
HAL Id: hal-03970576
https://hal.science/hal-03970576

Submitted on 17 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

On recovering block cipher secret keys in the cold boot
attack setting

Gustavo Banegas, Ricardo Villanueva-Polanco

To cite this version:
Gustavo Banegas, Ricardo Villanueva-Polanco. On recovering block cipher secret keys in the cold
boot attack setting. Cryptography and Communications - Discrete Structures, Boolean Functions
and Sequences , In press, �10.1007/s12095-022-00625-z�. �hal-03970576�

https://hal.science/hal-03970576
https://hal.archives-ouvertes.fr

On recovering block cipher secret keys in
the cold boot attack setting

Gustavo Banegas1 and Ricardo Villanueva-Polanco2*

1 Inria and Laboratoire d’Informatique de l’Ecole polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

Qualcomm, Valbonne, France.
2*Department of Computer Science and Engineering, Universidad

del Norte, KM 5 Via Puerto Colombia, Barranquilla, 081007,
Atlántico, Colombia.

*Corresponding author(s). E-mail(s): rpolanco@uninorte.edu.co;
Contributing authors: gustavo@cryptme.in;

Abstract
This paper presents a general strategy to recover a block cipher secret
key in the cold boot attack setting. More precisely, we propose a key-
recovery method that combines key enumeration algorithms and Grover’s
quantum algorithm to recover a block cipher secret key after an attacker
has procured a noisy version of it via a cold boot attack. We also show
how to implement the quantum component of our algorithm for sev-
eral block ciphers such as AES, PRESENT and GIFT, and LowMC.
Additionally, since evaluating the third-round post-quantum candidates
of the National Institute of Standards and Technology (NIST) post-
quantum standardization process against different attack vectors is of
great importance for their overall assessment, we show the feasibility
of performing our hybrid attack on Picnic, a post-quantum signature
algorithm being an alternate candidate in the NIST post-quantum stan-
dardization competition. According to our results, our method may
recover the Picnic private key for all Picnic parameter sets, tolerat-
ing up to 40% of noise for some of the parameter sets. Furthermore,
we provide a detailed analysis of our method by giving the cost of its
resources, its running time, and its success rate for various enumerations.

Keywords: Cold Boot Attacks, Grover’s Quantum Algorithm, Key
Enumeration, Key Recovery, Post-Quantum Signature Schemes, Side-Channel
Attacks

1

2 On recovering block cipher secret keys in the cold boot attack setting

1 Introduction
Post-quantum cryptography has gained much attention in the past few years.
One of the main reasons is the National Institute of Standards and Technol-
ogy (NIST) call for proposals for post-quantum schemes (Signature schemes
and Key encapsulation mechanisms). Currently, the call is in the third round,
and there are few candidates for signature schemes: Picnic, Falcon, Rainbow,
Crystals-Dilithium, GeMSS, and SPHINCS+.

The security of the schemes relies on different mathematical properties, so
one can break a scheme if one finds a way to exploit some weaknesses in these
mathematical properties, and hence may, in an easy way, recover information
that is sensitive. Moreover, there are attacks where the main target is the
implementation of the scheme, and such attacks are called side-channel attacks.
One of those attacks is called a cold boot attack. Briefly, the idea of the attack
is to fetch sensitive data from the memory of an electronic device.

This paper presents a general procedure by which an attacker may recover a
block cipher secret key after procuring a noisy version of the key via a cold boot
attack. More specifically, we describe a method that exploits key enumeration
algorithms and a well-known quantum algorithm, namely, Grover’s Algorithm.
Also, we show how to implement the quantum component of our algorithm
for several block ciphers such as AES, PRESENT and GIFT, and LowMC.
Furthermore, we give a use case where Picnic (a third-round signature scheme
from NIST) is evaluated in the cold boot attack setting, focusing on its current
reference implementation. According to our knowledge, this is the first paper
evaluating this signature scheme in the cold boot attack setting. In the study
case, we further detail our key-recovery method for Picnic private keys in the
cold boot attack setting, providing a detailed analysis of its costs of resources,
its running time, and success rates for all Picnic parameter sets.

This paper is structured as follows. In Section 2, we present background
material about cold-boot attacks, the model we assume for studying cold-boot
attacks on cryptographic schemes, as well as a literature review on previous
works on cold-boot attacks on cryptographic algorithms and background mate-
rial on quantum computing. Section 3 gives a high-level idea of the key-recovery
problem in the cold blood attack setting. In Section 4, we present our hybrid
key-recovery method. In particular, Section 4.2 describes our key-recovery
strategy combined with Grover’s quantum algorithm (a.k.a hybrid attack),
its running time, and costs in terms of resources for several block ciphers. In
Section 5, we concentrate on Picnic, particularly on its key-generation algo-
rithm and implementation, providing a detailed description of how to apply
our algorithm to LowMC in the context of Picnic. Lastly, Section 6 encloses
our final comments on the paper, highlighting some future research works.

2 Background
In this section, we will present background material about cold boot attacks,
the model we assume for studying cold-boot attacks on cryptographic schemes,

On recovering block cipher secret keys in the cold boot attack setting 3

a literature review of previous works about cold boot attacks on cryptographic
algorithms, background material on quantum computing, and lastly, a general
strategy to tackle the key-recovery problem in the cold boot attack setting.

2.1 Cold boot attacks
A cold boot attack is a kind of data remanence attack by which an adversary
could fetch sensitive data from an electronic device’s main memory after the
device has supposedly deleted the memory data. This attack vector exploits the
data remanence property of Dynamic RAM (DRAM). Through it, an adversary
might recover readable memory content after the device’s power is off for a
while. This attack vector, introduced in [1], has been explored extensively
against multiple cryptographic schemes, as we will discuss in Section 2.3. In
this setting, an adversary, who has physical access to a device, might retrieve
chunks of memory content from the device via carrying out a cold-rebooting
on it [1–3]. In general terms, the adversary forces the operating system to
shut down, which causes it to go past all tasks that typically execute during a
normal shutdown, such as the file system synchronization. Therefore such an
adversary may employ an external disk to start and run a lightweight operating
system to copy memory contents of pre-boot DRAM to a file. Alternatively,
such an attacker may remove the physical memory modules from the device (if
possible) and place them in an adversary-controlled device. The attacker then
may run a lightweight operating system to copy and paste chunks of memory
content from these physical memory modules to an external drive. Because
of some physical effects on the main memory, the memory bits experience a
deterioration process once the device’s power is off, by which some bits get
changed. Particularly some 0 bits of the original content change to 1 bits and
vice-versa. Therefore the extracted data from the target device’s main memory
will be recognizably different from the original memory data.

Previous works [1–3] point out that an attacker can decelerate the bit
degrading process by means of spraying a chemical product, like liquid nitro-
gen, onto the memory modules (that is, spraying cold compressed liquid onto
the modules may maintain the original bit states for a prolonged period).
Nonetheless, the attacker has yet to extract the memory content before restor-
ing any important information from the target device’s main memory. To
extract chunks of memory, the attacker has to handle several possible issues.
On rebooting, the initial boot process may overwrite chunks of memory with
its running code and data, even though the overwritten chunks are normally
small. Moreover, the initial boot process might execute a destructive memory
check, yet this memory check may be bypassed. In particular, the attacker
may use memory-imaging tools to produce correct dumps of memory contents
to any external device, as was reported in [1–3]. These tools consume trivial
amounts of RAM and usually are placed in memory in such a way that do
not affect the data of interest. In case that such an attacker cannot force boot
memory-imaging tools, the attacker removes the memory modules and place

4 On recovering block cipher secret keys in the cold boot attack setting

them in a compatible device and copy and paste the content to an external
disk, like mentioned by the authors of [1].

Once the attacker extracts some memory content, the attacker has to profile
the content to estimate the probabilities of bit-flipping. That is the probability
for a 1 to 0 bit flipping and a 0 to 1 bit flipping. Furthermore, according to the
results of the experiment reported in [1], almost all memory bits tend to decay
to predictable “ground” states, with only a portion flipping in the opposite
direction. Additionally, the authors of [1] mention that the probability of a bit-
flipping in the opposite direction stays constant and is very small (circa 0.01)
as time elapses, while the probability for a bit to decay to the ground state
increases over time. These results suggest that the attacker could model the
decay in a portion of the memory as a binary asymmetric channel, i.e., we can
assume that the probability for a 1 to 0 bit flipping is a fixed number and that
the probability for a 0 to 1 bit flipping is another fixed number in a given time.
Note that by reading and counting the number of 0 bits and 1 bits, the attacker
can discover the ground state of a specific memory region. Additionally, the
attacker can estimate the bit-flipping probabilities by comparing the bit count
of original content in a memory region with its corresponding noisy version.

Finding encryption keys after procuring memory content is another chal-
lenge that the attacker has to address. Such a problem has been extensively
discussed in [1] for Advanced Encryption Standard (AES) and RSA keys
in-memory images. Even though the algorithms presented in [1] are scheme-
specific, their algorithmic rationale may be easily adapted to devise key-finding
algorithms for other schemes. These algorithms search for specific secret-key-
identifying characteristics in the secret key in-memory formats as identifying
labels for sequences of bytes. More precisely, these algorithms search for byte
sequences with low Hamming distance to these identifying labels and verify
that the remaining bytes in a possible sequence satisfy some conditions. Once
the previous issues are coped with, the attacker will obtain a version with
errors of the original secret key obtained from the memory image. Hence the
attacker’s ultimate goal is to reconstruct the original private key from its noisy
version with the help of public cryptographic data associated with the target
key.

The study of cold boot attacks on cryptographic algorithms has focused
on developing key-recovery algorithms to efficiently and effectively reconstruct
a secret key from its noisy version with the help of associated public cryp-
tographic data for a target cryptosystem and evaluate the robustness and
tolerance of these key-recovery algorithms to noise.

2.2 Cold boot attack model
Based on our previous discussion on cold boot attacks, we assume an attacker
knows about the data structures storing the private key in memory and has
access to the corresponding public parameters without any noise. Also, we
suppose such an attacker procures a noisy version of the target private key
via applying several key finding algorithms. We note that finding the memory

On recovering block cipher secret keys in the cold boot attack setting 5

region that stores the private key requires to carry out this attack in practice
and may be taken care of via applying several key finding algorithms [1–3].
Therefore, the adversary’s main objective is to reconstruct the original private
key.

We denote α = P (0→ 1) as the probability of a 0 to 1 bit-flipping (a 0 bit
in the bit representation of the private key changes to a 1 bit). Moreover, we
denote β = P (1 → 0) as the probability of a 1 to 0 bit-flipping (viz. a 1 bit
in the bit representation of the secret key changes to a 0 bit). Furthermore,
based on experimental results obtained in [1–3], we assume one of these values
is very small (approximately 0.001) and not liable to variation over time, while
the other value does increase over time. As stated by preceding works on cold
boot attacks [1–3], such an attacker may estimate both α and β by comparing
original content with its corresponding noisy version (using the public key),
and both remain fixed across the memory region that stores the private key.

2.3 Literature review
In this section, we present a review of previous works about cold boot attacks
on cryptographic schemes. In particular, we introduce this literature review
by describing cold boot attacks on RSA, then cold boot attacks on discrete-
logarithm-based schemes, then cold boot attacks on symmetric-key schemes,
and finally cold boot attacks on post-quantum schemes.

2.3.1 RSA setting

The research paper by Heninger and Shacham [4] is the first work dealing with
this class of attacks on RSA keys. They introduce a key-recovery algorithm,
which relies on Hansel lifting and exploit the redundancy found in the pop-
ular RSA secret key in-memory format. The authors of [5] and the authors
of [6] improve the previous work, and both papers exploit the mathematical
structure on which RSA relies. Furthermore, the research paper [6] further
concentrates on the error channel’s asymmetric nature, which is intrinsically
connected to the cold boot setting, analyzing the key-recovery problem from
an information-theoretic perspective.

2.3.2 Discrete logarithm setting

The authors of [7] were the first to look into this attack in the discrete logarithm
setting. This work pays particular attention to recovering the secret key x
given the public key gx, where g is a field element and x is a positive integer.
Their model assumes the attacker has access to the public key gx and the
noisy version of the private key x, as well as knowledge of an upper bound
on the number of errors found in the noisy version of the secret key. Since
their algorithm assumes knowing such an upper bound (hardly achievable) and
exploits small redundancy in the secret-key format, it does not perform well
in recovering keys if these keys are susceptible to considerable levels of noise.

6 On recovering block cipher secret keys in the cold boot attack setting

A follow-up work by Poettering and Sibborn [8] also explores this attack
in the discrete logarithm setting, more concretely in the elliptic curve cryp-
tography (ECC) setting. Their work is practical since it centers on two
implementations for elliptic curve cryptography. In particular, this work
exploits redundancy present in two secret key in-memory formats from two
popular ECC implementations from Transport Layer Security (TLS) libraries.
They develop a dedicated key-recovery algorithm in the bit-flipping model for
each studied memory representation, showing better results than the preceding
work.

2.3.3 Symmetric key setting

Regarding the feasibility of cold boot attacks against symmetric-key primitives,
several papers have already explored this class of attacks against some promi-
nent block ciphers. At first, the paper by Albrecht and Cid [9] concentrates on
the recovery of symmetric encryption keys by employing polynomial system
solvers. Particularly, they use integer programming techniques and apply them
to the key-recovery of Serpent block cipher’s secret keys, and also introduce
a dedicated key-recovery algorithm to Twofish secret keys. Furthermore, the
paper by Kamal and Youssef [10] introduces key-recovery algorithms based on
SAT-solving techniques to tackle the same problem. We refer the interested
reader to [9–11] for more details.

2.3.4 Post-quantum setting

Regarding the feasibility of performing this attack against post-quantum
crypto-systems, several research papers have already carried out cold boot
attacks on post-quantum schemes. At first, the work by the authors of [12]
explores this attack against NTRU. Their work focuses on two existing NTRU
implementations, the ntru-crypto implementation and the tbuktu/Bouncy
Castle Java implementation. For each in-memory format analyzed in the
paper, a dedicated key-recovery algorithm is presented and tested in the
bit-flipping model. One of their key-recovery algorithms may recover the pri-
vate key for a small and fixed α and varying β ranging from 1% up to
9%. A follow-up work by Villanueva-Polanco [13] expands on the previous
results and presents a general key-recovery strategy via key enumeration,
which is successfully applied to recover BLISS private keys. Another paper
by Villanueva-Polanco [14] adjusts the previous key recovery strategy to suc-
cessfully key-recovery LUOV private keys, exploiting the fact that a LUOV
private key is derived from a 256 bit string. Additionally, these ideas are
applied to tackle the key-recovery problem for toy parameters of Rainbow
and McEliece Public-Key Encryption [15]. Another recent paper [16] extends
these ideas to successfully key-recovery Supersingular Isogeny Key Encapsula-
tion (SIKE) Mechanism private keys. Furthermore, the authors of [17] explore
cold boot attacks on post-quantum cryptographic schemes based on the ring-
and module- variants of the Learning with Errors (LWE) problem. Their work
concentrates on Kyber key encapsulation mechanism (KEM) and New Hope

On recovering block cipher secret keys in the cold boot attack setting 7

KEM, for which they present dedicated key recovery algorithms to tackle both
cases in the bit-flipping model.

2.4 Quantum Background
Quantum registers are qubit strings whose length determines the amount of
information that they can store. In superposition, each qubit in the register is
in a superposition of |0〉 and |1〉, and consequently, a register of n qubits is in
a superposition of all 2n possible bit strings represented by n “classical” bits.

As with single qubits, the squared absolute value of the amplitude associ-
ated with a given bit string is the probability of observing that bit string upon
collapsing the register to a classical state.

2.4.1 Quantum gates

In classical computing, binary values, as stored in a register, pass through
logic gates that, given a certain binary input, produce a certain binary out-
put. Mathematically, classical logic gates are described as boolean functions.
Quantum logic gates present a certain similarity with classical gates. When a
quantum logic gate is applied to quantum registers it maps the current state
to another state, transforming the state until it reaches a final state, i.e., the
measured state.

There are several quantum gates each one with a specific function. In this
work, we will use, 1qClifford, CNOT and Toffoli gate. For more details about
gates and quantum computing see [18].

Remark 1 Since the quantum operations are inherently reversible, we can use unitary
matrices to represent those operations. Moreover, for a computation to be reversible
the output of the computation contains sufficient information to reconstruct the
input, i.e. no input information is erased. Unless, one needs to measure the state,
the collapse of the state, i.e., the measurement is the only non-unitary operation in
quantum computing.

3 A framework to key recovery
According to the results by Villanueva-Polanco [19], the key-recovery problem
in the cold boot attack setting can be coped with through key-enumeration
techniques. We now present the key idea from that paper.

Let us assume that k̃ = k̃0k̃1k̃2 · · · k̃W−1 represent the noisy bit-string of
a key of bit-length W obtained via a cold boot attack. This bit string can be
written as a sequence of N = W/w chunks, where each chunk is of length w
bits, i.e. k̃ = K̃

0
K̃

1
K̃

2 · · · K̃W/w−1
with K̃

i
= k̃i·wk̃i·w+1 . . . k̃(i+1)·w−1.

Let us assume we can generate full key candidates c for the original secret
key encoding. Based on Bayes’s theorem, the probability of c to be the correct
full key candidate given the noisy version k̃ is given by P(c|k̃) = P(k̃|c)P(c)

P(k̃)
.

8 On recovering block cipher secret keys in the cold boot attack setting

Thus the maximum likelihood estimation method suggests choosing c to max-
imise P(c|k̃). Note that both P(k̃) and P(c) are constants. Thus maximising
it is equivalent to maximise P(k̃|c) = (1−α)n00αn01βn10(1− β)n11 , where n00

counts the positions in which both c and k̃ contain a 0 bit, n01 counts the posi-
tions in which c contains a 0 bit and k̃ contains a 1 bit, etc. Or equivalently,
choosing c such that maximises log

(
P(k̃|c)

)
. Therefore each candidate can be

assigned a score, viz. S(c, k̃) := log
(
P(k̃|c)

)
.

Let us assume that the full key candidates c are written as a sequence of
chunks as for k̃, i.e. c = C0C1 . . . CN−1, where Ci is a w bit-string, then we may
also assign a score S(Ci, K̃

i
) to each of the at most 2w values for a chunk can-

didate Ci. Since S(c, k̃) =
∑N−1

i=0 S(Ci, K̃
i
), then we can build N lists of chunk

candidates, where each contains up to 2w entries. More concretely, each list
contains at most 2w 2-tuples of the form (score, value), where the first com-
ponent score is a real number (candidate score) and the second component
value is a w-bit strings (candidate value). Now note that the original key-
recovery problem reduces to a enumeration problem that consists in traversing
the lists of chunk candidates to produce full key candidates c of which total
scores are obtained by summation. The enumeration problem has been pre-
viously studied in the side-channel analysis literature [19–34], and there are
many algorithms that may be useful for our key-recovery setting, in particular
those enumerating full key candidates in descending order based on the score
component.

After acquiring the lists of chunk candidates, one can run them into a
“search” algorithm to find the correct key. The search can be performed by
a classical or a classical-and-quantum search. In the latter, it is possible to
use Grover’s algorithm. However, as we will see in Section 4.2, the algorithm
requires an oracle, and the oracle needs a quantum circuit of the underlying
block cipher. In this regard, the attack becomes narrower in the direction of a
specific implementation.

4 Recovering secret keys via a cold boot attack
In this section, we present our hybrid key-recovery method. We first will
describe Grover’s algorithm and how an attacker can use it to key-search for
a block cipher and then present our key-recovery method, its general running
time and costs in terms of resources.

4.1 Grover’s algorithm
Grover’s algorithm [35] is one of the most popular quantum algorithms among
cryptographers. This algorithm provides a quadratic speedup for searching an
element such as a key in a keyspace. In the following, we define the search
problem:

On recovering block cipher secret keys in the cold boot attack setting 9

Definition 1 For N = 2n, we are given a function f : {0, 1}N → {0, 1} which
assumes the value 0 for almost all entries. The goal is to find an x such that f(x) = 1.

In the classical setting, one needs to perform Θ(N) queries for finding x, the
number of queries varies with the randomness in the search. In the quantum
setting, that is, using Grover’s algorithm, one needs to perform O(

√
N) queries.

Algorithm 1 gives a high level abstraction of Grover’s algorithm.

Algorithm 1 Grover’s algorithm on a list with n elements (on a high level).
Grover(f, x):

Start with |φ0〉 = |0n〉
Apply H⊗n

Repeat
√

2n times
Phase inversion: Uf

(
I⊗H

)
Inversion about the mean: −I + 2X̄ . For more details about inversion about the

mean see [36].
return x = |φ〉 with f(x) = 1.

EndGrover

4.1.1 Key search for a block cipher

Grover’s algorithm can be used for searching a key in a key space. However,
first the attacker needs to define the Boolean function f which Grover’s oracle
will use it. So, a general definition can be found in [37] and it is as follows:

Definition 2 Let E = (E, D) be a block cipher defined over (K,X), where K =
{0, 1}W and X = {0, 1}n. We denote by Ek(m) ∈ {0, 1}n the encryption of message
block m ∈ {0, 1}n under key k. Given np plaintext-ciphertext pairs (mi, ci) with
ci = Ek(mi). The goal is to apply Grover’s algorithm to find the unknown key k by
defining the function f as

f(k) =

{
1 if Ek(mi) = ci for all 1 ≤ i ≤ np,
0 otherwise.

4.2 Our key-recovery algorithm
Throughout this section, we present a key-recovery method that combines key
enumeration algorithms and Grover’s algorithm. The first version of this set
of algorithms is introduced in [38] in the context of side-channel attacks and
recently has been adjusted to be used in the cold boot attack setting on the
Supersingular Isogeny Key Encapsulation (SIKE) Mechanism [16].

Here we adapt it for recovering a block cipher secret key sk from its noisy
version procured via a cold boot attack. Let us assume that a cold boot attacker
has access to a noisy version k̃ of a secret key sk ∈ K and a pair (m, c) ∈ X ×X
such that Esk(m) = c, and has estimated the values of α and β, as is suggested
by preceding works on cold boot attacks [1–3] via comparing original content
with its corresponding noisy version. The attacker’s goal is to recover sk.

10 On recovering block cipher secret keys in the cold boot attack setting

Recall that from our discussion in section 3, we can assign scores to each
chunk candidate for a chunk by using the function S. LetW be the length of k̃
in bits, w be the length of a chunk in bits with w dividing W , η be an positive
integer dividing N = W/w and let µ be a positive integer. Algorithm 2 creates
lists of chunk candidates on inputs k̃,W,w, η, µ. The function toWeight on
input s returns a weight (a positive integer), as suggested in [38]. Algorithm
2 makes use of a optimal key enumeration algorithm (OKEA) [19] to get the µ
most high-scoring chunk candidates for the block of chunks from i · η through
i · η+ η− 1, for i = 0, 1, . . . ,N/η− 1. We remark that the function OKEA.init
initializes a tree-like structure from the given lists. This data structured is
used by the function OKEA.getNext() to return the next high-scoring chunk
candidate that can be constructed from the given lists.

Algorithm 2 creates the lists of candidates.
1: Function generateCandidates(k̃,W,w, η, µ)
2: N ← W/w;
3: Γ← []
4: for i← 0 to N − 1 do
5: Π← [];
6: //Extract bits from i · w to (i+ 1) · w − 1 from k̃
7: K̃i ← extract(k̃, i · w, (i+ 1) · w − 1);
8: for c ∈ {0, 1}w do
9: s← toWeight(S(c, K̃i);

10: Π.append((s, c));
11: end for
12: sort(Π); //decreasing order per score.
13: Γ.append(Π)
14: end for
15: L = [];
16: ξ ← N/η;
17: for i← 0 to ξ − 1 do
18: OKEA.init(Γ[i · η],Γ[i · η + 1], . . . ,Γ[i · η + η − 1]);
19: Π = [];
20: for j ← 0 to µ− 1 do
21: // s is the total score of c.
22: // c is a bitstring of η · w bits
23: (s, c)← OKEA.getNext();
24: Π.append((s, c));
25: end for
26: L.append(Π);
27: end for
28: return L;
29: end Function

Given the weights B1, B2, Algorithm 3 constructs a two dimensional array
B with ξ ×B2 entries. For i = ξ − 1 and 0 ≤ b < B2, the entry B[i][b] contains
the number of chunk candidates such that their total score plus b lies in the
interval [B1, B2). Therefore, B[i][b] is given by the number of chunk candidates
L[i][j] , 0 ≤ j < µ , such that B1 − b ≤ L[i][j].score < B2 − b.

On the other hand, for i = ξ − 2, ξ − 3, . . . , 0, and 0 ≤ b < B2, the entry
B[i][b] contains the number of chunk candidates that can be constructed from
the chunk i to the chunk ξ − 1 such that their total score plus b lies in the
interval [B1, B2). Therefore, B[i][b] may be calculated as follows. For 0 ≤ j < µ

On recovering block cipher secret keys in the cold boot attack setting 11

, B[i][b] = B[i][b] + B[i+ 1][b+L[i][j].score] if b+L[i][j].score < B2. Note that,
by construction, B[0][0] is the total number of full key candidates with weights
in the interval [B1, B2).

Algorithm 3 constructs the two dimensional array B.
1: Function create(L, B1, B2,W,w, µ)
2: N ← W/w;
3: ξ ← N/η;
4: i← ξ − 1;
5: B← [[0] ∗ B2] ∗ ξ;
6: for b← 0 to B2 − 1 do
7: for j ← 0 to µ− 1 do
8: s← L[i][j].score;
9: if B1 − b ≤ s < B2 − b then

10: B[i][b]← B[i][b] + 1;
11: end if
12: end for
13: end for
14: for i← ξ − 2 to 0 do
15: for b← 0 to B2 − 1 do
16: for j ← 0 to µ− 1 do
17: s← L[i][j].score;
18: if b+ s < B2 then
19: B[i, b]← B[i][b] + B[i+ 1][b+ s];
20: end if
21: end for
22: end for
23: end for
24: return B;
25: end Function

Algorithm 4 simply constructs the matrix B by calling create and then
computes the total number of full key candidates with weights in [B1, B2) by
returning B[0][0].

Algorithm 4 computes the number of full key candidates in [B1, B2).
1: Function rank(L, B1, B2,W,w, η, µ)
2: B← create(L, B1, B2,W,w, η, µ);
3: return B[0, 0]
4: end Function

We now present Algorithm 5. This algorithm returns the full key candi-
date kr with weight in the interval [B1, B2), with r ∈ {1, 2, 3 . . . , B[0][0]}. By
construction the output of Algorithm 5 is deterministic in the sense that for
given fixed values of L, B, B1, B2,W,w, η, µ and r, Algorithm 5 will return the
same key kr.

Indeed, let us assume that L, B, B1, B2,W,w, η, µ and r are inputs to Algo-
rithm 5. We first analyse the lines from 7 to 19 of Algorithm 5. Let us fix
i ∈ {0, . . . , ξ − 2}. For j ∈ {0, . . . , µ − 1}, the condition of the line 12 verifies
whether r is less than the number of chunk candidates that can be constructed
from the chunk i+1 to the chunk ξ−1 such that their total score plus b+s lies
in the interval [B1, B2). If so, the algorithm finds the proper j for the fixed i,

12 On recovering block cipher secret keys in the cold boot attack setting

then concatenate the chunk candidate L[i][j].candidate to kr and updates b as
b← b+s. Otherwise r is updated as r ← r−B[i+1][b+s]. Similarly, the block
of instructions from the line 20 to the line 29 finds the proper j for i = ξ − 1.
Note that the selection of j’s are determined by the input parameters. Hence,
for given fixed values of L, B, B1, B2,W,w, η, µ and r, Algorithm 5 will return
the same key kr.

Algorithm 5 returns the full key candidate kr with weight in the interval
[B1, B2).

1: Function GETKEY(L, B, B1, B2,W,w, , η, µ, r)
2: N ← W/w
3: ξ ← N/η
4: if r > B[0][0] then
5: return ⊥
6: end if
7: kr ← ε; //empty string
8: b← 0;
9: for i← 0 to ξ − 2 do

10: for j ← 0 to µ− 1 do
11: s← L[i][j].score
12: if r ≤ B[i+ 1][b+ s] then
13: kr ← kr ‖ L[i][j].candidate;
14: b← b+ s;
15: break j;
16: end if
17: r ← r − B[i+ 1][b+ s];
18: end for
19: end for
20: i← ξ − 1;
21: for j ← 0 to µ− 1 do
22: s← L[i][j].score
23: x← (B1 − b ≤ s < B2 − b)?1 : 0;
24: if r ≤ x then
25: kr ← kr ‖ L[i][j].candidate;
26: break j;
27: end if
28: r ← r − x;
29: end for
30: return kr
31: end Function

For completeness, we present Algorithm 6 that enumerates and tests all full
key candidates with weight in the interval [B1, B2) in a classic way (without
a quantum algorithm). The function T is a boolean function that returns 1 if
kr satisfies some specific condition. Otherwise, it returns 0. More specifically,
the function T tests if kr is the correct key.

We now present Algorithm 7 that performs a quantum key enumeration
over an interval with roughly e full key candidates. In particular, it searches
over an interval of the form [Bmin, Be), where Bmin is the minimum weight
that a full candidate can attain given the list L and Be is a calculated weight to
guarantee the number of full candidates with weights in the interval [Bmin, Be)
will be roughly e. Recall that L contains ξ = N/η lists of chunk candidates.
Therefore we can calculate the value Bmin by summing the score of the first
chunk candidate of each list contained in L.

On recovering block cipher secret keys in the cold boot attack setting 13

Algorithm 6 enumerates and tests all full key candidates with weight in the
interval [B1, B2).

1: Function keySearch(k̃, B1, B2,W,w, η, µ)
2: L← generateCandidates(k̃,W,w, η, µ);
3: B← create(L, B1, B2,W,w, η, µ);
4: r ← 1;
5: while True do
6: k← GETKEY(L, B, B1, B2,W,w, η, µ, r);
7: if k = ⊥ then
8: break;
9: end if

10: if T(k) = 1 then
11: break;
12: end if
13: r ← r + 1;
14: end while
15: return K;
16: end Function

We recall that Algorithm 7 is “generic”, that is, it uses Grover’s algorithm
in line 11 to speed up the search on a small set of keys. The advantage of this
approach is that one can attack a more broad spectrum of symmetric ciphers.

Algorithm 7 performs a quantum key enumeration over a interval with
roughly e full key candidates.
1: Function QKS(k̃, e,W,w, η, µ)
2: L← generateCandidates(k̃,W,w, η, µ);
3: Bmin ← getMinimunScore(L)
4: B1 ← Bmin;
5: B2 ← Bmin + 1;
6: s← 0;
7: Find Be s.t. rank(L, B1, Be,W,w, η, µ) ≈ e;
8: while B1 ≤ Be do
9: B← create(L, B1, B2,W,w, η, µ);

10: f(·)← T(GETKEY(L, B, B1, B2,W,w, η, µ, ·));
11: Call Grover’s algorithm with f
12: if a marked element r is found then
13: return GETKEY(L, B, B1, B2,W,w, η, µ, r);
14: end if
15: s← s+ 1;
16: B1 ← B2;
17: Find B2 s.t. rank(L, B1, B2,W,w, η, µ) ≈ 2s

18: end while
19: return ⊥;
20: end Function

4.2.1 Quantum circuit for f

The quantum circuit for f (Line 10 of Algorithm 7) can be seen as the oracle
implementation of E. In particular, given a plain-text/cipher-text pair (m, c),
T is defined as

T(k) =

{
1 if Ek(m) = c
0 otherwise.

14 On recovering block cipher secret keys in the cold boot attack setting

where k = GETKEY(L, B, B1, B2,W,w, η, µ, r) and r ∈ {1, 2, 3 . . . , B[0][0]}. That
is, Grover’s algorithm is run to search a key in the space K1 generated by
GETKEY for fixed values of L, B, B1, B2,W,w, η, µ and r ∈ {1, 2, 3 . . . , B[0][0]}. In
this regard, each attempt for running Grover’s algorithm with oracle f will cost
O(
√
B[0][0] ≈ 2s/2), where s = 0, 1, 2, . . . , (for more details, see Appendix A).

In a practical example, let us suppose that Algorithm 7 at line 9 generates
a matrix B such that B[0][0] = 2s, where s = 16. Therefore, 216 candidates
need to be tested. At line 11, Grover’s algorithm is run with an oracle f, which
can be constructed from the result by [37], to check if it can find the correct
answer. Given we have an unique result, we will need to run this algorithm
O(
√

216 = 28) times, until we have reached our correct solution or not.
As pointed out, a critical component of our algorithm is the quantum oracle,

so we will next present how to implement the quantum oracle for several block
ciphers, namely, AES, PRESENT, and GIFT. Afterward, in Section 5, we fur-
ther evaluate our algorithm for LowMC, in particular in the context of Picnic,
the post-quantum signature algorithm assessed by the NIST standardization
process.

4.2.2 Quantum AES

As previously mentioned, quantum computations need to be reversible. Also,
the oracle O present in Grover’s algorithm implements the block cipher as a
reversible function. In [39], the authors give the first version of a reversible
AES. Their seminal work generate other implementations in the literature such
as [37, 40–43].

AES is a block cipher, designed by Daemen and Rijmen [44]. It is based on
Rijndael but only provides 128-bit blocks. AES has different transformations
operating on an intermediate result that is called State. The state can be seen
as an array of bytes, with four rows and four columns. The number of rounds
Nr depends on the size of the key, e.g., AES-128 performs 10 rounds, AES-192
performs 12 rounds and AES-256 performs 14 rounds.

In the encryption process with AES, one needs first to perform key addi-
tion, denoted by AddRoundKey, followed by Nr − 1 executions of Round,
and finally one application of FinalRound. The Round function is the appli-
cation of 4 transformations which are SubBytes, ShiftRows, MixColumns
and AddRoundKey. The FinalRound consists of the application of SubBytes,
ShiftRows and AddRoundKey. Algorithm 8 shows, in a pseudo C language, how
those rounds are put together. One advantage of AES is that one just needs to
implement the transformation functions and then reuse them in the rounds.

In the latest literature, we can see an improvement in the quantum circuit
developed to AES. In our case, we will consider the implementation in [37]
since it gives the lowest depth. We consider the “in-place” setting, more details
in [37, Sec. 4.6]. Table 1 gives the number of gates necessary to run AES in
Grover’s algorithm.

On recovering block cipher secret keys in the cold boot attack setting 15

Algorithm 8 High level description of AES.

Function AES(State, CipherKey)
KeyExpansion(CipherKey, ExpandedKey);
AddRoundKey(State, ExpandedKey[0]);
for (i← 1, i < Nr, i← i+ 1) do

Round(State, ExpandedKey[i]);
end for
FinalRound(State, ExpandedKey[Nr]);

end Function

Table 1: Number of quantum gates for the full encryption circuit for AES
presented in [37, Sec. 4.6].

AES CNOT 1qCliff T

AES-128 291 150 83 116 54 400
AES-192 328 612 93 160 60 928
AES-256 402 878 114 778 75 072

4.2.3 Quantum PRESENT & Quantum GIFT

PRESENT [45] and GIFT [46] follow the block cipher construction, that is,
both schemes have a certain number of rounds in which they apply an Sbox
transformation followed by a permutation. However, each of them has some
difference. For PRESENT, the first operation is the addition of the round key,
while, for GIFT, the first operation is the Sbox transformation.

PRESENT has block sizes of 64 bits, and GIFT uses 64 and 128 bits blocks.
PRESENT support 80-bit key size, and both of them support 128-bit key size.
More details can be found in the original papers [45, 46].

Fortunately, there are implementations of both of them in the quantum
world, that is, there are reversible implementations using quantum gates. The
work in [47] provides a deeper analysis of the quantum circuit. Table 2 show
the number of gates for PRESENT and GIFT. The authors in [47] give the
estimation using CNOT and Toffoli gates, in order to use in our work we use
the same decomposition as [39] and decompose 1 Toffoli gate as 7 T gates +
8 Clifford gates. We remark that this gives an upper bound on the number of
T gates as we use the generic decomposition; the circuits above could be built
using T-gates directly and possibly use fewer T gates [48].

Generic Implementation and Different ciphers.
We present the costs to implement AES, PRESENT and GIFT into a quan-
tum computer. As mentioned before, our attack is generic, and one can easily
replace the function f(·) in Algorithm 7 by one of those implementations. In
the following, we will focus in LowMC given that it is the one used in Picnic,
which is the scope of this work.

16 On recovering block cipher secret keys in the cold boot attack setting

Table 2: Number of quantum gates for the full encryption circuit for
PRESENT and GIFT presented in [47].

Block cipher CNOT 1qCliff T

PRESENT-64/80 18 892 67 456 59 024
PRESENT-64/128 19 608 71 424 62 496

GIFT-64/128 7 424 57 344 50 176
GIFT-128/128 12 288 98 304 86 016

5 Cold boot attacks on Picnic
In this section, we further evaluate our algorithm for LowMC, in particular in
the context of Picnic, the post-quantum signature algorithm assessed by the
NIST standardization process. We first describe the key-generation algorithm
as it is implemented in [49]. We then describe the inner workings of LowMC
and its Quantum version, and then the costs and success rate of our algorithm
in this context.

5.1 Picnic key generation algorithm
In our analysis, we use the current reference implementation of Picnic [49].
Algorithm 9 summarizes the process of key generation.

Algorithm 9 Picnic’s Key Generation Algorithm
1: Function keygen(P)
2: sk← randBytes(P.stateSizeBytes);
3: zeroTrailBits(sk, P.stateSizeBits);
4: m← randBytes(P.stateSizeBytes);
5: zeroTrailBits(m, P.stateSizeBits);
6: c← LowMCEnc(m, sk, P)
7: pk← (m, c);
8: return sk, pk;
9: end Function

As one can see, the input of the function KeyGen is P, which represents an
instance of a structure to store a parameter set (paramset_t). This structure
points to a relatively big set of fields. In particular, the field stateSizeBytes
refers to the number of bytes needed to store stateSizeBits bits, which is
the bit length of sk, m and c. In particular, Table 3 shows the values of both
stateSizeBits and stateSizeBytes for each Parameter Set for Picnic, as
defined in the Picnic reference implementation file picnic.c [49].

For the sake of completeness, the call to randBytes(size)
returns a random byte array of length size, while the call to
zeroTrailBits(byteArray, bitLength) sets to 0 all bits of byteArray at
position i for all bitLength < i ≤ 8 · l, where l is the number of entries of
byteArray. At line 6, we see a call to LowMCEnc, the LowMC encryption
algorithm, which we will describe next.

On recovering block cipher secret keys in the cold boot attack setting 17

Table 3: Values of both stateSizeBits and stateSizeBytes for each
Parameter Set for Picnic

Parameter Set stateSizeBits stateSizeBytes

picnic-L1-FS 128 16
picnic-L1-UR 128 16
picnic-L1-full 129 17
picnic3-L1 129 17
picnic-L3-FS 192 24
picnic-L3-UR 192 24
picnic-L3-full 192 24
picnic3-L3 192 24
picnic-L5-FS 256 32
picnic-L5-UR 256 32
picnic-L5-full 255 32
picnic3-L5 255 32

5.2 LowMC block cipher
LowMC [50, 51] is a block cipher that tries to reduce the multiplicative com-
plexity of circuits. Different from other block ciphers, the instantiation of
LowMC is not fixed, and it depends on the choice of certain parameters such
as the block size, number of S-Boxes per round, and security expectations.
Besides encryption and decryption, LowMC is also a component of the Picnic
signature scheme.

First, LowMC performs a key-whitening and then iterates a round function
by R times, where R depends on the parameters. The round function consists
of 4 steps and is summarized as follows.

1. SBoxLayer: A 3-bit S-Box is applied to the first 3m bits of the state in
parallel, while an identity map is applied to the remaining bits;

2. MatrixMul: A regular matrix Li ∈ Fn×n2 is generated at random and the
n-bit state is multiplied by Li;

3. ConstantAddition: An n-bit constant Ci ∈ Fn2 is randomly generated and
then compute the addition of n-bit state and Ci;

4. KeyAddition: A full-rank matrix Mi+1 ∈ Fn×k2 is randomly generated. The
n-bit round key Ki+1 is obtained by multiplying the k-bit master key with
Mi+1. Then, the n-bit state is added withKi+1, where addition means XOR
operation.

To use LowMC in Picnic, the authors in [49] defined three levels: L1, L3,
L5. For details about the construction given the parameters, we refer to the
documentation in [49].

5.2.1 Quantum LowMC

In this context, we will need a quantum version of LowMC. Fortunately, [37]
presents a quantum version of LowMC with low depth in their circuit. Fur-
thermore, the authors provide a Q# implementation of the LowMC. We will

18 On recovering block cipher secret keys in the cold boot attack setting

Fig. 1: Quantum circuit for computation of one S-Box from LowMC. The
figure is directly from [37].

reuse their results since it deals with the problems of building quantum cir-
cuits. Table 4 shows the number of quantum gates necessary for applying the
LowMC encryption. The levels L1, L3, and L5 are the security levels required
by Picnic scheme.

Table 4: Number of quantum gates for the full encryption circuit for LowMC
presented in [37, Sec. 5.4].

LowMC Level CNOT 1qCliff T

L1 689 944 4 932 8 400
L3 2 271 870 9 398 12 600
L5 5 070 324 14 274 15 960

Figure 1 shows the implementation of one S-Box, it is possible to notice
that it requires 3 ancillas for storing intermediate results and it requires 12
CNOT gates and 3 Toffoli gates. In the Picnic specification it defines that a
full S-boxLayer consists of 10 parallel S-Boxes.

The AffineLayer since it is an affine transformation, it consists of a matrix
multiplication following by an addition of a constant vector. The details can be
seen in [37, Sec. 5.2]. The last function to describe, that is, the KeyExpansion
and KeyAddition are only CNOT gates in parallel to perform the addition.

5.3 Costs for running our key recovery algorithm
The costs in terms of gates for running LowMC are similar to those provided
in [37]. The only difference for our case is that we will search in a smaller
keyspace, that is, the candidates that Algorithm 7 generates in line 9. Table 5
shows the costs for running Grover’s algorithm with the oracle provided in [37].

On recovering block cipher secret keys in the cold boot attack setting 19

Furthermore, we select 3 different sizes of windows for the interval [Bmin, Be),
namely e ∈ {230, 240, 250} full candidates.

Table 5: Total number of gates for running Grover’s algorithm against
LowMC.

Value of e Level CNOT 1qCliff T

30
L1 1.78× 1010 1.1× 108 2.16× 108

L3 5.85× 1010 2.42× 108 3.24× 108

L5 1.3× 1011 3.67× 108 4.11× 108

40
L1 5.68× 1011 3.24× 109 6.9× 109

L3 1.87× 1012 7.74× 109 1.04× 1010

L5 4.18× 1012 1.18× 1010 1.31× 1010

50
L1 1.82× 1013 1.04× 1011 2.21× 1011

L3 5.99× 1013 2.48× 1011 3.32× 1011

L5 1.34× 1014 3.76× 1011 4.21× 1011

In our analysis, we need to consider the costs to run O(N) times, since
the costs provided in [37] are only for 1 query. In our case, our costs are
O(N)×#CNOT , O(N)×#1qCliff , O(N)×#T , for CNOT, 1qCliff and T
gates respectively, where O(N) is taken as π

4

√
2e.

Remark 2 It is possible to run our algorithm in parallel or reuse the cir-
cuit. Since we fix the size of window, one can pre-compute the sub-intervals
[B0, B1), [B1, B2), . . . , [Bj , Be), where each has size 2s, for s = 0, 1, One can
reuse the circuit to run each chunk in sequence or run several instances of Grover’s
algorithm each one with their chunk of keys.

Remark 3 Our Algorithm 7 is a “hybrid” algorithm. In our case, we are considering
that everything before the Grover’s call is “classical” computation. The same after
the call, that is, when we check if the element is found. Hence, we do not need to
take into account the costs of the other functions in a quantum computer besides the
one in line 11. We refer the reader to Appendix A for more details on the running
time of our algorithms.

5.4 Success rate of our key recovery algorithm
In this section, we present the success rate of our key-recovery algorithm for
each set of parameters defined for Picnic in [49]. The success rates are estimated

20 On recovering block cipher secret keys in the cold boot attack setting

by performing simulations of our key recovery algorithm for several selected
hyper-parameters.

(a) µ = 256 (b) µ = 512

(c) µ = 1024
(d) Full Enumeration for µ ∈
{256, 512, 1024}

Fig. 2: Success rate of our key recovery algorithm with W = 128, w =
8, η = 2, α = 0.001 and β ∈ {0.001, 0.01, 0.02, . . . , 0.4} for Picnic parameters
picnic-{L1-FS, L1-UR, L1-full} and picnic3-L1. The x-axis represents β,
while y-axis represents the success rate.

We note that our key-recovery method might find sk from k̃, only if each list
from the list L returned by Algorithm 2 contains the proper chunk candidates to
reconstruct sk. In such a case, a full enumeration of all candidates constructed
from the lists of chunk candidates contained in L will find the real private key.

Based on the previous observation, we estimate the success rate of our key-
recovery method by assuming the attacker can perform various enumerations
from the set of candidates, C, that can be constructed from L. In particular,
we assume an attacker is able to enumerate (1) all candidates from C, and (2)
the e best high-scoring candidates from C, where e ∈ {230, 240, 250} (this is
basically what Algorithm 7 does for a given e).

To calculate the success rate of our algorithm for a given α, β and a Pic-
nic parameter set P, we perform the following experiment that consists of
100 trials. In each trial, we first create the key pair sk, pk via calling the
key generation algorithm from Picnic, as implemented in the Picnic reference
implementation [49]. We then perturb sk according to α, β to get k̃. We then
select appropriate values for W,w, η, µ, and generate L via calling Algorithm 2

On recovering block cipher secret keys in the cold boot attack setting 21

(a) µ = 256 (b) µ = 512

(c) µ = 1024
(d) Full Enumeration for µ ∈
{256, 512, 1024}

Fig. 3: Success rate of our key recovery algorithm with W = 192, w =
8, η = 3, α = 0.001 and β ∈ {0.001, 0.01, 0.02, . . . , 0.4} for Picnic parameters
picnic-{L3-FS, L3-UR, L3-full} and picnic3-L3. The x-axis represents β,
while y-axis represents the success rate.

and check if the real key can be reconstructed from L, i.e., by verifying if the
corresponding chunk candidates are in the lists of chunk candidates contained
in L. If so, that signifies that a full enumeration can recover sk. Otherwise, sk
cannot be recovered. Additionally, in case sk can be recovered by a full enu-
meration, we then calculate three intervals of the form [Bmin, Be) for each e,
as in Algorithm 7, to check if the score of the real private key lies in each of
them. Note that this check verifies if performing an enumeration of the e best
high-scoring candidates is enough to recover the real private key.

Figure 2 shows the results for the Picnic parameters picnic-{L1-FS,
L1-UR, L1-full} and picnic3-L1. In particular, it shows that our key recov-
ery algorithm may find the real private key for α = 0.001 and β in the set
{0.001, 0.01, 0.02, . . . , 0.4} when run with the parameters W = 128, w = 8, η =
2 and µ ∈ {256, 512, 1024}. Note that the success rate improves as the value
of e increases, which is expected. Similarly, Figure 2d shows the success rate
for the full enumeration improves as the the value of µ increases, which is also
expected. Additionally, our experiments confirm that although the bit length
of the private key for the parameters sets picnic-L1-full and picnic3-L1
is 129 bits, the success rate of our algorithm for these two parameter sets is
essentially the same as shown by Figure 2.

22 On recovering block cipher secret keys in the cold boot attack setting

(a) µ = 256 (b) µ = 512

(c) µ = 1024
(d) Full Enumeration for µ ∈
{256, 512, 1024}

Fig. 4: Success rate of our key recovery algorithm with W = 256, w =
8, η = 4, α = 0.001 and β ∈ {0.001, 0.01, 0.02, . . . , 0.4} for Picnic parameters
picnic-{L5-FS, L5-UR, L5-full} and picnic3-L5. The x-axis represents β,
while y-axis represents the success rate.

Figure 3 shows the results for the Picnic parameters picnic-{L3-FS,
L3-UR, L3-full} and picnic3-L3. In particular, it shows that our key recov-
ery algorithm may find the real private key for α = 0.001 and β in the set
{0.001, 0.01, 0.02, . . . , 0.3} when run with the parameters W = 192, w = 8, η =
3 and µ ∈ {256, 512, 1024}. As mentioned before, the success rate improves
as the value of e increases, which is expected. Similarly, Figure 3d shows the
success rate for the full enumeration improves as the the value of µ increases,
which is also expected.

Figure 4 shows the results for the Picnic parameters picnic-{L5-FS,
L5-UR, L5, L5-full} and picnic3-L5. In particular, it shows that our key
recovery algorithm may find the real private key for α = 0.001 and β in the set
{0.001, 0.01, 0.02, . . . , 0.2} when run with the parameters W = 256, w = 8, η =
4 and µ ∈ {256, 512, 1024}. As mentioned before, the success rate improves
as the value of e increases, which is expected. Similarly, Figure 4d shows the
success rate for the full enumeration improves as the the value of µ increases,
which is also expected. Additionally, our experiments confirm that although
the bit length of the private key for the parameters sets picnic-L5-full
and picnic3-L5 is 255 bits, the success rate of our algorithm for these two
parameter sets is essentially the same as shown by Figure 4.

On recovering block cipher secret keys in the cold boot attack setting 23

6 Conclusions
This paper presented a general procedure by which a cold boot attacker may
recover a block cipher secret key after procuring a noisy version of the key
via a cold boot attack. More specifically, the procedure exploits key enu-
meration algorithms and a well-known quantum algorithm, namely, Grover’s
Algorithm. Also, we showed how to implement the quantum component of our
algorithm for several block ciphers such as AES, PRESENT and GIFT, and
LowMC. This paper also evaluated Picnic, a post-quantum signature algo-
rithm, in the cold boot attack setting, focusing on its reference implementation.
We showed that our key-recovery method effectively reconstructs Picnic pri-
vate keys for all Picnic parameters for α = 0.001 and values of β in the set
{0.001, 0.01, 0.02, . . . , 0.4} (the upper bound for β depends on the used param-
eter set). Additionally, we provided the costs for running our key recovery
algorithm by giving the number of quantum gates required to implement it and
its running time. As future work, we believe that our key-recovery algorithm
may be adapted to tackle key-recovery of other post-quantum algorithms’
private keys in the cold boot attack setting.

Acknowledgment
Author list in alphabetical order; see https://www.ams.org/profession/
leaders/culture/CultureStatement04.pdf. This work was carried out while the
Gustavo Banegas was at INRIA as a post-doc. This work was funded in part by
the European Commission through H2020 SPARTA, https://www.sparta.eu/.

Appendix A Running Time Analysis
In this appendix, we are giving details of the algorithms’ running time
complexities.

Algorithm 2
Let us give a more detailed description of Algorithm 2’s running time. It runs
in time T2, and it depends on the following inputs k̃,W,w, η, µ. This running
time is given by T2 = T2,14 + T15,28, where

1. The cost from the line 2 to the line 14, T2,14 = C2,0 + W
w · (Textract + 2w ·

(TtoWeight+Tappend)+Tsort+Tappend), where C2,0 is a constant, Textract is
the cost of extract, TtoWeight is the cost of toWeight, Tappend is the cost
of append and Tsort is the cost of sort.

2. The cost from the line 15 to the line 28, T15,28 = C2,1 + W
ηw · (Tinit + µ ·

(TgetNext + Tappend) + Tappend + C2,2), where C2,1, C2,2 are constants, and
Tinit and TgetNext are the costs of init and getNext respectively.

Algorithm 3
Let us analyse Algorithm 3’s running time T3 on input L, B1, B2,W,w, µ.

https://www.ams.org/profession/leaders/culture/ CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/ CultureStatement04.pdf

24 On recovering block cipher secret keys in the cold boot attack setting

1. The cost from the line 2 to the line 5 is bounded by a constant C3,0.
2. The cost from the line 6 to the line 13 is B2 ·µ ·C3,1, where C3,1 is an upper

bound on the cost from the line 8 to the line 11.
3. The cost from the line 14 to the line 23 is (Wηw − 1) ·B2 ·µ ·C3,2, where C3,2

is an upper bound on the cost from the line 17 to the line 20.

Therefore, the cost of Algorithm 3 is

T3 = C3,0 +B2 · µ · C3,1 + (
W

ηw
− 1) ·B2 · µ · C3,2

.

Algorithm 4
Let us analyse Algorithm 4’s running time T4. Note that T4 = T3 +C4,0, with
C4,0 being a constant.

Algorithm 5
Let us now analyse Algorithm 5’s running time, T5, on input
L, B, B1, B2,W,w, , η, µ, r.

1. The cost from the line 2 to the line 8 is a constant, say, C5,0.
2. The cost from the line 9 to the line 19 is (Wηw − 1) · µ · Cr5,1, where Cr5,1 is

an upper bound on the cost from the line 11 to the line 17.
3. The cost from the line 21 to the line 29 is µ · Cr5,2, where Cr5,2 is an upper

bound on the cost from the line 22 to the line 27.

Therefore, the cost of Algorithm 5 is

T5 = C5,0 + (
W

ηw
− 1) · µ · Cr5,1 + µ · Cr5,2

.

Algorithm 6
Let us analyse Algorithm 6’s running time T6 on input k̃, B1, B2,W,w, η, µ.
Note that

T6 = T2 + T3 + B[0][0](T5 + C6,0).

Algorithm 6’s running time is linear in B[0][0], the number of full key
candidates in the interval [B1, B2).

Algorithm 7

We remark that there are µ
W
wη full key candidates that may be constructed

from L returned by Algorithm 2. So e (parameter of Algorithm 7) should satisfy
that e ≤ µ

W
wη .

On recovering block cipher secret keys in the cold boot attack setting 25

Since Algorithm 7’s running time is dominated by its while loop, we only
analyse its while loop. Let us consider the worst case for Algorithm 7, i.e.,
Grover’s algorithm finds the correct key at the last iteration. In such case,
Algorithm 7’s while loop finds B0, B1, B2, B3, . . . , Bk with B0 = Bmin, Bk ≤
Be and k = blog2 ec, and so Grover’s algorithm searches over the following
intervals in sequence [B0, B1), [B1, B2), . . . , [Bk−1, Bk) with |[Bs, Bs+1)| ≈ 2s

for 0 ≤ s < k, finding the correct key in [Bk−1, Bk).
Specifically, at iteration s,

1. At line 9, create is called on input L, Bs, Bs+1,W,w, η, µ. This has a cost
of T s2 , which can be regarded as constant.

2. From the line 10 to the line 11, a Grover’s search is executed. This has
a cost of C7,02s/2T s5 , where C7,0 is a constant and T s5 is the cost of
GETKEY parameterized by L, B, Bs, Bs+1,W,w, η, µ, which can be regarded
as constant.

3. The cost from the line 12 to the line 17 is about C7,1 +C7,2T
s
4 , where C7,1

and C7,2 are constants, and T s4 is an upper bound on the cost of multiple
calls of rank parameterized by L, Bs+1, Bx,W,w, η, µ to find a proper Bx.

Therefore, an iteration of Algorithm 7 costs about T sc + 2s/2T s5 , where
T sc = T s2 +C7,0 +C7,1 +C7,2T

s
4 . Therefore, Algorithm 7’s running time is about∑k−1

s=0 (T sc + 2s/2T s5) = k ·C0 +C1 ·
∑k−1

s=0 2s/2, where C0 and C1 are constants,
and

C1·
k−1∑
s=0

2s/2 ≤ C1·
∫ k−1

0

2s/2ds = C1·
2

ln(2)
(2(k−1)/2−1) ≤ C2(

√
e−1) = O(

√
e)

We remark that if we consider a tweak to Algorithm 7 to let it search over
the whole interval [B0, Be) in just one iteration, then this tweak also runs in
about

√
e · C3 = O(

√
e), with C3 being a constant.

The previous analysis shows that by applying Grover’s algorithm, there is
an advantage of quadratic speed up.

References
[1] Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W.,

Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we
remember: Cold-boot attacks on encryption keys. Commun. ACM 52(5),
91–98 (2009). https://doi.org/10.1145/1506409.1506429

[2] Lindenlauf, S., Höfken, H., Schuba, M.: Cold boot attacks on DDR2 and
DDR3 SDRAM. In: 2015 10th International Conference on Availability,
Reliability and Security, pp. 287–292 (2015). https://doi.org/10.1109/
ARES.2015.28

https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1109/ARES.2015.28
https://doi.org/10.1109/ARES.2015.28

26 On recovering block cipher secret keys in the cold boot attack setting

[3] Won, Y.-S., Park, J.-Y., Han, D.-G., Bhasin, S.: Practical cold boot attack
on IoT device - case study on Raspberry Pi -. In: 2020 IEEE International
Symposium on the Physical and Failure Analysis of Integrated Cir-
cuits (IPFA), pp. 1–4 (2020). https://doi.org/10.1109/IPFA49335.2020.
9260613

[4] Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Ran-
dom Key Bits. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO
2009, pp. 1–17. Springer, Berlin, Heidelberg (2009)

[5] Henecka, W., May, A., Meurer, A.: Correcting Errors in RSA Private
Keys. In: Rabin, T. (ed.) Advances in Cryptology – CRYPTO 2010, pp.
351–369. Springer, Berlin, Heidelberg (2010)

[6] Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A Coding-Theoretic
Approach to Recovering Noisy RSA Keys. In: Wang, X., Sako, K. (eds.)
Advances in Cryptology – ASIACRYPT 2012, pp. 386–403. Springer,
Berlin, Heidelberg (2012)

[7] Lee, H.T., Kim, H., Baek, Y.-J., Cheon, J.H.: Correcting Errors in Private
Keys Obtained from Cold Boot Attacks. In: Kim, H. (ed.) Informa-
tion Security and Cryptology - ICISC 2011, pp. 74–87. Springer, Berlin,
Heidelberg (2012)

[8] Poettering, B., Sibborn, D.L.: Cold Boot Attacks in the Discrete Log-
arithm Setting. In: Nyberg, K. (ed.) Topics in Cryptology — CT-RSA
2015, pp. 449–465. Springer, Cham (2015)

[9] Albrecht, M., Cid, C.: Cold Boot Key Recovery by Solving Polynomial
Systems with Noise. In: Lopez, J., Tsudik, G. (eds.) Applied Cryptography
and Network Security, pp. 57–72. Springer, Berlin, Heidelberg (2011)

[10] Kamal, A.A., Youssef, A.M.: Applications of SAT Solvers to AES Key
Recovery from Decayed Key Schedule Images. In: 2010 Fourth Interna-
tional Conference on Emerging Security Information, Systems and Tech-
nologies, pp. 216–220 (2010). https://doi.org/10.1109/SECURWARE.
2010.42

[11] Huang, Z., Lin, D.: A new method for solving polynomial systems with
noise over F2 and its applications in cold boot key recovery. In: Knudsen,
L.R., Wu, H. (eds.) Selected Areas in Cryptography, pp. 16–33. Springer,
Berlin, Heidelberg (2013)

[12] Paterson, K.G., Villanueva-Polanco, R.: Cold boot attacks on NTRU. In:
Patra, A., Smart, N.P. (eds.) Progress in Cryptology – INDOCRYPT
2017, pp. 107–125. Springer, Cham (2017)

https://doi.org/10.1109/IPFA49335.2020.9260613
https://doi.org/10.1109/IPFA49335.2020.9260613
https://doi.org/10.1109/SECURWARE.2010.42
https://doi.org/10.1109/SECURWARE.2010.42

On recovering block cipher secret keys in the cold boot attack setting 27

[13] Villanueva-Polanco, R.: Cold boot attacks on Bliss. In: Schwabe, P., Théri-
ault, N. (eds.) Progress in Cryptology – LATINCRYPT 2019, pp. 40–61.
Springer, Cham (2019)

[14] Villanueva-Polanco, R.: Cold boot attacks on LUOV. Applied Sciences
10(12) (2020). https://doi.org/10.3390/app10124106

[15] Villanueva Polanco, R.: Cold boot attacks on post-quantum schemes. PhD
thesis, Royal Holloway, University of London (March 2019)

[16] Villanueva-Polanco, R., Angulo-Madrid, E.: Cold Boot Attacks on the
Supersingular Isogeny Key Encapsulation (SIKE) Mechanism. Applied
Sciences 11(1) (2021). https://doi.org/10.3390/app11010193

[17] Albrecht, M.R., Deo, A., Paterson, K.G.: Cold Boot Attacks on Ring and
Module LWE Keys Under the NTT. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2018(3), 173–213 (2018). https://doi.
org/10.13154/tches.v2018.i3.173-213

[18] Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits.
Physical Review A 70(5), 052328 (2004)

[19] Villanueva-Polanco, R.: A Comprehensive Study of the Key Enumeration
Problem. Entropy 21(10) (2019). https://doi.org/10.3390/e21100972

[20] Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman,
M.: Fast and Memory-Efficient Key Recovery in Side-Channel Attacks.
In: Dunkelman, O., Keliher, L. (eds.) Selected Areas in Cryptography –
SAC 2015, pp. 310–327. Springer, Cham (2016)

[21] David, L., Wool, A.: A Bounded-Space Near-Optimal Key Enumeration
Algorithm for Multi-subkey Side-Channel Attacks. In: Handschuh, H.
(ed.) Topics in Cryptology – CT-RSA 2017, pp. 311–327. Springer, Cham
(2017)

[22] Longo, J., Martin, D.P., Mather, L., Oswald, E., Sach, B., Stam, M.:
How low can you go? Using side-channel data to enhance brute-force key
recovery. Cryptology ePrint Archive, Report 2016/609. http://eprint.iacr.
org/2016/609 (2016)

[23] Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and
estimation of the key rank distribution in the context of side channel
evaluations. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology –
ASIACRYPT 2016, pp. 548–572. Springer, Berlin, Heidelberg (2016)

[24] Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in
parallel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.)

https://doi.org/10.3390/app10124106
https://doi.org/10.3390/app11010193
https://doi.org/10.13154/tches.v2018.i3.173-213
https://doi.org/10.13154/tches.v2018.i3.173-213
https://doi.org/10.3390/e21100972
http://eprint.iacr.org/2016/609
http://eprint.iacr.org/2016/609

28 On recovering block cipher secret keys in the cold boot attack setting

Advances in Cryptology – ASIACRYPT 2015, pp. 313–337. Springer,
Berlin, Heidelberg (2015)

[25] Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and
rank estimation) using histograms: An integrated approach. In: Gier-
lichs, B., Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded
Systems – CHES 2016, pp. 61–81. Springer, Berlin, Heidelberg (2016)

[26] Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An
optimal key enumeration algorithm and its application to side-channel
attacks. In: Knudsen, L.R., Wu, H. (eds.) Selected Areas in Cryptography,
pp. 390–406. Springer, Berlin, Heidelberg (2013)

[27] Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evalua-
tions beyond computing power. In: Johansson, T., Nguyen, P.Q. (eds.)
Advances in Cryptology – EUROCRYPT 2013, pp. 126–141. Springer,
Berlin, Heidelberg (2013)

[28] Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler
side-channel security evaluations beyond computing power. Cryptology
ePrint Archive, Report 2015/221. http://eprint.iacr.org/2015/221 (2015)

[29] Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? how to
determine whether limited side channel information enables key recov-
ery. In: Joye, M., Moradi, A. (eds.) Smart Card Research and Advanced
Applications, pp. 215–232. Springer, Cham (2015)

[30] Choudary, M.O., Popescu, P.G.: Back to massey: Impressively fast, scal-
able and tight security evaluation tools. In: Fischer, W., Homma, N.
(eds.) Cryptographic Hardware and Embedded Systems – CHES 2017,
pp. 367–386. Springer, Cham (2017)

[31] Choudary, M.O., Poussier, R., Standaert, F.-X.: Score-Based vs.
Probability-Based Enumeration – A Cautionary Note. In: Dunkelman, O.,
Sanadhya, S.K. (eds.) Progress in Cryptology – INDOCRYPT 2016, pp.
137–152. Springer, Cham (2016)

[32] Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.:
Simpler and more efficient rank estimation for side-channel security assess-
ment. In: Leander, G. (ed.) Fast Software Encryption, pp. 117–129.
Springer, Berlin, Heidelberg (2015)

[33] Poussier, R., Grosso, V., Standaert, F.-X.: Comparing approaches to rank
estimation for side-channel security evaluations. In: Homma, N., Medwed,
M. (eds.) Smart Card Research and Advanced Applications, pp. 125–142.
Springer, Cham (2016)

http://eprint.iacr.org/2015/221

On recovering block cipher secret keys in the cold boot attack setting 29

[34] Grosso, V.: Scalable key rank estimation (and key enumeration) algorithm
for large keys. In: Bilgin, B., Fischer, J.-B. (eds.) Smart Card Research
and Advanced Applications, pp. 80–94. Springer, Cham (2019)

[35] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pp. 212–219 (1996). https://doi.org/10.1145/237814.237866

[36] Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer
Scientists, 1st edn. Cambridge University Press, USA (2008)

[37] Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover
oracles for quantum key search on aes and lowmc. In: Canteaut, A., Ishai,
Y. (eds.) Advances in Cryptology – EUROCRYPT 2020, pp. 280–310.
Springer, Cham (2020)

[38] Martin, D.P., Montanaro, A., Oswald, E., Shepherd, D.: Quantum key
search with side channel advice. In: Adams, C., Camenisch, J. (eds.)
Selected Areas in Cryptography – SAC 2017, pp. 407–422. Springer, Cham
(2018)

[39] Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying
Grover’s algorithm to AES: quantum resource estimates. In: Post-
Quantum Cryptography – 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, pp. 29–43 (2016).
https://doi.org/10.1007/978-3-319-29360-8_3

[40] Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum
reversible circuit of AES-128. Quantum Information Processing 17(5),
112 (2018). https://doi.org/10.1007/s11128-018-1864-3

[41] Kim, P., Han, D., Jeong, K.C.: Time–space complexity of quantum search
algorithms in symmetric cryptanalysis: applying to aes and sha-2. Quan-
tum Information Processing 17(12), 339 (2018). https://doi.org/10.1007/
s11128-018-2107-3

[42] Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of imple-
menting the advanced encryption standard as a quantum circuit. IEEE
Transactions on Quantum Engineering 1, 1–12 (2020)

[43] Davenport, J.H., Pring, B.: Improvements to quantum search techniques
for Block-Ciphers, with applications to AES. In: Dunkelman, O., Jacob-
son, M.J. Jr., O’Flynn, C. (eds.) Selected Areas in Cryptography, pp.
360–384. Springer, Cham (2021)

[44] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced

https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/s11128-018-1864-3
https://doi.org/10.1007/s11128-018-2107-3
https://doi.org/10.1007/s11128-018-2107-3

30 On recovering block cipher secret keys in the cold boot attack setting

Encryption Standard (Information Security and Cryptography). Springer
(2002)

[45] Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck
Family of Lightweight Block Ciphers. Cryptology ePrint Archive, Report
2015/612. https://ia.cr/2015/612 (2015)

[46] Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.:
Gift: A small present. In: Fischer, W., Homma, N. (eds.) Cryptographic
Hardware and Embedded Systems – CHES 2017, pp. 321–345. Springer,
Cham (2017)

[47] Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Efficient
implementation of PRESENT and GIFT on quantum computers. Applied
Sciences 11(11) (2021). https://doi.org/10.3390/app11114776

[48] Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits.
Phys. Rev. A 70, 052328 (2004). https://doi.org/10.1103/PhysRevA.70.
052328

[49] Team, P. Picnic A Family of Post-Quantum Secure Digital Signature
Algorithms. https://github.com/Microsoft/Picnic (2020)

[50] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for mpc and fhe. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology – EUROCRYPT 2015, pp. 430–454. Springer, Berlin,
Heidelberg (2015)

[51] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. IACR Cryptol. ePrint Arch. 2016, 687 (2016)

https://ia.cr/2015/612
https://doi.org/10.3390/app11114776
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://github.com/Microsoft/Picnic

	Introduction
	Background
	Cold boot attacks
	Cold boot attack model
	Literature review
	RSA setting
	Discrete logarithm setting
	Symmetric key setting
	Post-quantum setting

	Quantum Background
	Quantum gates

	A framework to key recovery
	Recovering secret keys via a cold boot attack
	Grover's algorithm
	Key search for a block cipher

	Our key-recovery algorithm
	Quantum circuit for f
	Quantum AES
	Quantum PRESENT & Quantum GIFT
	Generic Implementation and Different ciphers.

	Cold boot attacks on Picnic
	Picnic key generation algorithm
	LowMC block cipher
	Quantum LowMC

	Costs for running our key recovery algorithm
	Success rate of our key recovery algorithm

	Conclusions
	Running Time Analysis

