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Abstract 

Background:  There is an unfulfilled need to find the best way to automatically capture, analyze, organize, and merge 
structural and functional brain magnetic resonance imaging (MRI) data to ultimately extract relevant signals that can 
assist the medical decision process at the bedside of patients in postanoxic coma. We aimed to develop and validate 
a deep learning model to leverage multimodal 3D MRI whole-brain times series for an early evaluation of brain dam‑
ages related to anoxoischemic coma.

Methods:  This proof-of-concept, prospective, cohort study was undertaken at the intensive care unit affiliated with 
the University Hospital (Toulouse, France), between March 2018 and May 2020. All patients were scanned in coma 
state at least 2 days (4 ± 2 days) after cardiac arrest. Over the same period, age-matched healthy volunteers were 
recruited and included. Brain MRI quantification encompassed both “functional data” from regions of interest (precu‑
neus and posterior cingulate cortex) with whole-brain functional connectivity analysis and “structural data” (gray mat‑
ter volume, T1-weighted, fractional anisotropy, and mean diffusivity). A specifically designed 3D convolutional neu‑
ronal network (CNN) was created to allow conscious state discrimination (coma vs. controls) by using raw MRI indices 
as the input. A voxel-wise visualization method based on the study of convolutional filters was applied to support 
CNN outcome. The Ethics Committee of the University Teaching Hospital of Toulouse, France (2018-A31) approved the 
study and informed consent was obtained from all participants.

Results:  The final cohort consisted of 29 patients in postanoxic coma and 34 healthy volunteers. Coma patients were 
successfully discerned from controls by using 3D CNN in combination with different MR indices. The best accuracy 
was achieved by functional MRI data, in particular with resting-state functional MRI of the posterior cingulate cortex, 
with an accuracy of 0.96 (range 0.94–0.98) on the test set from 10-time repeated tenfold cross-validation. Even more 
satisfactory performances were achieved through the majority voting strategy, which was able to compensate for 
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Introduction
Acute brain injury responsible for coma after cardiac 
arrest (CA) is a major cause of death and disability world-
wide [1]. Despite the promise held by neuroscience 
research progress in the clinical treatment of patients 
with brain injury, the treatment of patients in coma has 
changed little over the last decade [2]. It has been sug-
gested that the trouble to efficiently transfer neuroscience 
from bench to bedside in this field is mainly related to an 
inaccurate description of critical connectomes damages 
induced by CA [3]. Therefore, a timely, fine-grained char-
acterization of coma-related functional and structural 
brain anomalies appears to be an unavoidable step to 
increase our understanding about the neural correlates of 
consciousness and pave the way toward the implementa-
tion of promising precision medicine approaches.

A growing body of literature supports the idea that 
brain multimodal magnetic resonance imaging (MRI), 
encompassing both structural MRI (sMRI) and functional 
MRI (fMRI) data, has the potential to fill this knowledge 
gap. Indeed, sMRI has demonstrated the usefulness of 
white matter fractional anisotropy (FA) [4] and gray mat-
ter morphometry [5] to predict neurological outcome 
after CA. In addition, fMRI studies have identified puta-
tive signatures of consciousness by using either static or 
dynamic resting-state connectivity [6–9]. Thereby, recent 
fMRI studies in patients in anoxoischemic coma have 
shed light on the role of frontal (mesial prefrontal cortex 
[mPFC]) and posterior parietal (precuneus [PreCun] and 
posterior cingulate cortex [PCC]) cortices as critical hubs 
within a putative brain mesocircuit underpinning con-
sciousness emergence and maintain [10]. However, the 
complexity of multimodal MRI limits the timely interpre-
tation and implementation in the clinic. Indeed, the vast 
majority of the reported MRI studies in patients in coma 
have explored only a reduced data set, either by using 
sMRI or fMRI techniques in isolation or by exclusively 
focusing on the assessment of hypothesis-driven brain 
regions of interest [4–9, 11].

There is an expanding interest in artificial intelli-
gence–assisted neuroimaging interpretation to over-
come the limits of subjective visual interpretation and 
to identify weak signals from complex multimodal neu-
roimaging data sets. In particular, convolutional neural 
networks (CNNs)—a deep learning network inspired 
by the animal visual system [12], in which connections 
between layers are made by sliding filters across the 
input data—have demonstrated to be highly efficient for 
analyzing composite images. CNNs can provide low-
level to high-level representations of data and can per-
form automatic and task-optimized “feature extraction” 
followed by classification, whereby the algorithm itself 
(and not the programmer) defines which features of the 
signal are relevant for an accurate classification [13]. 
Nevertheless, understanding a CNN’s decision-making 
process is key to reliable and reproducible results [14]. 
Described as black boxes, CNNs are being intensively 
investigated by the scientific community to gain insight 
on their functioning. To this end, several techniques 
have been developed, from visualizations of layer acti-
vation to the creation of self-explaining models [15]. In 
the medical domain, CNNs have shown great perfor-
mances for a range of tasks, such as age prediction and 
classification of neurodegenerative diseases, by using 
neuroimaging data [16–18]. However, to the extent of 
our knowledge and despite their potential, CNNs have 
never been used for weak signal detection from multi-
modal brain MRI in patients in coma.

In this present proof-of-concept study, we sought to 
develop and validate a CNN model to leverage com-
plex multimodal 3D MRI whole-brain times series for 
an early evaluation of brain damages related to anox-
oischemic coma. The CNN model’s performance will 
be analyzed, and to gain insight on CNN functioning, 
we will also explore the specific contribution of each 
MRI modality to the proposed 3D CNN architecture. 
Hence, to identify regions of the input most relevant 
for CNN prediction, visualizations of filter activation 
will be provided for each magnetic resonance (MR) 

mistakes from single MR indices. Visualization maps allowed us to identify the most relevant regions for each MRI 
index, notably regions previously described as possibly being involved in consciousness emergence. Interestingly, a 
posteriori analysis of misclassified patients indicated that they may present some common functional MRI traits with 
controls, which suggests further favorable outcomes.

Conclusions:  A fully automated identification of clinically relevant signals from complex multimodal neuroimag‑
ing data is a major research topic that may bring a radical paradigm shift in the neuroprognostication of patients 
with severe brain injury. We report for the first time a successful discrimination between patients in postanoxic coma 
patients from people serving as controls by using 3D CNN whole-brain structural and functional MRI data.

Clinical Trial Number http://​Clini​calTr​ials.​gov (No. NCT03482115).

Keywords:  Coma, Cardiac arrest, Multimodal MRI, Deep learning, Convolutional neural networks
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index. Finally, we will investigate the potential added 
value for the patient’s neuroprognostication of CNN 
misclassifications.

Methods
Study Design
This prospective study was undertaken at the intensive 
care unit affiliated with the University Hospital (Tou-
louse, France), between March 2018 and May 2020. 
Patients were treated according to current guidelines by 
physicians blinded to neuroimaging data. To avoid con-
founding factors, all patient assessments were conducted 
at least 2 days (4 ± 2 days) after complete withdrawal of 
sedation and were performed in normothermia condi-
tion. Patients were included in the study after they had a 
behavioral assessment with Glasgow Coma Scale (GCS) 
[19] and had been diagnosed as been in coma (GCS 
score at the admission to hospital < or = 6 with motor 
responses < 6) induced by CA. A patient’s neurological 
outcome was assessed 3-months after the hospital admis-
sion (Coma Recovery Scale revised [CRS-R]) [20]. Over 
the same period, healthy volunteers, were recruited and 
included if they had normal neurological examination 
results and no history of neurological or psychiatric 
disorder. Our study was approved by the Ethics Com-
mittee of the University Teaching Hospital of Toulouse, 
France (2018-A31). Informed and written consent to par-
ticipate to the study was obtained from the participants 
themselves in the case of healthy participants and from 
legal surrogate of the patients. Clinical trial identifier: 
NCT03482115.

Population
Details of the recruitment and treatment have been 
described elsewhere [8]. Patients were included in 
the study after they had a behavioral assessment with 
GCS and had been diagnosed as being in coma (GCS 
score at the admission to hospital < or = 6 with motor 
responses < 6) as a consequence of a primary anoxoi-
schemic brain injury. Exclusion criteria was a patient 
experiencing head motion of more than 3 mm in transla-
tion and 3° in rotation during MRI acquisition.

Clinical Outcome
All patients were followed up until death or 3  months 
after CA. The principal outcome measure was the CRS-R 
[10], which was assessed by raters blinded to MRI data. 
Following current guidelines for the diagnosis of dis-
orders of consciousness in patients with severe brain 
injury [1, 2], CRS-R allowed the diagnosis of minimally 
conscious state (MCS), which was defined according 
to the identification of command-following, intelligible 

verbalization, or intentional communication abilities, 
and vegetative state/unresponsive wakefulness syndrome 
(VS/UWS), corresponding to fully awake but unaware 
patients. Moreover, as previously reported [2], MCS was 
further classified as “ + ” or “ − ” according to the detec-
tion of a patient’s command-following. Eventually, among 
survivors, “MCS + ” or “MCS –” were defined as favora-
ble outcome, whereas VS/UWS or death were defined as 
unfavorable outcome (Supplementary Table  1, Supple-
mentary Fig. 1).

MRI Data Acquisition
In all participants, 11 min of resting-state fMRI (rs-fMRI) 
data were acquired on the same 3 T MR scanner (Intera 
Achieva; Philips, Best, the Netherlands). Monitoring 
of vital measures was performed by a senior intensivist 
throughout the experiment (BS, HV, FF, WF, SS). High-
resolution anatomical image, using 3D T1-weighted 
sequence and apparent diffusion coefficient were also 
acquired. Concerning sMRI data, gray matter morpho-
metry was applied on 3D-T1-weighted images by using 
voxel-based morphometry [5], obtaining an estimation of 
gray matter volume (GM). To study white matter integ-
rity, DTI models were created to fit at each voxel, gen-
erating FA and mean diffusivity (MD) maps [4]. Cortical 
frontal (mPFC) and posterior parietal (PreCun and PCC) 
regions of interest (ROI) were defined to be used in ROIs 
vs. whole-brain functional connectivity analysis [8]. rs-
fMRI data were preprocessed using Statistical Paramet-
ric Mapping (version SPM 12; http://​www.​fil.​ion.​ucl.​ac.​
uk/​spm/). As described elsewhere [6–8], fMRI images 
were realigned, slice-time corrected, coregistered to each 
patient’s T1-weighted image and normalized to standard 
stereotaxic anatomical Montreal Neurological Institute 
space (Table 1).

3D CNN Implementation
Convolutional neural networks can process high-dimen-
sional arrays while preserving their spatial relationship. 
Relying on local connections, CNNs exploit data struc-
ture to make learning more efficient [21]. A typical CNN 
is composed by a sequence of alternating layers, denoted 
as convolutional and pooling, followed by an artificial 
neural network responsible for classification [22]. Con-
volutional layers are named on the operation they per-
form, i.e., convolution, which allows them to scan the 
input by using a filter—a matrix of numbers—obtain-
ing the so-called feature maps. Each filter retrieves spe-
cific characteristics in the image, e.g., edges or shapes. 
Indeed, convolutional filters are learned during training 
to optimize the task at hand. This frees the CNN from 
hand engineered feature extraction, achieving outstand-
ing results. Pooling layers instead allows the CNN to 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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aggregate the information from convolutional ones, ena-
bling dimensionality reduction and invariance to distor-
tions. The higher the number of layers, the deeper the 
CNNs and the more abstract their representations of 
data [13].

Once the feature extraction completed, classification 
was performed by a multilayer perceptron taking as input 
the learned features. Multilayer perceptrons are feedfor-
ward neural networks that map an input to an output via 
nonlinear functions. This mapping consists of finding the 
optimal weights (i.e., matrices of numbers) to match the 
output by optimizing a loss function. The latter defines 
the truthfulness of the outcome with respect to the pre-
dicted label, using error backpropagation for supervised 
tasks [23]. The processing units of multilayer perceptrons 
are the well-known artificial neurons, whose function-
ing is based on the biological neuron. In the same way 
as a biological neuron does, an artificial neuron acquires 
inputs, processes them, and then passes the processed 
outputs to neighboring neurons [24, 25]. An overview 
of the approach adopted in this study is represented in 
Fig. 1, underlining the different MR indices fed as input 
to the 3D CNN.

The architecture of the developed 3D CNN is detailed 
in Table  2. It was inspired by AlexNet and VGGNet 
revised in a 3D adaptation [26, 27]. In the proposed 
model, convolutional layers presented filter size of 3 
and stride = 1 for all dimensions and increasing number 

of features maps through the network (32, 64 and 128), 
followed by batch normalization and exponential linear 
unit activation. Batch normalization favors the decrease 
of internal covariate shift, thus accelerating learning [28]. 
The valid method was preferred for convolutional layers 
instead of padding [29]. Average pooling with filter size 
of 2 was applied except for the first pooling layer with fil-
ter size of 3, considering stride equal to filter size for all 
dimensions. After transforming the convolutional output 
in a one-dimensional array, the fully connected part pro-
cesses it. The first four fully connected layers (FCLs) were 
composed by 512 units with exponential linear unit acti-
vation. Among them, the first three FCLs were followed 
by dropout, a regularization technique able to limit over-
fitting by randomly dropping a certain percentage of 
units [30]. The last FCL was composed by two units to 
allow for binary classification with Softmax as activation 
function.

The model trained for 100 epochs using mini-batch 
gradient descent with eight samples as batch size and 
applying L2 regularization of factor equal to 0.0005. 
Adam optimizer was selected with initial learning rate of 
0.00005 but decreasing after five epochs without any pro-
gress in performance [31]. The employed loss function 
was categorical cross-entropy [25].

Keras [29] and Tensorflow [32] libraries (versions 
2.2.4 and 1.13.1, respectively) were exploited for model 

Table 1  Architecture of the proposed 3D CNN

Convolutional layers (Conv3D) are characterized by number of filters along with filter size and stride, followed by batch normalization (BN) and exponential linear 
unit (ELU) activation. Filter size and stride are detailed for pooling layers (AveragePooling3D). The number of units is provided for each fully connected layer (FCL). 
Dropout probabilities are specified for dropout layers. Prior to FCLs, the output from convolutional layers is transformed in a one-dimensional array (Flatten). CNN, 
convolutional neuronal network

Layer Filters Filter size Stride Units Following layers

Conv3D 32 (3, 3, 3) (1, 1, 1) – BN + ELU

AveragePooling3D – (3, 3, 3) (3, 3, 3) – –

Conv3D 64 (3, 3, 3) (1, 1, 1) – BN + ELU

Conv3D 64 (3, 3, 3) (1, 1, 1) – BN + ELU

AveragePooling3D – (2, 2, 2) (2, 2, 2) – –

Conv3D 128 (3, 3, 3) (1, 1, 1) – BN + ELU

Conv3D 128 (3, 3, 3) (1, 1, 1) – BN + ELU

Conv3D 128 (3, 3, 3) (1, 1, 1) – BN + ELU

AveragePooling3D – (2, 2, 2) (2, 2, 2) – –

Flatten

FCL – – – 512 BN + ELU + Dropout (0.5)

FCL – – – 512 BN + ELU + Dropout (0.25)

FCL – – – 512 BN + ELU + Dropout (0.25)

FCL – – – 512 BN + ELU

FCL – – – 2 Softmax

Total parameters 4,432,386 Trainable parameters 4,427,202
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implementation together with a graphical processing unit 
Nvidia Quadro RTX 6000.

Concerning input data, the set of controls and patients 
in coma available for each MR index was fed as raw input 
to the CNN to evaluate their individual informative con-
tent. Images were normalized according to training set 
values to lie in the range from 0 to 1. Given the limited 
sample size, tenfold cross-validation was performed as 
customary in the neuroimaging field [33], repeated 10 
times to reduce performance bias.

Visual Interpretation
To shed light on CNN classification, we applied a pre-
viously reported visualization technique [34]. Accord-
ing to this method, the output from each convolutional 
layer was retrieved. Only positive activation values 
were considered for the classification. Because data 
dimension is reduced going deeper in the network, 
these visualization maps were interpolated to match 
the input size. To merge results, first the maps were 
averaged over filter number for each convolution and 
then over the total number of convolutions to obtain 
the final visualization map.

Fig. 1  Methods overview. Structural and functional magnetic resonance (MR) indices from the set of controls (n = 34) and patients in coma (n = 29) 
were assessed to perform binary classification by using a 3D convolutional neuronal network (CNN) in a 10-time repeated tenfold cross-validation. 
The 3D CNN model is schematized with fundamental building blocks. Feeding as input each MR index, we examined their discriminant power by 
using standard evaluation metrics and visualization maps to discover the most relevant voxels taken into account for CNN prediction. Average‑
Pooling3D, average pooling layer, BN, batch normalization, Conv3D, convolutional layer, Dropout, dropout layer, ELU, exponential linear unit activa‑
tion, FCL, fully connected layer, Flatten, output from the convolutional part reshaped in a 1D array, Softmax, softmax activation

Table 2  Model classification performance

Evaluation metrics obtained for each MR index (T1, FA, GM, MD, fMRI-PreCun, fMRI-PCC) used to train the 3D CNN obtained on the test set from 10-time repeated 
tenfold cross-validation. Results are provided as mean (SD, 95% CI). Best performances are highlighted in italic

CI, confidence interval, FA, fractional anisotropy, GM, gray matter volume, MD, mean diffusivity, MR, magnetic resonance, MRI, magnetic resonance imaging, NPV, 
negative predictive value, PCC, posterior cingulate cortex, PPV, positive predictive value, PreCun, precuneus, rs-fMRI, resting-state functional MRI, SD, standard 
deviation, T1, T1-weighted

MR index AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

GM 0.84 (0.13, 0.81–0.86) 0.84 (0.13, 0.81–0.86) 0.72 (0.24, 0.67–0.76) 0.96 (0.10, 0.94–0.98) 0.95 (0.13, 0.92–0.98) 0.82 (0.15, 0.79–0.85)

T1 0.82 (0.15, 0.79–0.85) 0.82 (0.15, 0.79–0.85) 0.77 (0.25, 0.72–0.82) 0.87 (0.18, 0.83–0.91) 0.86 (0.19, 0.82–0.90) 0.84 (0.16, 0.81–0.87)

MD 0.89 (0.13, 0.86–0.91) 0.89 (0.13, 0.86–0.91) 0.82 (0.23, 0.78–0.87) 0.95 (0.13, 0.92–0.97) 0.95 (0.13, 0.92–0.97) 0.88 (0.15, 0.85–0.91)

FA 0.92 (0.11, 0.89–0.94) 0.92 (0.11, 0.89–0.94) 0.86 (0.20, 0.83–0.90) 0.97 (0.11, 0.95–0.99) 0.97 (0.10, 0.95–0.99) 0.91 (0.13, 0.88–0.94)

rs-fMRI PCC 0.96 (0.08, 0.94–0.98) 0.96 (0.08, 0.95–0.98) 0.95 (0.12, 0.93–0.97) 0.97 (0.09, 0.95–0.99) 0.97 (0.08, 0.96–0.99) 0.96 (0.09, 0.95–0.98)

rs-fMRI PreCun 0.90 (0.12, 0.88–0.93) 0.90 (0.12, 0.88–0.93) 0.88 (0.20, 0.84–0.91) 0.93 (0.14, 0.90–0.96) 0.93 (0.13, 0.91–0.96) 0.92 (0.13, 0.89–0.94)
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Considering only the maps obtained from correctly 
classified samples of the training set, we computed the 
absolute difference between the normalized averaged 
maps per class to highlight the most significant voxels.

Under the assumption that low activation values con-
tributed less to the prediction, we applied a threshold 
equal to half of the maximum value to each visualiza-
tion map.

Statistical Analysis
Continuous data are expressed as mean ± standard devia-
tion and/or median (range), according to their distribu-
tion (Kolmogorov–Smirnov test). Categorical variables 
were expressed as numbers and percentages. Sensitivity, 
specificity, and diagnostic accuracy were calculated using 
standard formulas as well as positive predictive value and 
negative predictive value. Receiver operating characteris-
tic curves were calculated for each predictive model, and 
the highest sum of sensitivity and specificity was consid-
ered as being the optimal threshold. All p values were 
two-tailed, and statistical significance was defined as a p 
value of less than 0.05.

Misclassified patients were examined in relation with 
the known outcome at 3 months after the primary brain 
injury event. Hence, we computed the false negative (FN) 
good outcome rate, i.e., the percentage of FN having a 
good outcome over the total FN count. Furthermore, 
we applied majority voting, considering all predictions 
regardless of the MR index: the final label associated 
with the sample was dictated by the most scored pre-
diction [26, 27]. This allowed to check whether merging 
outcomes from different MRI modalities could enhance 
performance.

Results
Population
A total of 35 patients in anoxoischemic coma were pro-
spectively identified at the time of hospital admission. 
Among them, five did not fulfill at least one inclusion 
and one withdrew consent. The final cohort consisted 
of 29 patients, aged 62.0 (51.6 to 75.0) years, of whom 
15 (49.2%) were women. Patients have a GCS of 6 (3 to 
7) before sedation onset. The mean intensive care unit 
(ICU) stay was 15 ± 10  days. Thirty-four age-matched 
healthy volunteers 61.0 (51.0 to 72.1) were also included 
in the study (Supplementary Table  1, Supplementary 
Fig. 1).

Model Performance
Performances of the proposed 3D CNN were remark-
able for all MR indices. However, some difference exists 
among the considered MR indices, of which the results 
are outlined in Table  2. Overall, structural indices pre-
sented lower accuracy and area under the curve (AUC) 
compared with those of functional indices. Indeed, the 
best performance was obtained by the functional indices, 
in particular by rs-fMRI PCC (accuracy of 0.96). In con-
trast, poorer performance was observed by the structural 
indices, with the lowest accuracy reached by T1 index 
(accuracy of 0.82).

In general, sensitivity was lower compared with speci-
ficity, regardless of the MR index. Positive predictive 
value was instead systematically higher than negative 
predicted value.

It is worth noting that performances on patients were 
comparable between GM and T1 but was rather low with 
respect to the other indices with sensitivity not higher 
than 0.77.

Fig. 2  Individual classification according to magnetic resonance imaging (MRI) indices. Analysis of misclassified samples was conducted on 
the basis of model performance. Controls and patients in coma were associated with their classification label assigned by the 3D convolutional 
neuronal network (CNN) according to magnetic resonance (MR) index. Majority voting (MajVot) was computed to assess whether the individual MR 
index performance on each sample could be improved considering the most scored classification output among all MR indices. This was indeed 
the case for controls, all correctly classified with MajVot. Regarding patients in coma, MajVot was second only to rs-fMRI PCC, totaling only two mis‑
classified patients instead of four. FA, fractional anisotropy, GM, gray matter volume, MD, mean diffusivity, PCC, posterior cingulate cortex, PreCun, 
precuneus, rs-fMRI, resting-state functional MRI, T1, T1-weighted
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Classification Errors
Examining misclassified samples in Fig.  2, majority vot-
ing allowed to correctly classify all controls. Overall, 
functional indices were better at classifying both patients 
and controls. Focusing on patients in coma, the majority 
voting index outperformed every individual MR index. 
Among the structural indices, T1 presented the highest 
false negative (FN) and false positive (FP) counts whereas 

FA presented the smallest number of misclassified sam-
ples. For further details, please see Tables 2 and 3.

Considering a patient in postanoxic coma’s neuropro-
gnostication, we investigated the potential relationship 
between patient outcome at 3 months after the CA and 
misclassified patients in coma (FN). In fact, we explored 
the hypothesis that patients who showed a favorable neu-
rological outcome were those presenting similar struc-
tural and/or functional connectomes to healthy patient 
and were therefore prone to be classified as controls 
despite their clinical status. Indeed, about half of misclas-
sified patients presented good outcome for most indices. 
rs-fMRI PCC turned out to have all FN with good out-
come, although there were only two. Specifically, compa-
rable rates were found for MD (56%) and FA (50%) as well 
as T1 (64%) and rs-fMRI PreCun (67%). The lowest good 
outcome rate was relative to GM (44%) compared with 
rs-fMRI PCC (100%).

Visual Interpretation
Visualizations maps obtained for each MR index are dis-
played in Fig. 3. These results were computed considering 
results on the training set averaged more than tenfold for 
a single repetition as an emblematic example.

Interestingly, each MR index revealed different parts 
of the image presenting higher activation values. For 
example, subcortical brain structures and the brainstem 
in particular were clearly identified by FA visualizations. 
It should be noted that functional indices (rs-PCC and 

Table 3  Relationship between  coma patient misclassifica-
tion and 3-month neurological outcome

MR indices are detailed with corresponding number of misclassified coma 
patients (FN). Each FN was associated with the known outcome after 3 months 
from the comatose event to find out whether there can be some relationship 
with patients having recovered from coma, thus classified as controls. Best 
results are highlighted in italic

FA, fractional anisotropy, FN, false negative, GM, gray matter volume, MD, mean 
diffusivity, MR, magnetic resonance, MRI, magnetic resonance imaging, PCC, 
posterior cingulate cortex, PreCun, precuneus, rs-fMRI, resting-state functional 
MRI, T1, T1-weighted

MR index FN good outcome 
rate (%)

Good outcome 
FN

Total FN

GM 44 4 9

T1 64 7 11

MD 56 5 9

FA 50 3 6

rs-fMRI PCC 100 2 2

rs-fMRI PreCun 67 4 6

Fig. 3  3D CNN visual interpretation. Visualization maps representing activation values from the learned convolutional filters passed over the 
images. The absolute difference between maps belonging to correctly classified samples of the training set is shown to highlight the most discrimi‑
nant voxels. To obtain clearer visualizations, we applied a threshold value (Threshold) equal to half of the maximum value (Max) considering activa‑
tion values from every magnetic resonance (MR) index. Notice how voxels with greater activation vary according to the MR index. FA, fractional 
anisotropy, GM, gray matter volume, l, left, MD, mean diffusivity, PCC, posterior cingulate cortex, PreCun, precuneus, r, right, rs-fMRI, resting-state 
functional MRI, T1, T1-weighted
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rs-PreCun) were related to widespread associative corti-
cal regions, including the mPFC.

Discussion
Converging evidence suggests that coma is a “discon-
nection syndrome” [10, 11, 19, 20, 35] because of the 
combined deleterious effect of primary and secondary 
severe brain insults. This concept fits well with theoreti-
cal frameworks for information processing, according 
to which higher-order cognitive processing occurs when 
information is globally available to multiple brain sys-
tems, through long-range functional interactions, that are 
intrinsically constrained by brain structural connectivity 
[35, 36]. However, there is an unmet need to find the best 
way to efficiently analyze structural and functional neu-
roimaging data to fulfill this knowledge gap and develop 
highly needed medical decision aid tools for physicians 
in charge of patients in postanoxic coma. To the extent 
of our knowledge, we report for the first time successful 
discrimination of patients in coma from controls using 
3D CNN in combination with structural and functional 
MR indices. Interestingly, the best accuracy was achieved 
by rs-fMRI PCC amounting to 0.96 (0.94–0.98) on the 
test set from 10-time repeated tenfold cross-validation. 
The majority voting strategy also proved how every MR 
index could contribute, to some extent, to compensate 
for missing information from the other MR indices, thus 
obtaining the correct final label.

Developing and validating accurate methods to auto-
matically organize, merge, and analyze raw structural and 
functional 3D brain MRI data is a mandatory step prior 
to studies that will specifically focus on the prognostic 
value of artificial intelligence–empowered neuroimag-
ing data. It is worth noting that as an exploratory goal 
and an aim to prepare such future neuroprognostication 
studies, we have specifically reported CNN model errors 
in relation with patients’ 3-month neurological outcome 
after CA. Thereby, in line with previous reports [5–9], we 
observed that resting-state functional connectivity seems 
to carry critical information that could be used to pre-
dict the neurological outcomes of patients in coma in this 
clinically challenging setting.

Although the success of CNNs for health care use 
seems promising, one significant limitation is likely to 
hinder its acceptance by physicians and patients’ next 
of kin, namely its lack of interpretability. In fact, CNNs 
are currently described as black boxes that hinder the 
identification of the most influential features for output 
classification. Interestingly, we assessed the discrimina-
tive value of each MRI indices independently and applied 
a new voxel-based visualization method built upon the 
study of the convolutional filters. Overall, structural indi-
ces turned out to be less effective in discrimination than 

functional indices. It is worth noting that the effects of 
acute severe brain injury on both structural and func-
tional whole-brain connectivity are poorly understood, 
although the relationship between these connectiv-
ity components might not be straightforward [37, 38]. 
Overall, we think that this result is in line with a previous 
report from our group, which compared structural and 
functional MRI data from patients in coma, and which 
suggested that fMRI data might have a greater contribu-
tion for patients’ neuroprognostication than sMRI data 
[8]. Moreover, it should be noted that, in agreement with 
current knowledge regarding the functional segregation 
within the posteromedial parietal cortex [39] and the role 
of this critical brain hub for conscious processing [40], 
fMRI data from PCC have shown a greater value in terms 
of discrimination than PreCun.

Furthermore, a voxel-based study of CNN’s filters 
contributions allowed us to significantly increase the 
interpretability of our model. For instance, the FA filter 
analysis shed light on the well-described relationship 
between subcortical structure damages and conscious-
ness abolition after CA. In addition, by feeding PPC-
centered rs-fMRI input, the visualization maps enabled 
the discovery that among the most relevant voxels taken 
into account for CNN discrimination were those situated 
in the mPFC. This result agrees with previous reports on 
the potential value of frontoparietal functional discon-
nections as reliable biomarkers of coma [6–8].

Our results must be interpreted with caution and a few 
drawbacks should be borne in mind. The first is related 
to the restricted sample size. This represents one of the 
major concerns, especially when using deep learning 
in the medical domain, which is often characterized by 
either greatly imbalanced classes or lack of sufficient 
examples. Nevertheless, there exists already some work 
targeting this issue, demonstrating that deep networks 
can perform well even with few samples [41]. Another 
issue regards using 3D CNN architectures instead of 
more frequently reported 1D or 2D deep learning mod-
els. We think that this is an important matter, as the 
straightforward use of 3D MRI volumes directly as input 
to the CNN reduces not only preprocessing steps but 
seems to come with the added value of spatial informa-
tion. CNN structures with a comparable configuration 
fed with MRI data have been proven to be very effective 
in distinguishing various cerebral pathologic conditions, 
such as neurodegenerative disorders, schizophrenia, and 
autism [42–46].

A fully automated identification of clinically relevant 
weak signals from complex multimodal neuroimaging 
data is a major research topic that may bring a radical par-
adigm shift for the management of patients in postanoxic 
coma. In this study, patients in coma were successfully 



S311

discerned from controls using 3D CNN in combina-
tion with different MR indices. The best accuracy was 
achieved by fMRI data, in particular with rs-fMRI PCC. 
Furthermore, even more satisfactory performances were 
achieved through the majority voting strategy, which was 
able to even out mistakes from single MR indices. A pos-
teriori analysis of misclassified patients indeed indicated 
that a multimodal MRI approach could be adopted to let 
the CNN combine information from the totality of MRI 
indices and even select the most significant ones. This 
may aid clinicians in establishing prognosis thanks to the 
potential knowledge-discovery performed by deep learn-
ing methods. The proposed approach appears to be fea-
sible and effective, yet is open to further advancements. 
Future studies are warranted to specifically address the 
use of these novel approaches for neuroprognostication 
in patients in coma, probably by developing and validat-
ing larger models that could encompass additional clini-
cal standard predictors of neurological recovery.
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