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Abstract
This paper presents Ψ-GNN, a novel Graph Neu-
ral Network (GNN) approach for solving the ubiq-
uitous Poisson PDE problems with mixed bound-
ary conditions. By leveraging the Implicit Layer
Theory, Ψ-GNN models an “infinitely” deep net-
work, thus avoiding the empirical tuning of the
number of required Message Passing layers to
attain the solution. Its original architecture ex-
plicitly takes into account the boundary condi-
tions, a critical pre-requisite for physical applica-
tions, and is able to adapt to any initially provided
solution. Ψ-GNN is trained using a “physics-
informed” loss, and the training process is sta-
ble by design, and insensitive to its initialization.
Furthermore, the consistency of the approach is
theoretically proven, and its flexibility and gen-
eralization efficiency are experimentally demon-
strated: the same learned model can accurately
handle unstructured meshes of various sizes, as
well as different boundary conditions. To the best
of our knowledge, Ψ-GNN is the first physics-
informed GNN-based method that can handle var-
ious unstructured domains, boundary conditions
and initial solutions while also providing conver-
gence guarantees.

1. Introduction
Partial differential equations (PDEs) are highly detailed
mathematical models that describe complex physical or ar-
tificial processes in engineering and science (Olver, 2013).
Although they have been widely studied for many years,
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solving these equations at scale remains daunting, limited
by the computational cost of resolving the smallest spatio-
temporal scales (Morton & Mayers, 2005). One of the
most common and important PDEs in engineering is the
steady-state Poisson equation, mathematically described as
−∆u = f on some domain Ω ⊂ Rn (usually, n = 2 or
3) and some forcing term f , where u is the solution to be
sought. The Poisson equation appears in various fields such
as Gravity (Mannheim & Kazanas, 1994), Electrostatics
(Luty et al., 1992), Surface reconstruction (Kazhdan et al.,
2006), or Fluid mechanics (Guermond & Quartapelle, 1998).
It is ubiquitous and plays a central role in modern numerical
solvers. Despite progresses in the High-Performance Com-
puting (HPC) community, solving large Poisson problems
is achievable only by employing robust yet tedious iterative
methods (Saad, 2003) and remains the major bottleneck in
the speedup of industrial numerical simulations.

More recently, data-driven methods based on deep neural
networks have been reshaping the domain of numerical sim-
ulation. Neural networks can provide faster predictions,
reducing the turnaround time for workflows in engineering
and science (Wiewel et al., 2019; Um et al., 2020; Kochkov
et al., 2021) – see also our quick survey in Section 2. How-
ever, the lack of guarantees about the consistency and con-
vergence of deep learning approaches makes it non-viable to
implement these models in the design and production stage
of new engineering solutions.

This work introduces Ψ-GNN1, an Implicit Graph Neural
Network (GNN) approach that iteratively solves a Pois-
son problem with mixed boundary conditions. Leverag-
ing Implicit Layer Theory (Bai et al., 2019), the proposed
model controls, by itself, the number of Message Passing
layers needed to reach the solution, yielding excellent out-
of-distribution generalization to mesh sizes and shapes. The
Ψ-GNN architecture, detailed in Section 3, is based on
a node-oriented approach, which inherently respects the
boundary conditions, and an additional autoencoding pro-
cess allows it to be flexible with respect to its initialization.
The method is trained end-to-end, mainly minimizing the
residual of the discretized Poisson problem, thus attempting
to learn the physics of the problem; However, in practice,
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some additional lightly-weighted supervised loss (MSE with
ground-truth solutions) is still necessary for convergence
when Neumann conditions are present. To ensure the sta-
bility of the model, a regularized cost function (Bai et al.,
2021) is used to constrain the spectral radius of the Ma-
chine Learning solver, thus providing strong convergence
guarantees. We prove (Section 4) the consistency of the ap-
proach and demonstrate its generalization ability in Section
5 through experiments with various geometries and bound-
ary conditions. We also discuss the complexity of Ψ-GNN
to get insights into its performance and discuss its relation
to state-of-the-art Machine Learning models.

2. Related Work
In the past few years, the use of Machine Learning models
to predict solutions of PDEs has gained significant interest
in the community, beginning in the 90s with pioneering
work from Lee & Kang (1990) and Lagaris et al. (1998).
Since then, much research has focused on building more
complex neural network architectures with a larger number
of parameters, taking advantage of increasing computational
power as demonstrated in Smaoui & Al-Enezi (2004) or
Kumar & Yadav (2011).

CNNs for physics simulations Despite these convincing
advances that employed fully connected neural networks,
these methods were quickly overtaken by the tremendous
progress in computer vision and the rise of Convolutional
Neural Networks (CNNs) (LeCun et al., 1995). Due to
its engineering interest, a significant amount of research
has focused on using CNNs to solve the Poisson equation,
as demonstrated in Tang et al. (2017); Hsieh et al. (2019);
Özbay et al. (2021) or Cheng et al. (2021). All these ap-
proaches have shown promising results, approximating so-
lutions up to 30 times faster than classical solvers by taking
advantage of the GPU parallelization offered in the Machine
Learning area. Still, their application remains limited to
structured grids with uniform discretization.

GNNs for physics simulations To address this shortcom-
ing, recent studies have focused on Graph Neural Net-
works (GNNs) (Battaglia et al., 2016), a class of neural
networks that can learn from unstructured data. Similar
to CNN-oriented research, some studies have focused on
using GNNs to solve the Poisson equation, starting with the
work of Alet et al. (2019). Li et al. (2020) introduce a graph
kernel network to approximate PDEs with a specific focus
on the resolution of a 2D Poisson problem, and in Chen et al.
(2022), a multi-level GNN architecture is trained through
supervised learning to solve the Poisson Pressure equation
in the context of fluid simulations. These approaches outper-
form the CNN-based models due to their generalization to
unstructured grids. However, these methods rely mainly on
supervised learning losses, and the absence of the physics of

the problem hinders their performance on out-of-distribution
examples. Additionally, the treatment of boundary condi-
tions is often missing and remains a significant challenge
for practical use in industrial processes.

The Physics-Informed approach In parallel to these
architectural advancements, another research direction fo-
cuses on a new class of Deep Learning method called
Physics-Informed Neural Networks (PINNs), which has
emerged as a very promising tool for solving scientific com-
putational problems (Raissi & Karniadakis, 2018). These
methods are mesh-free and specifically designed to integrate
the PDE into the training loss. Numerous works have used
this approach to solve more complex problems, such as in
fluid mechanics as demonstrated in Wu et al. (2018); Jin
et al. (2021), or Cai et al. (2022). Therefore, the approach
of training a model by minimizing the residual equation is
well known and has been combined with GNNs to build
an autoregressive Machine Learning PDE solver (Brand-
stetter et al., 2022) or solve a 2D Poisson equation (Gao
et al., 2022). However, our method is mesh-based and dis-
tinguished by its ability to generalize to different domains,
boundary conditions and initial solutions.

Deep Statistical Solver Our work is closely related to
Donon et al. (2020), where a GNN is used to efficiently
solve a Poisson problem with Dirichlet boundary conditions.
We propose a novel GNN-based architecture that can handle
mixed boundary conditions, making it extensible to CFD
cases. In previous work, the number of Message Passing
Neural Networks (MPNN) needed to achieve convergence
was fixed, and it was proved that it had to be proportional
to the largest diameter of meshes in the dataset for the ap-
proach to be consistent. Nastorg et al. (2022) further im-
prove upon by introducing a Recurrent Graph architecture
which significantly reduces the model size. Besides, they
experimentally demonstrate that if the model is trained with
sufficient MPNN iterations, it tends to converge toward a
fixed point. However, the number of iterations remains
fixed, and the model has poor generalization capabilities
to different mesh sizes. To address this issue, we propose
using Implicit Layer Theory (Bai et al., 2019) to model an
infinitely deep neural network that controls the number of
Message Passing steps to reach convergence.

3. Methodology
In this section, we provide a detailed methodology for the
study, including problem statement 3.1, graph interpretation
and statistical problem 3.2, model architecture 3.3, regular-
ization technique 3.4 and training process 3.5.
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3.1. Problem statement

Let Ω ⊂ Rn be a bounded open domain with smooth bound-
ary ∂Ω = ∂ΩD ∪∂ΩN . To ensure the existence and unique-
ness of the solution, special constraints (referred to as bound-
ary conditions) must be specified on the boundary ∂Ω of Ω
(Langtangen & Mardal, 2019): Dirichlet conditions assign a
known value for the solution u on (part of) ∂Ω, and homoge-
neous Neumann boundary conditions impose that no part of
the solution u is leaving the domain. More formally, let f be
a continuous function defined on Ω, g a continuous function
defined on ∂ΩD and n the outward normal vector defined on
∂Ω. The Poisson problem with mixed boundary conditions
(i.e. Dirichlet and homogeneous Neumann boundary condi-
tions) consists in finding a real-valued function u, defined
on Ω, that satisfies:


−∆u = f ∈ Ω

u = g ∈ ∂ΩD
∂u
∂n = 0 ∈ ∂ΩN

(1)

Except in very specific instances, no analytical solution
can be derived for the Poisson problem, and its solution
must be numerically approximated: the domain Ω is first
discretized into an unstructured mesh, denoted Ωh. The
Poisson equation (1) is then spatially discretized using the
Finite Element Method (FEM) (Reddy, 2019). The approx-
imate solution uh is sought as a vector of values defined
on all N degrees of freedom of Ωh. N in turn depends
on the type of elements chosen (i.e., the precision order of
the approximation wanted): choosing first-order Lagrange
elements, N matches the number of nodes in Ωh. The dis-
cretization of the variational formulation with Galerkin’s
method leads to solving a linear system of the form:

AU = B (2)

where the sparse matrix A ∈ RN×N is the discretization
of the continuous Laplace operator, vector B ∈ RN comes
from the discretization of the force term f and of the mixed
boundary conditions, and U ∈ RN is the solution vector to
be sought.

Let F be a set of continuous functions on Ω and G a set
of continuous functions on ∂ΩD. We denote as P a set
of Poisson problems, such that any element Ep ∈ P is
described as a triplet:

Ep = (Ωp, fp, gp)

where Ωp ⊂ Ω, fp ∈ F and gp ∈ G. For all Ep ∈ P , let
Eh,p ∈ Ph denote its discretization, such that:

Eh,p = (Ωh,p, Ap, Bp)

where Ωh,p ⊂ Ωh and Ap and Bp are defined as for Eq. (2).

The fundamental idea of Ψ-GNN is, considering a continu-
ous Poisson problem Ep ∈ P , to build a Machine Learning
solver, parametrized by a vector θ, which outputs a statisti-
cally correct solution Up of its respective discretized form
Eh,p ∈ Ph:

Up = solverθ (Eh,p) = solverθ (Ωh,p, Ap, Bp) (3)

3.2. Statistical problem

In (2), it should be noted that the structure of matrix A
encodes the geometry of its corresponding mesh. Indeed,
for each node, using first-order finite elements leads to the
creation of local stencils, which represent local connections
between mesh nodes. A crucial upside of using GNNs in
physics simulations is related to the right treatment of bound-
ary conditions. In (2), the Dirichlet boundary conditions
break the symmetry of the matrix A. Therefore, we use a di-
rected graph at those particular nodes, sending information
only to its neighbours without receiving any. Conversely,
Interior and Neumann nodes have bi-directional edges, thus
exchanging information with each other until convergence.
Figure 4 illustrates such a graph with the three types of
nodes: Interior, Dirichlet and Neumann.

A discretized Poisson problem Eh = (Ωh, A, B) with N
degrees of freedom can be interpreted as a graph problem
G = (N, A, B), where N is the number of nodes in
the graph, A = (aij)(i,j)∈[N ]2 is the weighted adjacency
matrix that represents the interactions between the nodes
and B = (bi)i∈[N ] is some local external input. Vector
U = (ui)i∈[N ] represents the state of the graph, ui being
the state of node i. Let S be the set of all such graphs G,
and U the set of all states U . By abuse of notation, we will
write S = Ph.

Additionally, let Lres be the real-valued function which com-
putes the mean square error (MSE) of the residual of the
discretized equation:

Lres(U, G) = MSE (AU −B) (4)

=
1

N

∑
i∈[N ]

(
− bi +

∑
j∈[N ]

ai,juj

)2

(5)

The intuitive problem is given a graph G to find an optimal
state in U that minimizes (5). More generally, we are inter-
ested in building a Machine Learning solver, parametrized
by θ, which finds such an optimal state for any graphs G
sampled from a given distribution D over S. Hence, the
statistical problem can be formulated as follows: Given a
distribution D on space S and a loss function L, solve:

θ∗ = argmin
θ

E
G∼D

[Lres (solverθ (G) , G)] (6)
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Figure 1. Diagram of Ψ-GNN: The model uses an Encode-Process-Decode architecture. The encoder maps an initial solution U0 to
some latent representation H0. The processor outputs a final latent state Ĥ by considering a different treatment for each node type.
Specific MPNN for Interior and Neumann nodes are computed to build a GNN function hθ . A black-box “RootFind” solver automatically
propagates the information through the graph by finding the fixed point H∗ of hθ . Dirichlet nodes are preserved during the process and
combined with H∗ to get the final latent state Ĥ . The decoder maps Ĥ back to the physical space to get the final solution Û .

3.3. Architecture

Figure 1 gives a global view of Ψ-GNN, a Graph Neural
Network model with three main components: an Encoder, a
Processor, and a Decoder. The “Encoder-Decoder” mecha-
nism facilitates the connection between the physical space,
where the solution lives, and the latent space, where the
GNN layers are applied. The Processor is the core compo-
nent of the model, responsible for propagating the informa-
tion correctly within the graph. It is specifically designed
with two key features: i) automatically controls the number
of Message Passing steps required for convergence; ii) prop-
erly takes into account the boundary conditions by design.

Encoder The encoder Eθ maps an initial solution U0 ∈
U to a d−dimensional latent state H0 ∈ H, d > 1. The
provided initial solution must fulfill the Dirichlet boundary
conditions. This trainable function projects the physical
space U to a higher dimensional latent space H on which
the GNN layers will be applied.

Processor The processor uses a specialized approach for
each node type to ensure adherence to the boundary con-
ditions. For Dirichlet boundary nodes, the corresponding
latent variable is kept constant, equal to the imposed value.
To propagate the information, the processor constructs a
GNN-based function hθ that takes into account messages
for both the Interior and Neumann nodes, effectively captur-
ing the distinct stencils of the discretized Laplace operator.

Interior nodes messages Three separate messages are
computed for each node, corresponding to the outgoing, in-
coming and self-loop links, using trainable functions ΦI

→,θ,

ΦI
←,θ and Φ⟲,θ:

ϕI→,i =
∑

j∈N (i)

ΦI
→,θ (Hi, Hj , dij) (7)

ϕI←,i =
∑

j∈N (i)

ΦI
←,θ (Hi, Hj , dji) (8)

ϕI⟲,i = Φ⟲,θ (Hi, ti) (9)

where j ∈ N (i) stands for all the nodes j in the one-hop
neighbourhood of i, dij represents the euclidean distance
between two nodes i and j, and ti is a one-hot vector that
differentiates node types.

To compute the updated Interior latent variable zI :=
(zIi )i∈[N ], messages (7), (8) and (9) are combined with
problem-specific data bi (such as the discretized f and g
functions from (1)) and passed through a modified GRU cell
(Chung et al., 2014) as follows:

αi = Ψ1
θ

(
Hi, bi, ϕ

I
→,i, ϕ

I
←,i, ϕ

I
⟲,i

)
(10)

βi = Ψ2
θ

(
Hi, bi, ϕ

I
→,i, ϕ

I
←,i, ϕ

I
⟲,i

)
(11)

ζi = Ψ3
θ

(
βi ∗Hi, bi, ϕ

I
→,i, ϕ

I
←,i, ϕ

I
⟲,i

)
(12)

zIi = Hi + αi ∗ ζi (13)

where Ψ1
θ, Ψ2

θ and Ψ3
θ are trainable functions. Figure 5

from Appendix A displays this specific architecture, which
is responsible for the flow of information within the Interior
nodes of the graph.

Neumann nodes messages Two distinct messages are com-
puted: one from an incoming link and the other from a self-
loop link, both designed to capture the stencil that ensures
homogeneous Neumann boundary conditions. They are con-
structed in a similar manner to (8) and (9), using trainable
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functions ΦN
←,θ and Φ⟲,θ:

ϕN←,i =
∑

j∈N (i)

ΦN
←,θ (Hi, Hj , dji) (14)

ϕN⟲,i = Φ⟲,θ (Hi, ti) (15)

The updated Neumann latent variable zN := (zNi )i∈[N ]

is computed by combining messages (14) and (15) with
problem-related data bi and the information on the normal
vector ni, and passing the result through a trainable function
Ψ4

θ as follows:

zNi = Ψ4
θ

(
Hi, bi, ni, ϕ

N
←,i, ϕ

N
⟲,i

)
(16)

The GNN-based function hθ is designed to separate the
Interior and Neumann messages and is given by:

hθ(H,G) = LN
([

zI, zN
])

(17)

where LN stands for the Layer Normalization operation (Ba
et al., 2016).

Fixed-point problem One step of message passing only prop-
agates information from one node to its immediate neigh-
bours. In order to propagate information throughout the
graph, previous works (Nastorg et al., 2022) repeatedly
performed the message passing step, i.e., looped over the
function hθ, either for a fixed number of iterations or until
the problem converges. Iterating until convergence amounts
to solving a fixed-point problem H∗ = hθ (H

∗, G). Hence
we propose to leverage Implicit Layer Theory and to use
some black-box RootFind procedure to directly solve the
fixed-point problem:

H∗ = RootFind (hθ (H, G)−H) (18)

This approach eliminates the need for a pre-defined number
of iterations of hθ and only requires a threshold precision of
the RootFind solver, resulting in a more adaptable and flex-
ible approach. To solve Equation (18), Newton’s methods
are the methods of choice, thanks to their fast convergence
guarantees. However, to avoid the costly computation of the
inverse Jacobian at each Newton iteration, we will use the
quasi-Newton Broyden algorithm (Broyden, 1965), which
uses low-rank updates to maintain an approximation of the
Jacobian.

Final latent state The final latent variable Ĥ is obtained
by combining the output H∗ from the “Interior-Neumann”
process with the initial latent state H0, which was held
constant for Dirichlet boundary nodes:

Ĥ =
[
H0, H∗

]
(19)

Decoder The decoder Dθ maps a final latent variable
Ĥ ∈ H to a meaningful physical solution Û ∈ U . This

trainable function is designed as an inverse operation to the
encoder. Indeed, the decoder projects back the latent space
H into the physical space U so that we can calculate the
various losses used to train the model.

3.4. Stabilization

In section 3.3, we modelled a GNN-based network with an
“infinite” depth by using a black-box solver to find the fixed
point of function hθ, enabling for unrestricted information
flow throughout the entire graph. However, such implicit
models suffer from two significant downsides: they tend
to be unstable during the training phase and are very sensi-
tive to architectural choices, where minimal changes to hθ

can lead to large convergence instabilities. Fortunately, the
spectral radius of the Jacobian Jhθ

(H∗) directly impacts the
stability of the model around the fixed point H∗: Following
Bai et al. (2021), who add a constraint on the spectral radius
of the Jacobian ρ (Jhθ

), we add the Jacobian term (23) in the
loss function described in 3.5. However, since computing
the spectral radius is far too computationally costly, and be-
cause the Frobenius norm of the Jacobian is an upper bound
for its spectral radius, we adopt the method outlined in (Bai
et al., 2021), which estimates this Frobenius norm using the
Hutchinson estimator (Hutchinson, 1990). By doing so, we
build a model that satisfies ρ (Jhθ

) < 1, and the function hθ

becomes contractive, thus ensuring the global asymptotic
convergence of the model. As a result, during inference, one
can simply iterate on the Processor (in an RNN-like manner)
until convergence. Additionally, the model could work with
any kind of RootFind solver. Overall, this approach offers
strong convergence guarantees and addresses the stability
issues commonly encountered in implicit models.

3.5. Training

Loss function All trainable blocks in Equations (7) to
(16), the encoder Eθ, and the decoder Dθ, are implemented
as multi-layer perceptrons. They are all trained simultane-
ously, minimizing the following cost function:

L = Lres(Û , G) + λ×MSE
(
Û − U ex

)
(20)

+ MSE
(
Eθ(Û)− Ĥ

)
(21)

+ MSE
(
Dθ(E(Û))− Û

)
(22)

+ β × ||Jfθ (H∗)||F (23)

Line (20) combines the residual loss (5) with a supervised
loss (U ex being the LU ground truth. and λ a small weight,
see Section 5); Line (23) is the regularizing term defined
in 3.4; Lines (21) and (22) are designed to learn the au-
toencoding mechanism together: Line (21) aims to properly
encode a solution while Line (22) steers the decoder to be
the inverse of the encoder. To handle the minimization of
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the overall structure, a single optimizer is used with two
different learning rates, one for the autoencoding process
and one for the Message Passing process. This ensures that
the autoencoding process is solely utilized for the purpose
of bridging the physical and latent spaces, with no direct
impact on the accuracy of the computed solution.

Backpropagation The training of the proposed model
has been found to be computationally intensive or even
infeasible when backpropagating through all the operations
of the fixed-point solver. However, using the approach
outlined in Theorem 1 in (Bai et al., 2019) significantly
enhances the training process by differentiating directly at
the fixed point, thanks to the implicit function theorem.
This methodology requires the resolution of two fixed-point
problems, one during the inference phase and the other
during the backpropagation phase. In contrast to traditional
methods, this approach removes the need to open the black-
box, and only requires constant memory.

Supplementary materials concerning the model’s architec-
ture and implementation, regularization and training process
can be found in Appendix B and C.

4. Theoretical properties
Given a problem G = (N,A,B) to be solved, where, as
in Section 3.2, A and B are respectively interaction and
individual terms on the N nodes of the graph G, we search
for the optimal solution U∗(G) that minimizes:

U∗(G) = argmin
U

Lres(U, G) (24)

Note that the mapping φ : G 7→ U∗(G) is continu-
ous w.r.t. A and B in the Poisson problem case, where
Lres(U, G) = ∥AU −B∥2 (see Appendix F for all details
and proofs).

Instead of searching for U directly, as explained in Equation
18, we search for a function hG whose fixed point is U :

h∗G = argmin
h

Lres(FixedPoint(h), G) (25)

One may wonder whether Problems 24 and 25 are equiva-
lent. The second one is identical to the first one but for the
additional constraint that U can be written as FixedPoint(h)
for some h. This turns out to be always possible. Indeed one
can trivially define, for any given U , the constant functional
h(H) = U , whose only fixed point is H = U . Therefore
solving (25) yields the solution to the original problem (24).

Now the question is whether Ψ-GNN architecture is able
to find h∗G. As our problem satisfies the hypotheses of the
Corollary 1 of (Donon et al., 2020), we know that, for any
precision, there exists a DSS graph-NN φ̂ that, for any G,
approximates U∗(G) up to the required precision. Hence

this holds for the optimal function h∗(H,G) := ϕ(G) =
U∗(G). Note that this function is (extremely) contractive
w.r.t. H for fixed G, and that many other optimal functions
exist that yield the same fixed point. To favor contractive
functions within all these optimal solutions, one can add a
penalty to the loss, as done in Eq (23), which can be seen in a
Lagrangian spirit as a supplementary constraint. The graph-
NN obtained by this Corollary is not necessarily recurrent
(layers may differ from each other) but the proof can be
adapted to yield a graph-RNN, i.e. an implicit-layer graph-
NN as done for Ψ-GNN. Adding an auto-encoder around
this graph-RNN, we can prove the consistency result:

Theorem 4.1 (Universal Approximation Property). For any
arbitrary precision ε > 0, considering sufficiently large
layers, there exists a parameterization θ of Ψ-GNN archi-
tecture which yields a function hθ(H,G) which is “mainly”
contractive w.r.t. H , and whose fixed point will be the opti-
mal solution of task (24) up to ε, given as input any problem
G with any mesh, boundary conditions and force terms.

5. Experiments, Results, and Discussion
This section presents an in-depth evaluation of Ψ-GNN,
based on experiments on synthetic data.

Synthetic dataset The dataset used in all experiments
consists of 6000 / 2000 / 2000 training/validation/test sam-
ples of Poisson problems (1) generated as follows. The 2D
domains are built with Bezier curves between 10 uniformly
drawn points in the unit square. Each domain is discretized
using the open source GMSH (Geuzaine & Remacle, 2009)
into an unstructured triangular mesh with approximately
200 to 700 nodes (automatic mesh generator does not in-
clude precise control of the number of nodes N ). Functions
f and g are defined as random quadratic polynomials with
coefficients sampled from uniform distributions. All details
are given in Appendix D.

Metrics Throughout these experiments, we will consider
the solution of Eq. (2) given by the classical LU decom-
position method as the “ground truth”. From there on, the
reported metrics are the Residual Loss (5), in red on all fig-
ures, the Mean Squared Error (MSE), in blue on all figures,
and the Pearson correlation with the ground truth. Further-
more, all experiments are run three times with the same
dataset and different random seeds, and the worst result
out of the three is reported.

Experimental setup Ψ-GNN is implemented in Pytorch
using the Pytorch-Geometric library (Fey & Lenssen, 2019)
to handle graph data. Training is done using 4 Nvidia Tesla
P100 GPUs and the Adam optimizer with its default Pytorch
hyperparameters, except for the initial learning rate, which
was set to 0.1 for the autoencoding process and 0.01 for the
main process, as discussed in section 3.5. The dimension
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d of the latent space H is set to 10. Each neural network
block in the architecture (equations 7 to 14) has one hidden
layer of dimension 10. ReLU is used as activation function
for ΦI

→,θ, ΦI
←,θ, Φ⟲,θ, ΦN

←,θ, Ψ4
θ, Eθ and Dθ, Sigmoid

for Ψ1
θ and Ψ2

θ and Tanh for Ψ3
θ. The ReduceLROnPlateau

scheduler from Pytorch is used to progressively reduce the
learning rate from a factor of 0.5 during the process, en-
hancing the training. For both the training and the inference
phases, the network is initialized to zero everywhere, except
at the Dirichlet nodes, which are set to the corresponding
discrete value of g. Gradient clipping is employed to prevent
exploding gradient issues and set to 10−2. The loss function
defined in 3.5 is computed with λ = 0.1 and β = 1.0. The
model requires, at each iteration, the solution of two fixed
point problems, one for the forward pass and one for the
backward pass, as outlined in Section 3.5. These problems
are solved using Broyden’s method with a relative error as
the stopping criteria. The latter is set to 10−5 with a max-
imum of 500 iterations for the forward pass and to 10−8

with a maximum of 500 iterations for the backward pass.
These hyperparameters have been set experimentally after
multiple trials and errors, and their efficient tuning will be
considered in future work. The complete model has 3271
weights. Training is performed for 300 epochs with a batch
size of 30 with an average computation time of 70h.

Results Table 1 demonstrates the generalization effi-
ciency of Ψ-GNN for solving accurately Poisson problems
with mixed boundary conditions: all considered metrics
w.r.t. the LU ground truth have very low values on test
problems coming from the same distribution than the train-
ing samples. Figure 2 illustrates the solution of a problem
for one example of the test set. Ψ-GNN implicitly propa-
gates information between graph nodes until convergence,
as evidenced by the red and blue curves representing the
fixed point found after 78 iterations of Broyden algorithm.
The autoencoding process ensures that the Dirichlet bound-
ary conditions are encoded and decoded accurately, and
hence preserved throughout the iterations. The error map
shows that the highest errors are mostly located at the Neu-
mann nodes towards the centre of the geometry. This is
consistent as the information is derived from the Dirichlet
boundary nodes (pink nodes in the middle left plot), making
the Neumann nodes (yellow nodes in the middle left plot)
particularly challenging to learn due to their distance from
the initial flow of information.

Table 1. Results averaged over the whole test set.

METRICS Ψ-GNN

RESIDUAL 1.25E-2 ± 1.3E-3
MSE W/LU 9.17E-2 ± 2.6E-2
CORRELATION W/LU > 99.9%
TIME PER INSTANCE (S) 0.05

Figure 2. Comparison between Ψ-GNN (top left) and the LU
“ground truth” on a test example with 370 nodes. At convergence:
Residual loss: 8.17e-3, MSE loss: 3.07e-1, MSE for Dirichlet
nodes: 3.27e-4. The top middle plot displays the three types of
nodes (black: Interior, pink: Dirichlet, yellow: Neumann), and the
top right plot shows the map of squared error. Bottom: evolution
of the Residual and MSE loss along the 120 iterations of the Broy-
den solver.

Contractivity The purpose of the regularization term (23)
is to constrain the spectral radius of the Jacobian Jhθ

(H∗),
ensuring the stability of the model around the fixed point
H∗, as discussed in Section 3.4. The results on the test set
indicate that this regularization is effective, with an average
spectral radius of 0.989 ± 6e-4 < 1, estimated a posteriori
via the Power Iteration method (Golub & Van der Vorst,
2000). The regularization effect on the training process can
be seen in Appendix E.1, where we observe the spectral
radius converging towards 1 as training progresses.

Out-of-distribution sample To further illustrate this, we
conduct an experiment on a geometry representing a cari-
catural Formula 1 with 1219 nodes. This geometry includes
“holes” (such as a cockpit and front and rear wing stripes)
and is larger (1219 nodes) than those seen in the training
dataset, providing a challenging test of the model’s ability
to generalize to out-of-distribution examples. We impose
Dirichlet boundary conditions on all exterior nodes (pink
nodes in the vertical plot at the left of Figure 3) and Neu-
mann conditions on the nodes within the “holes” (yellow
nodes). Functions f and g of (1) are randomly sampled
from the same distribution as for the training set. The equi-
librium of the model is found by simply iterating on the
Processor instead of relying on Broyden’s algorithm. The
stopping criteria is the relative error set to 10−5. The results
Figure 3 demonstrate the contracting nature of the learned
function that converges to the fixed point when iterated. Fur-
thermore, it also demonstrates the generalization capacity
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Figure 3. Generalization on the “out-of-distribution” F1 shape, 1219 nodes. Central plot: Residual and MSE during the 253 iterations of
the Processor (i.e., without using RootFind), demonstrating the contractivity of hθ . Final values: Residual: 1.3e-2, MSE: 1.8e-1, MSE
on Dirichlet nodes: 2.3e-4 and Spectral radius of the Jacobian: 0.97 are identical to those obtained when using RootFind. Left: The
boundary conditions. Top: the visual evolution of the squared error, displaying the flow of information from Dirichlet nodes inward.

of the learned model to this out-of-distribution example.
Additionally, the figure also illustrates how the information
propagates through the graph, starting from the Dirichlet
nodes to gradually filling the whole domain.

Generalization analysis In Appendix E, we present three
supplementary experiments that assess the performance of
Ψ-GNN on larger mesh sizes, initial solutions, and RootFind
solvers. Firstly, we demonstrate in E.2 that the model can
generalize effectively to larger dimensional geometries with
similar low Residual loss values. However, we note rel-
atively high MSE values, which may be attributed to in-
creased problem conditioning. A future research direction
is to investigate how to improve the conditioning of these
problems in order to enhance performance. Secondly, in
E.3, we demonstrate that Ψ-GNN can adapt the number of
iterations required to reach convergence based on the prox-
imity of the initial solution to the final solution. This ability
allows Ψ-GNN to converge more efficiently by requiring
fewer iterations if the initial solution is closer to the final
solution. Finally, we show in E.4 that our model can achieve
similar solutions using various RootFind solvers, such as
the Broyden algorithm, Iteration on the Processor, or the
Anderson acceleration solver (Walker & Ni, 2011). This
demonstrates that Ψ-GNN is robust and flexible in its ability
to adapt to different solvers.

Discussion Comparing Ψ-GNN with other state-of-the-
art Machine Learning models is not straightforward. The
most similar work is that of Donon et al. (2020) (DSS),
as previously discussed in Section 2. Although the prob-
lems addressed are different, as we now consider Neumann
boundary conditions, the distinctions are noteworthy and
are discussed in more detail in Appendix E.5. Specifically,
we detail how we built upon the DSS architecture to create

a general framework that is flexible to any mesh size and
initial solution, and respects boundary conditions, making it
more suitable for deployment in industrial context.

Inference Complexity In order to determine the thresh-
old at which performance enhancements can be expected,
it is crucial to analyze the complexity of the model. By
utilizing the forward iteration method, where the Processor
is iterated upon, the complexity is found to be O(KNmd4),
scaling linearly with the number of nodes, N . Here, K
represents the number of iterations, d is the dimension of
the latent space, and m is the average size of the number of
neighbours. On the other hand, when utilizing the Broyden
method, the complexity corresponds to that of the Broyden
algorithm, which is of O(MN2) if M is the number of
iterations of RootFind. M being in general smaller than K
(though this remains to be proved), this complexity is some-
what lower than, for instance, that of the LU decomposition
methods of complexity O(N3).

6. Conclusions and Future Work
This paper has introduced Ψ-GNN, a groundbreaking consis-
tent Machine Learning-based approach that combines Graph
Neural Networks and Implicit Layer Theory to effectively
solve a wide range of Poisson problems. The model, trained
in a “physics-informed” manner, is found to be robust, sta-
ble, and highly adaptable to varying mesh sizes, domain
shapes, boundary conditions, and initialization, though more
systematic experiments will explore and delineate its gen-
eralization capabilities. To the best of our knowledge, this
approach is distinct from any previous Machine Learning
based methods. Furthermore, Ψ-GNN can be extended to
other steady-state partial differential equations and its appli-
cation to 3-dimensional domains is straightforward. Overall,
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the results of this study demonstrate the significant potential
of Ψ-GNN in solving Poisson problems in a consistent and
efficient manner.

The long-term objective of the program driving this work is
to accelerate industrial Computation Fluid Dynamics (CFD)
codes on software platforms such as OpenFOAM (Chen
et al., 2014). In future work, we aim to evaluate the effi-
ciency of the proposed approach by implementing it in an in-
dustrial CFD code, and assessing its impact on performance
acceleration. Moreover, despite its flexibility, the proposed
method is still limited by the size of the graph. Therefore,
scaling up using domain decomposition algorithms is being
considered as a future direction.
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A. Architectural precision
This Appendix provides additional illustrations that describe the architectural elements mentioned in Section 3.2 and 3.3.

Particular shape of the graph The structure of matrix A encodes the geometry of the corresponding mesh, as outlined in
3.2. Enforcing Dirichlet boundary conditions breaks the symmetry of matrix A, making the adjacency matrix a directed
graph at the Dirichlet nodes. This means information is only sent to neighbours, not received, consistent with the definition
of Dirichlet boundary conditions. Interior and Neumann nodes have bi-directional edges, allowing for information exchange
until convergence. It’s important to note that although the graph is undirected at Interior and Neumann nodes, their stencils
in matrix A are different, motivating separate Message Passing in the architecture 3.3. Figure 4 illustrates such a graph with
the three types of nodes: Interior, Dirichlet and Neumann.

Figure 4. Sketch of a considered graph, which includes the three types of nodes: Interior (green), Dirichlet (red), and Neumann (yellow).
The graph is directed at the Dirichlet nodes (dashed black arrows) and bi-directional between Neumann and Interior nodes (solid grey
arrows).

Interior nodes messages Figure 5 illustrates the update of an Interior node i, as described in 3.3.

Figure 5. Update of an interior latent node i: First, incoming, outgoing, and self-loop messages (ϕI←,i, ϕ
I
→,i, and ϕI⟲,i) are computed

(circled at the bottom). Next, these messages are combined with problem-specific data bi and passed as input to a modified GRU cell
(GRUMod). The GRUMod uses the current latent state Hi as latent input and outputs the updated latent state zi.
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B. Supplementary materials for training
This Appendix provides additional training material, explaining the format of vectors considered in 3.3 and the normalization
performed on the data.

Data information The architecture of the model described in 3.3 relies on several inputs whose format needs to be
precise. In equation 9, the self-loop message uses a one-hot ti vector to differentiate node types i such that:

ti =


[
1 0 0

]
i is Interior[

0 1 0
]

i is Dirichlet[
0 0 1

]
i is Neumann

, (26)

Similarly, equations 10, 11, 12 and 16 requires problem-related data, encoded into a vector bi such that:

bi =


[
fi 0 0

]
i is Interior[

0 gi 0
]

i is Dirichlet[
0 0 fi

]
i is Neumann

(27)

where fi and gi are the discretized values of the volumetric function f and the Dirichlet boundary function g from the
Poisson problem (1).

Data normalization In such problems, it is mandatory to normalize the input features to enhance the performance of the
model in the training phase. The distances dij in equations (8), (7), (14), the problem-related vector bi in equations (10),
(11), (12) and (16) and the normal vector ni in equation (16) are all normalized by subtracting their mean and dividing by
their standard deviation, computed on the entire dataset. Therefore, all inputs used for solution inference are normalized.
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C. Implicit Models
This section delves into the Implicit Layer Theory, providing supplementary information on its implementation. The
motivations for its use are outlined in C.1, followed by a detailed description of the training procedures in C.2, emphasising
backpropagation and exploiting Theorem 1 in (Bai et al., 2019). Furthermore, a comprehensive analysis of the Hutchinson
method (Hutchinson, 1990) used to calculate the regularizing term as defined in reference 23 is presented in C.3.

C.1. Motivations

Many architectures are available for training Graph Neural Network (GNN) models, as demonstrated in Wu et al. (2020).
In the context of this work, where we aim to solve a Poisson problem on unstructured meshes by directly minimizing the
residual of the discretized equation, the number of layers required to achieve convergence should be proportional to the
diameters of the meshes under consideration. Figure 6 illustrates the two common GNN architectures traditionally used for
this purpose. On the left, the final solution Ĥ is obtained after iterating on different Message Passing layers M i

θ, each with
distinct weights. This architecture is employed in approaches such as Donon et al. (2020). On the right, the architecture is of
recurrent type, where the final solution is obtained by iterating on the same neural network Mθ. This architecture has the
advantage of significantly reducing the size of the model, as employed in the work of Nastorg et al. (2022). In both methods,
the number of Message Passing steps is fixed, limiting the model’s ability to generalize to different mesh sizes. However,
using the recurrent architecture, it has been experimentally demonstrated that the model, trained with a sufficient
number of iterations, tends towards a fixed point.

Figure 6. Comparison between a usual GNN architecture (left) where different Message Passing layers M i
θ are stacked (i.e. the weights

are different for all layers) and a Recurrent-GNN structure where the solution Ĥ is computed iterating on the same Message Passing layer.

Building upon these previous experimental results, we propose to enhance the recurrent architecture by incorporating a
black-box RootFind solver to directly find the equilibrium point of the model, as illustrated in figure 7. In this approach, the
iterations (i.e. the flow of information) are performed implicitly within the RootFind solver. This method eliminates the
need for a fixed number of iterations, as the number of required Message Passing steps is now exclusively determined by the
precision imposed on the solver, resulting in a more adaptable and flexible approach.

Figure 7. The figure illustrates the proposed implicit-GNN architecture. The final solution Ĥ is computed as the equilibrium point of the
Mθ function using a black-box RootFind solver. The solver is initialized with an initial condition H0, and the Message Passing iterations
are performed implicitly within the solver

C.2. Training an Implicit Model

Following Bai et al. (2019), the training of an implicit model requires, at each iteration, the resolution of two fixed point
problems: one for the forward pass and one for the backward pass.

Forward pass The resolution of a fixed point for the forward pass is clear and represents the core of our approach. A
RootFind solver (i.e. a quasi-Newton method to avoid computing the inverse Jacobian of a Newton method at each iteration
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step) is used to determine the fixed point H∗ of the function hθ (17) such that:

H∗ = RootFind (hθ(H,G)−H) (28)

Backward pass However, using a black-box RootFind prevents the use of explicit backpropagation through the exact
operations performed at inference. Thankfully, Bai et al. (2019) propose a simpler alternative procedure that requires no
knowledge of the employed RootFind by directly computing the gradient at the equilibrium. The loss L with respect to the
weights θ is then given by:

∂L
∂θ

= − ∂L
∂H∗

(
J−1hθ

|H∗
) ∂hθ(H

∗, G)

∂θ
. (29)

where
(
J−1hθ

|H∗
)

is the inverse Jacobian of hθ evaluated at H∗. To avoid computing the expensive − ∂L
∂H∗

(
J−1hθ

|H∗
)

term in
(29), one can alternatively solve the following root find problem using Broyden’s method (or any RootFind solver) and the
autograd packages from Pytorch: (

JT
hθ
|H∗

)
xT +

(
∂L
∂H∗

)T

= 0 (30)

Consequently, the model is trained using a RootFind solver to compute the linear system (30) and directly backpropagate
through the equilibrium using (29).

C.3. Computing the regularizing term

In Section 3.4, we propose to rely on the method outlined in Bai et al. (2021) to regularize the model’s conditioning. The
spectral radius of the Jacobian ρ (Jhθ

), responsible for the stability of the model around the fixed point H∗, is constrained
by directly minimizing its Frobenius norm since it is an upper bound for the spectral radius. This method prevents the use of
computationally expensive methods (i.e. Power Iteration (Golub & Van der Vorst, 2000) for instance). The Frobenius norm
is estimated using the classical Hutchinson estimator ((Hutchinson, 1990)):

||Jhθ
||2F = Eϵ∈N (0,Id)

[
||ϵTJhθ

||22
]

(31)

where Jhθ
∈ Rd×d. The expectation (31) can be estimated using a Monte-Carlo method for which (empirically observed) a

single sample suffices to work well.
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D. In-depth description of the dataset
This Appendix gives supplementary information on the dataset used in this study and described in 5. The dataset is diverse,
consisting of a variety of sizes, shapes, force functions f , and Dirichlet boundary functions g (from the Poisson problem
(1)). It is inspired by the dataset used in Donon et al. (2020) and serves as a benchmark for evaluating the performance of
our proposed method. Figure 8 illustrates three samples from the training set, along with their corresponding solutions, to
give an idea of the complexity of the dataset.

Random domains Random 2D domains Ω are generated using 10 points, randomly sampled in the unit square. These
points are then connected using Bezier curves to form the boundary of the domain Ωh. We utilize the “MeshAdapt” mesher
from GMSH (Geuzaine & Remacle, 2009) to discretize Ω into an unstructured triangular mesh Ωh. We randomly divide
the geometry into fourths and apply Dirichlet boundary conditions on two opposite sections, while Neumann boundary
conditions are imposed on the remaining opposite sections.

Random functions Functions f and g are defined using the following equations:

f(x, y) = r1(x− 1)2 + r2y
2 + r3 (x, y) ∈ Ω (32)

g(x, y) = r4x
2 + r5y

2 + r6xy + r7x+ r8y + r9 (x, y) ∈ ∂Ω (33)

where ri∈[1,··· ,9] are randomly sampled in [−10, 10].

Figure 8. Example of three different domains extracted from the training set. Top: Discretized domains and their different node types
(black: Interior, pink: Dirichlet, yellow: Neumann). The outward normal vectors are also displayed at the boundary of the domains.
Bottom: The solution of a Poisson problem with random f and g functions applied to these geometries.
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E. Supplementary results
This Appendix provides additional information concerning the results highlighted in Section 5.

E.1. Spectral Radius evolution

Figure 9 displays the progression of the spectral radius throughout the training process, calculated at each epoch on the
validation set utilizing the Power Iteration method (Golub & Van der Vorst, 2000). It illustrates the regularizing term’s
impact, which aims to minimize the spectral radius, resulting in convergence towards a value of 1.

Figure 9. Evolution of spectral radius across the epochs of the validation set, converging towards a value of 1 as the training progresses

E.2. Generalization analysis

In this section, we perform an in-depth study to evaluate the performance of Ψ-GNN when applied to higher-dimensional
domains. To this end, we construct a new dataset, referred to as “LARGE,” following the methodology outlined in Sections
5 and D, which comprises domains with a range of nodes from 400 to 1000 (higher than the test dataset). Table 2 presents
the results on the “LARGE” dataset and compares them with the results from the test set. The results indicate that Ψ-GNN
is capable of effectively handling domains with a larger number of nodes, as evidenced by the similar low values of the
Residual loss, indicating the versatility of our approach. However, we observe relatively high errors on the MSE, which may
be attributed to increased problem conditioning. Specifically, the conditioning of the problem defined in (2), particularly
when considering Neumann boundary conditions, increases with the size of the domains. Thus, investigating methods
to improve the problem’s conditioning may be considered a potential avenue for future research to enhance the model’s
generalization performance.

Table 2. Results averaged over the whole new “Large” dataset and the test set.

METRICS TEST LARGE

RESIDUAL 1.25E-2 ± 1.3E-3 1.03E-2 ± 1.0E-2
MSE W/LU 9.17E-2 ± 2.6E-2 9.59 ± 3.48
CORRELATION W/LU > 99.9% > 92.1%

E.3. Various initializers

This section investigates the behaviour of Ψ-GNN when provided with different initial solutions. To achieve this, we
conduct experiments on a consistent problem domain (in terms of mesh and functions) while considering three distinct
initialization strategies. The first strategy, referred to as “train-like”, employs the standard initialization of our model,
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which is the assignment of zero values throughout the entire solution space. The second strategy is referred to as “far”
and involves an initialization that is far from the exact solution by utilizing random uniform values between 50 and 1000.
The third strategy, referred to as “close”, involves an initialization that is close to the final solution by slightly perturbing
the “exact” LU solution with uniform noise taken from the interval [0,1]. The Dirichlet boundary nodes are set to their
exact values for all these intializers, as required by the model. The tolerance for Broyden’s solver is fixed at 10−4 with a
maximum number of 500 iterations. Figure 10 displays the evolution of the Residual loss for these three problems. The
results demonstrate that Ψ-GNN is capable of convergence, regardless of the initial solution. Additionally, it illustrates
the model’s superior autoencoding capabilities, as Ψ-GNN is able to understand, from the start, how close it is to the final
solution and accordingly perform a variable number of iterations to reach convergence.

Figure 10. Evolution of the Residual loss for the three considered problems. As anticipated, the close initializer converges the quickest in
42 iterations, followed by the original one in 390 iterations, and finally, the far one in 705 iterations. This demonstrates that the proposed
approach effectively converges towards the solution (for all problems!) accordingly with the distance from the initially provided solution
to the final solution.

E.4. Various RootFind solvers

This section illustrates the flexibility of Ψ-GNN to converge towards its fixed point, regardless of the RootFind solver used.
To demonstrate this, we evaluate the performance on the test set using three different RootFind solvers: the Broyden solver
(the one utilized during training), the “Processor Iteration” (which exploits the contractivity nature of the built-in function
hθ defined in 17), and the Anderson acceleration solver (Walker & Ni, 2011). For all the solvers, the stopping criteria is
the relative error, set to 10−5 with a maximum number of 500 iterations. The results presented in Table 3 reveal extremely
similar results, demonstrating the robustness of our model.

Table 3. Results averaged over the whole test set using different RootFind solvers

METRICS BROYDEN FORWARD ANDERSON

RESIDUAL 1.25E-2 ± 1.E-3 1.25E-2 ± 1.3E-3 1.24E-2 ± 1.E-3
MSE W/LU 9.17E-2 ± 2.6E-2 1.1E-1 ± 3E-2 1.42E-1 ± 3.9E-2
CORRELATION W/LU > 99.9% > 99.9% > 99.9%

E.5. Discussion

It can be challenging to directly compare our proposed method, Ψ-GNN, and existing state-of-the-art Machine Learning
models. The most closely related work is that of Donon et al. (2020) (DSS), as previously mentioned in Section 2. DSS
employed a GNN-based model to solve a Poisson problem with Dirichlet boundary conditions. While the problems addressed



Ψ-GNN : Poisson Solver Implicit Graph Neural Network

are distinct, there are notable distinctions to highlight. Our approach incorporates Neumann boundary conditions, which
renders the convergence of the problem more delicate. These specific boundary conditions indeed increase the condition
number of the discretized Poisson operator A in (2), making the residual equation (5) more difficult to minimize. Ψ-GNN
extends upon the architecture of DSS by incorporating an autoencoding procedure, which makes the model adaptable to
any initial condition, whereas DSS was initialized with a null latent space. Additionally, our method incorporates the
proper treatment of boundary conditions, which is crucial in physical applications, as an inherent part of the network,
unlike DSS. Furthermore, our model is based on the Theory of Implicit Layers, enabling the automatic propagation of
information in the graph, thus adapting to different mesh sizes. In contrast, if DSS were applied to our dataset, it would
require additional MPNN layers, resulting in a huge and untrainable model without considerable computational resources.
Besides, even though previous research has explored the integration of GNNs with Implicit Layer Theory, such as the work
of Gu et al. (2020) or Li et al. (2021), our approach is, to the best of our knowledge, the first attempt to apply it considering
a physical-based function and a physical application in the context of solving partial differential equations.
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F. Theoretical proofs
Lemma F.1 (Equivalence of direct and fixed point formulations). Problems (24) and (25) are equivalent, i.e. for any problem
G, any solution U∗G of

U∗(G) = argmin
U

Lres(U, G)

can be turned into a solution h∗G of
h∗G = argmin

h
Lres(FixedPoint(h), G)

and reciprocally.

Proof. If h∗G is a solution of Problem (25), then its fixed point is a candidate solution to Problem (24). Therefore
Lres(FixedPoint(h∗G), G) ⩾ Lres(U

∗
G, G).

Reciprocally, if U∗G is a solution of Problem (24), then the functional h(H,G) = U∗G which always outputs the same value
has a unique fixed point, namely U∗G. Considering this functional as a candidate for Problem (25), we get Lres(U

∗
G, G) ⩾

Lres(FixedPoint(h∗G), G).

Thus Lres(U
∗
G, G) = Lres(FixedPoint(h∗G), G) and the problems are equivalent.

Proposition F.2 (Satisfying the conditions of DSS’s Corollary 1). The conditions of Deep Statistical Solver’s Corollary 1 are
satisfied in the case of our problem to approximate the function φ : G = (N,A,B) 7→ U∗(G) := argminU Lres(U, G).

The conditions of Deep Statistical Solver’s Corollary 1 (Donon et al., 2020) are:

• the loss Lres is continuous and permutation-invariant (w.r.t. node indexing)

• the solution U∗G is unique

• this solution is continuous w.r.t. G

• the distribution of problems G satisfies:

– permutation-invariance
– compactness
– connectivity (each graph has a single connected component)
– separability of external outputs (identificability of nodes)

The first point is immediate given the type of loss we consider here (suited for graph-NN problems). Moreover the unicity of
the solution is granted by design of the task (Section 3.1). The continuity of the solution U∗G w.r.t. G depends on the precise
loss Lres considered. For Poisson-like problems, the continuity holds indeed:

Lemma F.3 (Continuity of φ). The mapping φ : G = (N,A,B) 7→ U∗(G) := argmin
U

Lres(U, G) is continuous w.r.t. A

and B in our case where Lres(U, G) = ∥AU −B∥2 and where A is the graph Laplacian.

Proof. Poisson problems have a unique solution which is U∗(G) = (ATA)†ATB where † denotes the pseudo-inverse. This
quantity is linear in B and thus continuous w.r.t. B. On the other side, the pseudo-inverse functional is not continuous in
general, but it is continuous within subspaces of same-rank matrices. When the coordinates of graph nodes move (little
enough not to cross each other), the graph Laplacian matrix A changes smoothly and keeps the same rank (N − 3). The
pseudo-inverse of A is then locally continuous (within the set A of matrices A that are graph Laplacians of some graph) and
consequently U∗(G) is continuous in A ∈ A as well.

Concerning problem distribution properties, our dataset generator does satisfy by design the three first points (generate a
smooth boundary within a given bounded domain, following a law that is rotation-equivariant and that makes sure that its
inside has only one connected component, and then mesh it). Node identificability within a graph comes from its edge
features denoting distances to closest neighbors, as they are never equal in practice (as for random float numbers). If one
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wishes to enforce identificability (always and not just almost surely), one can add as a descriptor to each node its location in
space. Experiments have actually been run in that setting, with no observable difference in performance.

We thus obtain, by applying Deep Statistical Solver’s Corollary 1:
Corollary F.4 (Existence of a graph-NN approximating φ). For any ε > 0, there exists a graph-NN φ̂ such that for any
problem G from our problem distribution,

∥φ̂(G)− U∗G∥ ⩽ ε .

Hence, we can approximate with graph-NNs the functional h∗(H,G) := φ(G) = U∗(G), which is optimal for our loss.
Note that this functional is (extremely) contractive w.r.t. H for fixed G, and that many other very different optimal functionals
(yielding the same fixed point) exist.

As the set of solutions (in the space of functionals h) is large (though they all yield the same fixed point U∗G), and that this
set includes in particular the one above that is infinitely contractive, one can choose an optimal solution which in plus is
contractive. This can be done, in a Lagrangian spirit, instead of a supplementary constraint, by adding a penalty to the loss,
as done in Eq (23).

The graph-NN obtained by this Corollary is however not necessarily recurrent (layers may differ from each other) while our
implicit-GNN construction requires that all layers are equal. Fortunately, DSS’s Corollary 1 proof can be adapated to fulfill
this extra constraint, as follows. The graph-NN it builds consists of two particular single layers, followed by identical ones.
Grouping layers in blocks of 2, we see that all blocks are identical except for the first one, leading to only 2 types of blocks.
One can merge them into a single block that would express if (firsttime) then Block1 else Block2. This
can be done by adding an extra descriptor to every input node, that is always 0. When this descriptor is 0, one applies
Block1 and sets that descriptor to 1. When the descriptor is 1, one applied Block2 and let the descriptor set to 1. The
function thus described can be approximated by a few-layer graph-NN (potentially very easily with just 2 layers if using
attention mechanisms). In all cases we obtain a single block that can be used to build an implicit-GNN. And thus we can
adapt the corollary into:
Corollary F.5 (Existence of an implicit graph-NN whose fixed point approximates φ). For any ε > 0, there exists an
implicit graph-NN h such that for any problem G from our problem distribution, the function h(H,G) has a unique fixed
point H∗G w.r.t. H , which satisfies:

∥H∗G − U∗G∥ ⩽ ε .

Our architecture is such an implicit graph-NN, but surrounded by an auto-encoder, applied independently node by node to
their features, with a larger latent space than input space. This auto-encoder could be chosen to be the identity on these
features (completed by 0 on extra dimensions) and thus we now have:
Theorem F.6 (Universal Approximation Property). For any arbitrary precision ε > 0, considering sufficiently large layers,
there exists a parameterization θ of our architecture which yields a function hθ(H,G) which is “mainly” contractive
w.r.t. H , and whose fixed point will be the optimal solution of our task (24) up to ε, given as input any problem G with any
mesh, boundary conditions and force terms.

Proof. The only point that remains to be proven is that the function hθ(H,G) can be assumed to be “mainly” contractive
w.r.t. H for a given problem G. More exactly, we will show that the function is contractive w.r.t. H for any pair of points
farther than ε, and that an iterative power method will reach, from any initialization H , a ball of radius ε around the fixed
point H∗G.

The network h from Corollary F.5 can be assumed to be an approximation of a contractive function f (as explained above).
Thus for any problem G, and any latent values H , H ′:

d(f(H), f(H ′)) ⩽ λ d(H,H ′)

for some contraction factor λ ∈ [0, 1[ (that could be assumed to be even 0), and for the Euclidean metric d. Thus:

d(h(H), h(H ′)) ⩽ d(f(H), f(H ′)) + 2ε ⩽ λ d(H,H ′) + 2ε

since ∥h(H)− f(H)∥ ⩽ ε and ∥h(H ′)− f(H ′)∥ ⩽ ε. Let us define µ = λ+ 2
√
ε < 1 for some ε small enough. Then,

for H,H ′ not too close, i.e. satisfying d(H,H ′) >
√
ε, we have:

d(h(H), h(H ′)) ⩽ µd(H,H ′)
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as λ d(H,H ′) + 2ε < µd(H,H ′) is equivalent to d(H,H ′) > 2ε
µ−λ =

√
ε.

Thus h is contractive for all pairs of points farther than
√
ε from each other. In particular, if d(H,H∗G) >

√
ε, then

d(h(H), h(H∗G)) ⩽ µd(H,H∗G), which implies the exponential convergence of an iterative power method from any
initialization H to the ball of radius

√
ε around the fixed point H∗G, which is itself at distance at most ε from the true optimal

solution U∗G. Thus the function h is “mainly” contractive in that sense. Using ε′ = ε+
√
ε then gets rid of square roots.


