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b Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

(Manuscript received 6 October 2020, in final form 15 September 2021)

ABSTRACT: Coincident Geostationary Lightning Mapper (GLM) and National Lightning Detection Network (NLDN)
observations are used to build a generator of realistic lightning optical signal in the perspective to simulate Lightning
Imager (LI) signal from European NLDN-like observations. Characteristics of GLM and NLDN flashes are used to train
different machine-learning (ML) models, which predict simulated pseudo-GLM flash extent, flash duration, and event
number per flash (targets) from several NLDN flash characteristics. Comparing statistics of observed GLM targets and sim-
ulated pseudo-GLM targets, the most suitable ML-based target generators are identified. The simulated targets are then
further processed to obtain pseudo-GLM events and flash-scale products. In the perspective of lightning data assimilation,
flash extent density (FED) is derived from both observed and simulated GLM data. The best generators simulate accumu-
lated hourly FED sums with a bias of 2% to the observation while cumulated absolute differences remain of about 22%. A
visual comparison reveals that hourly simulated FED features local maxima at the similar geolocations as the FED derived
from GLM observations. However, the simulated FED often exceeds the observed FED in regions of convective cores and
high flash rates. The accumulated hourly area with FED . 0 flashes per 5 km 3 5 km pixel simulated by some pseudo-
GLM generators differs by only 7%–8% from the observed values. The recommended generator uses a linear support vec-
tor regressor (linSVR) to create pseudo-GLM FED. It provides the best balance between target simulation, hourly FED
sum, and hourly electrified area.

KEYWORDS: Atmosphere; Lightning; Algorithms; Satellite observations; Machine learning; Regression

1. Introduction

Lightning is defined as electrical discharges within the atmo-
sphere, more particularly within and between clouds [intra-
and intercloud (IC)] or between clouds and the ground (CG).
Transient lightning phenomena also occur between the cloud
and the upper atmosphere, e.g., sprites and jets. While cloud
electrification and lightning initiation are still subject of stud-
ies, it is widely accepted that cloud ice and graupel are neces-
sary to separate charges within clouds (e.g., Luque et al. 2020;
Emersic and Saunders 2020; Lyu et al. 2019; Kolmasova et al.
2019; Takahashi et al. 2017; MacGorman and Rust 1998;
Brooks et al. 1997). In particular, convection creates favorable
conditions for lightning, and the updraft strength can be well
correlated to the total lightning rate (e.g., Deierling and Peter-
sen 2008). Ávila et al. (2010) found a high correlation between
the occurrence of deep convection and lightning over land at a
global scale. Hence, lightning is an effective tracer of deep
convection.

The new generation of geostationary (GEO) satellites carry
optical lightning sensors, among other instruments. The Geosta-
tionary Lightning Mapper (GLM) of the Geostationary Opera-
tional Environmental Satellite (GOES)-R series, the Lightning
Mapping Imager (LMI) on board the Chinese Fengyun-4

satellites (Yang et al. 2017), and the upcoming Meteosat Third
Generation Lightning Imager (MTG-LI; Dobber and Grandell
2014) will provide GEO lightning observations at a global scale.
This satellite-based, large-scale, continuous observation of light-
ning offers new information for climate monitoring and studies.
In addition, the assimilation of GEO lightning data in numerical
weather prediction (NWP) can help to improve the initial state
of the model. Most recent lightning data assimilation studies use
gridded flash extent density (FED), for example, Allen et al.
(2016) and Fierro et al. (2019).

To assimilate new observation types in NWP models it is
desired to develop an assimilation scheme prior to the instru-
ment launch and data availability. The simulation of appropri-
ate realistic pseudo-observations precedes the development
of any assimilation scheme, especially when the sensor is not
yet in operation. Such synthetic observations can be derived
from existing GEO sensors over other regions, that is, GLM,
and ground-based lightning locating systems (LLSs). In addi-
tion, low-Earth-orbit (LEO) missions such as the Lightning
Imaging Sensor (LIS) on the Tropical Rainfall Measuring
Mission (TRMM) satellites (e.g., Christian et al. 1999; Cecil
et al. 2005) and on board the International Space Station
(ISS) (Blakeslee and Koshak 2016; Blakeslee et al. 2020) pro-
vide space-based lightning observations. One can also use
ground-based networks, for example, the National Lightning
Detection Network (NLDN) (e.g., Cummins and Murphy
2009), Meteorage (e.g., Schulz et al. 2016; Erdmann et al.
2020), and lightning mapping arrays (LMAs) (e.g., Rison et al.
1999; Thomas et al. 2004; Coquillat et al. 2019). While the sat-
ellite sensors detect visible light of lightning at 777.4 nm, the

Denotes content that is immediately available upon publica-
tion as open access.

Corresponding author: Felix Erdmann, erdmann.professional@
gmx.de

DOI: 10.1175/JTECH-D-20-0160.1

Ó 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

E RDMANN E T A L . 3JANUARY 2022

Unauthenticated | Downloaded 02/23/23 03:43 PM UTC

mailto:erdmann.professional@gmx.de
mailto:erdmann.professional@gmx.de
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


ground-based networks are operated at different frequencies
that match electromagnetic radiation emitted by different
lightning processes. NLDN and Meteorage use low-frequency
(LF) sensors that are most sensitive to discharge processes
such as return strokes for CG flashes. Most LF networks can
distinguish CG and IC signals. The CG flash detection (with
return strokes) is usually reliable, whereas the IC flash detec-
tion efficiency (DE) increases within the network and for
shorter baselines given one LF sensor type (S. Pedeboy 2020
and 2021, personal communication). Global LF networks have
lower DE and accuracy than national and regional LF net-
works (e.g., Nag et al. 2015). LMA stations sense very high-
frequency (VHF) signals of lightning leader propagation and
allow for three-dimensional (3D) channel mapping (e.g., Rison
et al. 1999). Their drawback is the limited range. An LMA net-
work provides coverage within a radius of typically a few hun-
dred kilometers (e.g., Thomas et al. 2004; Koshak et al. 2004;
Chmielewski and Bruning 2016; Coquillat et al. 2019).

Biron et al. (2008) resampled TRMM-LIS data on an MTG-
LI-like grid to assess the potential performance of the MTG-LI
with emphasis on the influence of varying minimal detectable
radiant energy. However, this method relying on LEO lightning
data is not suitable for producing continuous pseudo-observations
in the same area for operational applications because of the poor
revisiting time. Stano (2013) demonstrated a simple method to
create pseudo-GLM gridded products using LMA data. The
pseudo-GLM data served to train forecasters on the use of GLM
data products. GLM’s Algorithm Working Group investigated a
transformation function that transforms LMA sources to optical
lightning observations. The technique combines TRMM-LIS flash
statistics and observed LMA flashes (Bateman 2013). The same
method was applied by Schultz et al. (2016) to study automated
storm tracking and lightning jump algorithms using GLM
pseudo-observations. Höller and Betz (2010) present a simple sta-
tistical model for transforming stroke-type data of the LF network
LINET (Betz et al. 2009) to pseudo-MTG-LI optical events. The
statistical relations were studied comparing LINET strokes to
concurrent TRMM-LIS groups. Then they created a pixel matrix
of the future MTG-LI and used TRMM-LIS statistics of radiance
and event number per group to obtain pseudo-MTG-LI events.
Their work aimed to propose a statistics-based method to create
optical pseudo-observations of lightning from a given set of LF
LINET strokes. The available satellite lightning data solely ema-
nated from the LEO TRMM-LIS mission, and in addition the
number of cases was fairly limited (705 coincident flashes).

Recent studies assessing the GLM performance have
shown that the DE varies within the field of view. GLM
detects almost 90% of the flashes in the southeastern United
States (e.g., Marchand et al. 2019; Murphy and Said 2020).
The flash DE is statistically lower in other regions like Colo-
rado. Rutledge et al. (2020) showed that the GLM perfor-
mance depends on the charge structure and the hydrometeor
distribution. In particular, electrically “anomalous” storms led
to degrading GLM flash DE. The GLM flash DE also
depends on the size and duration of flashes. Zhang and Cum-
mins (2020) found that small, short duration flashes are more
likely not observed by GLM than larger flashes.

This paper introduces in-depth techniques and results of cre-
ating GEO lightning pseudo-observations. The GEO lightning
pseudo-observation generator is developed using NLDN
records in the United States and can be applied to all NLDN-
like ground-based LLSs, e.g., Meteorage in France. One key
part of the generator uses machine learning (ML) to relate
NLDN-like observations to the extent and duration of the gen-
erated optical flashes. The generator simulates the GEO light-
ning pseudo-observations on the flash level including events and
thus flash extent. FED grids can be derived from the generated
pseudo-observations to serve as assimilation input data. This
work prepares in particular the assimilation of pseudo-MTG-LI
data in the Météo-France operational mesoscale numerical
weather prediction system Applications de la Recherche à
l’Opérationnel à Méso-Echelle (AROME) in France. As MTG-
LI will produce GLM-like data, and the French Meteorage net-
work observes lightning similarly as NLDN in the United States
(Erdmann 2020, chapter II.2.4), the developed GEO lightning
pseudo-observation generator can be used to simulate realistic
pseudo-MTG-LI data.

The main objective of this study is the generation of a real-
istic GEO lightning FED field. It does not aim at reproducing
correctly individual flashes, but the FED product. Therefore,
the most important characteristics are the overall flash num-
ber and the flash extent. There is no direct dependency of
FED on the flash duration and event number per flash, nei-
ther on flash energetics. The developed generator should
provide synthetic MTG-LI FED over France for data assimi-
lation studies (not in the scope of the present paper). The
application in our study is not intended for an operational use
even though the developed algorithm could be used for oper-
ational application or for training forecasters and users.

Section 2 introduces both NLDN and GLM instruments. It
also describes the dataset with coincident GLM and NLDN
flashes. Section 3 explains in-depth the strategy to mimic GLM
data from NLDN observations. This includes a two-part GEO
lightning pseudo-observation generator and different MLmodels
to relate GLM and NLDN flash characteristics. Section 4 pre-
sents pseudo-GLM observations, their comparison to real GLM
observations, and the evaluation of the two-part generator. FED
from real and pseudo-GLM observations is compared for the
different ML-based generators. Recommendations for suitable
GEO lightning pseudo-observation generators are given.

2. Instruments and data

GLM and NLDN make use of different lightning detection
and locating techniques. This section introduces important
specifications of both instruments and the studied dataset. It
briefly describes the developed methods to match and com-
pare GLM and NLDN observations, and to infer flash charac-
teristics needed for training ML models.

a. GLM

The GLM is an optical sensor on board the GOES-R series
(currently GOES-16 at 758W and GOES-17 at 1378W). This
study uses the GOES-16 GLM data only. The GLM detects
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total lightning including IC and CG during day and night.
Although it cannot directly distinguish IC from CG signals,
Koshak and Solakiewicz (2015) show that some ICs and CGs
can be statistically differentiated. Especially due to the diffi-
culty of the detection of daytime lightning against bright, sun-
lit clouds, thresholds and filters are applied to separate the
lightning optical signal from background and other light sour-
ces. Lightning is detected in a narrow (1 nm) band centered at
the 777.4-nm oxygen line in the near-infrared. The wide field-
of-view (FOV) image is focused on a high-speed charge cou-
pled device (CCD) focal plane with a nearly hemispheric
FOV coverage (1372 3 1300 pixels). The variable-pitch pixel
CCD allows for resulting pixels of about 8 km at nadir and
only 14 km at the edge of the FOV (Goodman et al. 2013).
Images are produced continuously and in time frames of 2 ms.

NASA’s GLM lightning data algorithm produces level-2
data with lightning information as events, groups, and flashes.
The x, y coordinates of the focal plane are transformed to lati-
tude and longitude coordinates of an estimated cloud-top
ellipsoid (with a height of 14 km at the equator and 6 km at
the poles). Bruning et al. (2019) describes the effects of using
this ellipsoid on GLM parallax with respect to any known
ground-relative reference. GLM events are single illuminated
pixels that pass the optical filters and are thus identified as
lightning signals. Their location is defined as the center of the
illuminated pixel. Adjacent events observed in the same 2-ms
time frame are merged to form a group. Next, groups are
combined into flashes. NASA’s clustering algorithm uses a
weighted Euclidean distance (WED) with limits of 16.5 km in
latitude and longitude direction and 330 ms in time. Two
groups with a WED of less than 1 are assigned to the same
flash. The WED criterion is tested for pairs of events with one
event in each group (Mach 2020).

The reader is referred to Goodman et al. (2013), the GLM
Product Performance Guide for Data Users (Koshak et al.
2018), and Goodman et al. (2012) for further information on
GLM details. Mach (2020) analyzed the GLM algorithms
recently.

b. The NLDN

The NLDN (Cummins and Murphy 2009) consists of more
than 100 Vaisala, Inc., LS7002 ground sensors in the contigu-
ous United States (CONUS). It detects LF electromagnetic
signals generated by fast lightning discharges such as return
strokes or by intracloud components. Due to a combination
of magnetic direction finding and time-of-arrival techniques,
only two sensors are needed to construct the horizontal loca-
tion (latitude and longitude, no altitude) and time of a signal.
NLDN locates total lightning, including CG and IC dis-
charges. According to Vaisala (2013), up to 95% and better
than 50% of all CG and IC lightning, respectively, is detected.
Zhu et al. (2016) found that one-third of 153 IC pulses were
detected by NLDN, and 86% were classified correctly. NLDN
detected 92% of 367 return strokes, and also 92% were cor-
rectly classified as CG. The median location accuracy
approaches 250 m for CG strokes in the interior of the net-
work. Lightning can be located at long range (1500 km), but

the location accuracy in the interior of the network is signifi-
cantly higher than outside. NLDN measures also the peak
current amplitude of the LF source. NLDN data used in this
study include time (resolved at 1 ms), the location as latitude
and longitude, the peak current amplitude (kA), the polarity,
the type (CG or IC) of the LF source, and quality parameters,
e.g., the location error ellipse axes. Although Vaisala merges
strokes to flashes (within 10 km and 1 s), this study retrieves
NLDN flash-level data using the algorithm developed by
Erdmann et al. (2020) for Meteorage records in France.
Hence, pulses/strokes are merged into a flash if they occur
within both 20 km and 0.4 s. The dataset is not further sepa-
rated in this work, and the term pulse/stroke is used to repre-
sent all NLDN detections on the stroke–pulse level.

c. Database for the current study

The general dataset consists of 6 months of GLM and
NLDN records, from 15 March to 15 September 2018. NLDN
data were provided in a region between 308 and 358N and
between 958 and 828W. GLM data before 26 September 2018
need a time-of-flight (TOF) correction that takes into account
the time lightning photons need to travel from the cloud tops
(approximated at 10 km of altitude) to the GLM orbit. Our
study applies a dynamical TOF correction with values ranging
from 122.8 to 124.9 ms in the region of interest.

To handle the large amount of GLM data and hence to
limit the data processing time, a reduction of the 6-month
dataset was necessary. The complete lightning dataset is stud-
ied to identify lightning-active days (start and end at 0000
UTC), defined by the number of GLM flashes and the num-
ber of GLM events. Ten days with significant lightning activ-
ity and different storm types during both day and night are
selected. Table 1 summarizes the number of GLM events and
flashes as well as NLDN pulses and strokes and flashes
recorded in the region during each of the 10 selected days.
Table 1 also states the dominant weather situation during
each of the 10 days. At least one day per month is selected to
represent possible climatological differences of the lightning
within the region. All further analyses use these 10 days so as
to reduce the immense amount of GLM event-scale data. The
resulting dataset comprises 1 133 671 GLM flashes and
1 115 675 NLDN flashes. Missing data are identified through
an analysis of instrument activity during 20-s time windows
equal to those of the GLM L2 data files. The amount of
flashes is reduced to 1 132 051 GLM flashes and 1 115 585
NLDN flashes due to possible1 short periods of instrument
inactivity. Hence, the difference in the number of observed
flashes is less than 2% of the flash counts, and both instruments
operated continuously during the selected days. As the effect of
downtimes of an instrument can be disregarded, the following
analysis uses all available data. Three among the 10 days are
chosen to test the generators with uncorrelated data and to

1 We do not know instrument downtimes from the data. Data
may come with flags, but they do not give reliable information
about the instrument status. We used a two-step approach to iden-
tify downtimes: (i) the flash DE is less than 50% and (ii) the num-
ber of flashes observed is less than 10% of the reference LLS.
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assess the variability in the results (test days). The test days
(7 April, 26 May, and 31 July 2018) feature both thermally
driven convection and dynamic forcing at air mass bound-
aries. In the following, the different weather regimes with
different lightning activity are briefly described for the test
days as the final FED product is in fact only analyzed for
these three days.

For instance, on 7 April 2018, the weather was dominated
by a major cold front that traversed the region from northwest
to southeast. Temperatures dropped by about 10 K behind the
front. The strong dynamic forcing caused a mesoscale convec-
tive system (MCS) with linear structure. This system produced
the vast majority of flashes observed during the test period of
7 April 2018 until it left the studied region at about 1200 UTC.

The date of 26 May 2018 was characterized by relatively
warm surface temperatures with slightly decreasing tempera-
tures from west to east within the region. Moisture was
induced into the region by a weak tropical depression over
Cuba and later southern Florida. Convection occurred mainly
in the local afternoon as a result of surface heating. Well
defined cells formed and propagated slowly southward in the
cyclonic flow.

Daytime temperatures widely exceeded 308C and remained
at about 258C at night within the region on 31 July 2018. Mois-
ture was advected into the region from the Gulf of
Mexico while a dryline approached from the northwest. A
multicell storm cluster formed in the convergence zone at
local nighttime and propagated eastward driven by a short
baroclinic wave aloft. The second peak of lightning activity
results from thermal convection in the eastern portion of
the region before the dry air moved in and inhibited further
convection.

d. Data processing algorithms—Flash-scale data and
identification of matches

NLDN and GLM observe lightning independently of each
other. The comparison of the two LLSs needs, however, coin-
cident observations. This work uses the matching algorithm

introduced by Erdmann et al. (2020). Coincident observations
are defined at the flash scale for flashes within 20 km and
1.0 s. The criteria are tested for any pair of events and pulses/
strokes. Two parent flashes are matched if one event (pulse/
stroke) meets both the spatial and the temporal criteria to any
pulse/stroke (event) of the given flash. The algorithm does
not analyze the flash mean position but the event and pulse/
stroke locations.

GLM flash-level data are included in the GLM L2 science
data and emanate from NASA’s GLM L2 clustering algo-
rithm. Mach (2020) found recently that NASA’s GLM clus-
tering algorithm was stable for different spatial and temporal
merging criteria (mainly for storms with flash rates below
about 40 flashes per minute). In the present study, the perfor-
mance of NASA’s GLM L2 clustering algorithm for 1 h on
26 May was investigated. NASA’s L2 GLM clustering algo-
rithm succeeded in merging many events and in detecting
large flashes. The GLM operational algorithm still limits the
maximum size of flashes because of computational restric-
tions. However, such cases are rare and hardly influence the
data generators as statistical approaches are used for both
training and testing here.

The matching of GLM and NLDN flashes (for the 10-day
dataset) leads to 948872 GLM and 971 102 NLDN flashes
with match. Some flashes from one system are matched to
more than one flash in the other system, and it happens more
often that one GLM flash matches multiple NLDN flashes
than vice versa. Considering the total number of GLM
(NLDN) flashes, the relative flash DE is defined as ratio of
flashes observed by both given and reference LLSs to the
total number of flashes observed by the reference LLS. It
yields 87.0% (of 1 115 585 NLDN flashes) and 83.8% (of
1 132 051 GLM flashes) for GLM and NLDN, respectively.
Figure 1 illustrates the flash DE of both GLM and NLDN
within the studied region, along with 2D density of observed
flash centroids (gray isocontour). The flash DE remains con-
sistent within the entire domain. The local minimum in the
northeast is caused by a low number of observed flashes for

TABLE 1. Study dates (in 2018) with the amounts of GLM and NLDN data. The three rightmost columns indicate whether the
data are used for ML-based generator building (GB) or the generator test (GT) part, the time of most lightning activity in the region
(D: local daytime; N: local nighttime), and the primary forcing (trigger) for storm development and lightning.

Date
No. of GLM

events
No. of GLM

flashes
No. of NLDN
pulses/strokes

No. of NLDN
flashes Usage Time Trigger

19 Mar 4 053 599 79 420 315 854 78 351 GB D1N Cyclone; cold front
29 Mar 2 611 064 35 822 122 772 37 931 GB D1N Stationary front; MCS
7 Apr 5 854 407 94 447 494 686 113 978 GT D1N Short-wave trough; front
14 Apr 8 610 567 142 587 729 622 169 181 GB D1N Cold front
26 May 4 364 985 130 632 422 193 120 608 GT D Thermal convection
3 Jun 6 103 693 204 295 825 601 188 330 GB D1N Cold front
21 Jul 5 541 425 150 363 943 644 142 023 GB D1N Squall line; outflow

boundary
31 Jul 4 885 532 114 133 391 602 106 142 GT D Dryline; thermal

convection
7 Aug 5 283 358 153 671 472 369 137 963 GB D Thermal convection
13 Sep 1 015 483 28 301 61 124 21 168 GB D Hurricane Florence
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the two 18 3 18 pixels in Fig. 1. The high flash DE of GLM
agrees with the results of Marchand et al. (2019), who found
the GLM DE relative to ground-based Earth Networks Total
Lightning Network (ENTLN) flashes exceeding 80% for most
of the southeastern CONUS. They used 35 km and 330 ms as
spatial and temporal matching criteria, respectively. Murphy
and Said (2020) compared among others GLM and NLDN
relative DE, matching flashes within 20 km between GLM
flash centroids and the first NLDN pulse/stroke per flash and
200 ms between the flash time windows between the start and
end times and report similar flash DE values on the large
scale in the southeastern CONUS. A new approach to the
GLM flash DE and false alarm ratio (FAR) is introduced by
Bateman and Mach (2020) and Bateman et al. (2021): com-
bining several ground-based networks to provide reference
data and using coarse matching criteria of 50 km and 10 min,
they found flash DE of over 90% and FAR just above 5% for
the GLM onGOES-16.

3. Methods

This section defines the concepts and the strategy to gener-
ate GEO lightning pseudo-observations. The methods are
designed to use NLDN data and evaluated using real GLM
observations. MTG-LI will provide total lightning observa-
tions with similar data structure as GLM observations. It will
also consist of events, groups, and flashes. Although MTG-
LI’s spatial resolution (4.5 km at nadir versus 8.0 km at nadir)
and the temporal resolution (1 vs 2 ms) will be higher than

those of GLM, the methods presented here can still be
applied to simulate MTG-LI observations. A comparison of
ISS-LIS records over the domain of this study (United States)
and the target region (France) revealed statistically similar
flash characteristics (Erdmann 2020, chapter II.1-2). In addi-
tion, for both regions of interest, statistics on NLDN and
Meteorage LF lightning observations relative to ISS-LIS
records were consistent. The FED as explained in the follow-
ing section is simulated on a 5 km 3 5 km resolution grid
approximating the MTG-LI grid.

a. Definition of the FED

Flash extent density is a gridded product, summing over a
given time integration period, the projections of the location
of flash components, e.g., events and pulses/strokes on a given
regular grid mesh. FED pixels with any lightning observation
are identified, while pixels with multiple observations (e.g.,
multiple NLDN pulses/strokes) are counted once per flash.
This gives a grid of pixels with either lightning (value 1) or no
lightning (value 0) for each flash. The FED product considers
all flashes within a given time integration period and sums up
the occurrence of flashes per pixel. Hence, the FED product
can have values greater than or equal to one flash per pixel. It
shows the spatial distribution of lightning activity within the
given time period. For example, the propagation of convec-
tive cores can be tracked over several successive time integra-
tion periods.

The FED in this study is calculated on a regular latitude–
longitude grid with an average pixel size of 5 km 3 5 km. To
obtain the regular latitude–longitude grid, the distance of
5 km is transformed to latitudinal and longitudinal distance as
of the pixel at the center of the study region. Appendix A
describes the details to transform GEO pixel grid to the regu-
lar FED grid. In the present study, FEDs are analyzed per
60 min time integration periods. The 1-h period maintains
information to locate tracks of convective cores and most
electrified regions while it is also long enough to capture sev-
eral storms distributed within the full domain. There might
be, however, multiple storms at one location during 60 min.
The FED integration period can be changed as needed since
our GEO lightning pseudo-observation generator simulates
data at the flash level. The sum of multiple short FED periods
is equal to the FED of a corresponding long period, but the
computation of one long period is more efficient. Hence, this
work simulates FED per hour for computational reasons. It
should be mentioned, however, that other FED time integra-
tion periods are currently under investigation, and the assimi-
lation of MTG-LI will use a shorter FED time integration
period.

b. Work flow—The simulation of GEO pseudo-observations
of FED

The simulation of pseudo-GLM flashes from NLDN obser-
vations is performed in two parts. First, our GEO lightning
pseudo-observation generator uses the flash database with the
coincident GLM and NLDN flashes and their characteristics.
This part called target generator employs ML techniques.

FIG. 1. Relative flash detection efficiency per 18 3 18 pixel
(color) for the full 10-day dataset for (a) GLM and (b) NLDN.
Grayscale lines contour (as per the shades on the right-side legend)
the flash number at the 0th (1 flash), 50th, 80th, and 95th percentile
of the flash-number distribution per 0.258 3 0.258 pixel (only for
pixels with flash activity).
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It is based on statistical relationships between the NLDN
characteristics (features) and the characteristics of the concur-
rently observed GLM flashes (targets). The target generator
is detailed in the following section. This part is conducted
using different approaches, which will be explained thereafter.
They include simple linear regressions as well as more sophis-
ticated ML models. The second part of the GEO lightning
pseudo-observation generator, described in the last section
here, simulates pseudo-GLM events using the simulated
GLM flash characteristics.

1) SIMULATE PSEUDO-GLM FLASH CHARACTERISTICS

Coincident NLDN and GLM flashes are analyzed with
regard to their characteristics including the flash extent and
flash duration (both GLM and NLDN) as well as the event
number per flash (GLM) or pulse/stroke number (NLDN)
per flash. The flash extent is a characteristic distance for the
illuminated area for GLM or simply the distance between
point sources for NLDN. It sums up the distance between the
lowest and highest latitude [the north–south (NS) extent] and
the distance between lowest and highest longitude [the west–-
east (WE) extent] of events or pulses/strokes of the flash.
GLM flash extent relies on the pixel center position but does
not include the pixel extensions. Single pixel GLM flashes and
single pulse/stroke NLDN flashes have an extent of 0.0 km.
Flash duration is defined as the time between the frames;
therefore, a single frame features a flash duration of 0.0 s, that
is, GLM flashes with all events at the same time and NLDN
flashes with all pulses/strokes at the same time. The maximum
and mean signal strengths, defined from the LF peak currents
and radiant energies as measured by NLDN and GLM,
respectively, are evaluated per flash to represent flash ener-
getics. In addition, a CG stroke ratio is calculated for NLDN
flashes dividing the number of CG strokes of the flash by the
total pulse/stroke number. Previous studies (e.g., Thomas et al.
2000; Marchand et al. 2019; Erdmann et al. 2020; Murphy and
Said 2020; Rutledge et al. 2020) found that characteristics of
flashes observed by optical satellite LLSs depend among
others on the flash altitude. Flash components identified as

CG strokes propagate on average at lower altitudes than the
IC components. In total, there are five GLM flash characteris-
tics (flash duration, event number per flash, flash extent, and
mean and maximum event radiant energy per flash) and six
NLDN flash characteristics (flash duration, pulse/stroke num-
ber per flash, flash extent, mean and maximum LF amplitude
per flash, and CG stroke ratio). Details on the distributions of
the flash characteristics are provided by Erdmann (2020,
chapter II.3.4).

Linear regressions between any two GLM and NLDN
flash characteristics showed that GLM flash duration has
Pearson correlation coefficients R above 0.64 to NLDN
flash duration and the number of pulses/strokes per flash.
GLM event number per flash and GLM flash extent feature
R of 0.08–0.43 to the complete set of features. Mean and
maximum event radiant energies per GLM flash are not cor-
related with any NLDN flash characteristic on the flash
scale and are then not relevant for synthetic FED genera-
tion. Hence, they are excluded from the ML targets. The
remaining targets are GLM flash duration, event number
per flash, and flash extent.

Building the GEO lightning pseudo-observation generator
requires independent generator building (GB) and generator
testing (GT) data for the generator design and for the verifica-
tion of the generated product, that is, the FED, respectively.
The split of our dataset is illustrated in Fig. 2. The GB data
consist of 7 days and the GT data consist of the remaining
3 days (test days) of the full dataset (see section 2c and Table
1). The GB includes an ML part. Here, only matched flashes
are considered so as to compare feature and target values (see
Fig. 2). Features (input data) of the ML are the six NLDN
characteristics, and targets (output data) are GLM flash dura-
tion, event number per flash, and flash extent. Feature and
target sample sizes are given as the number of matched
flashes detected by GLM and NLDN, respectively, and are
not equal in general (section 2d). Since training the ML mod-
els requires the same sample size for the features and targets,
two (or more) flashes matched to the same flash of the other
LLS are merged, and characteristics of the merged flashes are
combined. The resulting ML data (dark orange in Fig. 2) con-
sist of 672 794 flashes, each sample with six NLDN features
and three GLM targets. The ML part further splits this set of
ML data randomly into independent ML training and ML val-
idation data at a ratio of 90%–10%. The ML models are thus
trained with 605 515 flashes. The ML validation data serve to
calculate goodness-of-fit scores for each applied ML tech-
nique. Then the different ML models are compared and the
model parameters (e.g., the number of trees or the number of
neural network layers, see appendix B, section a) are tuned
based on the scores. The 3-day GT dataset is used to evaluate
each generator as a whole including the ML and event gener-
ation parts. The test exercise exploits both observed GLM
and generated, NLDN-based pseudo-GLM datasets as two
independent populations.

The generator simulates one pseudo-GLM flash for each
observed NLDN flash. Thereby, it is assumed that flashes
detected by GLM only and detected by NLDN only compen-
sate each other. The assumption was justified as (i) GLM and

FIG. 2. Illustration of splitting the 10-day dataset with GLM and
NLDN flashes in 7-day generator building (GB) and 3-day genera-
tor testing (GT) data. The GB data are further processed for the
ML part.
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NLDN feature flash DEs on the same order, (ii) both GLM-
only and NLDN-only flashes were smaller in extent and
shorter in duration than the flashes with coincident observa-
tions (see also, e.g., Zhang and Cummins 2020; Erdmann et al.
2020), and (iii) most GLM-only and NLDN-only flashes were
found in the same regions in proximity to convective cores
where high flash rates were observed (as in Zhang and Cum-
mins 2020). The overall GLM and NLDN flash numbers (see
Table 1) vary by only a few percent. However, it can be seen
that there are days and cases where NLDN detects more
flashes than GLM, i.e., 7 and 14 April and other days where
GLM detected more flashes than NLDN, i.e., 26 May, 3 June,
and 7 August.

Here, only GLM flashes will be simulated and only if there
are NLDN records. The algorithms do not distinguish poten-
tial NLDN flashes that would not be detected by GLM. In
addition, there is no algorithm developed to create flashes
only detected by GLM. For those two configurations, devel-
oping dedicated algorithms would require taking into account
the microphysical properties of the cloud profiles, but also a
model that would generate the lightning activity as realisti-
cally as possible to mimic GLM-only and NLDN-only flashes.
The goal of the lightning generator is to provide synthetic LI
records with a better representativeness than what has been
used so far, knowing that there are some limitations in our
models, to develop a new proof of concept to assimilate
space-based lightning observations. Another aspect concerns
the detection of optical flashes at day and night. One can con-
sider developing a GEO pseudo-observation generator for
both day and nighttime with potentially different relations
between LF flash characteristics and GEO flash characteris-
tics. However, as this paper includes a variety of methods and
the first approach to use ML techniques to simulate GEO
flashes, day and nighttime flashes are not separated. This also
is the case for flashes over land and sea.

The aforementioned assumption means that flashes detected
by NLDN only are treated similarly to those coincidently
detected by both NLDN and GLM. As the number of NLDN-
only flashes is significantly lower than the number of NLDN
flashes with GLM match (given a GLM flash DE relative to
NLDN of 87% for the full 10-day dataset), the assumption
only affects about 13% of the simulated flashes. Statistics of
GLM targets and FED fields inferred from the generated
pseudo-GLM flashes are compared to those from all observed
GLM flashes during the three days.

The comparisons of statistics of the observed and
simulated targets include the distribution mean, median,
minimum, and maximum. The root-mean-squared error
(RMSE) between characteristics of individual (simulated
and real) GLM flashes is also computed, but only for the
295 313 NLDN flashes with GLM match (representing a
GLM flash DE of 86.7% for the test days). The evaluation
makes an addition use of two statistical scores that are
defined for the cumulative (in fact empirical) distribution
functions (CDFs): the Kolmogorov–Smirnov statistic (KS;
Massey 1951) and the Cramér–von Mises criterion (CvM;
Anderson 1962) measure the distance between the observed
and simulated CDFs of the targets. Both the KS and the

CvM tests can verify the null hypothesis that two samples
belong to the same population.

2) ML-BASED TARGET GENERATORS RELATING

NLDN FLASH CHARACTERISTICS TO GLM FLASH

CHARACTERISTICS

The previous sections explained that our GEO lightning
pseudo-observation generator consists of two parts, the ML-
based target generator and the simulation of GEO pseudo-
events. Section a of appendix B briefly describes the different
ML models used in the ML-based part of this generator. The
ML-based algorithms relate NLDN flash characteristics to
GLM flash characteristics in this work. Hence, all ML models
are supervised models with the same training data. The mod-
els emanate from Python’s scikit-learn library (sklearn;
Pedregosa et al. 2011).

This study uses seven different ML model types (details are
in section a of appendix B): multivariate linear regressions
(LinReg), third-degree polynomial regressions (Poly), extra-
trees regressors (ETR) as a form of random forests, bagging
with K-nearest neighbor regressors (BAGR KNN), multilayer
perceptron neural networks (MLP), linear support vector
regressors (linSVR), and histogram gradient boosting regres-
sors (HGBR).

3) MULTISTEP APPROACH

Targets of a multitarget ML training can be correlated; for
example, GLM event number per flash is strongly correlated
to GLM flash extent with R of 0.74. To the best knowledge of
the authors, models of Python’s sklearn library do not take
advantage of correlations between targets. Indeed, the so-
called single target (ST) approaches do not consider correla-
tions between targets; however, such correlations can help to
improve the skill of ML models and thus the prediction of the
generators. Borchani et al. (2015) summarize methods to deal
with multitarget regressions and take advantage of correlations
between targets. Their paper compares the ST approach to
multiple multitarget approaches, e.g., multitarget regressor
stacking (MTRS), regression chains (RC), multioutput support
vector regression, multitarget regression trees, and rule meth-
ods. Spyromitros-Xioufis et al. (2016) introduced the stacked
ST (SST) and ensemble RC (ERC). These methods can be
computationally complex with high memory costs (Mastelini
et al. 2019). As Aguiar et al. (2019) state, choosing the most
suitable approach needs previous testing and depends on the
task. The methods cited here are computationally expensive.

The flowchart in Fig. 3 shows a computationally efficient
multitarget approach that simplifies the SST. As a starting
point, there are NLDN features and GLM targets as input for
the ML training. The approach combines ST models (Fig. 3a)
of three classes (colored) for the training. The application
case only uses the NLDN features as first input. Therefore, a
multistep approach is required. An application example is
shown in Fig. 3b. More details about our approach can be
found in appendix C.

In summary, the multistep approach modifies the ML input
feature-set selection and thus the configuration of the
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corresponding generator. It is a form of multitarget regression
that can take advantage of correlations between the ML tar-
gets. Section b of appendix B summarizes the available fea-
ture-set selections for the ML as different configurations of
generators. Figure 3b shows just one example of the applica-
tion that is also detailed in appendix C. Section 4 will demon-
strate whether the additional GLM pseudofeatures can help
to tune the pseudo-GLM simulation toward observed GLM
data.

4) APPLIED SCALING METHODS

This study normalizes features to the [0, 1] range with a
min–max scaler:

XN 5
X2minX

maxX2minX
, (1)

where X is a data vector, minX and maxX define the mini-
mum and maximum of X, respectively, and the resulting nor-
malization XN ranges from 0 to 1.

The targets are scaled with a common standard scaler (also
called z-value scaling) defined as

Z5
X2meanX

stdX
, (2)

where X is a data vector and meanX and stdX are the mean
and the standard deviation of X, respectively. The resulting
standardization Z is centered around 0.

The min–max scaler is an alternative standardization
method that is more robust to small standard deviations and
for different feature ranges than the common standard scaler
(sklearn documentation).

Some generators perform well with unscaled data (i.e.,
direct input of data with physical units) used as a reference
input method during the ML part. All results presented in this
paper are rescaled to physical units.

5) GENERATE PSEUDO-GLM EVENTS

The studied domain is separated into regular adjustable
size latitude–longitude pixels that represent the pseudo-GLM
pixel matrix. Any given latitude–longitude position is pro-
jected on that pixel matrix to determine the corresponding
pixel and thus the shape of one pseudo-GLM event. Using a
regular grid simplifies and speeds up the simulation of
pseudo-GLM events significantly. Each regularly shaped
pseudo-GLM event covers an area equal to the average size
of the observed, irregularly shaped GLM events in the region
of interest. Analyzing simulations built on this regular
pseudo-GLM grid should lead to statistically similar results as
for the irregular grid of the GLM observations.

The target generator of the GEO lightning pseudo-observa-
tion generator simulates the targets based on the given NLDN
flash characteristics. These pseudo-GLM targets provide the
information to derive individual pseudo-GLM events. As the
target generator may produce targets with values smaller than
the observed (and physical) limits, the targets are adjusted to
account for the known thresholds. For instance, negative flash
extent or negative flash duration is set to zero, and there are at
least two pseudo-GLM events per flash in accordance with
NASA GLM data processing (Mach 2020). Pseudo-GLM flash
NS and WE extents are calculated based on the simulated
pseudo-GLM flash extent applying the same ratio as the NS
and WE extents of the corresponding NLDN flash. If the

FIG. 3. Flowchart of the multistep approach illustrating the possible predictions of a given tar-
get using different combinations of features and pseudofeatures [(a) training]. (b) The applica-
tion shows the example of the num ext(a) configuration (section b of appendix B).

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 3910

Unauthenticated | Downloaded 02/23/23 03:43 PM UTC



NLDN flash contains a single pulse or stroke, the NS-to-WE
ratio is set to 1.

First, the locations of pseudo-GLM events are generated.
Using the simulated pseudo-GLM flash extent and its NS and
WE components, a rectangular subdomain on the pseudo-
GLM pixel matrix is defined. The center of this subdomain
houses the NLDN flash position centroid, and the correspond-
ing pixel constitutes the first event of the pseudo-GLM flash.
Any pixel within the subdomain may also become a pseudo-
GLM event of this pseudo-GLM flash. Three constraints have
been designed to generate subsequent pseudo-GLM events:
(i) each event of the flash has at least one adjacent or diagonal
neighbor within one flash, thus avoiding spatial gaps; (ii) pix-
els are primarily selected starting at the first event and propa-
gating (meaning increasing distance to the first event) toward
the subdomain border to approximate the simulated flash
extent; and (iii) additional pixels can be selected randomly
within the rectangular area until the simulated event number
is reached. In consequence one single pixel of the subdomain
can contain more than one pseudo-GLM event. Since pixels
of the subdomain are not guaranteed to contain a pseudo-
GLM event, this random selection also affects the final FED
product.

Then the pseudo-GLM events get time stamped. In the pre-
sent study, the matching of GLM and NLDN flashes revealed
that the median time offset between the mean time of a given
NLDN flash and the mean time of the matched GLM flash
was about 8 ms. The NLDN and GLM average flash duration
were 0.24 and 0.39 s, respectively. Hence, the mean time of
matched NLDN and GLM flashes are relatively close while
GLM flashes last on average longer than NLDN flashes. As a
consequence, the mean time of the NLDN flash defines the
mean time of the pseudo-GLM flash that is also the time
stamp of the first pseudo-GLM event. Our generator is built
to generate realistic FED fields. Only the spatial distribution
of the events is needed to infer FED. Hence, the temporal
occurrences of pseudoevents are uniformly and arbitrary dis-
tributed during the duration of one flash. Pseudoevent times

are then rounded to the time frames of the mimicked GEO
LLS, that is, to 2-ms frames for pseudo-GLM data. The only
constraint is that any adjacent pixel occurs within 330 ms (i.e.,
the time criterion to separated flashes in NASA’s GLM L2
algorithm). One 2-ms frame contains often several pseudo-
GLM events.

4. Results

Figure 4 shows the example of one simulated pseudo-GLM
flash created with the final GEO lightning pseudo-observation
generator based on a linSVR model, the corresponding GLM
and NLDN observations, and the observed and simulated
GLM flash characteristics. One can see the difference
between the real GLM grid and the regular pseudo-GLM grid
of the simulation (Fig. 4c). The difference between observed
and simulated flash extent is within the size of one GLM pixel
for this example. The simulated flash duration exceeds the
observed flash duration significantly. There is also an overesti-
mation of the number of GLM events by the generator.

Results are obtained from the 3-day test dataset. It contains
340 712 NLDN flashes that are used to simulate the same num-
ber of pseudo-GLM flashes. Statistics of the pseudo-GLM
flashes are compared to the statistics of all 338 579 observed
GLM flashes. First, the distributions of the simulated and
observed GLM flash extent, flash duration, and event number
per flash are compared. The best target generators are used to
simulate pseudo-GLM events and eventually compute the
pseudo-FED product. The FED is analyzed statistically for
both observed and simulated GLM data of the three test days.
The minimum discrepancy between observation and simulation
will indicate the most suitable target generator configuration
for the final GEO lightning pseudo-observation generator.

a. Evaluating the target generators—Distributions of GLM
flash extent, flash duration, and event number per flash

In a general sense, a wide range of values is observed for all
target distributions. The GLM flash duration ranged from

FIG. 4. An example of one simulated flash with corresponding GLM and NLDN observations on 26 May 2018. The
final GEO lightning pseudo-observation generator is used including a linear SVR model, i.e., linSVR num ext(a)
plus. Shown are time series of (a) latitudes, (b) longitudes and (c) a map. The map includes characteristics of the
observed and simulated GLM flash. The time interval shown matches the simulated flash duration of 640 ms.
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0.0 to 16.4 s. Observed GLM flashes comprised between 2 and
1395 events. The test data feature GLM flash extent between
0 and 277 km. The target generators should handle these
ranges of values and predict target statistics similar to the sta-
tistics of observed GLM flashes.

Table 2 summarizes the findings, with statistics, the KS, and
the CvM of the distributions of observed and simulated GLM
flash duration, event number per flash, and flash extent for the
full 3-day test data. The table contains distribution statistics for
the respective target generator with smallest difference between
observed and simulated characteristics over the test period.
Results for the linSVR num ext(a) plus generator are shown as
reference. Statistics of the simulated pseudo-GLM and the
observed distributions are referred to as simulated statistics and
observed statistics, respectively. This analysis was also con-
ducted for each test day. The results are presented in section a
of appendix D.

The majority of the target generators features mean values
similar to the observed means for all three target characteris-
tics. The simulated medians, however, exceed the observed
medians in most cases, especially for the number of events
per flash, suggesting a tendency to overestimate the target val-
ues. The previously described behavior is true for all but the
linSVR-based generators. The linSVR filters the dataset in
advance to build the prediction on the support vectors
[section a(6) of appendix B]. That results (in this study) in
lower differences between the simulated and observed
median values as compared to using the other ML model
types. The mean values of linSVR-based predictions are, how-
ever, often smaller than the observed mean, especially for the
event number per flash. Table 2 demonstrates this behavior of
linSVR-based generators. To detail one example, the recom-
mended linSVR-based generator (see section 4b and the bold-
face type in Table 2) underestimates median and mean flash
extent by about 4.5% and 11.7%, respectively. The mean event
number per flash is also underestimated by about 29.6%; how-
ever, the median event number per flash is overestimated by
20%. The linSVR-based generator creates, compared to the
observations, not enough flashes with an event number in the
tails of the distribution, i.e., close to the observed minimum and

maximum event numbers. Hence, it cannot mimic the full range
of the observed event numbers per flash. This linSVR-based
generator still outperforms all other generators with respect to
the median considering the full 3-day test data.

Some general conclusions can be drawn about the generator
performances for the observed range and variability of the tar-
get values. The target generator minimum often approximates
or slightly exceeds the observed minimum, whereas the maxi-
mum is underestimated in most cases. This particular behavior
can even be seen for the best target generators (Table 2)
because the number of small flashes with characteristics close
to the minimum observed target values is relatively high. The
rare, highest observed values are often underrepresented in
the statistical approach. It is further found that observed GLM
flash statistics can vary for a given set of the six observed
NLDN features. This is the case as our six NLDN features can-
not completely explain the range of target values even if the
statistics derived here are significant in terms of the large sam-
ple size. The large values of the RMSE per flash in Table 2
and also appendix D, section a, result from the deterministic
nature of the ML models in combination with a set of features
that cannot include all physical influences on the targets, for
example, cloud properties. The RMSE values of the GLM
flash extent are similar to the mean values, whereas they reach
twice the mean for both GLM flash duration and event num-
ber per flash. Here, the optimization of our GEO lightning
pseudo-observation generator for FED that depends mostly
on the flash extent is evident. A relatively wide range of target
values is in particular found for small NLDN flashes with
NLDN pulse/stroke number, extent, and duration near the
lower end of the distributions (not shown). Large (meaning
long extent, long duration, and many pulses/strokes or events)
NLDN flashes usually coincide with large GLM flashes. As the
NLDN features are somewhat correlated to the GLM targets,
the high RMSE due to a small NLDN flash as input also leads
to a high RMSE when predicting small GLM flashes.

KS and CvM assign a quantitative value to measure the dis-
tance between two samples. While KS is normalized (values
of 0–1), the CvM value depends in general on the distance
between simulated and observed CDFs and the sample size.

TABLE 2. Comparison of distribution statistics for observed GLM data and the best generator for each target during the full test
period. The recommended linSVR-based generator is shown in boldface type. Details about the target generator names are provided
in section b of appendix B.

Generator Mean Median Min Max RMSE per flash KS CvM

GLM flash duration (s)
Observed 0.43 0.31 0.00 16.44 0.00 0.00 0.0
linSVR num ext raw 0.46 0.30 0.00 9.41 0.77 0.15 656.5
linSVR num ext(a) plus 0.41 0.31 0.02 10.0 0.68 0.32 3770.3

GLM event no. per flash
Observed 49.3 25.0 2 1395 0.0 0.00 0.0
linSVR num ext(a) raw plus 35.3 30.0 2 411 79.8 0.38 6687.6
linSVR num ext(a) plus 34.7 30.0 14 457 80.0 0.40 6989.5

GLM flash extent (km)
Observed 32.9 27.5 0.0 277.0 0.0 0.00 0.0
linSVR num ext(a2) 30.1 26.3 0.0 157.3 30.9 0.24 3479.2
linSVR num ext(a) plus 29.0 26.2 8.5 305.5 31.5 0.24 2738.4

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 3912

Unauthenticated | Downloaded 02/23/23 03:43 PM UTC



As the sample size is kept constant for all generators, CvM in
fact provides a common measure of the agreement between
observed and simulated targets. Both KS and CvM feature
lower values for the GLM flash duration than for both the
GLM flash extent and the GLM event number per flash con-
sidering the full test dataset (Table 2). This result is in accor-
dance with the strong correlation coefficients between
observed GLM flash duration and NLDN features (see also
section 1). KS and CvM for the flash duration rely mainly on
the underestimation of long duration flashes. As an exception,
the recommended linSVR num ext(a) plus generator not only
underestimates the maximum flash duration but also cannot
produce single-frame flashes. Therefore, KS and CvM are
higher for the flash duration than for the flash extent here.2

The KS and CvM reach their highest values, that is, when
comparing the three target distributions, for the GLM event
number per flash, for which the weakest correlations to fea-
tures were observed.

The performances of the generators for the full 3-day test
data and each test day (section a of appendix D) indicate that
the choice of a suitable target generator can be situational. The
objective now is to find a configuration that best approximates
the observed GLM flashes and target distributions. Therefore,
the differences between the simulated and observed statistics
(i.e., mean, median, minimum, maximum, RMSE, KS, and
CvM) are calculated and normalized for each statistic. The

normalization divides each absolute difference by the maximum
absolute difference of all target generators for a given statistic.
A value of 1 represents the worst target generator for the given
statistic, while a value of 0 indicates no difference to the observa-
tion. In addition, and to summarize all the information, the so-
called normalized difference average (NDA) is introduced to
average the normalized absolute differences and scores for a
given generator. The perfect generator would yield an NDA of
zero. NDAs of the target generators can be directly compared
to identify the highest performer. NDA is calculated per target
and for all three targets overall.

Overall NDAs for all three targets range from 0.35 for the
linSVR num ext raw generator to 0.87 for the MLP num
ext(a) raw generator. The best (i.e., lowest NDA) 24 target
generators all use a linSVR, and the performances of the
best target generators vary only within the range of uncer-
tainty given in section 1. For example, the difference
between the first and tenth ranked target generator is only
0.04 NDA. The NDA ranking of target generators reveals a
clustering explained by the ML model type, with linSVR-
based generators performing the best, followed by BAGR
KNN dist–based, ETR-based, and polynomial regression-
based generators. MLP- and HGBR-based generators exhibit
the highest NDAs.

The generators yielding the lowest NDA values are mostly
those using the multistep approach. In addition, the use of all
six (plus; section b of appendix B) instead of only four (default)
NLDN features improved the performances of the majority of
tested generators. The feature and target scaling had little effect
on the generator performances, although scaling is usually rec-
ommended for ML applications. The ML model type has in fact
the highest impact on the simulation of pseudo-GLM flashes
and thus on the target generator performances.

FIG. 5. Normalized absolute difference of statistics and scores (titles) between distributions of
observed and simulated GLM flash extent (0 means equal to observation; 1 represents the worst
simulation). The boxplots represent the distributions of 28 target generator results per ML type
(x axis) including the interquartile range (IQR; blue box), 1.5 times the IQR (whiskers), and
outliers (black cross). The horizontal green line gives the median. Results are for the full test
dataset. The abbreviations for ML type are in appendix table Table B1.

2 It can be noticed from Table 2 that this linSVR-based genera-
tor also overestimates the minima of event number per flash and
flash extent. For those two targets, the simulated maxima are
closer to the observed maxima than for the best-performing gener-
ator in Table 2, causing overall similar and even lower KS and
CvM for the linSVR num ext(a) plus.
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Figure 5 visualizes the statistics of all tested target genera-
tors for the flash extent as the most impactful characteristic
on FED. It groups the results for each statistic by ML model
type. Seven ML model types were used to build the genera-
tors (section 2 and appendix Table B1 except RF). Each dis-
tribution contains the results of 28 generators using this ML
model type including seven feature-set selections and two
optional attributes (Table B2 of section b of appendix B).
Figure 5 shows these results as normalized differences and
scores for the three test days combined. It reveals that the
boxplot minima for the linSVR type generators are the closest
to zero for most statistics. BAGR KNN dist–based generators
feature the second-lowest values of KS and CvM. The finding
is supported by results for each test day (section a of appendix
D) showing best performances for the targets by BAGR
KNN dist–based generators on 7 April 2018 and by linSVR-
based generators on 26 May and 31 July 2018. Some boxplots
exhibit a wide range of outcomes. The range shows that all
ML model types are sensitive to the configuration. The NDA
of the best generator, i.e., linSVR num ext(a2), is equal to
0.28. The associated outcomes for flash duration and event
number per flash statistics (section b of appendix D) confirm

linSVR-based generators as most suitable to simulate GLM
targets for the entire test period. Hence, results for the indi-
vidual targets agree with the overall NDA analysis.

CONFIDENCE IN THE RESULTS

The confidence in the outcomes is evaluated for the two
parts of the GEO lightning pseudo-observation generator.
The uncertainty of the outcomes is expressed as the range of
outcomes given the same configuration. First, (only) three
selected generators with constant configuration are trained 10
times using the same full training dataset (for computational
efficiency). Herewith, the training variability of the ML model
is assessed. The selected generators are BAGR KNN dist
num plus, MLP alpha8 num raw, and linSVR num ext(a) plus.
They are labeled by their ML model type as BAGR KNN
dist, MLP, and linSVR, respectively. Figure 6 shows the distri-
butions (boxplots) of targets for the full test data for the three
generators (x axis) each trained 10 times for pseudo-GLM
flash duration (Fig. 6a), pseudo-GLM number of event per
flash (Fig. 6b), and pseudo-GLM flash extent (Fig. 6c), respec-
tively. The predicted target range of the 10 trained generators

FIG. 6. Normalized absolute difference of statistics and scores (titles) between distributions of observed and simulated GLM (a) flash
duration, (b) event number per flash, and (c) flash extent; y range (0–1) as in appendix Fig. D1 [for (a)], appendix Fig. D2 [for (b)], and
Fig. 5 [for (c)]. Boxplots (as in Fig. 5) represent the distribution for training the same model (x axis) 10 times during the first step of the
simulation. The abbreviations for ML type are in appendix Table B1.
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is smaller than the variability due to different ML model types
and due to different configurations of one ML type. The 10
BAGR KNN dist–based simulations feature a very narrow
range of outcomes for all statistics. The 10 trainings of both
the presented linSVR and the presented MLP yield a range of
values from 0.2 to 0.4 normalized absolute difference for most
statistics. The range of the minimum event number per flash
(Fig. 6b) and the minimum flash extent (Fig. 6c) reaches
about 0.5 and up to 0.7 for the linSVR and MLP-based gener-
ators, respectively. Here, the uncertainty from retraining
these two generators becomes as high as the variability seen
for the different ML model types (reference to Figs. D2 and
5). The range of normalized absolute difference for the maxi-
mum event number predicted based on 10 equally configured
linSVR models is also about 0.6. In addition, the range of nor-
malized absolute differences is always wider for the mean
than for the median. Despite a relatively high uncertainty in
some statistics, the overall trends as described in the previous
section remain valid. Statistics sensitive to distribution out-
liers, that is, the mean and minimum, exhibit higher uncertain-
ties than more robust statistics, that is, the median, KS, and
CvM. Some target generators, that is, the BAGR KNN dis-
t–based one, appear to provide very robust predictions. The
uncertainty range is usually smaller than the overall range of
values for each statistic.

The test of the variability in the results enforced by the sec-
ond part of the GEO lightning pseudo-observation generator,
i.e., generating pseudo-GLM events (not shown) is much
smaller than for the ML part. Hence, the overall range of tar-
gets for a given generator configuration is similar to those
shown in Fig. 6.

b. Evaluating observed and simulated FED

Hourly FED maps are calculated for both GLM observed
and simulated flashes. They will be referred to as observed

and simulated FED, respectively, in the following. The evalu-
ation includes the hourly FED summed-up over the domain
(termed FED sum), the electrified areas defined as pixels with
positive FED (i.e., greater than 0 flashes per 5 km 3 5 km
pixel per hour), and a visual inspection of convective cores.
As the choice of the ML model type has the highest impact
on the overall performance of the GEO lightning pseudo-
observation generator, the results are mainly discussed with
respect to the ML model types.

Figure 7 presents the observed FED (Fig. 7a) to the simu-
lated FED of three selected generator configurations (Figs.
7b–d) for the example of 2000–2100 UTC 26 May 2018. The
three generator configurations represent a selection of the
variety of tested generators with different ML model types,
feature-set selections, and scaling, as detailed below (see also
appendix B). Simulated FED fields capture the coarse geo-
graphical distribution of the observed FED. One can identify
the most active regions (highest FED values), which are situ-
ated at similar locations for the observed and simulated
FEDs. The numbers in the top corners of Figs. 7a–d indicate
the number of lightning pixels with FED . 0 flashes per
5 km 3 5 km pixel per hour on the left and the FED sum on
the right. The product of the number of lightning pixels and
the area per pixel yields the electrified area. The linSVR
[num ext(a) plus; appendix Table B2] in Fig. 7b uses GLM
duration as additional feature when simulating GLM number,
and then GLM duration and GLM event number to simulate
GLM extent. This linSVR-based generator performs among
the best for the simulation of GLM targets overall, and it
appears to be among the best also for the FED sum. It underes-
timated the electrified area in most cases (as in the example in
Figs. 7a,b). The MLP-based simulation (num raw; appendix
Table B2) of the FED of Fig. 7c uses unscaled features and tar-
gets. GLM flash extent and flash duration relate only to four
NLDN features (without mean amplitude and CG stroke ratio).

FIG. 7. (a) Observed and simulated hourly FED using (b) linSVR num ext(a) plus, (c) MLP alpha8 num raw, and (d) BAGR KNN dist
num plus generator for 2000–2100 UTC 26 May 2018. The FED grid uses pixels of 5 km 3 5 km. The abbreviations for ML type are in
appendix Table B1.
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The attribute num means that pseudo-GLM flash duration and
flash extent are obtained directly from ST approaches. Those
simulated targets serve as pseudofeatures to derive the pseudo-
GLM event number. This MLP-based generator performs
among the best for the electrified area, but overestimates GLM
flash extent, GLM event number per flash, and eventually the
FED sum. Figure 7d maps the FED as simulated by the BAGR
KNN dist–based generator (num plus; appendix Table B2) that
uses all six NLDN features and the num method (see
above). It is the best performing generator using the BAGR
KNN dist ML model type. Although this generator overesti-
mates the target medians and the FED sum, it belongs to
the best 25% of generators for both FED sum and electri-
fied area. It performed best for 7 April 2018 test case with
the dominant squall line that produced most of the large-
extent lightning flashes. In general, all three generators
overestimate the 1-h FED sum in Fig. 7. The linSVR-based
generator simulates an FED sum significantly closer to the
observed FED sum than using both the MLP and the
BAGR KNN dist. The linSVR, however, underestimates

the number of lightning pixels, which is best simulated by
the MLP-based generator here.

The results are further investigated for the 3-day test period
by comparing pixel-to-pixel simulated and observed hourly
FED. Figure 8 shows the 2D histograms, computed for the
entire 3-day test dataset, for the same linSVR- (Fig. 8a),
MLP- (Fig. 8b), and BAGR KNN dist (Fig. 8c)-based genera-
tors as used in Fig. 7. In general, the Pearson correlation coef-
ficients R of 0.91–0.92 indicate well correlated distributions of
observed and simulated FED. Figure 8 also shows the range
of simulated FED is wider than the range of observed FED
(gray box). The corresponding trend to overestimate the FED
in the simulation is proofed by the regression lines (light
green) that feature steeper slopes than the equal-value line
(black). In particular, the MLP-based (Fig. 8b) and the
BAGR KNN dist–based generator (Fig. 8c) overestimate the
FED usually more than the linSVR-based generator (Fig. 8a).
The Y intercepts near 0 indicate good agreement for regions
without lightning activity. These findings agree with the exam-
ple in Fig. 7.

FIG. 8. Pixel-to-pixel (5 km 3 5 km) simulated vs observed hourly FED for the 3-day test period using the same
(a) linSVR-, (b) MLP-, and (c) BAGR KNN dist–based generators as in Fig. 7. The gray box and white margins indi-
cate the upper limits of distributions on each axis. The abbreviations for ML type are in appendix Table B1.
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To summarize and quantify the evaluation of both FED
sum and electrified area, the metrics normalized difference
Dreal and absolute normalized difference Dabs are defined:

Dreal 5

∑H

n5 1

Sn 2On

∑H

n5 1
On

andDabs 5

∑H

n5 1

Sn 2On| |
∑H

n5 1
On

, (3)

where Sn is the simulated hourly FED sum or electrified area,
On is the observed hourly FED sum or electrified area, and H
is the total number of time steps (here 72 h). The Dreal and
Dabs can be used to compare the different GEO lightning
pseudo-observation generators and identify the generator
with the lowest difference to the observation.

All 196 generators are evaluated for Dreal and Dabs of both
FED sum and electrified area. As the ML part of the genera-
tor enforces significantly higher differences than the deriva-
tion of pseudo-GLM events (the second part), again results
are mainly discussed with regard to the different ML
configurations.

The Dreal and Dabs are calculated for the 3-day test period.
For the FED sum, the 28 linSVR-based generators tested are
ranked as best 28 configurations in the comparison, that is,

lowest Dabs. Table 3 presents the results for the best 20 and
worst 5 generators as ranked by Dabs of FED sum. The best
GEO lightning pseudo-observation generators exhibit a Dabs

of 22%–25%, while Dreal is close to zero, that is, balance
between situations with over and underestimated FED sum.
The worst generators (some of MLP- and ETR-based configu-
rations) lead to almost 2 times as high FED sum as the
observed values. Similar, positive values of both Dreal and
Dabs for the FED sum mean that most generators overesti-
mate the FED sum. This agrees well with Fig. 8. The excep-
tion is found for the linSVR type generators that often
underestimate the FED sum with Dreal ranging from 222%
to139%. Figure 8a shows one example of a linSVR with pos-
itiveDreal.

As mentioned, the best 28 generators for the FED sum are
all of type linSVR. The best 10 generators use the multistep
approach (num and num ext, Table 3). The use of mean LF
amplitude and CG fraction (plus) as additional NLDN fea-
tures has a minor effect on the simulation of FED sum.

Results for the electrified area are in general closer to the
observation than the FED sum. They are shown in Table 4
for the best 20 and worst 5 generators as ranked by Dabs of
the electrified area. The generators with the lowest Dabs,
HGBR type, differ absolutely by about 7.5% from the

TABLE 3. Comparison of Dreal and Dabs in percent of observed
value for the FED sum during the full test period. The best 20 and
the worst 5 of the 196 generators (ranked by Dabs) are included.
The recommended linSVR-based generator is shown in boldface
type. Details about the target generator names are provided in
section b of appendix B.

Generator Dabs (%) Dreal (%)

linSVR num ext(a2) raw 22.2 2.3
linSVR num ext(a) raw 22.7 222.5
linSVR num ext(a) 22.9 3.6
linSVR num ext(a) plus 24.9 9.8
linSVR num ext raw 25.7 11.4
linSVR num ext default 26.5 11.0
linSVR num ext(a2) 27.4 12.6
linSVR num ext(a) raw plus 28.8 15.4
linSVR plus num ext 29.6 17.0
linSVR num(a) raw 31.0 18.5
linSVR num ext(a2) plus 32.3 20.9
linSVR(a) raw 34.4 23.2
linSVR raw 35.1 24.2
linSVR num ext(a2) raw plus 35.6 24.9
linSVR num raw 36.0 25.4
linSVR default 36.1 25.3
linSVR num(a) raw plus 36.2 26.0
linSVR num(a) 36.4 25.6
linSVR(a) 36.7 26.0
linSVR num default 36.9 26.3

MLP alpha8 num ext(a) raw plus 95.0 93.6
ETR num ext(a) raw 95.3 93.8
MLP alpha8 num ext(a2) raw 96.7 95.6
ETR num ext(a) 97.8 96.3
MLP alpha8 num ext(a) raw 107.6 106.7

TABLE 4. Comparison of Dreal and Dabs in percent of observed
value for the electrified area during the full test period. The best
20 and the worst 5 of the 196 generators (ranked by Dabs) are
included. In addition, the recommended linSVR-based generator,
separating the best and worst generators, is shown in boldface
type. Details about the target generator names are provided in
section b of appendix B.

Generator Dabs (%) Dreal (%)

HGBR num ext(a2) plus 7.4 22.3
HGBR num ext(a2) raw plus 7.4 22.4
HGBR num ext(a2) raw 7.4 23.0
HGBR num ext(a2) 7.5 22.8
Poly plus num ext 7.5 22.5
Poly num ext raw plus 7.5 22.5
BAGR KNN dist raw plus 7.6 21.4
BAGR KNN dist num raw plus 7.6 21.5
BAGR KNN dist num(a) raw plus 7.6 21.4
BAGR KNN dist(a) raw plus 7.6 21.3
ETR plus num 7.7 23.7
HGBR num ext default 7.7 21.4
ETR plus 7.7 23.7
ETR(a) plus 7.7 23.5
MLP alpha8 num ext plus 7.7 21.8
ETR raw plus 7.7 23.9
ETR num(a) plus 7.7 23.6
ETR num raw plus 7.7 23.9
BAGR KNN dist num(a) 7.8 22.1
MLP alpha8 num ext default 7.8 24.0
linSVR num ext(a) plus 21.3 221.3
Poly num ext raw 26.0 10.4
Poly num ext default 26.1 10.6
linSVR num ext(a2) raw 27.4 227.4
linSVR num ext(a) 28.0 228.0
linSVR num ext(a) raw 35.4 235.4
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observed electrified area. The vast majority of all tested target
generators underestimate the electrified area (negative Dreal).
Multiple generators of various types feature Dabs of less than
10%, e.g., using HGBR, Poly, BAGR KNN dist, ETR, or
MLP models. The linSVR-based generators, which performed
best for the FED sum, exhibit the highest differences to the
observation here with Dabs from 15% to 35% (all with nega-
tive Dreal). For example, the best performer for the FED sum
is ranked as third worst for the electrified area with a high
underestimation of the area.

The best 20 generators for the electrified area take advan-
tage of the multistep approach in 15 cases. Also 15 of those
20 ML-based generators use all NLDN features (Table 4).
Comparing only the linSVR-based generators, all 10 leading
generators use six rather than only four NLDN features. This
result strengthens the meaning of including all NLDN fea-
tures and of the multistep approach.

The computational cost of our multistep approach is still
higher than the ST approach, however, only needed for the
training of the generator. The application of trained multistep
generators is relatively fast, i.e., similar duration as applying ST
generators. The best generator without multistep approach
[linSVR(a) raw] exhibits Dabs more than 14% higher than the
best generator for the FED sum (Table 3). In addition, Dreal

exceeds 23% indicating that the FED sum is mostly overesti-
mated. FED sum simulation is most sensitive to the choice of
the generator and, hence, particularly important to obtain realis-
tic synthetic FED. The multistep approach helps in particular to
obtain more realistic FED sum than ST-based generators. For
the electrified area, however, generators not using the multistep
approach can perform as well as the best generators (Table 4).

If only electrified area is of interest, common ST models can be
used. The multistep generator linSVR num ext(a) plus is suc-
cessfully applied to simulate GLM FED (section 4) and also
MTG-LI FED over France (not in the present paper).

The recommended GEO lightning pseudo-observation gen-
erator balances the simulation of all pseudo-GLM target dis-
tributions, FED sum, and electrified area. It is named linSVR
num ext(a) plus generator. This configuration features an
overall NDA of 0.39, and a Dabs to observed FED sum and
electrified area of 24.9% and 21.3%, respectively. This gener-
ator used all available features and utilizes the multistep
approach. First, GLM flash duration is predicted from all six
NLDN features, and then used as additional pseudofeature to
predict the event number per flash. Last, the pseudo-GLM
flash extent is simulated from NLDN features and the pseudo-
features GLM flash duration and event number. Both features
and targets are scaled [section 3b(4)]. The linSVR ML tech-
nique is more time-efficient than the MLP and bagging-based,
e.g., BAGR KNN dist and ETR, techniques for the training
and also needs less disk space to be stored. These are two
other advantages of the linSVR num ext(a) plus generator.

Figure 9 presents hourly FED sum (Fig. 9a) and electrified
area (Fig. 9b) with the overall value (top) and the difference
to the observation (bottom) for 31 July 2018 test case. The
observed FED and results for the 10 generators with lowest
Dabs are plotted. Figure 9a includes in addition results of the
best generator for electrified area (lime), and Fig. 9b the
results of the best generator for FED sum (orange). The fig-
ure also shows the number of hourly simulated pseudo-GLM
flashes (histogram). Similar figures for the other two test days
are also evaluated but not shown here because identical

FIG. 9. (a) Hourly sum of FED and (b) hourly electrified area within the region of interest. For (a) and (b), the top plot (label 1) is abso-
lute values and number of simulated flashes per hour and the bottom plot (label 2) is difference of simulation minus observation. The
observation is plotted in blue, and the remaining colors represent the 10 best generators for FED sum [in (a)] and electrified area [in (b)].
The best generator of FED sum in (a) is also included in (b) (orange), and the best generator from (b) is included in (a) (lime). Results are
for 31 Jul 2018. Details about the generator names are provided in section b of appendix B.
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conclusions are drawn. The absolute values (Fig. 9, top) show
that the FED sum (Fig. 9a) reacts directly to the number of
(simulated) flashes. The electrified area curves (Fig. 9b)
appear to have a time offset relative to changes in the flash
number, suggesting that within 1 h a lower number of rela-
tively large flashes can electrify a similar area as a higher
number of smaller flashes. An increasing (decreasing) flash
rate during the development (decay) of convective storms
does not automatically mean a larger (smaller) electrified
area, since even less flashes can still illuminate a large portion
of the cloud via scattering. The simulated FED adapts this
behavior very well. In particular, the simulated FED features
similar hours with highest FED and electrified area as the
observed FED.

It is observed that the simulated FED sum usually
exceeds the corresponding observation during the phases of
highest flash amounts within the region (Fig. 9a). This could
mean that NLDN detects significantly more flashes than
GLM during these times, and thus the number of simulated
flashes is significantly higher than the number of observed
GLM flashes. These findings agree with Zhang and Cum-
mins (2020), who found that the GLM DE decreases for
high flash rates and with shorter extent and duration
flashes, which are observed during the mature phase of a
thunderstorm.

Note that the absolute values (Figs. 9a,b, top) and differ-
ence to the observation (Figs. 9a,b, bottom) for the FED sum
(Fig. 9a) have the same order of magnitude. In contrast, the
difference (Fig. 9b, bottom) is one order of magnitude smaller
than the absolute values (Fig. 9b, bottom) for the electrified
area. Hence, the difference to observed FED and also the
spread between generators with different configurations are
much greater for the FED sum than for the electrified area.
Therefore, it is decided to put more weights on the ranking of
the FED sum than on the ranking of generators by electrified
area when choosing the recommended generator. Eventually,
the linSVR-based generator returns as the recommendation
in an overall evaluation context. If, however, for a certain

objective the electrified area is most important, several
HGBR-, MLP-, or even ETR-based generators perform bet-
ter than the recommended linSVR-based generator.

In a Monte Carlo approach, FEDs for 10 of in total 100
realizations of the recommended linSVR generator are calcu-
lated for the three test days. Figure 10 illustrate the median
(line) and range (shaded) of FED sum and electrified area on
31 July 2021. The variability of both the FED sum and the
electrified area has the same order of magnitude as the differ-
ence between the leading generators (Fig. 9). Figure 10 also
confirms that the linSVR-based generator tends to underesti-
mate the electrified area. The vast majority of the time, all 10
realizations simulate lower electrified area than the GLM
observations indicate. However, all 10 realizations remain rel-
atively close to the observed FED sum at most times (except
for the cases with intense convection, as discussed earlier).
Note that this linSVR-based generator does not appear
among the best 10 generators for the electrified area (Fig. 9b).

5. Summary

This study analyzed in detail the simulation of GEO light-
ning pseudo-observations in two parts: First pseudo-GLM flash
characteristics are simulated and then pseudo-GLM events are
derived. The data generator uses only LF ground-based data.
There is no additional cloud information used in the generator.
The entire process is nontrivial because relations (correlations)
between characteristics of coincident LF ground-based and
optical satellite lightning observations are often weak at the
flash scale.

A multivariate analysis using several features and targets is
conducted to achieve more robust flash characteristics. Simu-
lated GEO flash characteristics (targets) are obtained via ML
models. Targets include GLM flash extent, GLM flash dura-
tion, GLM event number per flash. An independent test data-
set is then introduced to compare the statistics of simulated
pseudo-GEO flashes to the observed GEO, i.e., GLM, flash
characteristics. In a second part, the simulated targets are

FIG. 10. As in Fig. 9, but with 10 repetitions of the recommended linSVR num ext(a) plus generator. Median (line) and range (shaded) of
10 generator repetitions are for 31 Jul 2018.
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used to mimic individual GEO events on a regular latitude–-
longitude grid.

After testing different ML models used in the first part of
our generator, a linear SVR (linSVR)-based GEO lightning
pseudo-observation generator is recommended. The results of
multiple linSVR configurations turned out to be similar. In
more detail, our recommendation is to use a linSVR with fea-
ture and target scaling, which uses all NLDN and pseudo-
GLM features in a multistep approach.

The type of the ML model chosen in the first part of our
GEO lightning pseudo-observation generated has a major
impact on the simulated flashes. In fact, the performance
ranking of tested target generators reveals clusters per ML
model type. Whereas the vast majority of generators produces
pseudo-GLM flashes with flash characteristic means close to
the observed ones, they simultaneously overestimate the
medians of flash characteristics. Therefore, they produce
insufficient small flashes as compared to the GLM observa-
tions. Only linSVR-based generators were able to simulate
pseudo-GLM flash characteristics with distribution medians
close to the observation for the 3-day test dataset. This gain is
achieved at the expense of slightly underestimating the target
means. It is then found that FED sums from linSVR-based
generators are closer to the observed FED sum than for all
other generators; however, the electrified area is at least 10%
smaller than the observed electrified area.

Besides the type of the ML model, the set of features and
the feature scaling impact the results. In particular, including
(pseudo) GLM flash characteristics in the set of features
improved the predictions of most ML models as target gener-
ators and thus the overall performance of the GEO lightning
pseudo-observation generator.

In general, generators that perform well for the FED sum
exhibit high Dabs for the electrified area and vice versa. For
example, the best generator for the electrified area with Dabs

and Dreal of 7% and 22%, respectively, highly overestimates
the FED in most cases with Dabs and Dreal of 75% and 72%,
respectively. On the other hand, the best generator for the
FED sum with Dabs and Dreal of 22% and 2%, respectively,
always underestimates the electrified area with Dabs and Dreal

of 27% and 227%, respectively. Figure 9 illustrates this find-
ing on the example of test day 31 July 2020.

The developed GEO lightning pseudo-observation genera-
tor provides exactly one pseudo-GEO flash for each LF flash.
It does not distinguish whether an LF flash, that is, an NLDN
flash, is detected by the GEO LLS, that is, GLM. During the
application of the generator, there is no information whether
a given NLDN flash could be detected by the GEO LLS.
Additional assumptions, for example, using flash characteris-
tics, would then be needed to distinguish the LF flashes with
and without GEO match. In addition, our GEO lightning
data generator does not include a specific part to simulate
GEO flashes that are not directly coincident to any LF flash.
Here, the pragmatic approach of using all LF flashes as input
is justified with similar flash DE of the LF (i.e., NLDN) and
the GEO (i.e., GLM) LLS thus giving overall similar amounts
of GLM and NLDN flashes. Then NLDN and GLM flashes
without any coincident observation are analyzed. They are

referred to as NLDN-only and GLM-only flashes, respec-
tively. It was observed that both the NLDN-only and GLM-
only flashes occurred mostly in proximity to the convective
cores and regions of overall high flash rates. The number of
observed GLM-only and NLDN-only flashes was in general
on the same order of magnitude. It is assumed that pseudo-
GLM flashes simulated from the NLDN-only flashes substi-
tute the observed GLM-only flashes. It should be mentioned
that some simulated pseudo-GLM flashes might overlap as
the pseudo-GLM flash extent is usually greater than the
NLDN flash extent. Overlapping pseudo-GLM should actu-
ally be merged; however, this is not further studied here. As
one possible consequence, the simulated pseudo-GLM FED
can be somewhat higher than the observed GLM FED (as
seen for most configurations of generators). In particular, the
simulated hourly FED values are often higher than observed
in situations when many NLDN flashes were observed. On
the other hand, lower simulated than observed FED at the
rim of cells indicate that NLDN flashes cannot represent the
scattering of light as seen by GLM. Peterson et al. (2020)
showed that optically detected flashes can appear large near
storm edges due to light reflected off nearby clouds. Simu-
lated FED (based on NLDN observations) could then be
closer to the actual flash channel extent as derived from
LMA-type observations than the observed FED, especially at
the rim of cells. Nevertheless, the simulation might differ
from what the satellite sensor sees.

Our method is configured and refined for NLDN Vaisala
sensors. NLDN flash statistics were compared to coincident
GLM flashes and their extent, duration, and event number.
For an application in other regions than the United States
and/or with different LF networks, NLDN operational specifi-
cation and observations might be compared with the ones of
the other LF network in order to identify the necessity for
adapting the input data. This comparison can be of direct (e.g.,
NLDN and GLD360) or indirect (e.g., NLDN and Meteorage
compared to ISS-LIS as common reference; Erdmann 2020)
nature.

The studied dataset is limited to a region in the SE United
States and for the months of March to September. GLM fea-
tures high flash DE (e.g., Marchand et al. 2019; Murphy and
Said 2020) in this region satisfying our objective to build a
high-fidelity generator to simulate GEO lightning data. How-
ever, the limited dataset lacks winter storms that may have
different characteristics. For the application of our generator
in Europe, this should be a minor limitation as winter storms
rarely occur here. Taszarek et al. (2020) found that 3.6% of
flashes over Europe occurred during the European winter.
Wintertime flashes might be important over SE Europe and
the Mediterranean Sea. The performance of the data genera-
tor will depend on the LF network performance, for example,
flash DE. Realistic data can only be expected in regions where
the LF network provides good coverage. The simulated data
are, thus, restricted by the quality and range of the LF data
input. The SE U.S. region features mostly normal polarity
storms while storms with different charge structure occur
more often in other parts of the United States. For example,
Rutledge et al. (2020) show that flash characteristics and
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GLM flash DE are altered for storms with anomalous charge
structure. In addition, the data used to train our GEO light-
ning data generator were recorded in this region well covered
and far from the edges of the GLM’s (on GOES-16) field of
view. Simulating data of a GEO LLS near the edges of the
field of view needs caution about parallax effects and an
increase in the area one event covers.

The GLM data include a parallax correction. Our GEO
lightning pseudo-observation generator assumes that GLM
observations are correctly located. The simulated flashes are
placed according to the LF lightning data. If the GEO LLS
that should be mimicked uses a different parallax correction
than GLM, an adaption may become necessary to obtain real-
istic data of this LLS.

A comparison of GLM and NLDN during day and night,
and for intracloud (IC) and cloud-to-ground (CG) flashes
revealed similar relationships between NLDN and GLM flash
characteristics. The dataset for the ML includes all observed
flashes, without a separation of these flash types. In addition,
all applied ML models aim to optimize average characteris-
tics. This study uses deterministic approaches without a defini-
tion of a confidence interval of the outcomes. As one result,
the tails of the characteristics’ distributions, e.g., exceptionally
small flashes, are underrepresented in the simulation com-
pared to the observation.

Supplementary data might improve the present GEO light-
ning data generator. Cloud information and brightness tem-
perature data could provide additional features for the ML,
e.g., cloud-top height, and also information about more likely
scattering directions, e.g., in anvils of convective clouds or in
stratiform cloud lightning. (Doppler-)Radar data would pro-
vide even more versatile possibilities to include cloud struc-
tures, dynamics, and microphysics.
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APPENDIX A

GEO Pixel Slicing for FED

Deriving FED requires knowledge about flash locations
or, in case of satellite images, the positions of lightning
data pixels. GLM products do not come with this
necessary information. Therefore, the real GLM grid is
reconstructed locating the centers of all events of the full
half-year dataset. This large dataset was used to ensure that
the reconstruction of the GLM grid would be complete;
that is, there was at least one event at each GLM pixel. A
time-invariant real GLM grid is assumed. Because individ-
ual pixels appear to wobble locally with time and do not
appear on a regular grid due to microvibrations of the satel-
lite platform, spacecraft jitter, and variable-pitch CCD, a k-
means cluster analysis is performed to identify the statistical
mean location of each pixel center. Corner points of pixels
are then defined as the mean locations between the centers
of the four pixels adjacent to each point. It is assumed that
corner points can be connected by straight lines to repre-
sent the pixel shapes. This assumption is not entirely true
because the regular CCD grid is projected on Earth (more
precisely, on the cloud-top ellipsoid; section 2a); however,
the FED should be less impacted by this assumption than by
assuming a regular GLM grid. Shapes of GLM events do not
usually match the FED grid pixel shapes. One GLM event
with average side length of 8.7 km can overlap multiple FED
pixels with side length of 5 km to some degree. The fractions
of the GLM event within each pixel of the FED grid are
summed up while integrating over the period. This slicing of
GLM events reduces the effect of producing gaps or double
counts of GLM pixel when transformed to the regular FED
grid, as recently described by Bruning et al. (2019).

APPENDIX B

Definitions of the ML Algorithms

a. ML model types

This section defines the seven ML model types that are
trained in the study. The basic idea of each ML model type is
introduced, and specifications and important parameters for
their tuning are briefly described. As mentioned in section 2,
Python’s sklearn package is used. Model names are given as
they appear in the sklearn library and documentation (https://
scikit-learn.org/stable/), which provides further details.

1) MULTIVARIATE LINEAR REGRESSION

The first approach is the most commonly used linear regres-
sion: sklearn.linear_model.LinearRegression. It is applied
simultaneously to all features and targets and is, thus, a multi-
variate linear regression (LinReg). The algorithm seeks for
the minimum sum of squared errors between the features and
the targets by using linear functions. It is an ordinary least
squares fit in a space with dimensions equal to the number of
features times the number of targets.
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2) MULTIVARIATE POLYNOMIAL REGRESSION

The polynomial regression (Poly) is an adjustment to the
multivariate linear regression. It fits a polynomial of degree
3 (rather than a linear function) to minimize the sum of
squares between predicted targets and the corresponding
observations in the validation dataset. The cubic polynomial
model is chosen based on the initial correlation analysis
with relations between any one feature and one target. The
low polynomial degree allows fast computation.

3) RANDOM-FOREST REGRESSOR

A random forest (RF) is an ML algorithm using bootstrap-
ping and applying single decision trees to each bootstrap
sample. The overall result is the average of the outcomes of
all the decision trees. The minimum leaf size defines the min-
imum size at the end of the decision tree. A specific form of
the RF is called extra trees: sklearn.ensemble.ExtraTreesRe-
gressor (ETR; Geurts et al. 2006). ETR enforces randomness
by not only selecting random features in each subset but also
splitting depending on the best randomly produced thresh-
olds instead of looking for the most distinctive threshold (as
in RF). ETR usually reduces the variance and increases the
bias of the model relative to RF. In general, a higher number
of trees improves the performance but also the computation
time. Our RF implementation uses an ETR model with 50
decision trees. The number of decision trees results from a
sensitivity test (ETRs with 5, 10, 20, 50, 100, and 500 trees
were tested) between performance as R2 score (see the
sklearn documentation) and computational effort. Here, the
GB dataset with independent ML training and validation
(i.e., calculating the R2 scores) data (see section 1) is used.
The minimum leaf size is set to two; that is, a remaining sam-
ple of two data points defines the end of the branch. Single-
point leaf size would increase the variability of the trees and
would lead to a higher likelihood of overfitting.

4) BAGGING REGRESSOR WITH K-NEAREST NEIGHBOR

REGRESSOR

Bootstrap aggregation, short bagging (Breiman 1996),
uses subsamples drawn by bootstrapping from the entire
dataset. This step is similar to the RF regressor. The algorithm
used to treat the subsamples can, however, be chosen (not
always a decision tree). This paper applies the bagging regres-
sor sklearn.ensemble.BaggingRegressor combined with the K-
nearest neighbor (KNN) regressor (e.g., Altman 1992) sklearn.-
neighbors.KNeighborsRegressor on each of 50 subsamples. The
number of neighbors to use by default is set to the five closest
points, and distance weighting is applied for Euclidean distan-
ces. The KNN finds closest neighbors with a K-dimensional
tree (KD tree) method (Bentley 1975). It reduces the number
of distance calculations compared to a brute-force approach
calculating distances between all data points. The KNN regres-
sor in combination with distance weighting should represent
the actual range of the subsample training data better than a

decision tree (as used in RF and ETR). The expense might be
an increase in overfitting of the data.

5) MULTILAYER PERCEPTRON NEURAL NETWORK

Multilayer perceptrons (MLPs) are a form of neural networks
in supervised ML (Glorot and Bengio 2010). They consist of
different layers of neurons, where the input layer neurons repre-
sent the features and the output layer neurons represent the
simulated targets. An adjustable number of hidden layers can
connect the input and output layers. Each neuron initially trans-
forms the values from the previous layer in a weighted linear
summation. Then a (non)linear activation function is used.
Parameters of our MLP model, sklearn.neural_network.ML-
PRegressor, were determined after testing different configura-
tions to balance computation time and accuracy. It uses one
hidden layer with 50 neurons. The activation function is the rec-
tified linear unit function. Additionally, an early stopping crite-
rion is applied if there is no improvement over 20 consecutive
iterations. The early stopping requires splitting the training data-
set randomly, whereby 10% are used to verify the improvement
of the model and 90% remain as actual training dataset. The
tolerance for the stopping criteria is reduced from default 1024

to 1028 to allow a higher number of iterations. The alpha
parameter for the L2 penalty was also reduced from default
1024 to 1028 after testing different values. The lower alpha led
to faster training while maintaining the model skill. This change
is indicated by naming alpha8 of the MLP-based generators.
Furthermore, the default Adam solver (Kingma and Ba 2014)
and a constant learning rate are used, along with adjusted
parameters beta1 (0.7), beta2 (0.9), and epsilon (10210) for the
decay rates and the numerical stability in the Adam solver.

6) SUPPORT VECTOR REGRESSOR

The support vector regressor (SVR) is based on support
vector machine (SVM) algorithms. A set of hyperplanes is
constructed. Therefore, a defined kernel function is applied
to achieve a separation of data clusters (by the hyper-
planes) for the regression. The kernel function can be a lin-
ear or nonlinear function (i.e., polynomial or radial basis
function). Linear SVR (linSVR) is faster and uses less
memory than SVR with nonlinear kernel functions. Nonlin-
ear SVR provides usually better separation of different
clusters in the data and thus a higher score than linear
SVR. The distances of the nearest data points to the hyper-
planes (so-called functional margins) are maximized. Points
with a larger functional margin lead to less uncertainty for
the prediction than data close to the hyperplanes. SVM in
general analyzes all data while the cost function (L1 loss)
depends on a subset of the training data, referred to as sup-
port vectors. Support vectors are a set of data points with
some distance from the target values that still allow the cor-
rect prediction. The systematic reduction of the training
data makes this model type fundamentally different from
the remaining model types of this study. Further informa-
tion is also provided by Smola and Schölkopf (2004).
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Because of our large sample size (672794 flashes), only the
linSVR sklearn.svm.LinearSVR is used in this study in its default
configuration. As for the MLP, an early stopping criterion is
used for a lack of improvement between consecutive iterations.

7) HISTOGRAM-BASED GRADIENT BOOSTING REGRESSION

TREE

Boosting is, besides bagging, another approach to reduce over-
fitting of ML models. It combines an ensemble of weak learners
to one strong learner. The histogram gradient boosting regres-
sion sklearn.ensemble.HistGradientBoostingRegressor (HGBR)
is much faster than regular gradient boosting regressors. Data
are first binned into 256 integer-valued bins. The algorithm can
then leverage histograms instead of relying on sorted continuous
values when building the decision trees. The number of splitting
points is reduced, and the algorithm becomes time efficient,
inspired by LightGBM (Ke et al. 2017). The first step of the
HGBR averages the target values and calculates residuals (aver-
age difference of observation to prediction) with a least squares
loss function. Based on these residuals, a small decision tree is
built, along with a learning rate. The learning rate limits the
influence of a single small decision tree in the final ensemble to
avoid overfitting. Then new predictions are computed using the
averages and the decision tree for residuals. Based on new pre-
dictions, new residuals are calculated, and a new decision tree is
created. The final model combines several of these decision trees
to pull the target averages toward the observations. The used
maximum number of iterations is 500, and the early stopping cri-
teria kicks in after 50 iterations without significant improvement
of the loss value.

b. Naming convention for the GEO lightning pseudo-
observation generator configurations

This section defines the meaning of names given to different
configurations of a target generator. The names and abbrevia-
tions of the ML model types can be found in Table B1. The
given ML model types are used in the first part of the GEO
lightning pseudo-observation generator referred to as target
generator.B1 Table B2 summarizes the feature usage that is

available for each ML model type available for the target gen-
erator. The feature-set selections indicate whether a single-
target or multistep approach is used. The feature-set selection
called NLDN is the default configuration as described. Gener-
ators with extension of only default, plus, raw, or raw plus
are single-step approaches, that is, using the model of class 1
three times in Fig. 3. Multistep simulations always simulate
the GLM flash duration in the first step here. The order
of the remaining targets, that is, number of events per flash
and the GLM flash extent, is not fixed. The extension “num”

indicates one additional step only for the pseudo-GLM event
number per flash using the pseudo-GLM flash duration as
pseudofeature. GEO lightning pseudo-observation generator
configurations with extension num ext and num ext(a) have
two additional steps using different pseudofeatures as shown
in Table B2. The num ext(a2) generators use only the GLM
flash duration as pseudofeature, and thus two models of class
2 as in Fig. 3.

The attributes define a modification of the feature-set
selections with binary character. The plus attribute indicates
that NLDN LF amplitude and CG fraction are added to the
list of features. Attribute raw means that no feature and tar-
get scaling were used. Combinations of the given feature-set
selections and attributes are possible; for example, an
unscaled model with NLDN mean LF amplitude and CG
stroke ratio as additional features that uses the GLM flash
duration as pseudofeature for the event number per flash
gets the extension num(a) raw plus. The total number of
generator configurations is 196: There are seven ML model
types (Table B1 except RF). For each ML model type there
are seven feature-set selections resulting from the single and
multistep approaches, and for each combination of ML
model and feature-set selection again four different attribute
usages (Table B2), that is, none, plus, raw, or raw plus. The
196 generator configurations (28 for each ML model type)
define the base for the statistical results presented in section 4.

APPENDIX C

The Multitarget Multistep Approach

This section describes a multitarget regression that sim-
plifies the idea of the stacked single target (SST) approach
(Spyromitros-Xioufis et al. 2016). In this study, there are six
NLDN features (as physical input) and three GLM targets

TABLE B1. ML model types with abbreviation.

ML model type Abbreviation

Multivariate linear regression LinReg
Multivariate polynomial regression Poly
Random-forest regressora RF
Random-forest extra-trees regressor ETR
Bagging regressor with K-nearest neighbor regressor (distance weighting) BAGR KNN dist
Multilayer perceptron neural network MLP
(Linear) support vector regressor SVR (linSVR)
Histogram-based gradient boosting regression tree HGBR
a This study uses ETR as a special form of RF.

B1 The RF is included in the table for completeness. Only ETR
as a special RFmodel is used in the study.
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(as physical simulated variables) per sample, that is, per
flash. The three GLM targets are denoted Ti, Tj, and Tk; Ti

can represent any of the three targets. The indexes i, j, and
k indicate the order of obtaining the final targets. Targets
that are used like features are referred to as pseudofea-
tures, that is, Tj and Tk in Fig. 3a. With this dataset, there
are in general four different ways to simulate the target Ti.
The four ST models are shown as the training part in Fig.
3a. There are three classes of models: Yellow is the model
class 1 without pseudofeatures, gray indicates model class 2
using one pseudofeature, and the red is for model class 3
using two pseudofeatures. The model M→i constitutes the
common ML model, that is, class 1, with only the NLDN fea-
tures as input. One (i.e., Tj or Tk) or two (i.e., Tj and Tk) of
the three targets can be added to the input as pseudofeatures
to simulate the target Ti. The resulting models Mj→i (using
Tj as pseudofeature), Mk→i (using Tk with the features), and
Mj,k→i (using Tj and Tk with the features) may indeed take
advantage of correlations between the predicted target and
the targets that are used as pseudofeatures.

The application case only uses the NLDN features as
first input. Therefore, a multistep approach is required.
Figure 3b presents the example application for a three-step
approach that first predicts the pseudo-GLM flash duration,
then the pseudo-GLM event number per flash, and last the
pseudo-GLM flash extent. This configuration is denoted
num ext(a) (see Table B2 for details on the configuration
naming). The first step, M→i, uses the NLDN features and
predicts the first pseudo-GLM characteristic M→i(NLDN),
that is, pseudo-GLM flash duration. The second step, Mi→j,
uses the NLDN features and the result of the first step,

M→i(NLDN), that is, the pseudofeature GLM flash dura-
tion. This model of class 2 predicts the second pseudo-
GLM characteristic Mi→j[NLDN, M→i(NLDN)], that is, the
pseudo-GLM event number per flash. Both predicted pseudo-
GLM characteristics (i.e., GLM flash duration and event num-
ber per flash) can then be used as pseudofeatures to predict
the third target with the class-3 model Mi,j→k. Hence, the final
target prediction Mi,j→k〈NLDN, Mi→j[NLDN, M→i(NLDN)]〉
depends on the NLDN features and both previous predictions
for this configuration. In general, a model of class 3 can also
use two pseudofeatures produced by two models of class 1.
Also, two models of class 2 could be used to simulate the
remaining two targets after the first step. Utilizing a model of
class 1 three times is equal to the common ML ST approach.
Hence, several combinations of models of different classes are
possible and have been investigated here.

The ML training for the multistep approach can be per-
formed in parallel for the models M→i, Mj→i, and Mj,k→i. The
approach can use all ML model types as the training creates
independent learners. Our multistep approach adapts the idea
of the SST but uses GLM observations instead of simulated
pseudo-GLM targets during the ML training. A trained gen-
erator can be applied even if the observations are not avail-
able using the corresponding pseudo-observation in their
place. This method assumes similarity between observations
and pseudo-observations; however, the pseudo-observations
only approximate the real observations. Our approach does
not propagate errors in successive steps. However, the train-
ing is more efficient than for an SST approach as all genera-
tor parts can be trained simultaneously rather than waiting
for the pseudo-observations to be created. Computational

TABLE B2. Naming conventions of used target generator configurations. The name extensions in column 1 are used following the
ML model type. The remaining three columns indicate the utilized features during the ML training for each of the three targets
GLM flash duration (flash duration), number of events per flash (event no.), and GLM flash extent (flash extent). NLDN indicates
that NLDN flash duration, the number of pulses/strokes per flash, NLDN flash extent, and the maximum LF amplitude are used as
features. The GLM pseudofeatures flash duration, flash extent, and/or event number can complement the NLDN features for some
configurations. Feature-set selections define how one target (header) is generated, i.e., ST or multistep approach. The attributes can
or cannot be applied and may replace default in the generator name. Combinations of a feature-set selection with 0, 1, or 2 attributes
are possible.

Name extension Flash duration Event number Flash extent

Feature-set selections
Default NLDN NLDN NLDN

(a) Training with default configuration; model predictions are within the training uncertainty of the default
model (initial training step for applying the multistep approach)

num NLDN NLDN 1 flash duration 1

flash extent
NLDN

num(a) NLDN NLDN 1 flash duration NLDN
num ext NLDN NLDN 1 flash duration 1

flash extent
NLDN 1 flash duration 1

event number
num ext(a) NLDN NLDN 1 flash duration NLDN 1 flash duration 1

event number
num ext(a2) NLDN NLDN 1 flash duration NLDN 1 flash duration

Attributes
plus NLDN with mean LF

amplitude and CG fraction
NLDN with mean LF

amplitude and CG fraction
NLDN with mean LF

amplitude and CG fraction
raw Features and target not scaled Features and target not scaled Features and target not scaled
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efficiency was necessary due to the large number of genera-
tors tested in this paper and in the perspective of an opera-
tional-like application. The results (section 4) showed that our
multistep approach aids in simulating realistic pseudo-GLM
observations and the performance is often better than with
using common ST models without pseudofeatures.

Although the correlations between the NLDN features and
both GLM flash extent and event number per flash are rela-
tively weak, the NLDN features improve the prediction dur-
ing each step as seen through feature drop tests (not shown).
Indeed, all features have a positive effect on the model score.
Because of strong correlations between GLM flash duration
and NLDN features flash duration and pulse/stroke number,
and to reduce the number of ML-based target generators,
only the multistep approaches that predict the GLM flash
duration in the first step (M→i) are considered. There remains
only one model of class 2 in Fig. 3a and three ways to simu-
late a target Ti. The GLM flash duration is also weakly corre-
lated with both GLM flash extent and event number (R of
approximately 0.10 and 0.17, respectively), and GLM flash
extent and event number per flash are well correlated (R of
∼0.74). Thus, the first step always provides the pseudo-GLM
flash duration from the NLDN flash characteristics as fea-
tures. The second step uses the simulated flash duration in
addition to the NLDN features to simulate one or both of
pseudo-GLM flash extent and event number per flash. The
pseudofeature used in model class 2 (Fig. 3) is fixed in this
paper to be flash duration leaving only one realization of
model class 2 to simulate a second target. To further reduce
the number of multistep configurations, the approaches that
simulate the flash extent but not the event number per flash
through a multistep process are not further considered since
(i) GLM flash duration shows weaker correlation with GLM
flash extent than with the event number per flash and (ii) the
ST approach for event number per flash from NLDN fea-
tures exhibits the lowest skill of the three targets. A potential
third step may simulate the last GLM target based on
NLDN features and the two remaining simulated pseudo-
GLM characteristics as additional pseudofeatures. The paper

describes generator configurations using only the GLM dura-
tion (strongest correlations) or using GLM duration and a
second target as additional pseudofeatures to simulate the
remaining target (GLM flash extent or event number per
flash).

Our multistep approach aims at producing more realistic
pseudo-GLM flash extent and event number per flash than
using the NLDN features alone. The NLDN features also
remain important because the correlations between some
targets are weak.

APPENDIX D

Supplementary Results for each Test Day and Target
Distribution Statistic

This section contains detailed results for each test day that
are presented in the main paper for the combined 3-day
period. The second part includes the figures and analysis of
the normalized difference between distribution statistics of
observed and simulated GLM flash duration and event per
flash. The results are presented in a similar way as for the
flash extent statistics in the main paper.

a. Target generator results for each test day

Tables D1, D2, and D3 present the results for 7 April, 26
May, and 31 July 2018, respectively. As explained for Table 2
with results for the three days combined, the tables show the
observed statistics for each target distribution, the outcomes
using the best performing generator, and statistics of data
simulated with the linSVR num ext(a) plus recommended
generator. The most common behavior of the target genera-
tors exhibits simulated mean values close to the observation
statistics of the three target distributions. Median values are
usually underestimated by the target generators as seen in
Tables D2 and D3. Results for the 7 April 2018 test case dif-
fer from the general behavior (Table D1). That day saw
exceptionally large flashes with high event numbers per flash

TABLE D1. Comparison of distribution statistics for observed GLM data and the best generator for each target on 7 Apr 2018.
The recommended linSVR-based generator is shown in boldface type. Details about the target generator names are provided in
section b of appendix B.

Generator Mean Median Min Max RMSE per flash KS CvM

GLM flash duration (s)
Observed 0.62 0.45 0.00 16.44 0.00 0.00 0.0
BAGR KNN dist num ext default 0.57 0.46 0.01 10.56 0.92 0.25 949.2
linSVR num ext(a) plus 0.46 0.34 0.02 10.01 0.93 0.21 810.3

GLM event no. per flash
Observed 73.5 46.0 2 1395 0.0 0.00 0.0
BAGR KNN dist num raw 57.8 48.0 3 467 99.7 0.24 996.6
linSVR num ext(a) plus 37.9 33.0 15 457 103.6 0.32 2066.6

GLM flash extent (km)
Observed 38.5 34.8 0.0 277.0 0.0 0.00 0.0
BAGR KNN dist num ext(a2) raw plus 41.2 35.1 0.0 166.0 33.7 0.24 582.7
linSVR num ext(a) plus 31.1 26.3 8.7 182.6 34.6 0.27 1068.3
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that likely occurred within the MCS and the squall line. As a
consequence, the ML-based target generators underestimated
the means of the observed flash characteristics for that test
case, but the medians of simulated and observed targets are
similar.

The results for each test day resample the results for the
combined 3-day test data (see Table 2) overall. Minimum
values are often only slightly overestimated for the three
targets, while the simulated maxima cannot reach the
observed maxima for none of the targets and on none of
the 3 test days (Tables D1–D3). The linSVR-based target
generator outperforms all other generator types on 26 May
and 31 July 2020. On 7 April with extensively large flashes,
different BAGR KNN dist–based generators are found as
best performers for all three targets (Table D1). The choice
of the most suitable generator appears to be situational; that
is, there is no generator that performs better than all other
generators in all cases. The recommended linSVR num
ext(a) plus (boldface in Tables D1–D3) performs on one
level with best generator for the event number per flash and
flash extent on 26 May and 31 July 2020. The event number
per flash is significantly underestimated by this linSVR-based
generator on 7 April 2020 for the mentioned reason. The
flash extent, as most important target for the FED, is also
underestimated on that day; however, the CvM is only about
one-half of the CvM for event number per flash, meaning a

more realistic simulation of the flash-extent distribution than
the event-number-per-flash distribution.

b. Normalized statistics for difference between observation
and simulation for GLM flash duration and event
number per flash

Figures D1 and D2 group the results for each statistic by
the seven ML model types. As explained in section 4a, each
distribution contains the results of 28 generators (see also
appendix B, section b, Table B2).

Figure D1 shows the normalized differences and scores
of different target generators for the GLM flash duration
for the three test days combined. The GLM flash duration
distribution is equally well simulated by a variety of ML-
based target generators as the narrow spread of the
medians (green line) indicates. In detail, a linSVR-based
generator and an MLP-based generator can predict the
mean well, an MLP-based generator and an ETR-based
generator are best for the maximum, and a linSVR-based
generator exhibits the lowest differences for the median as
well as both KS and CvM scores. In total, a linSVR-based
target generator (linSVR num ext raw) best approximates
the observed distribution of the GLM flash duration in this
comparison, with an NDA value of 0.30.

TABLE D2. As in Table D1, but on 26 May 2018.

Generator Mean Median Min Max RMSE per flash KS CvM

GLM flash duration (s)
Observed 0.34 0.26 0.00 7.42 0.00 0.00 0.0
linSVR raw 0.41 0.25 0.01 4.73 0.56 0.21 599.9
linSVR num ext(a) plus 0.38 0.31 0.02 5.44 0.46 0.41 2451.3

GLM event no. per flash
Observed 34.8 19.0 2 775 0.0 0.00 0.0
linSVR num ext(a) raw plus 32.2 29.0 3 341 54.0 0.45 3593.1
linSVR num ext(a) plus 31.8 28.0 14 249 54.1 0.48 3670.5

GLM flash extent (km)
Observed 28.0 20.2 0.0 218.6 0.0 0.00 0.0
linSVR num ext raw 27.4 26.1 0.0 154.8 27.8 0.28 1029.2
linSVR num ext(a) plus 26.7 26.1 8.5 157.6 27.2 0.29 1130.4

TABLE D3. As in Table D1, but on 31 Jul 2018.

Generator Mean Median Min Max RMSE per flash KS CvM

GLM flash duration (s)
Observed 0.39 0.29 0.00 9.21 0.00 0.00 0.0
linSVR num ext(a) plus 0.39 0.30 0.02 5.34 0.58 0.32 1307.9

GLM event no. per flash
Observed 45.7 23.0 2 883 0.0 0.00 0.0
linSVR num ext(a) raw plus 33.9 30.0 2 316 76.4 0.40 2441.8
linSVR num ext(a) plus 34.4 30.0 16 315 76.1 0.42 2505.0

GLM flash extent (km)
Observed 33.8 27.5 0.0 242.2 0.0 0.00 0.0
linSVR raw 29.6 26.2 0.0 180.6 33.5 0.22 745.2
linSVR num ext(a) plus 29.5 26.2 8.5 305.5 32.6 0.24 871.4
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For the GLM event number per flash in Fig. D2,
linSVR and BAGR KNN dist models make the best tar-
get generators. The lowest NDA of 0.45 is obtained for
several linSVR and BAGR KNN dist–based generators,
for example, linSVR num ext(a) raw plus and BAGR
KNN dist num ext raw. For test day 7 April 2018 (a domi-
nant mesoscale system with above-average mean and
median GLM event numbers per flash), all generators
underestimated the event number per flash. As generators

using a linSVR usually predict lower values than the other
generators, they underestimate the observed statistics
even more on 7 April 2018. Nevertheless, for the full test
data, there are linSVR-based generators that predict the
mean event number equally as well as the best target gen-
erator, that is, MLP based, as demonstrated by the lower
whiskers in Fig. D2. LinSVR-based generators are again
most suitable to predict the event-number distribution
median.

FIG. D1. Normalized absolute difference of statistics and scores (titles) between distributions
of observed and simulated GLM flash duration (0 means equal to observation; 1 represents the
worst simulation). The boxplots represent the distributions of 28 target generator results per
ML type (x axis) including the IQR (blue box), 1.5 times the IQR (whiskers), and outliers
(black cross). The horizontal green line gives the median. Results are for the full test dataset.
The abbreviations for ML type are in Table B1.

FIG. D2. As in Fig. D1, but for the normalized absolute difference of statistics and scores
(titles) between distributions of observed and simulated GLM event number per flash (0 means
equal to observation; 1 represents the worst simulation).
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Ávila, E. E., R. E. Bürgesser, N. E. Castellano, A. B. Collier,
R. H. Compagnucci, and A. R. Hughes, 2010: Correlations
between deep convection and lightning activity on a global
scale. J. Atmos. Sol.-Terr. Phys., 72, 1114–1121, https://doi.
org/10.1016/j.jastp.2010.07.019.

Bateman, M., 2013: A high-fidelity proxy dataset for the Geosta-
tionary Lightning Mapper (GLM). Sixth Conf. on the Meteo-
rological Application of Lightning Data, Austin, TX, Amer.
Meteor. Soc., 725, https://ams.confex.com/ams/93Annual/web
program/Paper223473.html.

}}, and D. Mach, 2020: Preliminary detection efficiency and
false alarm rate assessment of the Geostationary Lightning
Mapper on the GOES-16 satellite. J. Appl. Remote Sens., 14,
032406, https://doi.org/10.1117/1.JRS.14.032406.

}}, }}, and M. Stock, 2021: Further investigation into detec-
tion efficiency and false alarm rate for the Geostationary
Lightning Mappers aboard GOES-16 and GOES-17. Earth
Space Sci., 8, e2020EA001237, https://doi.org/10.1029/2020EA
001237.

Bentley, J. L., 1975: Multidimensional binary search trees used for
associative searching. Commun. ACM, 18, 509–517, https://
doi.org/10.1145/361002.361007.

Betz, H. D., K. Schmidt, P. Laroche, P. Blanchet, W. P. Oettinger,
E. Defer, Z. Dziewit, and J. Konarski, 2009: LINET—An
international lightning detection network in Europe. Atmos.
Res., 91, 564–573, https://doi.org/10.1016/j.atmosres.2008.06.012.

Biron, D., L. D. Leonibus, P. Laquale, D. Labate, F. Zauli, and
D. Melfi, 2008: Simulation of Meteosat Third Generation-
Lightning Imager through Tropical Rainfall Measuring Mis-
sion: Lightning Imaging Sensor data. Proc. SPIE, 7087, 77–
88, https://doi.org/10.1117/12.794764.

Blakeslee, R., and W. Koshak, 2016: LIS on ISS: Expanded global
coverage and enhanced applications. Earth Obs., 28, 4–14.

}}, and Coauthors, 2020: Three years of the lightning imag-
ing sensor onboard the International Space Station:
Expanded global coverage and enhanced applications. J.
Geophys. Res. Atmos., 125, e2020JD032918, https://doi.
org/10.1029/2020JD032918.

Borchani, H., G. Varando, C. Bielza, and P. Larrañaga, 2015: A
survey on multi-output regression. WIREs: Data Min. Knowl.
Discovery, 5, 216–233, https://doi.org/10.1002/widm.1157.

Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123–140,
https://doi.org/10.1007/BF00058655.

Brooks, I. M., C. P. R. Saunders, R. P. Mitzeva, and S. L. Peck,
1997: The effect on thunderstorm charging of the rate of

rime accretion by graupel. Atmos. Res., 43, 277–295, https://
doi.org/10.1016/S0169-8095(96)00043-9.

Bruning, E. C., and Coauthors, 2019: Meteorological imagery for
the Geostationary Lightning Mapper. J. Geophys. Res. Atmos.,
124, 14285–14309, https://doi.org/10.1029/2019JD030874.

Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and
S. W. Nesbitt, 2005: Three years of TRMM precipitation fea-
tures. Part I: Radar, radiometric, and lightning characteristics.
Mon. Wea. Rev., 133, 543–566, https://doi.org/10.1175/MWR-
2876.1.

Chmielewski, V. C., and E. C. Bruning, 2016: Lightning Mapping
Array flash detection performance with variable receiver
thresholds. J. Geophys. Res. Atmos., 121, 8600–8614, https://
doi.org/10.1002/2016JD025159.

Christian, H. J., and Coauthors, 1999: The Lightning Imaging Sen-
sor. 11th Int. Conf. on Atmospheric Electricity, Guntersville,
AL, NASA, 746–749.

Coquillat, S., and Coauthors, 2019: SAETTA: High-resolution 3-
D mapping of the total lightning activity in the Mediterra-
nean Basin over Corsica, with a focus on a mesoscale convec-
tive system event. Atmos. Meas. Tech., 12, 5765–5790, https://
doi.org/10.5194/amt-12-5765-2019.

Cummins, K. L., and M. J. Murphy, 2009: An overview of light-
ning locating systems: History, techniques, and uses, with an
in-depth look at the U.S. NLDN. IEEE Trans. Electromagn.
Compat., 51, 499–518, https://doi.org/10.1109/TEMC.2009.
2023450.

Deierling, W., and W. A. Petersen, 2008: Total lightning activity
as an indicator of updraft characteristics. J. Geophys. Res.,
113, D16210, https://doi.org/10.1029/2007JD009598.

Dobber, M., and J. Grandell, 2014: Meteosat Third Generation
(MTG) Lightning Imager (LI) instrument performance and
calibration from user perspective. 23rd Conf. on Characteri-
zation and Radiometric Calibration for Remote Sensing,
Logan, UT, Utah State University.

Emersic, C., and C. Saunders, 2020: The influence of supersatura-
tion at low rime accretion rates on thunderstorm electrifica-
tion from field-independent graupel-ice crystal collisions.
Atmos. Res., 242, 104962, https://doi.org/10.1016/j.atmosres.
2020.104962.
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