## SUPPLEMENTARY MATERIAL FOR:

Estimation of intravoxel incoherent motion (IVIM) parameters in vertebral bone marrow: a comparative study of five algorithms

Table S1. The values of the signal of an ROI drawn in each lumbar vertebra (L1, L2, etc.) in two repeated acquisitions (mean 1 and mean 2), the standard deviation of the difference and the signal-to-noise ratio calculated the using the dual acquisition, subtraction method. $\mathrm{V} 1=$ volunteer $1, \mathrm{~V} 2=$ volunteer 2 , etc.

|  |  | MEAN 1 | MEAN 2 | STD of DIFF | SNR | SNR_M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V1 | L1 | 569 | 576 | 50 | 16 | 16 |
|  | L2 | 500 | 496 | 37 | 19 |  |
|  | L3 | 366 | 397 | 31 | 17 |  |
|  | L4 | 322 | 326 | 36 | 13 |  |
|  | L5 | 328 | 313 | 34 | 14 |  |
| V3 | L1 | 507 | 490 | 38 | 19 | 19 |
|  | L2 | 495 | 483 | 36 | 19 |  |
|  | L3 | 390 | 387 | 23 | 24 |  |
|  | L4 | 344 | 331 | 32 | 15 |  |
|  | L5 | 310 | 317 | 25 | 18 |  |
| V4 | L1 | 497 | 481 | 31 | 23 | 17 |
|  | L2 | 402 | 392 | 31 | 18 |  |
|  | L3 | 320 | 324 | 31 | 15 |  |
|  | L4 | 342 | 327 | 43 | 11 |  |
|  | L5 | 371 | 370 | 31 | 17 |  |
| V5 | L1 | 328 | 316 | 38 | 12 | 14 |
|  | L2 | 269 | 262 | 27 | 14 |  |
|  | L3 | 272 | 274 | 24 | 16 |  |
|  | L4 | 235 | 244 | 25 | 13 |  |
|  | L5 | 219 | 221 | 24 | 13 |  |
| V6 | L1 | 434 | 422 | 37 | 17 | 17 |
|  | L2 | 411 | 410 | 35 | 17 |  |
|  | L3 | 400 | 402 | 31 | 18 |  |
|  | L4 | 359 | 360 | 34 | 15 |  |
|  | L5 | 320 | 323 | 26 | 17 |  |

Table S2. The statistical analysis results of the IVIM parameters estimated from the data acquired in vivo, in each lumbar vertebra (L1, L2, L3, L4, L5) and for each volunteer (V1, V2, V3, V4, V5, V6). The table can be read in the following way: for the diffusion coefficient $D$, for instance, in 22 out of 30 cases (i.e., in most cases) the ANOVA test with Bonferroni's post-test did not show a statistically significant difference between the values estimated by the One-Step and those estimated by Bayesian algorithm. On the contrary, for all other paired comparisons only in a small number of cases no significant difference was observed (One-Step vs Two-Step: $\mathrm{n}=4$; One-Step vs Three-Step: $\mathrm{n}=4$; Bayesian vs Two-Step: $\mathrm{n}=5$; Bayesian vs Three-Step: $\mathrm{n}=5$ ). It should be noted that D is the same in the Two-Step and Three-Step, so no statistical test is necessary for comparison.

Diffusion coefficient D

| One-Step |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Two-Step | 4 |  |  |  |
| Three-Step | 4 |  |  |  |
| Bayesian | 22 | 5 | 5 |  |
|  | One-Step | Two-Step | Three-Step | Bayesian |

Perfusion fraction f

| One-Step |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Two-Step | 0 |  |  |  |
| Three-Step | 0 | 2 |  |  |
| Bayesian | 27 | 2 | 0 |  |
|  | One-Step | Two-Step | Three-Step | Bayesian |

Pseudo-diffusion coefficient $\mathrm{D}^{*}$

| One-Step |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Two-Step | 3 |  |  |  |
| Three-Step | 2 | 29 |  |  |
| Bayesian | 18 | 28 | 28 |  |
|  | One-Step | Two-Step | Three-Step | Bayesian |

Figure S1. Signal-vs-b plot along with the fitting curves. Left: ROI average of
Volunteer-1 L1; Right: a single voxel (picked from center region of Volunteer-1 L1).



Figure S2. The relative error of $D, f$ and $D^{*}$ obtained by the deterministic algorithms plotted vs the relative error of the Bayesian approach, for different values of SNR (10, 20, 50, 100). The data above the unity line indicates the superiority of the Bayesian approach over the deterministic algorithms.


Table S3: Quantification results of bone marrow IVIM - $\mathbf{1}$ Volunteers 1 - 3

|  | Algorithm | Volunteer 1 |  |  |  |  |  | Volunteer 2 |  |  |  |  |  | Volunteer 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D |  | $f(\%)$ |  | $D^{*}$ |  | D |  | $f(\%)$ |  | $D^{*}$ |  | D |  | $f(\%)$ |  | $D^{*}$ |  |
| L1 | One-Step | (0.42 | $0.14)^{1}$ | 14.4 | 11.4 | 14.0 | 10.6 | 0.53 | 0.20 | 13.5 | 11.1 | 12.3 | 10.2 | 0.41 | 0.14 | 10.4 | 10.6 | 12.7 | 10.3 |
|  | Two-Step | 0.49 | 0.13 | 11.7 | 10.1 | 16.3 | 10.6 | 0.60 | 0.21 | 10.0 | 8.5 | 15.2 | 10.6 | 0.47 | 0.12 | 8.6 | 8.3 | 14.5 | 10.8 |
|  | Three-Step | 0.49 | 0.13 | 10.1 | 10.4 | 16.5 | 9.1 | 0.60 | 0.21 | 8.5 | 9.0 | 15.7 | 9.4 | 0.47 | 0.12 | 7.3 | 9.0 | 15.3 | 9.2 |
|  | Fixed- ${ }^{*}$ | 0.46 | 0.13 | 11.6 | 10.6 | 15.0 | 0.0 | 0.59 | 0.20 | 9.3 | 8.8 | 15.0 | 0.0 | 0.44 | 0.11 | 8.3 | 8.9 | 15.0 | 0.0 |
|  | Bayesian-based | 0.43 | 0.14 | 14.6 | 4.3 | 15.4 | 2.6 | 0.54 | 0.19 | 13.0 | 4.3 | 14.6 | 2.4 | 0.39 | 0.12 | 13.2 | 3.7 | 14.9 | 2.2 |
| L2 | One-Step | 0.43 | 0.16 | 15.5 | 12.7 | 13.4 | 10.4 | 0.55 | 0.25 | 12.8 | 10.2 | 12.9 | 10.0 | 0.42 | 0.16 | 10.4 | 10.4 | 13.9 | 10.8 |
|  | Two-Step | 0.49 | 0.16 | 12.5 | 10.9 | 15.9 | 10.6 | 0.61 | 0.23 | 10.0 | 8.7 | 15.8 | 10.2 | 0.46 | 0.14 | 8.9 | 9.0 | 14.9 | 10.9 |
|  | Three-Step | 0.49 | 0.16 | 10.7 | 11.6 | 15.6 | 9.0 | 0.61 | 0.23 | 9.0 | 10.2 | 15.8 | 8.8 | 0.46 | 0.14 | 7.7 | 9.8 | 15.8 | 9.3 |
|  | Fixed- * $^{*}$ | 0.47 | 0.16 | 11.9 | 11.4 | 15.0 | 0.0 | 0.59 | 0.26 | 9.7 | 8.9 | 15.0 | 0.0 | 0.44 | 0.14 | 8.6 | 9.5 | 15.0 | 0.0 |
|  | Bayesian-based | 0.45 | 0.16 | 14.6 | 4.5 | 15.4 | 2.3 | 0.55 | 0.23 | 13.2 | 4.0 | 14.9 | 2.2 | 0.39 | 0.14 | 13.4 | 3.9 | 15.1 | 2.3 |
| L3 | One-Step | 0.44 | 0.16 | 14.3 | 11.8 | 13.9 | 10.9 | 0.51 | 0.22 | 12.6 | 10.8 | 12.1 | 10.3 | 0.42 | 0.19 | 10.5 | 10.1 | 12.8 | 10.3 |
|  | Two-Step | 0.51 | 0.17 | 11.3 | 10.3 | 16.4 | 11.0 | 0.56 | 0.22 | 9.8 | 8.7 | 13.7 | 10.1 | 0.46 | 0.19 | 8.9 | 9.0 | 14.9 | 11.0 |
|  | Three-Step | 0.51 | 0.17 | 9.4 | 10.6 | 16.1 | 9.5 | 0.56 | 0.22 | 8.7 | 11.1 | 14.4 | 8.7 | 0.46 | 0.19 | 7.6 | 9.8 | 14.8 | 9.3 |
|  | Fixed- $D^{*}$ | 0.48 | 0.17 | 10.8 | 10.7 | 15.0 | 0.0 | 0.55 | 0.24 | 9.2 | 9.5 | 15.0 | 0.0 | 0.45 | 0.18 | 8.1 | 9.2 | 15.0 | 0.0 |
|  | Bayesian-based | 0.45 | 0.16 | 14.3 | 4.6 | 15.3 | 2.4 | 0.50 | 0.22 | 13.4 | 4.1 | 14.8 | 2.6 | 0.40 | 0.19 | 12.9 | 3.9 | 14.9 | 2.2 |
| L4 | One-Step | 0.46 | 0.18 | 13.6 | 11.1 | 13.0 | 10.2 | 0.50 | 0.22 | 12.2 | 11.1 | 13.6 | 10.5 | 0.43 | 0.23 | 12.6 | 10.7 | 16.7 | 11.2 |
|  | Two-Step | 0.52 | 0.17 | 10.7 | 8.7 | 15.7 | 10.5 | 0.54 | 0.14 | 9.5 | 9.0 | 15.5 | 10.3 | 0.49 | 0.24 | 10.3 | 9.0 | 19.0 | 10.6 |
|  | Three-Step | 0.52 | 0.17 | 8.9 | 9.0 | 16.0 | 9.2 | 0.54 | 0.14 | 8.7 | 11.3 | 15.9 | 8.9 | 0.49 | 0.24 | 9.3 | 10.2 | 18.7 | 9.4 |
|  | Fixed- $D^{*}$ | 0.50 | 0.16 | 10.4 | 9.3 | 15.0 | 0.0 | 0.54 | 0.20 | 9.4 | 9.5 | 15.0 | 0.0 | 0.45 | 0.22 | 11.0 | 10.1 | 15.0 | 0.0 |
|  | Bayesian-based | 0.46 | 0.16 | 14.6 | 4.0 | 15.2 | 2.2 | 0.49 | 0.18 | 13.0 | 4.3 | 14.7 | 2.2 | 0.44 | 0.22 | 14.2 | 4.0 | 15.9 | 2.2 |
| L5 | One-Step | 0.41 | 0.30 | 13.5 | 11.6 | 15.2 | 11.1 | 0.60 | 0.30 | 10.9 | 10.7 | 13.3 | 10.2 | 0.36 | 0.21 | 11.7 | 11.8 | 13.5 | 10.9 |
|  | Two-Step | 0.47 | 0.29 | 11.3 | 10.0 | 17.3 | 10.8 | 0.64 | 0.30 | 8.9 | 8.9 | 14.5 | 10.1 | 0.42 | 0.22 | 9.6 | 9.8 | 15.5 | 10.9 |
|  | Three-Step | 0.47 | 0.29 | 10.0 | 11.1 | 17.4 | 9.4 | 0.64 | 0.30 | 8.0 | 10.8 | 15.1 | 8.6 | 0.42 | 0.22 | 8.6 | 10.4 | 15.4 | 9.0 |
|  | Fixed- $D^{*}$ | 0.43 | 0.30 | 11.3 | 10.9 | 15.0 | 0.0 | 0.63 | 0.30 | 8.4 | 8.9 | 15.0 | 0.0 | 0.38 | 0.21 | 9.5 | 10.0 | 15.0 | 0.0 |
|  | Bayesian-based | 0.43 | 0.26 | 14.4 | 4.6 | 15.8 | 2.3 | 0.58 | 0.28 | 12.2 | 4.3 | 14.7 | 2.3 | 0.36 | 0.19 | 13.9 | 4.9 | 15.7 | 2.6 |

[^0]Table S4: Quantification results of bone marrow IVIM - $\mathbf{2} \quad$ Volunteers 4-6

|  | Algorithm | Volunteer 4 |  |  |  |  |  | Volunteer 5 |  |  |  |  |  | Volunteer 6 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D |  | $f(\%)$ |  | $D^{*}$ |  | D |  | $f(\%)$ |  | $D^{*}$ |  | D |  | $f(\%)$ |  | $D^{*}$ |  |
| L1 | One-Step | (0.50 | $0.35)^{1}$ | 11.0 | 10.6 | 13.1 | 10.1 | 0.31 | 0.21 | 17.4 | 13.5 | 14.0 | 10.3 | 0.46 | 0.29 | 12.8 | 11.2 | 14.4 | 10.2 |
|  | Two-Step | 0.54 | 0.34 | 9.2 | 9.3 | 15.4 | 10.3 | 0.40 | 0.21 | 14.4 | 11.6 | 15.7 | 10.6 | 0.48 | 0.26 | 11.2 | 10.2 | 16.0 | 10.2 |
|  | Three-Step | 0.54 | 0.34 | 8.0 | 10.4 | 15.1 | 8.7 | 0.40 | 0.21 | 12.6 | 11.6 | 16.2 | 9.1 | 0.48 | 0.26 | 10.4 | 12.7 | 15.9 | 8.9 |
|  | Fixed- $D^{*}$ | 0.53 | 0.35 | 8.5 | 9.6 | 15.0 | 0.0 | 0.36 | 0.18 | 14.3 | 12.0 | 15.0 | 0.0 | 0.48 | 0.28 | 10.6 | 10.7 | 15.0 | 0.0 |
|  | Bayesian-based | 0.50 | 0.34 | 12.3 | 4.5 | 14.7 | 2.5 | 0.36 | 0.15 | 16.2 | 4.6 | 15.8 | 2.3 | 0.45 | 0.28 | 13.5 | 4.5 | 15.2 | 2.3 |
| L2 | One-Step | 0.47 | 0.24 | 12.2 | 10.6 | 13.7 | 10.4 | 0.31 | 0.26 | 15.9 | 13.3 | 12.6 | 10.0 | 0.40 | 0.24 | 14.4 | 12.2 | 13.3 | 10.2 |
|  | Two-Step | 0.52 | 0.24 | 10.3 | 9.0 | 15.7 | 10.5 | 0.39 | 0.28 | 13.0 | 11.2 | 15.1 | 10.7 | 0.45 | 0.25 | 12.1 | 11.1 | 14.8 | 10.2 |
|  | Three-Step | 0.52 | 0.24 | 9.0 | 10.0 | 15.1 | 8.8 | 0.39 | 0.28 | 10.6 | 11.5 | 14.9 | 9.1 | 0.45 | 0.25 | 10.9 | 12.5 | 15.4 | 8.9 |
|  | Fixed- $D^{*}$ | 0.50 | 0.24 | 10.0 | 9.8 | 15.0 | 0.0 | 0.36 | 0.28 | 11.8 | 11.7 | 15.0 | 0.0 | 0.43 | 0.24 | 11.8 | 11.8 | 15.0 | 0.0 |
|  | Bayesian-based | 0.47 | 0.24 | 13.8 | 4.4 | 15.2 | 2.2 | 0.37 | 0.26 | 15.6 | 4.3 | 15.5 | 2.2 | 0.41 | 0.23 | 14.8 | 4.8 | 15.4 | 2.4 |
| L3 | One-Step | 0.36 | 0.19 | 16.4 | 12.5 | 13.1 | 10.7 | 0.27 | 0.22 | 17.2 | 13.2 | 14.0 | 10.6 | 0.44 | 0.23 | 11.7 | 11.0 | 14.3 | 10.9 |
|  | Two-Step | 0.44 | 0.20 | 12.8 | 10.2 | 15.4 | 10.8 | 0.37 | 0.25 | 12.9 | 10.7 | 16.8 | 10.7 | 0.49 | 0.23 | 9.8 | 9.2 | 15.6 | 11.0 |
|  | Three-Step | 0.44 | 0.20 | 10.8 | 10.6 | 15.8 | 9.5 | 0.37 | 0.25 | 11.1 | 11.2 | 16.9 | 9.5 | 0.49 | 0.23 | 8.2 | 9.3 | 15.7 | 9.4 |
|  | Fixed- $D^{*}$ | 0.42 | 0.17 | 11.9 | 10.8 | 15.0 | 0.0 | 0.33 | 0.25 | 13.0 | 11.3 | 15.0 | 0.0 | 0.46 | 0.22 | 9.5 | 10.0 | 15.0 | 0.0 |
|  | Bayesian-based | 0.40 | 0.16 | 15.1 | 3.9 | 15.4 | 2.1 | 0.37 | 0.23 | 15.6 | 4.7 | 15.8 | 2.2 | 0.42 | 0.21 | 13.8 | 4.2 | 15.3 | 2.3 |
| L4 | One-Step | 0.38 | 0.17 | 13.4 | 12.6 | 13.6 | 10.8 | 0.34 | 0.32 | 13.6 | 12.8 | 15.8 | 11.0 | 0.38 | 0.16 | 13.9 | 11.6 | 13.5 | 10.4 |
|  | Two-Step | 0.45 | 0.17 | 11.4 | 11.1 | 15.5 | 11.2 | 0.38 | 0.36 | 11.5 | 11.2 | 18.7 | 10.8 | 0.45 | 0.16 | 11.0 | 9.4 | 15.4 | 10.4 |
|  | Three-Step | 0.45 | 0.17 | 9.6 | 11.2 | 15.5 | 9.4 | 0.38 | 0.36 | 10.3 | 12.6 | 16.9 | 8.9 | 0.45 | 0.16 | 9.2 | 9.3 | 15.4 | 8.9 |
|  | Fixed- $D^{*}$ | 0.41 | 0.15 | 10.7 | 11.5 | 15.0 | 0.0 | 0.36 | 0.34 | 11.8 | 12.0 | 15.0 | 0.0 | 0.42 | 0.15 | 10.8 | 10.1 | 15.0 | 0.0 |
|  | Bayesian-based | 0.38 | 0.14 | 15.0 | 4.2 | 15.4 | 2.2 | 0.42 | 0.28 | 15.2 | 4.8 | 16.2 | 2.3 | 0.40 | 0.15 | 14.4 | 4.1 | 15.3 | 2.1 |
| L5 | One-Step | 0.40 | 0.21 | 14.5 | 12.0 | 14.5 | 10.8 | 0.31 | 0.31 | 15.7 | 12.8 | 18.2 | 11.1 | 0.39 | 0.21 | 12.3 | 11.3 | 12.8 | 9.7 |
|  | Two-Step | 0.47 | 0.20 | 11.8 | 10.1 | 16.7 | 10.8 | 0.25 | 0.48 | 14.6 | 11.9 | 18.7 | 10.5 | 0.44 | 0.23 | 10.3 | 9.1 | 14.9 | 10.2 |
|  | Three-Step | 0.47 | 0.20 | 10.4 | 10.7 | 16.4 | 9.4 | 0.25 | 0.48 | 13.0 | 13.0 | 17.7 | 9.2 | 0.44 | 0.23 | 8.5 | 8.8 | 14.5 | 8.6 |
|  | Fixed- $D^{*}$ | 0.44 | 0.19 | 11.5 | 10.8 | 15.0 | 0.0 | 0.33 | 0.32 | 13.3 | 12.6 | 15.0 | 0.0 | 0.43 | 0.22 | 9.2 | 8.9 | 15.0 | 0.0 |
|  | Bayesian-based | 0.43 | 0.19 | 14.5 | 4.2 | 15.4 | 2.2 | 0.43 | 0.28 | 16.5 | 5.2 | 16.4 | 2.6 | 0.41 | 0.21 | 13.4 | 3.9 | 15.0 | 2.0 |

[^1]Table S5. The coefficient of variation of $D, f$ and $D^{*}$, calculated from two repeated measurements (denoted as $x_{1}$ and $x_{2}$ ) on 5 volunteers, for each vertebra. The CV (coeffficient of variation) was calculated as $\frac{\left|x_{1}-x_{2}\right|}{x_{1}+x_{2}} \times 100 \%$.

|  | Algorithm | Volunteer 1 |  |  | Volunteer 3 |  |  | Volunteer 4 |  |  | Volunteer 5 |  |  | Volunteer 6 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* |
| L1 | One-Step | 0.3\% | 4.7\% | 8.2\% | 1.5\% | 13.8\% | 3.9\% | 2.4\% | 11.8\% | 0.8\% | 2.2\% | 4.3\% | 3.6\% | 3.6\% | 7.8\% | 3.1\% |
|  | Two-Step | 2.3\% | 1.6\% | 4.9\% | 0.8\% | 18.2\% | 3.7\% | 0.3\% | 9.2\% | 0.5\% | 3.1\% | 7.9\% | 6.7\% | 0.2\% | 2.9\% | 6.2\% |
|  | Three-Step | 2.3\% | 2.8\% | 5.5\% | 0.8\% | 17.7\% | 0.5\% | 0.3\% | 18.8\% | 1.5\% | 3.1\% | 9.4\% | 3.5\% | 0.2\% | 1.4\% | 4.2\% |
|  | Fixed-Dstar | 2.0\% | 0.1\% | 0.0\% | 1.1\% | 16.5\% | 0.0\% | 3.2\% | 10.7\% | 0.0\% | 1.5\% | 5.6\% | 0.0\% | 2.4\% | 5.5\% | 0.0\% |
|  | Bayesian-based | 0.5\% | 3.3\% | 0.3\% | 0.3\% | 7.0\% | 1.8\% | 1.6\% | 2.7\% | 0.1\% | 0.7\% | 2.8\% | 0.2\% | 0.5\% | 0.8\% | 1.1\% |
| L2 | One-Step | 4.9\% | 20.9\% | 3.1\% | 0.3\% | 12.8\% | 17.5\% | 3.6\% | 2.8\% | 1.5\% | 8.5\% | 3.0\% | 8.8\% | 2.2\% | 4.5\% | 4.0\% |
|  | Two-Step | 2.9\% | 20.2\% | 3.8\% | 2.3\% | 22.8\% | 7.6\% | 1.5\% | 2.4\% | 0.5\% | 9.6\% | 6.6\% | 5.3\% | 1.9\% | 6.4\% | 3.8\% |
|  | Three-Step | 2.9\% | 20.6\% | 4.4\% | 2.3\% | 28.6\% | 8.2\% | 1.5\% | 4.7\% | 1.6\% | 9.6\% | 10.1\% | 5.5\% | 1.9\% | 6.0\% | 2.9\% |
|  | Fixed-Dstar | 2.0\% | 17.6\% | 0.0\% | 2.2\% | 24.2\% | 0.0\% | 1.4\% | 3.0\% | 0.0\% | 10.4\% | 7.9\% | 0.0\% | 3.0\% | 7.8\% | 0.0\% |
|  | Bayesian-based | 1.1\% | 6.4\% | 0.8\% | 0.6\% | 7.6\% | 4.0\% | 2.8\% | 1.7\% | 1.1\% | 5.3\% | 0.6\% | 1.6\% | 0.4\% | 3.0\% | 1.8\% |
| L3 | One-Step | 0.9\% | 13.6\% | 5.5\% | 2.2\% | 8.3\% | 2.5\% | 5.8\% | 5.7\% | 4.2\% | 4.1\% | 2.3\% | 5.2\% | 1.6\% | 12.4\% | 5.6\% |
|  | Two-Step | 0.8\% | 14.0\% | 3.2\% | 0.8\% | 1.6\% | 2.6\% | 6.0\% | 7.8\% | 4.2\% | 0.6\% | 7.6\% | 3.0\% | 2.3\% | 16.3\% | 1.5\% |
|  | Three-Step | 0.8\% | 13.1\% | 2.0\% | 0.8\% | 0.0\% | 2.5\% | 6.0\% | 7.7\% | 5.0\% | 0.6\% | 9.5\% | 0.8\% | 2.3\% | 19.6\% | 1.2\% |
|  | Fixed-Dstar | 0.3\% | 11.8\% | 0.0\% | 0.7\% | 6.5\% | 0.0\% | 6.0\% | 9.8\% | 0.0\% | 1.0\% | 7.0\% | 0.0\% | 1.4\% | 15.1\% | 0.0\% |
|  | Bayesian-based | 3.1\% | 2.8\% | 0.9\% | 1.1\% | 2.2\% | 0.0\% | 2.5\% | 1.4\% | 1.5\% | 1.3\% | 0.6\% | 1.1\% | 2.1\% | 2.7\% | 1.8\% |
| L4 | One-Step | 3.6\% | 12.5\% | 4.2\% | 1.4\% | 12.6\% | 8.9\% | 1.6\% | 2.5\% | 16.4\% | 9.0\% | 2.9\% | 2.3\% | 2.9\% | 3.4\% | 6.5\% |
|  | Two-Step | 1.8\% | 6.7\% | 2.0\% | 0.7\% | 16.2\% | 2.0\% | 3.3\% | 2.9\% | 14.7\% | 3.7\% | 0.3\% | 4.3\% | 1.9\% | 2.8\% | 5.0\% |
|  | Three-Step | 1.8\% | 9.1\% | 0.7\% | 0.7\% | 20.9\% | 6.4\% | 3.3\% | 0.4\% | 15.7\% | 3.7\% | 1.5\% | 2.8\% | 1.9\% | 2.7\% | 0.9\% |
|  | Fixed-Dstar | 0.8\% | 7.9\% | 0.0\% | 0.4\% | 17.0\% | 0.0\% | 5.0\% | 4.1\% | 0.0\% | 4.6\% | 3.5\% | 0.0\% | 2.4\% | 2.8\% | 0.0\% |
|  | Bayesian-based | 1.2\% | 1.5\% | 0.4\% | 4.8\% | 6.2\% | 2.4\% | 3.0\% | 1.2\% | 2.5\% | 9.1\% | 3.0\% | 1.8\% | 0.4\% | 0.1\% | 1.1\% |
| L5 | One-Step | 3.5\% | 25.1\% | 0.5\% | 2.8\% | 1.1\% | 11.9\% | 0.4\% | 10.4\% | 4.8\% | 12.4\% | 10.8\% | 3.8\% | 1.9\% | 31.2\% | 5.5\% |
|  | Two-Step | 2.4\% | 27.9\% | 1.0\% | 7.0\% | 6.6\% | 7.4\% | 1.9\% | 7.7\% | 5.6\% | 0.3\% | 16.6\% | 4.7\% | 1.0\% | 32.3\% | 2.6\% |
|  | Three-Step | 2.4\% | 33.9\% | 1.6\% | 7.0\% | 12.2\% | 3.0\% | 1.9\% | 6.9\% | 6.4\% | 0.3\% | 18.6\% | 7.3\% | 1.0\% | 36.0\% | 1.1\% |
|  | Fixed-Dstar | 1.8\% | 24.0\% | 0.0\% | 5.9\% | 8.0\% | 0.0\% | 1.4\% | 10.3\% | 0.0\% | 8.2\% | 16.8\% | 0.0\% | 1.6\% | 29.3\% | 0.0\% |
|  | Bayesian-based | 3.2\% | 8.3\% | 2.2\% | 3.3\% | 1.3\% | 2.8\% | 3.2\% | 2.8\% | 1.0\% | 15.6\% | 9.1\% | 2.4\% | 7.1\% | 7.9\% | 1.9\% |

Table S6. The mean value (MEAN) and standard deviation (STD) of the coefficient of variation of $D, f$ and $D^{*}$ for each volunteer (calculated as the average over the five lumbar vertebrae). Overall, the Bayesian approach display a lower coefficient of variation with respect to the LSQbased algorithms.

|  | Algorithm | Volunteer 1 |  |  | Volunteer 3 |  |  | Volunteer 4 |  |  | Volunteer 5 |  |  | Volunteer 6 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* | CV of D | CV of f | CV of D* |
| MEAN | One-Step | 2.6\% | 15.4\% | 4.3\% | 1.6\% | 9.7\% | 9.0\% | 2.8\% | 6.6\% | 5.6\% | 7.2\% | 4.7\% | 4.8\% | 2.5\% | 11.9\% | 4.9\% |
|  | Two-Step | 2.1\% | 14.1\% | 3.0\% | 2.3\% | 13.1\% | 4.7\% | 2.6\% | 6.0\% | 5.1\% | 3.4\% | 7.8\% | 4.8\% | 1.5\% | 12.1\% | 3.8\% |
|  | Three-Step | 2.1\% | 15.9\% | 2.8\% | 2.3\% | 15.9\% | 4.1\% | 2.6\% | 7.7\% | 6.0\% | 3.4\% | 9.8\% | 4.0\% | 1.5\% | 13.1\% | 2.0\% |
|  | Fixed-Dstar | 1.4\% | 12.3\% | 0.0\% | 2.1\% | 14.4\% | 0.0\% | 3.4\% | 7.6\% | 0.0\% | 5.2\% | 8.2\% | 0.0\% | 2.2\% | 12.1\% | 0.0\% |
|  | Bayesian-based | 1.8\% | 4.5\% | 0.9\% | 2.0\% | 4.9\% | 2.2\% | 2.6\% | 2.0\% | 1.2\% | 6.4\% | 3.2\% | 1.4\% | 2.1\% | 2.9\% | 1.5\% |
| STD | One-Step | 1.9\% | 7.9\% | 2.8\% | 0.9\% | 5.3\% | 6.1\% | 2.0\% | 4.3\% | 6.3\% | 4.1\% | 3.5\% | 2.5\% | 0.8\% | 11.4\% | 1.4\% |
|  | Two-Step | 0.8\% | 10.5\% | 1.5\% | 2.7\% | 8.7\% | 2.6\% | 2.2\% | 3.1\% | 5.8\% | 3.8\% | 5.8\% | 1.4\% | 0.8\% | 12.6\% | 1.8\% |
|  | Three-Step | 0.8\% | 12.0\% | 2.0\% | 2.7\% | 10.7\% | 3.1\% | 2.2\% | 6.8\% | 5.8\% | 3.8\% | 6.1\% | 2.5\% | 0.8\% | 14.7\% | 1.5\% |
|  | Fixed-Dstar | 0.8\% | 9.1\% | 0.0\% | 2.2\% | 7.3\% | 0.0\% | 2.1\% | 3.7\% | 0.0\% | 4.1\% | 5.1\% | 0.0\% | 0.7\% | 10.7\% | 0.0\% |
|  | Bayesian-based | 1.2\% | 2.8\% | 0.8\% | 1.9\% | 2.9\% | 1.5\% | 0.6\% | 0.7\% | 0.9\% | 6.2\% | 3.5\% | 0.8\% | 2.9\% | 3.0\% | 0.4\% |


[^0]:    ${ }^{1}$ Form of the data is "(MEAN STD)"
    The units for D and $D^{*}$ are the same, $\times 10^{-3} \mathrm{~mm}^{2} / \mathrm{s}$

[^1]:    ${ }^{1}$ Form of the data is "(MEAN STD)"
    The units for D and $D^{*}$ are the same, $\times 10^{-3} \mathrm{~mm}^{2} / \mathrm{s}$

