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Abstract

Objective: To access the performances of different algorithms for quantification of IntraVoxel Inco-
herent Motion (IVIM) parameters D, f, D* in Vertebral Bone Marrow (VBM).

Materials and Methods: Five algorithms were studied: four deterministic algorithms (the One-
Step and three segmented methods: Two-Step, Three-Step, and Fixed-D™ algorithm) based on the
least-squares (LSQ) method and a Bayesian probabilistic algorithm. Numerical simulations and quan-
tification of IVIM parameters D, f, D* in vivo in vertebral bone marrow, were done on six healthy
volunteers. The One-way repeated-measures analysis of variance (ANOVA) followed by Bonferroni’s
multiple comparison test (p-value = 0.05) was applied.

Results: In numerical simulations the Bayesian algorithm provided the best estimation of D, f,
D™ compared to the deterministic algorithms. In vivo VBM-IVIM, the values of D and f estimated
by the Bayesian algorithm were close to those of the One-Step method, in contrast to the three
segmented methods.

Discussion: The comparison of the five algorithms indicates that the Bayesian algorithm provides
the best estimation of VBM-IVIM parameters, in both numerical simulations and in vivo data.
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1 Introduction

In recent years there has been an increased interest
for Intravoxel Incoherent Motion MRI [1] in Ver-
tebral Bone Marrow (VBM-IVIM), for quantifica-
tion of the diffusion coefficient D, the perfusion
fraction f and the pseudo-diffusion coefficient D*.
A first attempt of VBM-IVIM measurements was
performed by Yeung et al. [2] in 2004; however,
only the diffusion coefficient D was evaluated,
since the bi-exponential analysis of the IVIM dif-
fusion decay could not yield a reliable estimation
of f and D*.

In 2014, Marchand et al. showed the feasibility
of measuring the IVIM parameters D, f, and D*
in vertebral bone marrow of young, healthy volun-
teers [3]. Improvements in MRI hardware and MRI
sequences, as well as the optimization of acqui-
sition parameters such as the b-values, certainly
contributed to the noteworthy quantification of D,
f, and D*. Between 2015 and 2020, VBM-IVIM
MRI has been successfully applied in a number of
studies, with a major focus on oncology [4-12].

Further developments in VBM-IVIM data
acquisition have been recently presented by Las-
bleiz et al [13]. First, it was shown that an
improved image quality, in terms of better spa-
tial resolution and reduced susceptibility artifacts,
could be obtained by employing a multi-shot
readout-segmented EPI (RESOLVE [14], readout
segmentation of long variable echo train) instead
of the single-shot EPI, which had been used in
all previous VBM-IVIM studies. Secondly, the
SPAIR (Spectrally Adiabatic Inversion Recovery)
technique was used for fat saturation, yielding
VBM-IVIM images with an increased signal-to-
noise ratio (SNR) when compared to the STIR
(Short TT Inversion Recovery) technique [13].

The advances in VBM-IVIM data acquisition
have not been followed by similar developments in
VBM-IVIM data analysis methods, to date. This
is in contrast with the IVIM investigations of other
organs/tissues (liver, pancreas, etc.), where ded-
icated analyses of different IVIM quantification
strategies have been conducted [15-20].

The aim of the current study was to investi-
gate the performances of different algorithms for
the quantification of D, f, and D* in vertebral
bone marrow. Five algorithms were considered:
four deterministic least-squares (LSQ) based algo-
rithms (the One-Step, Two-Step, Three-Step, and

Fixed-D* algorithm) and a probabilistic algo-
rithm based on the Bayesian Probability Inference
[21]. The performances of each algorithm were
evaluated by numerical simulations and tested
on VBM-IVIM data acquired in young healthy
volunteers at 1.5T.

2 Materials and Methods
2.1 MR Imaging

All experiments were conducted in accordance
with the procedures approved by the local
Institutional Review Board. Written informed
consent was signed by each volunteer before
the measurements. MRI data were acquired on
a 1.5T MAGNETOM Aera system (Siemens
Healthcare, Erlangen, Germany) using spine and
body receiver coils. After anatomical T1-weighted
and T2-weighted MRI acquisitions, VBM-IVIM
measurements were carried out on the lum-
bar spine of six healthy, young volunteers (age
range 18-29 years, mean age 26.1+4.0 years,
three women and three men). VBM-IVIM MRI
was performed in sagittal orientation using the
RESOLVE sequence, with the parameters pro-
posed by Lasbleiz et al. [13]; here briefly: repe-
tition time 2400 ms, echo time 58 ms, field of
view (FOV) 400 x 400 mm?, matrix size 188 x
188, slice thickness 6 mm (10 slices), seven b-
values of 0,50,100,150,400,800,1000 s/mm?, iPAT
3, and the Spectral Attenuated Inversion Recovery
(SPAIR) fat saturation. Two repeated, identical
RESOLVE acquisitions were performed on five
volunteers. The tissue SNR achieved with the cur-
rent experimental set-up was then calculated using
the dual acquisition, subtraction method [22] on
the image at b = 0 s/mm?. To

2.2 Data fitting algorithms

To estimate the IVIM parameters D, f, and D*, a
bi-exponential model was fitted to the IVIM signal
intensity for each voxel:
Sp=So(fe " +(1-fe"P) (1)
where Sy is the signal intensity at b = 0 s/mm?,
D, f and D* are the diffusion coefficient, per-

fusion fraction and pseudo-diffusion coefficient,
respectively. The values of the IVIM parameters



were computed using i) four deterministic algo-
rithms (the One-Step, Two-Step, Three-Step, and
Fixed-D* algorithm) where model parameters are
computed in an LSQ way and ii) a probabilistic
algorithm where those parameters are obtained
by inferring their posterior probability distribu-
tion function (PDF).

e One-Step algorithm

The estimation of the IVIM parameters was
done by fitting the data directly to the equation
(1), in a single step using the MATLAB fit func-
tion with the Trust Region (TR) algorithm [23]
as optimizer. Thus, in the One-Step algorithm the
values of the IVIM parameters are simultaneously
determined.

o Two-Step algorithm

The Two-Step and Three-Step algorithms are
an example of segmented strategies, where param-
eters are estimated separately in different steps
[24]. Segmented approaches have been previously
proposed for quantification of IVIM parameters; in
general, these strategies are more robust to noise
and therefore are of interest for data character-
ized by a low SNR. In the Two-Step algorithm
the diffusion coefficient D was estimated by a
mono-exponential function, using only the data
where the perfusion component could be neglected
(b > 200 s/mm?). Once the diffusion coefficient D
was obtained, it was fixed to its estimated value
and the parameters f and D* were then estimated
by fitting the data to the equation (1) in LSQ way
using the TR algorithm.

o Three-Step algorithm

As in the Two-Step algorithm, an estimate of
D was obtained by using a mono-exponential fit-
ting of data corresponding to b-values greater than
200 s/mm?. The same mono-exponential analysis
provided also Sy,on0, which is the value of the esti-
mated signal at the b-value of 0 s/mm?. Then,
the perfusion fraction f was obtained from the
following formula [25]:

Smono
f=1- S5 (2)

In the last third step, with parameters D and f
being fixed to their estimates, the parameter D*

was determined by fitting data at all b-values to
the equation (1) also in an LSQ way using the TR
algorithm.

o Fized-D* algorithm

This algorithm relies on specifying a priori the
parameter D* [26]. In this study, D* was fixed to
(15 x 1073 mm?/s), a value obtained from previ-
ous studies [13]. The estimation of D and f was
obtained by fitting the data to the equation (1),
with the TR algorithm.

e Bayesian-based algorithm

In addition to the commonly used non-linear
LSQ algorithms, there has been an increasing
interest in the Bayesian-based fitting algorithm
within IVIM framework [27-29]. This algorithm is
based on Bayesian probability inference. The defi-
nition of Bayes’ theorem for a bi-exponential IVIM
model can be written as:

P(0|S, 1) =

P(0|1)P(S|0, 1) )
|

P(S|T)

where S = {Sp}wy is the set of signal inten-
sity of one voxel, acquired over all b-values, § =
{So, f, D, D*} denotes the set of all model param-
eters and I stands for the prior information.
P(6|S,I), P(S|6,1) and P(6|I) are the parameters
posterior PDF, the data likelihood PDF and the
parameters prior PDF| respectively. It should be
noted that P(S|I), the direct PDF of the data, is a
normalization factor that can be dropped from the
following calculation. A bounded Gaussian distri-
bution is employed as a prior distribution for each
IVIM parameter in 6 [30].To be more specific, the
prior probability P(v|I), I, < v € § < h,, fol-
lows a Gaussian distribution N (u,, 0,) of a mean,
1y, and a standard deviation, o, where [, and h,,
are denoting the lower and higher bounds of the
parameter v € 6. Let Q =), (Sb — So(fe tP" 4

(1-— f)e’bD))2 be the data fidelity term and M
is the number of b-values. Then the likelihood
P(S5]0,1I) of the data given the prior information
and model parameters is of the form:

P(SIO, 1) o (2) 02 (W

It should be noted that the equation (4) is the
result of a marginalization of the noise [31]. Then,



Table 1: Parameter settings for Metropolis Hastings sampling method

v normalized Sy f(%) D(x1072 mm?/s) D*(x1072 mm?/s)
Initial guess of u, 1.0 10 0.5 15
Lower bound [, 0.5 1 0.001 5
Higher bound h, 1.5 40 2 50

The set of parameters characterizing the prior distribution P(v|I) = N (py,0.), v € 0{f, D, D*} with o, = (h, —1,)/3

under the assumption of the statistical indepen-
dence of the model parameters, the parameters
posterior PDF can be written as follows:

P(0]S, 1) 0<P(J‘II)P(DII)P(D*II)(%’M/2 (5)

A Monte Carlo Markov Chain (MCMC) approach
was then employed to calculate the expectations of
the IVIM parameters [21, 32], and the Metropolis-
Hastings (MH) Sampling method [33] was used to
iteratively generate the Markov Chain. For each
voxel, the parameters’ expectations were calcu-
lated from 50000 MCMC samples (50 simulations
sampled 1000 times each). In this study, the burn-
in number for each Markov chain was set to 50,
and a simple mean of the marginal posterior dis-
tributions was used [27, 29]. At each iteration of
this procedure, the mean pu,,Vv € 6, is updated
while the standard deviation, o,, is kept fixed to
a value equal to (h, —1,)/3. An initial guess of p,,
is set according to Table 1 obtained from previous
studies [4, 13].

2.3 Numerical simulations

Numerical simulations were performed to explore
the performances of the five different algorithms
for the estimation of the IVIM parameters. Two
simulated experiments were designed: in the first
experiment, a single set of tissue parameters D, f
and D* was taken as ground truth; in the second
experiment, a range of tissue values of D, f and
D* was investigated.

In the first experiment, the following
parameters were used to generate a noise-free
IVIM signal: 1) with respect to tissue param-
eters, according to the most recent studies on
healthy subjects, the ground truth was chosen as
0.48 x 1073 mm?/s for D, 13% for f and 18 x
1072 mm?/s for D*; 2) with respect to the data
acquisition parameters, the set of b-values used in

vivo, i.e., 0,50,100,150,400,800,1000 s/mm?, was
employed. Rician noise was added to the noise-free
IVIM signal to generate data of different SNR (10,
20, 50 and 100), through the adjustment of the
noise variance. For each SNR value, 10000 Monte
Carlo (MC) trials were performed. The relative
error of parameter 6; € {f, D, D*},Vi € {1,2,3}
computed as @ where 0} is the estimated
value, was considered in order to evaluate and
compare the performances of the five algorithms.

The second experiment was designed to
investigate the algorithm performances for a range
of tissue IVIM parameters, as it may occur in
the presence of pathologies. A numerical phan-
tom composed of 16 square regions was designed,
with each region consisting of 6 x 6 pixels. All
36 pixels of each region were characterized by the
same ground truth value of the IVIM parameters;
for each pixel an MC trial was conducted. Since
the diffusion coefficient is typically well estimated,
it was decided to vary only the IVIM perfusion-
related parameters f and D* and the value of D
was fixed to 0.48 x 1073 mm?/s. Sixteen combi-
nations of IVIM parameters were obtained from
the following two sets: f € {5,10,15,20}(%) and
D* € {6,12,18,24}(x1073 mm?2/s). Simulations
for this numerical phantom were performed with
an SNR of 20.

2.4 In vivo data analysis

The estimation of the IVIM parameters based on
voxel-by-voxel analysis was performed on lumbar
vertebrae (L1 to L5) of volunteers with the five
different algorithms and parametric maps of D, f
and D* were generated.

2.5 Statistical analysis

A statistical analysis of the values of the IVIM
parameters estimated from the data acquired
in vivo was carried out. The IVIM parameters



obtained by each algorithm were compared using
a one-way repeated-measures analysis of variance
(ANOVA) followed by Bonferroni’s multiple com-
parison test. A threshold of 5% was chosen for
statistical significance. Statistical analyses were
performed with GraphPad Prism (GraphPad, La
Jolla, CA, USA).

2.6 Time cost

The time cost of each algorithm for the IVIM
quantification of a single voxel was determined,
by averaging the time cost over 10* repeti-
tions. Calculations were conducted with MAT-
LAB (R2020b) on a personal computer (Intel
CPU, four cores, main frequency 2.4 GHz).

3 Results

RESOLVE MR images of the spine of a young
healthy volunteer are shown in Fig. 1. Given the
relatively long TE of 58 ms, the MR image at b =
0 s/mm? (Fig. 1a) yields a T2-weighted image,
with a high signal intensity from the intervertebral
disks and cerebrospinal fluid (CSF), for instance.
In the diffusion-weighted MR images (Fig. 1b and
1c), in particular at b = 1000 s/mm?, vertebral
bone marrow appears hyper-intense compared to
surrounding tissues, indicating a small diffusion
coefficient of water molecules in bone marrow.
For better visualization, the image contrast was
adjusted separately on each image.

Overall, a good image quality and SNR can be
observed on these diffusion-weighted images and
no major artifacts are noticeable on the L1-L5
vertebrae. The SNR calculated using the repeated
acquisition method was equal to 16.4 + 3.1, when
averaged over the lumbar vertebrae of five (out
the six) volunteers. The SNR value of each verte-
bra is provided in Supplementary Materials (see
Table S1). Furthermore, an example of the signal
vs b-values plot is also shown in Supplementary
Materials (see Figure S1).

Fig. 2 illustrates the results of the first simula-
tion study for the estimation of the IVIM param-
eters D, f and D* by the five algorithms. Four
values of SNR (10, 20, 50, 100) are considered.
The ground-truth value of D, f and D* is indi-
cated by the horizontal blue line on each graph.
The first observation is that the Bayesian-based

b = 150 s/mm?

b = 1000 s/mm?

Fig. 1: Sagittal MR images of the spine of
a young healthy volunteer, acquired with the
RESOLVE MRI sequence. At b = 1000 s/mm?,
the high signal intensity of vertebral bone marrow
is indicative of a small diffusion coefficient of water
molecules in vertebrae. For better visualization, a
zoom-in of the lumbar vertebrae is displayed

approach yielded a more accurate and precise esti-
mation of IVIM parameters, when compared to
the four LSQ-based algorithms, for all values of
SNR. Overall, at the SNR > 20 the Bayesian
approach provided a good estimation of D, f and
D*. With respect to the four deterministic algo-
rithms, the following general considerations apply:
i) at the SNR of 10 (black box-plot) the estima-
tion of D, f and D* suffered from a very poor
precision; ii) at the SNR of 20 (red box-plot), the
diffusion coefficient D was well estimated by all
four algorithms; iii) for a good quantification of
the perfusion fraction, an SNR between 20 and
50 was necessary. Finally, it can be noted that
the estimation of D* remained challenging even
at high values of SNR. The relative error in the
estimation of D, f and D*, obtained by the same
simulations of Fig. 2, is shown in Fig. 3.

The results of the second simulation study
are shown in Fig. 4. The numerical phantom is
illustrated with different colorbars for D (Fig.
4a), f (Fig. 4b) and D* (Fig. 4c). Each of the
16 square regions is characterized by a unique
combination of D, f and D*. For instance,
the ground truth values of the top-right square
region are: [D,f,D*]=[0.48,5,24](1073 mm?/s,
%, 1072 mm?/s). Overall, for all 16 combinations
of f and D* the Bayesian approach yielded a bet-
ter estimation of the IVIM parameters compared
to the deterministic algorithms. To be more spe-
cific, it could be easily observed from Fig. 4 that
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Fig. 2: Quantification of the IVIM parameters D (a), f (b) and D* (¢) with five algorithms (One-
Step, Two-Step, Three-Step, Fixed-D* and Bayesian-based). Each box plot includes simulated data from
10000 Monte Carlo trials. The blue line in each plot indicates the ground truth value for each parameter:
0.48 x 1073 mm?/s for D, 13% for f and 18 x 1072 mm? /s for D*. Different colors illustrate a different

SNR (black-box: SNR = 10; red-box: SNR = 20; etc.)

the maps provided by Bayesian-based algorithm,
especially for f and D*, were much smoother than
maps from LSQ-based ones. Thus, the Bayesian-
based algorithm outperforms deterministic ones
since it provides estimated parameters not only
closer to the ground truth but also of lower
variability.

The parametric maps of D, f and D* in verte-
bral bone marrow of one volunteer are illustrated
in Fig. 5. In Fig. 5a, the MR image at b =
0 s/mm? and the MR image at b = 1000 s/mm?
with the segmentation of the lumbar vertebrae
are shown. For clarity, three different colorbars

are employed for the parametric maps of D (Fig.
5b), f (Fig. 5¢) and D* (Fig. 5d). It can be
noted that i) all five algorithms yielded parametric
maps of similar quality for the diffusion coeffi-
cient D and ii) the Bayesian approach provided
improved precision compared to the deterministic
algorithms.

The values of D, f and D* estimated for each
vertebra in each volunteer (V1-V6) are illustrated
in Fig. 6. Visual inspection of the data reveal that
the values of f estimated by the One-Step algo-
rithm (pink marker) are close to those estimated
by Bayesian algorithm (blue marker, Fig. 6b). A
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Fig. 3: The relative error for the IVIM parameters D (a), f (b) and D* (c) at different values of signal-
to-noise-ratio (SNR), estimated by the five algorithms (One-Step, Two-Step, Three-Step, Fixed-D* and

Bayesian-based)

statistical analysis was performed on all data: a
total of 30 vertebrae (n = 30), with each verte-
bra evaluated using five algorithms. The following
results were observed: for the diffusion coefficient
D, in 22 out of 30 cases the ANOVA test with
Bonferroni’s post-test did not show a statistically
significant difference between the values estimated
by the One-Step and those estimated by Bayesian
algorithm. On the contrary, for all other paired
comparisons (One-Step vs Two-Step, One-Step vs
Three-Step and so on) a statistically significant
difference was observed in most vertebrae.

The statistical analysis of the perfusion frac-
tion f yielded results similar to those for the
diffusion coefficient D: i) 27 out of 30 cases did not

show a statistically significant difference between
the One-Step and Bayesian algorithm; this finding
can be also easily confirmed by visual inspection
of Fig. 6b and ii) for all other paired comparisons
a statistically significant difference was observed
in most vertebrae. The statistical results of all
possible comparisons are provided in Supplemen-
tary Materials (Table S2). In Table 2, the average
values of the IVIM parameters in the lumbar ver-
tebra L1 over all volunteers are displayed. It is of
interest to note that the average values of D and
f estimated by the One-Step and Bayesian-based
algorithms were close to each other. Furthermore,
it can be noted that a lower value of D and a
higher value of f were estimated by One-Step
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Fig. 4: Numerical phantom for estimation the IVIM parameters D (a), f (b) and D* (c), using the
five algorithms (One-Step, Two-Step, Three-Step, Fixed-D* and Bayesian-based). Each of the 16 square
regions is characterized by a unique combination of D, f and D*, with the numerical values indicated for
clarity only on the right panel of subfigure (c). In all cases, the value of D was fixed to 0.48 x 1072 mm?/s
and the SNR was equal to 20. For all 16 combinations of f and D* the Bayesian approach yielded a
better estimation of the IVIM parameters when compared to the deterministic algorithms

Table 2: Example of IVIM quantification in the lumbar vertebra L1 using the five algorithms. The mean
values of D, f and D* are obtained from the parametric maps over all six volunteers

Algorithm D (><10_3 mm2/sec) (%) D* (><10_3 mm2/sec)
One-Step 0.44 13.2 13.4
Two-Step 0.49 10.9 15.5
Three-Step 0.49 9.5 15.8
Fixed-D* 0.47 10.4 15.0
Bayesian-based 0.44 13.8 15.1

and Bayesian-based algorithms when compared
to the segmented approaches Two-Step, Three-
Step, Fixed-D*. The full results of each lumbar
vertebra and each volunteer are provided in Sup-
plementary Materials (Table S3 and Table S4).
The parameters’ estimates of D, f and D* in vol-
unteer 1 (lumbar vertebra L1) in two repeated
measurements are shown in Table 3. Further-
more, a repeatability analysis (the coefficient of
variation of D, f and D*) calculated from two

repeated measurements on 5 volunteers is pro-
vided in Supplementary Materials (Table S5 and
Table S6).

The time cost of each algorithm for the IVIM
quantification of a single voxel was determined;
the results (in msec) were the following: 19.1, 19.0,
18.9, 18.4 and 2266 for the One-Step, Two-Step,
Three-Step, Fixed-D* and Bayesian-based algo-
rithm, respectively. Thus, the four deterministic
algorithms were much faster than the Bayesian-
based one.



Table 3: The parameters’ estimates of volunteer 1 (lumbar vertebra L1) in two repeated measurements

(Measurement 1) D (x10~3 mm?/sec) f (%) D* (x1073 mm? /sec)
One-Step 0.42+£0.14 14.4+114 14.0 £10.6
Two-Step 0.49 £0.13 11.7£10.1 16.3 £10.6

Three-Step 0.49 £ 0.13 10.1£104 16.56£9.1
Fixed-D* 0.46 +£0.13 11.6 £10.6 15.0£0.0
Bayesian-based 0.43+0.14 14.6 £ 4.3 15.4 + 2.6

(Measurement 2)

One-Step 0.42 £0.15 13.1£10.6 16.5£11.3
Two-Step 0.47+£0.14 11.3£9.5 18.0 £10.6
Three-Step 0.47+£0.14 10.6 £10.0 18.44+9.4
Fixed-D* 0.44+£0.13 11.7£104 15.0 £ 0.0
Bayesian-based 0.42+0.16 13.6 +4.8 15.5+ 2.6

A comparison between the relative error of
D, f and D* obtained by the deterministic algo-
rithms and the Bayesian-based one is provided in
Supplementary Materials (Figure S2).

4 Discussion

In the current study, we have investigated
five algorithms for the quantification of the
IVIM parameters in vertebral bone marrow of
young healthy volunteers. VBM-IVIM data were
acquired using the RESOLVE sequence. Over-
all, numerical simulations and analysis of in vivo
data indicated that the Bayesian method provided
a better estimation of D, f and D* than the
deterministic algorithms. The advantage of the
Bayesian methods over deterministic algorithms
is particularly evident when observing the para-
metric maps of the VBM-IVIM perfusion fraction.
Disadvantages of the Bayesian approach include
the computational burden, the need of coding/im-
plementation of the algorithm, whereas the deter-
ministic algorithms are fast and readily available
as in common programming environments. Among
the deterministic algorithms, the One-Step is to
prefer in the case of a good SNR - as in the case of
ROI analysis for instance; on the other hand, the
segmented approaches are of interest for analysis
of data with limited SNR.

While there have been advances in VBM-
IVIM data acquisition in recent years, little atten-
tion has been paid to data analysis methods
for improving the quantification of VBM-IVIM
parameters. In previous MRI IVIM studies, dif-
ferent data-fitting approaches for the estimation

of IVIM parameters have been investigated for
organs/tissues [14-19] other than bone marrow;
furthermore, only a few of them have investigated
the Bayesian method. The need of a dedicated
study for VBM-IVIM stems from the fact that the
performances of different algorithms depend on
parameters that are related 1) to the organ/tissue
under investigation and 2) to the specific experi-
mental set-up. These parameters include i) tissue
characteristics — in other words, the values of D,
f and D*; and ii) the image data quality — and
in particular the SNR, which also depends on
whether the analysis is performed on global ROIs
or on a voxel-by-voxel basis to generate parametric
maps.

With respect to tissue characteristics, verte-
bral bone marrow is a unique tissue, with a high
lipid content. The adipocytes represent imper-
meable barriers to the diffusion motion of water
molecules; as a result, the diffusion of water is
highly hindered, resulting in a diffusion coefficient
smaller (0.2—0.6x 1072 mm?/s) than that of most
tissues [12]. In addition, the value of D* is also
smaller than that of other tissues [3, 13, 15, 34].
With respect to the overall image data qual-
ity, substantial improvements have been achieved
by using the RESOLVE sequence combined with
novel fat suppression techniques, compared to sin-
gle shot EPI with STIR fat suppression. In the
current study, SNR measurements were also per-
formed — since the numerical value of SNR is a
critical parameter, necessary when comparing the
performances of different algorithms. Despite the
fact that SNR measurements with the dual acqui-
sition approach are simple to perform, to the best
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Fig. 5: MR images at b = 0 s/mm? and b = 1000 s/mm?, with the segmentation of the lumbar vertebrae
(a) and in vivo estimation the IVIM parameters D (b), f (c¢) and D* (d), using the five algorithms. From
left to right, the order of the five algorithms is the following: One-Step, Two-Step, Three-Step, Fixed-
D* and Bayesian-based. All five algorithms provide parametric maps of similar quality for the diffusion
coefficient D. With respect to f and D*, the precision of the Bayesian approach is superior to that of the

deterministic algorithms

of our knowledge there have been no data in the
literature providing SNR values for a VBM-IVIM
protocol; we suggest that it might be useful, when
setting up clinical VBM-IVIM studies, to deter-
mine on one or two participants the value of SNR
for the specific experimental protocol.

4.1 Data acquisition

The typical data acquisition approach of VBM-
IVIM consists of a spin-echo diffusion-preparation
module followed by a single-shot EPI readout.
As previously said, the RESOLVE sequence has
been applied to VBM-IVIM, with the advantage
of providing MR images with an overall improved
quality compared to the single-shot EPI; however,
the disadvantage of RESOLVE is a longer acqui-
sition time. In the current study the RESOLVE
protocol as proposed by Lasbleiz et al. [13] was
applied, with an acquisition time of 4 minutes 40
seconds; as such, it could be an attractive alter-
native to single-shot EPI, since an MR sequence
that lasts less than five minutes could be still
acceptable in standard clinical examinations.

4.2 Comparison between simulation
results and in vivo results

It is noteworthy the agreement in the IVIM
parameter estimation by different algorithms
between simulated results and in vivo results.
In particular, two main findings are of interest.
First, in the simulations a slight overestimation
of D, was observed for the Two-Step and Three-
Step algorithm, compared to i) the One-Step and
Bayesian algorithm and ii) the ground truth val-
ues, as shown in Fig. 2. A similar behavior was
observed in the results in vivo, that is, a slight
overestimation of D for the Two-Step and Three-
Step algorithm, compared to the One-Step and
Bayesian algorithm, as illustrated in Fig. 6 and
Table 2. Clearly, for the results in vivo there are
no ground truth values for comparison. The sec-
ond finding is related to the quantification of the
perfusion fraction by the five algorithms. When
compared to the ground truth, an underestimation
of f for the Two-Step and Three-Step algorithm
and an overestimation of f the One-Step and
Bayesian algorithm is noteworthy. The same result
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Fig. 6: The full results of the VBM-IVIM quantification in vivo, for six volunteers (V1-V6) and five
lumbar vertebrae (L1-L5) using the five algorithms (One-Step, Two-Step, Three-Step, Fixed-D* and
Bayesian-based). The average values and the standard error of D, f and D* are illustrated. In general,
i) the One-step (pink marker) and Bayesian method (blue marker) provided similar values of D, f and
ii) the One-step method displayed the highest standard error, when compared to all other methods

is obtained in vivo — this time when compar-
ing the algorithms among themselves, since no
ground truth is available. Overall, the Bayesian
algorithm showed better performances when com-
pared the deterministic algorithms. In general,
in previous studies, it has been shown that the
Bayesian-based algorithm outperforms LSQ-based

ones. This is the case for instance in upper abdom-
inal organs of healthy volunteers [15], in cancerous
pancreas [17], and in cancerous lesions of breast
[19]. In other studies, the Bayesian-based algo-
rithm shows no advantage [18] over LSQ-based
approaches. This apparent inconsistency of the
results in the literature might be explained by
the fact that the data analysis was performed on



different data (characterized by different SNR val-
ues); as a matter of fact, with respect to data of
higher SNR, the Bayesian-based algorihtm has a
limited added value, as it can be observed in the
Fig. 2 and Fig. 3 (especially for SNR = 50 and
SNR = 100). In contrast to other organs, IVIM of
bone marrow suffers from low SNR due to lower
water content and shorter transverse relaxation
time [35]. In this case, the Bayesian-based algo-
rithm is an attractive alternative to LSQ-based
ones. However, despite the very good performance
of Bayesian algorithm, its use is to some extent
limited in practice. This is generally due to i)
its relatively high numerical complexity; ii) the
lack of available implementation in commonly
used programming environments in contrast to
deterministic algorithms; iii) its sensitivity to the
choice of the parameters’ prior distributions and
the employed posterior central tendency measures
[29]. Note that the bounded Gaussian prior distri-
bution and the mean measure of posterior central
tendency were used in the current study.

There are a number of limitations to this study.
Only six volunteers were examined. Further stud-
ies are necessary to investigate the impact of the
different algorithms on the quantification of IVIM
parameters in a patient population. Furthermore,
only young volunteers were included in the current
study; the quantification of VBM-IVIM parame-
ters when using the same protocol of the current
study might suffer from a lower SNR when exam-
ining older volunteers, who typically have a higher
lipid fraction in vertebral bone marrow.

In addition, a digital phantom with uniform
ground truth was employed; the potential over
smoothing of a heterogeneous ground truth was
not investigated.

In conclusion, the impact of five different
algorithms for quantification of IVIM parameters
in vertebral bone marrow was investigated. The
Bayesian approach provided the best estimation,
as shown by simulations and in vivo parametric
maps.
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