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Are General Circulation Models Obsolete?
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Traditional general circulation models, or GCMs – i.e. 3D dynamical models with unresolved terms represented in equations with tunable pa-
rameters – have been a mainstay of climate research for several decades, and some of the pioneering studies have recently been recognized
by a Nobel prize in Physics. Yet, there is considerable debate around their continuing role in the future. Frequently mentioned as limitations
of GCMs are the structural error and uncertainty across models with different representations of unresolved scales; and the fact that the
models are tuned to reproduce certain aspects of the observed Earth. We consider these shortcomings in the context of a future generation
of models that may address these issues through substantially higher resolution and detail, or through the use of machine learning tech-
niques to match them better to observations, theory, and process models. It is our contention that calibration, far from being a weakness of
models, is an essential element in the simulation of complex systems, and contributes to our understanding of their inner workings. Models
can be calibrated to reveal both fine-scale detail, or the global response to external perturbations. New methods enable us to articulate and
improve the connections between the different levels of abstract representation of climate processes, and our understanding resides in an
entire hierarchy of models where GCMs will continue to play a central role for the foreseeable future..

climate models | calibration | machine learning | ...

1. Introduction

The general circulation model, or GCM, is a mainstay of re-
search into the evolving state of the Earth system over a range of
timescales. The term dates back to the very origin of numerical
simulation of the atmosphere (e.g., 1, 2). The equations governing
the general circulation of fluids on a spinning sphere use the basic
Navier-Stokes equations, whose form specialized for the planetary
circulation were first formulated at the turn of the 20th century (e.g.,
3, 4). However, closed-form solutions are not readily available, and
their use as research and prediction tools had to await the advent
of numerical solution in the 1950s (5).

The 2021 Nobel prizes in Physics honour some of the work
done with GCMs. The first formal global warning of anthropogenic
climate change, the Charney Report (6), was substantially based
on the pioneering work of Syukuro Manabe, who confirmed 19th
century speculations on the warming effect of adding CO2. While
normally attributed to Tyndall and Arrhenius, the earlier work of
Eunice Foote has recently come to light (7). She in fact presciently
remarked, “An atmosphere of that gas would give to our earth
a high temperature”*. While Foote and others were talking prin-
cipally about the radiative effects of CO2, it was Manabe and
others who included dynamical considerations, the transport of
heat both vertically through convection (8), as well as from the
Equator polewards through atmospheric and oceanic circulation
(e.g. 9). Besides, GCMs also play a central role in the work of
another of the 2021 winners, Klaus Hasselmann, who laid the
groundwork for the statistical methods behind the field of detec-

*https://www.climate.gov/news-features/features/happy-200th-birthday-eunice-foote-hidden-climate-science-pioneer,
retrieved August 23, 2022.
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tion and attribution of climate change (e.g., 10). The detection of
climate change requires extracting the signal of forced response
in simulations from natural variability, and the attribution of it to
external climate forcing agents, such as CO2 emissions, again
requires counterfactual runs of a GCM where that particular forcing
is absent.

It may seem an odd juncture, when a Nobel prize has just been
awarded for GCM-based work, to speculate on the obsolescence
of the GCM. However, there has been a considerable body of lit-
erature for a while, arguing that the limitations of GCMs require
a major overhaul for further progress in climate modeling. It has
been noted (see e.g., 11), that the bounds of uncertainty on equilib-
rium climate sensitivity (ECS: the asymptotic response of a model
climate to a doubling of CO2 concentration) has not significantly
diminished since the Charney Report (6). Furthermore, a system-
atic synthesis of multiple lines of evidence to constrain ECS in (12)
indicates in several places a diminishing role for GCMs relative to
other sources of information. Some have taken a leap from here to
assert that the entire project of parameterization – the discovery
of parsimonious representation through insight or mathematical
methods – may have no future, (e.g., 13, 14), and that large-scale
computation is the way forward.

It is perhaps no accident that this debate takes place at a
particular inflection point in the history of computing (15), where
it is now possible to marshal and extract information from data at
unprecedented scale, the era of big data and machine learning.
These methods have led to some spectacular successes in various
fields: AlphaFold for example can decipher the structure of complex
molecules directly from data (16). This has led to speculation that
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we might have entered the era of “post theory science”†. This is a
fierce debate in many fields, whether large-scale structure emerges
directly from the addition of detail and data, and where the limits of
models built from data might lie. We explore this debate here in the
context of the modeling of climate, a complex system undergoing
slow but inexorable global changes, but where the details matter
as well.

The debate poses questions that resonate across all fields of
science that use large-scale data and computation as a pillar of
the scientific method, alongside theory and observations. In the
discussion at the end, Sec. 7, we will point out certain parallels,
particularly with the debate in neuroscience surrounding the Hu-
man Brain Project. Leading up that discussion, the paper below
will begin with an account of the structure of the GCM from the time
of Manabe’s pioneering studies to the present day, Sec. 2, followed
by an analysis of some aspects of climate modeling which have
exposed GCMs to criticism (Sec. 3), interrogating the role of model
resolution (Sec. 4), model calibration (Sec. 5), and the generation
of counterfactuals (Sec. 6). It is our assertion that parameterized
GCMs can expect to get a new lease of life at this moment through
sophisticated approaches to model calibration based on methods
borrowed from machine learning. We begin with our account of
the GCM.

2. The structure of the GCM, from Manabe to present
day

The general circulation of the atmosphere and ocean can be de-
scribed by equations of fluid flow and thermal energy transport and
exchange. The numerical solution of a discretized form of these
coupled partial differential equations can be written in the form

∂x
∂t

= R(x) + U(x) + P (x) + F [1]

where x is a state vector consisting of mass, momentum and
energy associated with fluid elements, as well as other quanti-
ties that can contribute to changes in state, which could include
various phases of water in the atmosphere, salinity in the ocean,
and trace elements, CO2, methane, dust, and other species, of
natural or human origin. R(x) + U(x) represents the dynamics,
the Navier-Stokes equation. Because of the discretized nature of
the numerical model, only part of the fluid motions are explicitly
resolved (R). The unresolved (U ) fluid motions (with scale smaller
than one or several grid points) are represented in the form of a
closure, i.e., a representation of subgridscale dynamics in terms of
resolved-scale state variables. P represents other processes that
contribute to the thermodynamics: these can include diabatic pro-
cesses associated with phase changes of water in the atmosphere,
leading to the formation of clouds and rain, and the influence of
solar radiation , and the equation of state of a complex fluid with
many constituents. U and P are often collectively referred to as
the physics. Finally F represents the terms that are considered
external (not simulated by the model) influences on the system,
known as forcings: these can include solar radiation, volcanoes,
anthropogenic emissions of CO2, geothermal heating and other
radiatively active quantities, or particulate aerosols that can play a
role in cloud formation. Both atmosphere and ocean are extremely
shallow compared to the Earth’s radius R (H/R ∼ 10−3, where
H is the fluid height) so that the numerical treatment of vertical
dynamics is generally different from the horizontal..

†https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science,
retrieved August 23, 2022.

In (8), Manabe and Wetherald considered the time-asymptotic
balance between the destabilization of an atmospheric column by
radiation (warming at the surface, cooling aloft) and stabilization by
convection, which transports heat vertically. Radiative-convective
equilibrium (RCE) mediated by water vapor and CO2 yields the
basic behavior of global warming in a single atmospheric column.
Later work, (e.g., 9, 17) extended it to include horizontal transport
of heat as well, from equator to the poles, confirming the single-
column result. To give a sense of the computational size, a typical
GCM resolution today is about 50 km or less, compared to 500 km
in (9), and vertical resolutions have increased by a comparable
factor: at this resolution, the required temporal resolution is mea-
sured in minutes. At these scales, the spatial grid may encompass
2 × 107 points, and a simulation of 100 years in length requires
3 × 106 timesteps. In the decades since the pioneering work of
Manabe, considerable ingenuity has gone into creating fast and
accurate solutions to the dynamics and increasing its resolution.

Fig. 1. Fig. 2 from (18): the classic structure of a GCM. A similar column structure is
used in the ocean as well. With permission of author.

An even more significant site of creativity has been in the
physics (U(x)+P (x)) which now encompasses myriad processes
in the atmosphere and ocean contributing to the transport of heat
and other quantities: these include processes associated with
clouds and precipitation, mixing by unresolved motions in the
ocean, and an increasingly sophisticated treatment of the terres-
trial and marine biosphere, with the contribution of trace elements
and aerosols, whose natural and anthropogenic emissions also
play a role in understanding the response of the climate system to
changes in F . The structure of the GCM (Fig. 1) now consists of
a number of parameterizations representing individual processes
and feedbacks:

U(x) + P (x) =
∑

p

M(x, λp) [2]

where λp represents a set of parameters that may be empiri-
cally set through comparison with observations or theory. Typically
these are bulk quantities, representative values at the resolution
of the model discretization. The climate is a multiscale system,
encompassing processes from microscales (cloud droplet forma-
tion, stomatal exchange) to megascales (orbital changes, plate
tectonics). Transport of heat and CO2 into the ocean abyss occurs
in the planetary scale on times measured in millennia.
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We introduce a vocabulary for problems addressed with nu-
merical models, where x in Eqn. 1 represents the state of the
Earth system, and identifying sources of error and uncertainty in
predictions from these models.

• Note first that Eq. 1 represents the time trajectory of x. The
trajectory itself is the weather. The system is chaotic (19),
which represents the first source of uncertainty. Numerical
weather prediction has improved over decades with better
models, observations, and the techniques of data assimilation,
which constrain trajectories to stay close to observations in a
least-squares sense (20).

• The climate is the set of preferred states of the system, its
attractors, discovered by running trajectories for a long time,
and averaging over the weather. If F is held constant, the
climate should be stationary, and the fluctuations around that
state are its internal variability.

• The forcing F is time-varying, with both natural and anthro-
pogenic contributions, and the climate change problem con-
sists in separating the forced response from internal variability.
For purposes of policy related to the climate emergency, this
constitute studying the response to scenarios (trajectories of
F , see e.g., 21).

• Abrupt transitions, or tipping points, are changes in climate
which are very fast relative to the rate of change of F . For
instance, orbital changes are known to lead to long term
changes in climate, such as the glaciation-deglaciation cycles.
Yet, the climate record contains transitions such as Heinrich
events (22, 23), a rapid collapse and resumption of the plane-
tary scale meridional overturning circulation (MOC). We shall
return several times to the MOC in this article as a canonical
problem of concern for climate. The long intrinsic timescales
of the forces shaping the MOC pose a unique set of chal-
lenges. Studies of individual processes (e.g., 24) also show
that the system may be capable of abrupt (relative to the rate
of change of F ) transitions.

• Parametric uncertainty arises from imperfect constraints, ei-
ther from observations or theory, on λp. Structural uncertainty
and structural error arise when no values of λp can fit the
known constraints, leading to the conclusion that the form
of the equations in M could be improved. (It is of course
possibly to formulate structural uncertainty as parametric, by
having a parameter that chooses one equation structure over
another!) It has been noted that averaging over different
GCMs (individual formulations of R, U and P ) can disguise
structural error given statistical independence among GCMs
(e.g., 25). However, some biases remain common and persis-
tent across many generations of models, suggesting gaps in
understanding, or epistemic uncertainty (26).

For the purposes of this Perspective, we define the GCM as the
tool used to study the response of the climate system to changes
in F . The tool is broadly similar (and in many cases is based on
the same model code) to the models used for numerical weather
prediction (NWP). In both cases, we follow trajectories of x in time
from a specified initial state. For weather the trajectory itself is
the solution, while for climate we are interested in the attractors
of the landscape where the trajectories lie. Besides chaotic un-
certainty, we must also contend with the structural and parametric

uncertainty associated with the physics terms U and P . Finally F
and its time rate of change (usually ignored for weather, though
not for climate) is also uncertain, as emissions trajectories are
unpredictable (27). For timescales of interest to address the cli-
mate emergency, including the possibility of abrupt transitions, we
generally need to run simulations of at least O(100) simulated
years (SY) in length. The exploration of the different sources of
uncertainty will require sampling at least O(100) model settings,
as we shall show below in Sec. 6. And finally simulations must
complete in a reasonable time relative to the human attention span,
which we define asO(100) days. A GCM is defined for the purpose
of this study as an engine for simulating the Earth system, capable
of running 100 instances of 100 SY in a reasonable amount of
time, and given adequate computing resource. The same tool may
be configured for other purposes (e.g process studies on a lim-
ited domain or in highly idealized settings, or higher resolution but
shorter duration), but these constitute the minimum requirements
for studying the response to changes in F .

3. What ails the GCM?

There are several diagnoses of the weaknesses of GCMs. There is
first the argument that the column abstraction breaks down in the
presence of large-scale organization: the mesoscale organization
of cloud systems in the atmosphere (28). A similar argument can
be made for ocean dynamics as well, where mesoscale turbulence
in the form of persistent eddies is able to deposit energy and
momentum away from the source (e.g., 29), in the form of Agulhas
Rings for example (30). Such non-local effects of unresolved terms
call into question the structure of the GCM that has been used
since Manabe’s pioneering calculations. Some aspects of the
climate system have resisted efforts at representation in models,
with stubborn biases and uncertainties. This has led some to
question whether such processes are parameterizable at all (e.g.,
14). Following this line of thinking, it is now often contended
that nothing short of resolving finer-scale motions, coupled with
assimilation of present-day observations to control model biases,
will in fact address these shortcomings, and that a future generation
of models will address these issues through substantially higher
resolution.

A second criticism of GCMs is around the consideration of
the “tuning”, or calibration, of climate models. As noted above,
unresolved physics (U + P ) is represented using equations with
parameters constrained within some range by observations or
theory. The coupled system is then further subjected to global
constraints such as top-of-atmosphere energy balance (31). The
fact that the models are tuned to reproduce some features of
the observed planet is in some quarters viewed as rendering the
results suspect.

Finally, GCMs are now numerous (114 models from 44 institu-
tions at time of counting‡). Viewed as an ensemble of simulations,
they embody considerable structural or epistemic uncertainty, in
the form of differing representations of the unresolved scales. The
GCMs are not all statistically, or in terms of model code, inde-
pendent of each other (26), and different evaluation metrics yield
different, and contradictory measures of model quality. The uncer-
tainty bounds have, if anything, increased between the last two
climate model assessment cycles, and the recently published 6th
Assessment Report (32) notes that many models now produce
ECS values outside the assessed “very likely” range, leading to

‡http://esgf-ui.cmcc.it/esgf-dashboard-ui/data-archiveCMIP6.html, retrieved August 23, 2022.
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an enhanced role for emulators (e.g., 33), as discussed in Sec. 6.
Models used in service of decision-making and policy, including
those used in the recently concluded IPCC AR6, rely on emula-
tors allowing of rapid exploration of multiple future scenarios or
through the use of statistical techniques for the correction of bi-
ases. Furthermore, it is increasingly noted that models pegged
to present-day climate do not do a good job of representing the
climate fluctuations of the past, including past warm climates that
may hold lessons for the climate emergency (e.g., 34). We address
these concerns in turn.

4. What resolution is enough?

We begin with the question of resolution. As noted above, one
suggested remedy for the weakness of GCMs is to increase the
resolution until some of the non-local phenomena alluded to above
are in fact resolved (35, for instance). The computational expense
of such a model would require a substantial boost to computing
capability (36).

Atmospheric and ocean dynamics fit within the broad contours
of geophysical turbulence. At very large (planetary) scales, this
looks like 2-dimensional turbulence, known to have an energy
spectrum with a k−3 spectrum. At smaller scales, baroclinicity
starts to play a role, and 3-dimensional turbulence with a k−5/3

spectrum. This is in fact observed in the atmosphere, seen for
example in (37). Similar spectra are observed in ocean turbulence
as well (38, 39). The key feature to underline for this discussion is
that the 3-dimensional energy cascade continues all the way down
to molecular scales. There is no fundamental scale separation in
turbulence. Any truncation applied in order to create a discrete
representation for numerical purposes is an arbitrary one, usually
constrained by the available computing power.

We can look beyond turbulent energy spectra to the specifici-
ties of certain dynamical phenomena. In the atmosphere, one
of the key phenomena of interest is moist convection. Since the
pioneering work of Rayleigh and others shows that fluids heated
from below will overturn, with the overturning motion in the form
of “cells” that roughly scale with the height of the convecting fluid.
In the case of atmospheric convection, this includes deep con-
vection, which roughly scales with the height of the tropopause
(∼10 km, see e.g., 40), such as thunderstorms or tropical cyclones,
and shallow convection within the planetary boundary layer (depth
∼1 km), which can take many forms, including large stratocumu-
lus decks 1000s of km in extent, playing a significant role in the
planetary albedo and heat balance. GCMs have traditionally tried
to represent these in parameterizations of the vertical transport of
momentum, heat and moisture, as well as other tracers, by convec-
tion. Subgrid closures of deep convective processes can be based
on an assumption of quasi-equilibrium between synoptic-scale
destabilization of the column and the stabilization by convection
(e.g., 41, and its descendants). The slow rate of advances in these
methods (42) have led to efforts where parameterizations are re-
placed with embedded cloud-resolving models (CRMs), known as
“super-parameterization” (43), or even further to replace shallow
convection as well with large-eddy simulation (LES) models (44). It
is not clear if since their inception this class of models have justified
their extreme computational expense in terms of improved climate
simulation.

Many aspects of clouds, such as the representation of moist
convection requires us to invoke microphysical processes involved
in the condensation of water vapour and the formation of falling
hydrometeors. But the motions themselves can be captured in

non-hydrostatic models. Limited area modeling of deep convection
dates back to the 1970s, and advances in computing capacity
in the intervening decades makes global cloud-resolving mod-
els (GCRMs, also known as global convection-permitting models,
global storm-resolvind models, etc.)) within reach (see e.g., 45, for
a comparison across multiple GCRMs, the DYAMOND experiment).
These models typically have horizontal resolutions in the range
of 1–5 km, considered sufficient to capture mesoscale convective
organization, and at least marginally resolve individual convective
events. Aspects of convective organization, such as the formation
of gust fronts with downstream surface density currents (46), re-
main below the resolution of GCRMs, and must be parameterized,
as they are responsible for the initiation of new convective events.
Boundary layer convection is responsible for shallow clouds, and
requires at least 10X higher resolution: this is in fact one of the
largest sources of uncertainty in the current generation of models
(47). This class of clouds will not be resolved by km-scale models.
And of course, water as vapour or condensate is radiatively active,
and particulates play a role in cloud formation as well. Surface
exchanges at very fine scale mediate aerosol emissions (e.g., 48).
Many of these aerosol-radiation-cloud (ARC) processes take place
at micron-scale and will be forever outside any conceivable resolu-
tion of a numerical model on any known computational technology
in the literature today.

CRMs (and their global incarnation, GCRMs), and LES mod-
els of the turbulent and cloudy boundary layer are widely used to
study processes that cannot be resolved in GCMs, but perhaps
we can learn from them to inform the development of parame-
terizations. Such studies are usually mediated by single-column
models (SCMs, see e.g., 49). Such studies often show that the
disparity between different CRM formulations remains compara-
ble to those between GCMs. In a set of RCE (the same problem
treated in a column by 8) comparisons across both CRMs and
GCMs (50), the uncertainty spread across CRMs and GCMs with
parameterized convection were quite comparable (51). In the first
extensive comparison of GCRMs (necessarily short runs, only
40 days compared to the GCM timescales outlined in Sec. 2 45),
there was considerable inter-model variability (52). In Fig. 2 we
show a comparison of the relationship between precipitable water
and outgoing top-of-atmosphere longwave radiation and albedo
and low cloud cover from (52) with the same quantities from the
CMIP6 experiment. While the CRMs are closer to observations for
the precipitable water and outgoing LW radiation, the spread in low
cloud cover and albedo is just as wide in GCRMs as in GCMs. The
model spread in DYAMOND has been traced to differences in the
treatment of boundary layer convection (53).

LES structural uncertainty tells a similar story: comparisons
across LES models of the boundary layer with or without clouds
still shows some reduction in spread in certain cases (54), but
considerable spread in response to changes in configuration in
specific aspects such as microphysics (55), turbulence closures
(56, 57) and numerics (58).

Similarly, the representation of oceanic fronts, eddies and cur-
rents is markedly different depending on the type of model that is
used to represent them, whether turbulent mixing by eddies is re-
solved or parameterized. The ocean depth varies widely between
pelagic zones and the abyss, and consequently the Rossby de-
formation radius – the length scale representing when mesoscale
eddy mixing is significant – varies fromO(100) km in the Equatorial
open ocean, to O(1) km or less near coastlines and toward the
poles (59). Attempts to build “scale-aware” parameterization of
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Fig. 2. Comparison of observable properties of cloud fields (August monthly-mean
outgoing longwave radiation, precipitable water, albedo, and cloud fraction) averaged
over the Southern Atlantic (15W-10E;18S-5S) in observations (green triangle), DYA-
MOND GCRMs (orange circles, from 52) and in CMIP6 GCMs. The added resolution
in GCRMs reduces structural uncertainty in some respects but not others.

eddy mixing (e.g., 60, 61), must contend with these variations.
Other features such as vegetation, not discussed in this article,

also exhibit heterogeneity at any conceivable resolution. While
there is no doubt that in general increasing resolution reduces the
number of processes needing to be parameterized (although plac-
ing increasing resolution demands on observations as well), and
in many cases increases the fidelity of simulations particularly in
the short term, in the climate context this must be weighed against
the expense, which limits the simulation duration and consequently
ability of models to realize the aspects that regulate the climate
on long timescales. The absence of any target resolution where
one could argue that everything of interest to climate is resolved,
implies that these tradeoffs are always with us.

5. Are there “untuned” models?

The question of the “tuning”, or calibration, of GCMs, has been
a fact of life since their inception, often not clearly described in
the literature, until recent efforts to document the role of tuning
in model development (31, 62). On the scientific level, these at-
tempts highlight the central role of tuning in modeling, and open up
new avenues in the use of automatic calibration techniques from
machine learning.

In broad terms, we can define the process of tuning as one of
finding suitable values of λp in Eq. 2 that best fit observations or
theory, identifying it as an intrinsic and universal aspect of model
development. We seek to achieve both fidelity to each process
M in the model, as well as respecting global constraints across
the coupled system: for example, conserving energy and mass,
including of individual agents in the climate system, such as water.
The global constraints must be applied when coupling models at
any resolution. Tuning is thus a multi-step process, where individual
parameterizationsM are first tuned separately to within a desired
tolerance, but which may then be refined in a second stage after
the coupled model is built. Thus tuning, which is often seen as an
optimization of a loss function, may be redefined as identifying the
subspace of parameters compatible with a number of constraints.
While the procedures can be onerous, the process of calibration is
central to model development and the way teams learn how parts
of the coupled system respond to changes in others. The coupled
system can yield surprises: in one example (the NOAA/GFDL
model 63, 64), the coupled system had an ECS higher than was
expected during the development of individual components. Thus,

model calibration is not a weakness of models, it in fact holds the
key to how model developers learn how their model behaves, and
consequently how the Earth system regulates itself.

Historically, the tuning of models has been found to be expen-
sive, if one uses the GCM itself as the forward model. In particular,
key circulation features such as the MOC may be sensitive to tuning
in ways that reveal themselves after simulations of O(100) SY (63).
Tuning such models “by hand” can be an inefficient scattershot
exploration of a small amount of the possible space of parametric
uncertainty. This is perhaps one reason why some observers hold
tuning in low regard. There is also the risk of tuning to a state
containing compensating errors, that satisfy the constraints but for
the wrong reasons.

As noted earlier, computing technology at the present time fa-
vors the algorithms of machine learning (ML), the ability to emulate
or extract patterns seen in large datasets. Tuning is a constant
concern in the construction and optimization of methods, such as
choosing the width, depth and structure of a neural net: aspects
often referred to as hyperparameters, as they are of the network,
not of the process being emulated). They are chosen to meet the
requirements of fidelity against the training dataset. Some data
is often withheld to guard against overfitting to noisy data, and
the withheld (“out of sample”) data can be used to validate the
result as generalizable to novel situations not seen during training.
“Physics-informed” ML (65), where the loss function can be made
to penalize violations of global constraints such as conservation
laws, also has a parallel to the tuning process described above.

In the HighTune project, an atmospheric boundary layer con-
vection scheme based on the eddy-diffusivity mass-flux (EDMF)
approach (66, 67). is calibrated to match results from an LES sim-
ulation (68, 69). The EDMF scheme, which has both upgradient
(organizing) and downgradient (dissipative) components, is struc-
tured for problems such as cloudy convection and turbulence, but
has parameters that must be empirically determined in a variety
of boundary layer regimes. The process is illustrated in Fig. 3. A
variety of cloud regimes is simulated in an LES constrained by
observations: the LES serves as the “truth” for tuning. A single-
column representation of EDMF is then compared against LES
output using the “history-matching” (HM) method of (70), exploring
the range of uncertainty simultaneously across multiple parame-
ters at number of points. The full range of parametric uncertainty
is then explored using emulators, as described in (68). Rather
than seeking a single optimum λp, HM seeks only remove implau-
sible regions of parametric space from consideration, leaving a
not ruled out yet (NROY) region for consideration. Any parameter
values within NROY are possible valid values, and new constraints
can be progressively added as needed. Finally, the HM method
can also serve as a means of diagnosing structural error: a null
NROY space (i.e no possible values of λp permitM to meet the
desired constraints within the chosen tolerance) indicates that the
representation inM needs to be refined.

An independent effort from the CliMA§ project uses a somewhat
different approach, but with the same ends, namely to calibrate
an EDMF scheme with a set of parameters and their uncertainty
bounds (71, 72). There are also efforts to build a “library” of cloud
regimes (73) for use in training. As noted above in Sec. 4, LES
models carry their own structural uncertainty. The DEPHY¶ project
seeks to build systematic benchmarks and training datasets for
similar efforts elsewhere.

§https://clima.caltech.edu/, retrieved August 23, 2022.
¶https://www.umr-cnrm.fr/spip.php?article930&lang=en, retrieved August 23, 2022.
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Fig. 3. A schematic of the use of LES models for parameter estimation, adapted from
(68). LES models of different observed cloud regimes are used to build emulators to
estimate parameters governing the behavior of column-averaged quantities. Succes-
sive waves of history-matching deliver the minimal parameter space consistent with
the LES data, the NROY space. The effect of clouds on absorbed shortwave radiation
is reduced by a comparable amount to the previous laborious tuning “by hand” using
the same target.

This represents the first step toward a more systematic and ob-
jective exploration of parametric uncertainty than is possible when
GCMs are directly used as the forward model. These methods are
now being extended to consider the tuning of slower processes
in the ocean, following (74). Some of the subsequent problems
of tuning coupled systems with multiple timescales are still being
explored using highly simplified models (75). Preliminary results
indicate that compensating errors and other defects inherent in
the tuning of coupled systems may still be present, but it may be
possible to diagnose those within the HM method.

6. Why do we need counterfactual Earths, and where
do they come from?

In Sections 4 and 5, we have outlined a procedure for creating a
tool for numerically simulating a very complex multiscale system
at a maximal level of detail given computing limits, and calibrating
the system within those limits to resemble the observed Earth
as closely as possible. We use this system to study the Earth’s
climate and its history, the appearance of life and the maintenance
of an atmosphere, ocean, and land surface suitable for life, the
fluctuations of the past and the recent period of relative stability that
allowed for the possibility of settlements and agriculture, and the
consequences of the Industrial Revolution leading to the current
climate emergency. As an object of science, the Earth poses
a key problem, in that there is only one instance of it, and one
temporal trajectory of its state, that we can observe. Simulated
Earths remain our only means of exploring different hypotheses
about how the system works, other trajectories it might have taken,
and might take in the future. It also remains our only means of
exploring responses to the climate emergency, and understanding
and predicting the impacts of different policy choices of mitigation,
adaptation, and resilience-building.

Using techniques pioneered by Hasselmann, another of 2021’s
Nobels in Physics (e.g., 10), the techniques of detection and attri-
bution have helped understand the role of different forcing agents
in F , and their contribution to a changing climate. First, a compari-

son of present-day climate with a counterfactual simulation known
as the “pre-Industrial control” (where F is held constant at its value
in 1850 CE), allows us to unequivocally detect that the climate
has changed, beyond the bounds of simulated random internal
variability. Attribution of climate change to particular forcing agents
is performed using either single-forcing runs, where all contributors
to F are held constant save one, or using agents grouped into
greenhouse gases only, natural only, etc (76), to tease apart the
contribution of different forcings to climate change, as well as their
non-linearities (as the contributions may not be simply additive).
The number of individual forcings considered now number over 10
(see, e.g., Fig. 2c in the IPCC AR6 Summary for Policymakers 32).
In addition, (21) consider at least 8 pathways of future evolution
of forcing. Together, such simulations represent a requirement for
GCMs to explore hundreds of counterfactual pathways of climate
evolution.

We draw attention to two major implications of this for the use
of GCMs. First, GCMs are used to explore a counterfactual space,
not directly constrained by observations. This includes chaotic
uncertainty (different trajectories of x under changes in initial con-
ditions, which provide a measure of the intrinsic internal variability),
and to counterfactual settings of F , where various actual observed
forcings are turned on or off. An individual GCM (a particular
formulation of the terms R, U and P ) is first calibrated against
theory and observations as described in Sec. 5, and once this is
satisfactory, is used to explore an even vaster counterfactual space
(see e.g.,Fig. 4 from 27). The requirement to be able to simulate
counterfactuals must be taken into account in the context of ML as
well, as we shall discuss below in Sec. 7.

Second, in view of the computational expense of GCMs outlined
in Sec. 2 (see also 77), it has proved prohibitively expensive to
explore all the forcings, and their potential future pathways, using
GCMs. The IPCC has turned instead to an extended use of em-
ulators. Note that unlike the emulators in Sec. 5, which attempt
to mimic individual climate processes, these are emulators of the
whole climate system, which attempt to predict the response of the
entire system, usually in the form of an integrated measure such
as the global mean surface temperature (GMST), to changes in F .
Regional patterns of climate change can be inferred by coupling
with techniques such as pattern scaling (78). The emulators are
all reduced complexity models of various flavors, ranging from
relatively simple regressions trained on recent historical data, to
dynamical systems models such as impulse-response models, to
highly simplified, and usually 1D, GCMs (79). Their advantage
is that they are typically millions of times faster than GCMs (80),
although their lack of internal physical consistency poses epistemic
risk.

One of the key measures of the climate response to CO2, the
ECS, is itself a counterfactual, as it is based on an asymptotic
equilibrium that is never observed in nature. It is nonetheless
useful as a measure in order to project a range of responses to
scenarios (possible future trajectories of F ). Furthermore, while
the recent (and most precise) observational record of the satellite
era is too short to constrain GCMs adequately, there are other indi-
rect means of placing limits on ECS, including paleoclimate data
and constraints on individual processes contributing to the ECS
(12). The recent IPCC concluded that many GCMs were providing
ECS outside the “very likely” range, and used emulators where
ECS is a tunable parameter, to refine the consensus projections
and their uncertainty bounds (80).

Reduced complexity models have also been used extensively to
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study the potential for abrupt transitions in the climate system, for
which there is some evidence in the paleoclimate record (81). The
MOC is a canonical feature of the climate system with the potential
for metastability: under sufficient fresh water input in the North
Atlantic, from retreating continental ice sheets for instance, the
MOC can “collapse”. Yet, GCMs exhibit metastability of the MOC
less readily than reduced-complexity models, and eddy-resolving
models even less so (82). A concern often expressed is that GCMs
are too stable to perturbations (34).

The ability to run a wide variety of century or millennial scale
simulations is essential for an evaluation of many aspects of climate
risk, tipping points. High-resolution model trajectories constrained
by assimilation of recent observations will do little to mitigate this
concern. The discussion above in Sec. 5 points to ways forward,
objective methods of emulation of GCMs, just as GCMs themselves
learn to emulate CRMs and LES models. This would alleviate the
epistemic risk associated with emulators.

7. What might a future modelling landscape look like?

In a celebrated 1972 essay More is different (83), Philip Anderson,
another Nobel laureate in Physics, argued that many of our sci-
ences abstract reality at different levels of complexity, and struck a
cautionary note on the limits of assuming that one level of explana-
tion is “nothing more” than an expression of aggregate behavior of
the elements at a deeper level of abstraction. The understanding
of such emergent behavior of complex networked systems (CNS)
happens at multiple levels, and the reduction of the properties at
one level to the one below may not be computationally tractable or
of practical use, even if it is true in principle. The Earth system is an
exemplar of a CNS, as discussed here: bringing together domains
as different as fluid dynamics, radiative transfer, chemistry, biology
and ecology, over a range of time and space scales. Yet the as-
sembly as a whole appears to persist in stable states for millennia.
The scientific puzzles related to the climate emergency center on
understanding the emergent balance of terms perpetuating stable
states, and what thresholds of these balances we are exceeding
with anthropogenic perturbations.

As simulation is now a pillar of the scientific method, one temp-
tation at this point is to turn over the problem of emergence to the
computer itself. Many diverse fields of science have attempted to
simulate a CNS at a high level of network fidelity, explicitly incorpo-
rating all the interactions and feedbacks. The question is then, can
such a numerical system spontaneously exhibit higher levels of
organization? In neuroscience for example, we can pose this ques-
tion in the context of the emergence of higher level brain function
from the details expressed or simulated at the level of individual
neurons. The Human Brain Project (HBP, 84), attempts to do just
this, and others have questioned the limits of this approach (e.g.,
85, in the context of vision), or looking at “top-down” effects where
the large-scale structure regulates the behavior at the neuronal
level (86).

The equivalent question to pose in climate science is whether
the stable states of the climate, where x from Eq. 1 remains near
an attractor despite fluctuations around it, emerge directly from
the assembly of the system with all its details. We also would
like to see if such a detailed simulation can accurately capture the
responses of the system to changes in F . Despite the “fast” physics
of the atmosphere and planetary surface, we have seen that the
system contains natural and forced variability at “slow” timescales,
regulated by such emergent features of the general circulation such
as the Meridional Overturning Circulation (MOC). The timescales

of changes in forcing, such as anthropogenic emissions since the
Industrial Revolution, and of responses in features such as MOC
demand modeling tools capable of century-long simulations under
many possible forcing pathways, 100 simulations of 100 SY each,
as argued in Sec. 2. We have reviewed the arguments for km-scale
models in Sec. 3, which are quite limited in capability compared
to the GCMs (optimistically, perhaps capable of O(10) simulations
each of O(10) SY in length on the largest available computing,
an order of magnitude below that, 36, 87). Simultaneously, those
exploring policy responses require very fast models for exploring
many policy options under many forcing scenarios.

The sense that GCMs may be obsolete comes from these con-
flicting demands: very high resolution for some key processes,
which restrict the ability to explore and quantify uncertainties and
study low-frequency variability; the need to explore many coun-
terfactual scenarios for constructing climate policy, which cannot
be guided simply by present-day observations; the long simula-
tion times needed to understand prior episodes of abrupt climate
change.

As noted in the comparison with neuroscience, this is a debate
across many fields, on how much reliance to place on the most
complex models capturing detail using the elements of the finest
representation of all the elements in a complex system. Such
simulations are sometimes now called “digital twins”, borrowing a
term from manufacturing (e.g., 88), where it originally meant an
exact digital copy of an engineered system and its specifications. It
has been increasingly used to describe complex systems, including
living systems (89). But as noted in (89), for sufficiently complex
systems, we need simulations at multiple levels of abstraction and
complexity.

The MOC is a case in point. At the broadest level, the Earth is
warmed by radiation from the Sun around the Tropics, and loses
heat near the Poles, implying an Equator-to-Pole transport of heat
in the ocean-atmosphere system. In the ocean, for the current
planetary topography, this results in what is referred to as the
ocean’s “conveyor belt” for heat and energy (90). Looking a little
closer, we see important features such as the horizontal gyres that
also contribute to the meridional transport of heat northward in the
North Atlantic (91), an important feature regulating the climate on
the continents around (92). Zooming further in, we can see that
turbulent eddies continue to transport heat across the meridional
flow in the North Atlantic (93). All levels of explanation are broadly
consistent with data, and while each rung of the ladder of complex-
ity can be described in terms of residuals of a fine-scale balance
from a level below, the balance is regulated by global constraints
such as the Equator-to-Pole radiative imbalance. In short, it is the
entire hierarchy that constitutes our understanding of the MOC.

In the modeling of complex multiscale systems, calling one of
these layers a “twin” at the expense of others appears to be a
rhetorical overreach (94). Indeed in speaking of the HBP in (95),
the ambition is sharply circumscribed:

In constructing a ‘digital twin’ of a living organ, one is con-
fronted by important challenges over and above those
encountered when constructing the digital twin of an inan-
imate object. Therefore, the concept of the ‘digital twin’
in this context needs to be carefully defined to provide
clarity on its limitations and to avoid creating unrealistic
expectations of exact fidelity ... The digital twin is thus
a copy in the practical sense, usually associated with a
model of a function or process, and its power lies in its
usefulness in dealing with relevant problems faced by its
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Fig. 4. Different views of the MOC, from models at various levels of Charney’s ladder.
They all exhibit fidelity to aspects of our knowledge of the MOC, and our understanding
of the MOC lies in the composite.

physical counterpart without the need (and certainly not
the claim) of capturing every single detail thereof.

In the climate context, this could describe any numerical model
dating back to (5)!

We have demonstrated (Sec. 5) that there are methods for
making the model hierarchy traceable, by showing how to derive a
parameterization on the basis of a model further up what Charney
called the model “ladder” (15). It might be worth including such
high-resolution benchmarks for the training of parameterizations
in future model intercomparison projects for a new generation of
GCMs calibrated using the methods outlined here. Similar methods
can be imagined to link the reduced complexity models of (79) to
GCMs, from which we can carefully explore how to remove the
biases in the GCMs themselves, such as those outlined in Sec. 3.

We contend in this article that the GCM remains the indis-
pensable meeting point of these divergent directions. Its structure
encapsulates our fundamental understanding of how the climate
works, and represents an astute assembly of choices and tradeoffs
that are versatile enough to meet the challenges outlined here.
The GCM’s column structure reflects the importance of separating
the vertical in the model topology, and the importance of convec-
tion and its timescales in atmosphere and ocean. The structural
independence of columns has been seen as a limitation, but new
methods can use non-local predictors (96). The stochastic param-
eterizations mentioned in Sec. 4 also impose non-local (in space
and time) coherence to the stochasticity (97).

Just as data assimilation techniques for constraining trajectories
toward a time series of observations led to major improvements
in NWP (20), these new methods, based on data from process
models such as CRMs, or observations, as well imposing physical
constraints, hold out the possibility of efficiently approaching the
attractors of the system, the key feature distinguishing the climate
problem from weather, as outlined in Sec. 2. The recommendation
is to adopt a rigorous, transparent, and reproducible tuning pro-
cess, rather than assuming tuning will simply disappear when we
simulate at a high enough level of detail.

Finally, we do not wish to forget the use of models as pedagogi-
cal tools, for students to explore climate response, to have “fun” – a
point repeatedly made by Manabe after receiving the Nobel Prize,

e.g in his first Manabe Nobel press conference||. Models must in
addition be easy to use to explore their sensitivity to counterfac-
tual changes, explore novel and risky ideas on how it responds to
perturbations.

The future modeling landscape must rest on the principle of
a traceable model hierarchy (15). Models at every level of the
hierarchy have their own forms of structural uncertainty, as noted
above: this uncertainty does not vanish at any conceivable model
resolution possible on any known computational technology. Each
model can be put to multiple uses and subject to diverse physi-
cal and computational constraints. The traditional GCM, with its
ability to combine resolved dynamics with unresolved physics for
a non-stationary Earth system, remains the crossroads between
models built for other purposes: models that can resolve some
of the physical uncertainties, but in limited settings, models that
can be used to study transitions in the climate system that are
abrupt events between millennia-long stable states, and emulators
that produce corrected data for downstream users. Each of these
involve tradeoffs sacrificing accuracy in one part of the climate sys-
tem against another. The GCM will remain the essential element
ensuring that these tradeoffs remain within reasonable limits for
the entire Earth system.
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