault attacks on CSIDH and their coun-
termeasures, as well as their influence on our attack in Section 9.1. We then
discuss new countermeasures for one-point sampling from CSIDH and Elligator
in Section 9.2, and estimate the costs of the countermeasures in Section 9.3.

9.1 Previous fault attacks and countermeasures

One way to recover secret keys is to target dummy isogenies with faults [10,
28]. Although these attacks are implementation-specific, the proposed counter-
measures impact our attack too. Typically, real isogenies are computed prior
to dummy isogenies, but the order of real and dummy isogenies can be ran-
domized [10, 28] with essentially no computational overhead. When applied to
dummy-based implementations, e.g., from [30, 32], this randomization means
dummy isogenies can appear in different rounds for each run, which makes the
definitions of the curves Er,± almost obsolete. However, we can instead simply
collect many faulted round-1 samples. Each faulty curve Et reveals a different
set St due to the randomization, and with enough samples, a statistical analysis
will quickly reveal all the ei,j just from the number of appearances among the
sets St, again recovering the secret key.

Adapted to CTIDH, there are two possible variants of this randomization
countermeasure: One could either keep the queue of real isogenies per batch as
described above, but insert dummy isogenies randomly instead of at the end
of the queue, or fully randomize the order of isogeny computations per batch
including the dummy operations. In the first case, faulting round r if a dummy
isogeny is computed in batch Bi means that no prime from this batch appears
in the missing set. This effect is the same as missing torsion and thus our attack
remains feasible. The net effect matches increased failure probabilities pi and the
larger neighborhoods simplify finding orientations. Note also that pi is inflated
more for batches with more dummy isogenies. In the second case when the

32 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

entire queue is randomized, the same arguments as for CSIDH apply, and we
can recover the secret key from statistical information with round-1 samples only.

Many fault attacks produce invalid intermediate values. In [10] some low-
level protections for dummy isogenies to detect fault injections are proposed.
This approach does not prevent our disorientation attack, and is orthogonal
to our proposed countermeasures. Its performance overhead for the CSIDH-512
implementation from [32] is reported to be 7%.

Faulting memory locations can identify dummy isogenies [11]. In addition to
the countermeasures above, the authors recommend using dummy-free imple-
mentations when concerned about fault attacks, with a roughly twofold slow-
down [16]. However, as described in Section 5.3, dummy-free implementations
are vulnerable to disorientation faults too.

Lastly, [10] reports that its fault attack theoretically could lead to disorien-
tation of a point. Although the probability for this to happen is shown to be
negligible, the authors propose to counter this attack vector by checking the field
of definition of each isogeny kernel generator. This is rather expensive, with an
overhead of roughly 30% for the implementation from [32], but also complicates
the disorientation faults proposed in this work. We further discuss this in Sec-
tion 9.2. We note that our countermeasures are significantly cheaper, but do not
prevent the theoretical fault effect from [10].

9.2 Protecting square checks against fault attacks

The attack described in Section 3 can be applied to all implementations of
CSIDH that use a call to IsSquare to determine the orientations of the in-
volved point(s). The main weakness is that the output of IsSquare is always
interpreted as s = 1 or s = −1, and there is no obvious way of reusing parts of
the computation to verify that the output is indeed related to the x-coordinate
of the respective point. For instance, faulting the computation of the Legendre-
input z = x3 + Ax2 + x results in a square check for a point unrelated to the
actual x-coordinate in use, and yields a fault success probability of 50%.

Repeating square checks. One way to reduce the attacker’s chances for a
successful fault is to add redundant computations and repeat the execution of
IsSquare k times. In principle, this means that the attacker has to fault all
k executions successfully, hence reducing the overall fault success probability
to 1/2k. However, if an attacker manages to reliably fault the computation of
z or the Legendre symbol computation or to skip instructions related to the
redundant computations, they might be able to circumvent this countermeasure.

Repeated square checks have been proposed for a different fault attack sce-
nario [10]. There, IsSquare is used to verify the correct orientation for each
point that generates an isogeny kernel. However, this countermeasure signifi-
cantly impacts the performance of CSIDH, and could be bypassed as above.

Disorientation faults in CSIDH 33

Using y-coordinates. In CSIDH, the field of definition of the y-coordinate de-
termines the orientation of a point. So, another simple countermeasure relying
on redundant computation is to work with both x- and y-coordinates, instead
of x-only arithmetic. We can then easily recognize the orientation of each point.
But this leads again to a significant performance loss due to having to keep
y-coordinates during all point multiplications and isogeny evaluations. We ex-
pect that this countermeasure is significantly more expensive than repeating
IsSquare k times for reasonable choices of k.

Using pseudo y-coordinates. We propose a more efficient countermeasure:
compute pseudo y-coordinates after sampling points. We sample a random x-
coordinate and set z = x3 + Ax2 + x. If z is a square in Fp, we can compute
the corresponding y-coordinate ỹ ∈ Fp through the exponentiation ỹ =

√
z =

z(p+1)/4, and hence ỹ2 = z. Conversely, if z is a non-square in Fp, the same
exponentiation outputs ỹ ∈ Fp such that ỹ2 = −z. Thus, as an alternative to
IsSquare, we can determine the orientation of the sampled point by computing
z = x3 + Ax2 + x, and the pseudo y-coordinate ỹ2 = z(p+1)/4. If ỹ2 = z, the
point has positive orientation, if ỹ2 = −z it has negative orientation. If neither
of these cases applies, i.e., ỹ2 ̸= ±z, a fault must have occurred during the
exponentiation, and we reject the point.

This method may seem equivalent to computing the sign s using IsSquare
as it does not verify that z has been computed correctly from x. But having
an output value ỹ ∈ Fp instead of the IsSquare output −1 or 1 allows for a
much stronger verification step in order to mitigate fault attacks on the point
orientation. We present the details of the original CSIDH algorithm including
this countermeasure in Algorithm 2.

Steps 3 and 4 of Algorithm 2 contain our proposed method to determine
the orientation s without using IsSquare. In order to verify the correctness
of these computations, we add a verification step. First, we recompute z via
z′ = x3 + Ax2 + x, and in case of a correct execution, we have z = z′. Thus,
we have s · z′ = ỹ2, which we can use as verification of the correctness of the
computations of s, z, z′, and ỹ. If this were implemented through a simple check,
an attacker might be able to skip this check through fault injection. Hence, we
perform the equality check through the multiplications XQ = s · z′ · XQ′ and
ZQ = ỹ2 ·ZQ′ , and initialize Q = (XQ : ZQ) only afterwards, in order to prevent
an attacker from skipping Step 8. If s · z′ = ỹ2 holds as expected, this is merely
a change of the projective representation of Q′, and thus leaves the point and its
order unchanged. However, if s · z′ ̸= ỹ2, this changes the x-coordinate XQ/ZQ

of Q to a random value corresponding to a point of different order. If Q does not
have the required order before entering the isogeny loop, the isogeny computation
will produce random outputs in Fp that do not represent supersingular elliptic
curves with overwhelming probability. We can either output this random Fp-
value, or detect it through a supersingularity check (see [4, 15]) at the end of
the algorithm and abort. The attacker gains no information in both cases. The
supersingularity check can be replaced by a cheaper procedure [10]: Sampling a

34 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

Algorithm 2: Evaluation of CSIDH group action with countermeasure
Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp such that

∏
[li]ei ∗ EA = EB

1: while some ei ̸= 0 do
2: Sample a random x ∈ Fp, defining a point P .
3: Set z ← x3 + Ax2 + x, ỹ ← r(p+1)/4.
4: Set s← 1 if ỹ2 = z, s← −1 if ỹ2 = −z, s← 0 otherwise.
5: Let S = {i | ei ̸= 0, sign(ei) = s}. Restart with new x if S is empty.
6: Let k ←

∏
i∈S

ℓi and compute Q′ = (XQ′ : ZQ′)← [p+1
k

]P .
7: Compute z′ ← x3 + Ax2 + x.
8: Set XQ ← s · z′ ·XQ′ , ZQ ← ỹ2 · ZQ′ .
9: Set Q = (XQ : ZQ).

10: for each i ∈ S do
11: Set k ← k/ℓi.
12: Compute R← [k]Q. If R =∞, skip this i.
13: Compute ϕ : EA → EB with kernel ⟨R⟩.
14: Set A← B, Q← ϕ(Q), and ei ← ei − s.
15: return A.

random point P and checking if [p + 1]P = ∞ is much cheaper and has a very
low probability of false positives, which is negligible in this case.

There are several ways in which an attacker may try to circumvent this
countermeasure. A simple way to outmaneuver the verification is to perform the
same fault in the computation of z and z′, such that z = z′, but z ̸= x3+Ax2+x.
To mitigate this, we recommend computing z′ using a different algorithm and
a different sequence of operations, so that there are no simple faults that can
be repeated in both computations of z and z′ that result in z = z′. Faults in
the computation of both z and z′ then lead to random Fp-values, where the
probability of z = z′ is 1/p.

The attacker may still fault the computation of s in Step 4 of Algorithm 2.
However, this will now also flip the x-coordinate of Q to −x, which in general
results in a point of random order, leading to invalid outputs. The only known
exception is the curve E0 : y2 = x3 + x: In this case, flipping the x-coordinate
corresponds to a distortion map taking Q to a point of the same order on the
quadratic twist. Thus, for E0, flipping the sign s additionally results in actually
changing the orientation of Q, so these two errors effectively cancel each other
in Algorithm 2 and the resulting curve is the correct output curve after all.

Protecting Elligator. Recall from Section 3 that two-point variants of CSIDH,
including CTIDH, use the Elligator map for two points simultaneously, which
requires an execution of IsSquare in order to correctly allocate the sampled
points to P+ and P−.

We can adapt the pseudo y-coordinate technique from Section 9.2: we deter-
mine orientations and verify their correctness by applying this countermeasure
for both P+ and P− separately. We dub this protected version of the Elligator

Disorientation faults in CSIDH 35

sampling Elligreator. An additional benefit is that faulting the computations
of the x-coordinates of the two points within Elligator (see [16, Algorithm 3]) is
prevented by Elligreator.

In CTIDH, each round performs two Elligator samplings, and throws away
one point respectively. Nevertheless, it is not known a priori which of the two
points has the required orientation, so Elligreator needs to check both points
anyway in order to find the point of correct orientation.

On the one hand, adding dummy computations, in this case sampling points
but directly discarding some of them, might lead to different vulnerabilities such
as safe-error attacks. On the other hand, sampling both points directly with
Elligreator at the beginning of each round (at the cost of one additional
isogeny evaluation) may lead to correlations between the sampled points, as
argued in [3]. It is unclear which approach should be favored.

9.3 Implementation costs

Implementing this countermeasure is straightforward. While IsSquare requires
an exponentiation by (p− 1)/2, our pseudo y-coordinate approach replaces this
exponent by (p + 1)/4, which leads to roughly the same cost. (Note that neither
has particularly low Hamming weight.) Furthermore, we require a handful of
extra operations for computing z′, XQ, and ZQ in Steps 7 and 8 of Algorithm 2.
For the computation of z′ we used a different algorithm than is used for the
computation of z, incurring a small additional cost, for the reason discussed
above.

Therefore, using this countermeasure in a 1-point variant of CSIDH will
essentially not be noticeable in terms of performance, since the extra operations
are negligible in comparison to the overall cost of the CSIDH action.

In 2-point variants, we use Elligreator, which requires two exponentiations
instead of one as Elligator does. Thus, the countermeasure is expected to add a
more significant, yet relatively small overhead in 2-point variants as in CTIDH.
CTIDH uses two calls to Elligreator per round, and both executions contain
two pseudo-y checks respectively.

We estimate the cost of our countermeasure in CTIDH-512. The software
of [3] reports an exponentiation by (p−1)/2 to cost 602 multiplications (including
squarings). Since CTIDH-512 requires roughly 20 rounds per run, we add two
additional exponentiations by (p + 1)/4 per round, and these have almost the
same cost of 602 multiplications, the overhead is approximately 2 · 20 · 602 =
24080 multiplications. Ignoring the negligible amount of further multiplications
we introduce, this comes on top of a CTIDH-512 group action, which takes
438006 multiplications on average. Thus, we expect the total overhead of our
countermeasure to be roughly 5.5% in CTIDH-512.

References
1. Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez.

Karatsuba-based square-root Vélu’s formulas applied to two isogeny-based proto-

36 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

cols. Cryptology ePrint Archive, Paper 2020/1109, 2020. https://eprint.iacr.
org/2020/1109.

2. Gora Adj, Jesús-Javier Chi-Domínguez, Víctor Mateu, and Francisco Rodríguez-
Henríquez. Faulty isogenies: a new kind of leakage. Cryptology ePrint Archive,
Paper 2022/153, 2022. https://eprint.iacr.org/2022/153.

3. Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange,
Michael Meyer, Benjamin Smith, and Jana Sotáková. CTIDH: faster constant-time
CSIDH. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):351–387, 2021.

4. Gustavo Banegas, Valerie Gilchrist, and Benjamin Smith. Efficient supersingular-
ity testing over Fp and csidh key validation. Cryptology ePrint Archive, Paper
2022/880, 2022.

5. Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. In Steven D. Galbraith, editor,
Proceedings of the Fourteenth Algorithmic Number Theory Symposium, pages 39–
55. Mathematics Sciences Publishers, 2020. https://eprint.iacr.org/2020/341.

6. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 967–980. ACM, 2013. https://eprint.iacr.org/
2013/325.

7. Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. Quantum
circuits for the CSIDH: optimizing quantum evaluation of isogenies. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019 – 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, volume
11477 of Lecture Notes in Computer Science, pages 409–441. Springer, 2019. https:
//eprint.iacr.org/2018/1059.

8. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Effi-
cient isogeny based signatures through class group computations. In Steven D.
Galbraith and Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT 2019
- 25th International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, vol-
ume 11921 of Lecture Notes in Computer Science, pages 227–247. Springer, 2019.

9. Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH.
In Canteaut and Ishai [13], pages 493–522. https://eprint.iacr.org/2018/537.

10. Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hiroshi Onuki, and Marc
Stöttinger. Trouble at the CSIDH: protecting CSIDH with dummy-operations
against fault injection attacks. In 17th Workshop on Fault Detection and Toler-
ance in Cryptography, FDTC 2020, Milan, Italy, September 13, 2020, pages 57–65.
IEEE, 2020. https://eprint.iacr.org/2020/1005.

11. Fabio Campos, Juliane Krämer, and Marcel Müller. Safe-error attacks on SIKE and
CSIDH. In Lejla Batina, Stjepan Picek, and Mainack Mondal, editors, Security,
Privacy, and Applied Cryptography Engineering – 11th International Conference,
SPACE 2021, Kolkata, India, December 10-13, 2021, Proceedings, volume 13162 of
Lecture Notes in Computer Science, pages 104–125. Springer, 2021.

12. Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger. Patient zero
and patient six: Zero-value and correlation attacks on csidh and sike. Cryptology
ePrint Archive, Paper 2022/904, 2022.

https://eprint.iacr.org/2020/1109
https://eprint.iacr.org/2020/1109
https://eprint.iacr.org/2022/153
https://eprint.iacr.org/2020/341
https://eprint.iacr.org/2013/325
https://eprint.iacr.org/2013/325
https://eprint.iacr.org/2018/1059
https://eprint.iacr.org/2018/1059
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2020/1005

Disorientation faults in CSIDH 37

13. Anne Canteaut and Yuval Ishai, editors. Advances in Cryptology – EUROCRYPT
2020 – 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II,
volume 12106 of Lecture Notes in Computer Science. Springer, 2020.

14. Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH
(preliminary version). Cryptology ePrint Archive, Paper 2022/975, 2022.

15. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action. In Thomas Peyrin
and Steven D. Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018 –
24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part III, volume 11274 of Lecture Notes in Computer Science, pages 395–427.
Springer, 2018. https://eprint.iacr.org/2018/383.

16. Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domínguez, Luca De
Feo, Francisco Rodríguez-Henríquez, and Benjamin Smith. Stronger and faster
side-channel protections for CSIDH. In Peter Schwabe and Nicolas Thériault,
editors, Progress in Cryptology – LATINCRYPT 2019 – 6th International Confer-
ence on Cryptology and Information Security in Latin America, Santiago de Chile,
Chile, October 2-4, 2019, Proceedings, volume 11774 of Lecture Notes in Computer
Science, pages 173–193. Springer, 2019. https://eprint.iacr.org/2019/837.

17. Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco
Rodríguez-Henríquez. The SQALE of CSIDH: square-root Vélu quantum-resistant
isogeny action with low exponents. Cryptology ePrint Archive, Paper 2020/1520,
2020. https://eprint.iacr.org/2020/1520.

18. Jesús-Javier Chi-Domínguez and Francisco Rodríguez-Henríquez. Optimal strate-
gies for CSIDH. Cryptology ePrint Archive, Paper 2020/417, 2020. https:
//eprint.iacr.org/2020/417.

19. Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. J. Mathematical Cryptology, 8(1):1–29,
2014. https://arxiv.org/abs/1012.4019.

20. John H. Conway and Neil J. A. Sloane. Low dimensional lattices vii: Coordination
sequences. In Proceedings of the Royal Society of London, Series A 453, pages
2369–2389, 1997.

21. Jean-Marc Couveignes. Hard Homogeneous Spaces, 2006. IACR Cryptology ePrint
Archive 2006/291. https://ia.cr/2006/291.

22. Christina Delfs and Steven D. Galbraith. Computing isogenies between super-
singular elliptic curves over Fp. Des. Codes Cryptography, 78(2):425–440, 2016.
https://arxiv.org/abs/1310.7789.

23. Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures from
class group actions. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May
19-23, 2019, Proceedings, Part III, volume 11478 of Lecture Notes in Computer
Science, pages 759–789. Springer, 2019.

24. Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference on
Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020,
Proceedings, Part II, volume 12111 of Lecture Notes in Computer Science, pages
187–212. Springer, 2020.

https://eprint.iacr.org/2018/383
https://eprint.iacr.org/2019/837
https://eprint.iacr.org/2020/1520
https://eprint.iacr.org/2020/417
https://eprint.iacr.org/2020/417
https://arxiv.org/abs/1012.4019
https://ia.cr/2006/291
https://arxiv.org/abs/1310.7789

38 Banegas, Krämer, Lange, Meyer, Panny, Reijnders, Sotáková, Trimoska

25. Alexandre Gélin and Benjamin Wesolowski. Loop-abort faults on supersingu-
lar isogeny cryptosystems. In Tanja Lange and Tsuyoshi Takagi, editors, Post-
Quantum Cryptography – 8th International Workshop, PQCrypto 2017, Utrecht,
The Netherlands, June 26-28, 2017, Proceedings, volume 10346 of Lecture Notes
in Computer Science, pages 93–106. Springer, 2017.

26. Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarderakhsh. Fur-
ther optimizations of CSIDH: A systematic approach to efficient strategies, permu-
tations, and bound vectors. In Mauro Conti, Jianying Zhou, Emiliano Casalicchio,
and Angelo Spognardi, editors, Applied Cryptography and Network Security – 18th
International Conference, ACNS 2020, Rome, Italy, October 19-22, 2020, Proceed-
ings, Part I, volume 12146 of Lecture Notes in Computer Science, pages 481–501.
Springer, 2020. https://eprint.iacr.org/2019/1121.

27. Yi-Fu Lai, Steven D. Galbraith, and Cyprien Delpech de Saint Guilhem. Com-
pact, efficient and UC-secure isogeny-based oblivious transfer. In Anne Canteaut
and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part
I, volume 12696 of Lecture Notes in Computer Science, pages 213–241. Springer,
2021.

28. Jason T. LeGrow and Aaron Hutchinson. (short paper) analysis of a strong fault
attack on static/ephemeral CSIDH. In Toru Nakanishi and Ryo Nojima, editors,
Advances in Information and Computer Security - 16th International Workshop on
Security, IWSEC 2021, Virtual Event, September 8-10, 2021, Proceedings, volume
12835 of Lecture Notes in Computer Science, pages 216–226. Springer, 2021.

29. Luciano Maino and Chloe Martindale. An attack on SIDH with arbitrary starting
curve. Cryptology ePrint Archive, Paper 2022/1026, 2022.

30. Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and Elligators: An
efficient constant-time implementation of CSIDH. In Jintai Ding and Rainer
Steinwandt, editors, Post-Quantum Cryptography – 10th International Conference,
PQCrypto 2019, Chongqing, China, May 8-10, 2019 Revised Selected Papers, vol-
ume 11505 of Lecture Notes in Computer Science, pages 307–325. Springer, 2019.
https://eprint.iacr.org/2018/1198.

31. Michael Meyer and Steffen Reith. A faster way to the CSIDH. In Debrup
Chakraborty and Tetsu Iwata, editors, Progress in Cryptology – INDOCRYPT
2018 – 19th International Conference on Cryptology in India, New Delhi, India,
December 9-12, 2018, Proceedings, volume 11356 of Lecture Notes in Computer
Science, pages 137–152. Springer, 2018. https://eprint.iacr.org/2018/782.

32. Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi. (Short
paper) A faster constant-time algorithm of CSIDH keeping two points. In Nut-
tapong Attrapadung and Takeshi Yagi, editors, Advances in Information and Com-
puter Security – 14th International Workshop on Security, IWSEC 2019, Tokyo,
Japan, August 28-30, 2019, Proceedings, volume 11689 of Lecture Notes in Com-
puter Science, pages 23–33. Springer, 2019. https://eprint.iacr.org/2019/353.

33. Chris Peikert. He gives c-sieves on the CSIDH. In Canteaut and Ishai [13], pages
463–492. https://eprint.iacr.org/2019/725.

34. Damien Robert. Breaking SIDH in polynomial time. Cryptology ePrint Archive,
Paper 2022/1038, 2022.

35. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on
isogenies, 2006. IACR Cryptology ePrint Archive 2006/145. https://ia.cr/2006/
145.

https://eprint.iacr.org/2019/1121
https://eprint.iacr.org/2018/1198
https://eprint.iacr.org/2018/782
https://eprint.iacr.org/2019/353
https://eprint.iacr.org/2019/725
https://ia.cr/2006/145
https://ia.cr/2006/145

Disorientation faults in CSIDH 39

36. Élise Tasso, Luca De Feo, Nadia El Mrabet, and Simon Pontié. Resistance of
isogeny-based cryptographic implementations to a fault attack. In Shivam Bhasin
and Fabrizio De Santis, editors, Constructive Side-Channel Analysis and Secure
Design - 12th International Workshop, COSADE 2021, Lugano, Switzerland, Octo-
ber 25-27, 2021, Proceedings, volume 12910 of Lecture Notes in Computer Science,
pages 255–276. Springer, 2021.

37. Yan Bo Ti. Fault attack on supersingular isogeny cryptosystems. In Tanja Lange
and Tsuyoshi Takagi, editors, Post-Quantum Cryptography - 8th International
Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceed-
ings, volume 10346 of Lecture Notes in Computer Science, pages 107–122. Springer,
2017.

38. Aleksei Udovenko and Giuseppe Vitto. Breaking the $ikep182 challenge, 2021.
IACR Cryptology ePrint Archive 2021/1421.

39. Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie
des Sciences de Paris, 273:238–241, 1971. https://gallica.bnf.fr/ark:/12148/
cb34416987n/date.

https://gallica.bnf.fr/ark:/12148/cb34416987n/date
https://gallica.bnf.fr/ark:/12148/cb34416987n/date

	Disorientation faults in CSIDH

