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Introduction

In order to not overwhelm the main manuscript, we present some supple-
mentary information in this additional document. It is intended to provide
information about:

• The JIGSAWS dataset [1] that has been used to train and test all our models.
• The general training approach for task-specific surgical skills using floating

score that has been adopted is our previous works.
• The literature about surgical gestures and skills classification methods.
• The modified Objective Structured Assessment of Technical Skill (OSATS)

criteria. A brief description is provided.
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2  Supplementary  information

• The  experimental  setup  which  present  descriptions  of  adopted  validation 
schemes,  the  details  of  the  neural  networks  implementation  and  the  model 
evaluation  metrics.

• An  additional  study  about  training  the  proposed  CNN+BiLSTM  with 
different  batch  sizes  and  dropout  values.

• A  regression  versus  classification  study  where  we  compare  regression  results 
on  OSATS  scores  with  classification  results  where  we  considered  OSATS 
scores  as  categorical.

Each  section  is  referenced  in  the  main  manuscript  when  discussed.

1  The  JIGSAWS  Dataset

The  JIGSAWS  dataset  [1]  has  been  collected  from  eight  right-handed  subjects
(B,  G,  H,  I,  C,  F,  E,  D)  with  three  different  expertise  levels:  Novice,  Inter-
mediate  and  Expert  performing  three  basic  surgical  tasks  :  Suturing  (ST),
Needle-Passing  (NP)  and  Knot-Tying  (KT)  using  the  DaVinci  surgical  sys-
tem  [2].  Each  subject  performed  five  trials  for  each  task.  For  each  trial,  the 
kinematic  and  video  data  were  recorded  but  in  our  works,  we  focused  on  kine-
matic  data  which  are  numeric  variables  of  the  four  components  of  the  DaVinci 
surgical  system:  two  masters  tools  (right  and  left)  controlled  directly  by  the 
subject’s  hands  and  two  patient  side  tools,  also  called  slave  tools  (left  and 
right)  controlled  indirectly  by  the  subject  via  the  master  manipulators.  So,
the  subject  tele-operates  the  slaves  tools  by  manipulating  the  master  tools.
Consequently,  these  kinematic  data  describe  how  each  surgeon  performed  the 
operation.  Each  trial  is  represented  by  a  matrix  of  76  kinematic  variables  and 
each  variable  represents  the  changing  value  of  a  certain  physical  quantity  of 
a  certain  DaVinci  tool.  For  example,  the  Cartesian  positions  of  the  master 
tools/slave  tools,  their  linear  velocities  and  their  rotational  velocities.  These 
physical  quantities  change  over  time  throughout  the  surgical  operation.  Each 
row  in  a  kinematic  matrix  represents  the  values  of  all  the  kinematic  variable 
at  a  frame  f  .  In  addition,  the  JIGSAWS  dataset  contains  grades  that  
describe  performance  of  surgeon  on  each  OSATS  criteria  for  each  task.
These  grades  have  been  attributed  by  senior  expert  surgeons  while
supervising  subjects  sur-geons.  These  scores  will  serve  as  ground  truth  
output  for  the  model  of  our  present  work.  For  more  details  about  the
JIGSAWS  dataset,  please  refer  to[1].  Here  are  some  quick  descriptions  of  the
three  tasks  :

• Knot-Tying:  a  basic  surgery  task  which  consists  on  performing  a  single 
loop  knot  using  a  suture  floss.

• Needle-Passing:  this  task  consists  on  passing  a  needle  through  hoops.
• Suturing:  a  well-known  surgery  task  that  consists  of  entering  a  “tissue”

from  one  side  and  exiting  it  from  another  side  using  a  needle.

  The  following  images  depict  some  sample  frames  extracted  from  recorded
videos  while  subjects  were  performing  the  operations.
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Fig. 1 Sample frames from the three tasks in the JIGSAWS dataset, from left to right:
Suturing frame, Knot-Tying frame, Needle-Passing frame.

2 General training approach for task-specific
surgical skills using floating scores

We present here the general adopted approach in some of our previous works
[3, 4, 5]. The suggested approach relies on feeding JIGSAWS kinematic data to
three independent deep neural networks. Each of these networks is responsible
for the assessment of all subjects but in only one of the three basic surgical
tasks described previously. The way we have chosen to assess subjects on each
task relies on giving float scores as desired outputs to the networks. These float
scores reflect the global quality of the performed operation. Therefore, we give
a complete score of 1/1 if a sample of expert data is given as input, an average
score of 0.7/1 if a sample of intermediate data is given as input and a low score
of 0.4/1 if a sample of beginner data is given as input. The intuition here is to
inform the networks about the scores deserved by each subject according to
his/her expertise level. The general training approach can be summarized in
the following items:

• We design three independents neural networks to evaluate the Knot-Tying
task, the Needle-Passing task and the Suturing task independently.

• Each network receives some kinematic data from the JIGSAWS database of
surgeons with different expertise levels for the training procedure and some
remaining data for the testing procedure. The desired outputs depend on
whether the current subject is a beginner, intermediate or expert.

• After the training step, the network will be able to make predictions about
unseen kinematic data by giving and adequate score to the data sample of
the tested surgeon.

As an extension to these works, we propose in the main manuscript a deep
learning approach based on a combined architecture between CNN and BiL-
STM for the purpose of surgical skill assessment. The assessment is based on
the Objective Structured Assessments of Surgical Skills criteria. These evalu-
ation approach is more detailed since it relies on 6 criteria. Therefore, for each
surgical task, we build and train a CNN+BiLSTM model for each OSATS
criterion.
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3  Related  work  based  on  classification

Surgical  gestures,  phases  and  action  recognition:  We  noticed  that  the 
previous  works  on  the  Computer  Assisted  Surgery  (CAS)  field  mostly  concern 
gesture  recognition,  action  segmentation,  phase  detection  or  tool  tracking.  In
[6]  is  proposed  a  method  for  surgical  phase  recognition  that  uses  a  CNN  called 
EndoNet  to  automatically  learn  features  from  cholecystectomy  videos.  In  a 
similar  work  [7],  a  segmentation  and  an  surgical  action  recognition  method 
using  a  Spatiotemporal  CNN  is  proposed.  Although  the  authors  of  these  two 
contributions  have  shown  effectiveness  of  their  methods  in  phase  recognition 
and  fine-grained  action  segmentation,  surgical  skill  evaluation  is  not  involved,
while  we  solely  focus  on  the  latter.  Another  work  involving  phase  recognition 
has  been  made  in  [8].  The  authors  proposed  a  pre-trained  CNN  with  a  trans-
fer  learning  method  for  surgical  workflow  detection  and  estimation  but  skills 
assessment  is  not  taken  into  account.  Dandan  Zhang,  Ruoxi  Wang  and  Benny 
Lo  developed  A  bidirectional  multi-layer  independently  RNN  for  surgical  ges-
ture  recognition  combined  with  a  Deep  Convolutional  Neural  Network  (DCNN)
model  based  on  the  VGG  architecture  for  spatial  feature  extraction  from  sur-
gical  video  frames  [9].  The  authors  used  the  JIGSAWS  dataset  to  validate 
their  method  that  covers  the  surgical  gesture  recogntion.  Skills  assessment  is 
not  involved.  In  [10],  Robert  DiPietro  and  Gregory  D.  Hager  proposed  a  work 
on  recognizing  surgical  activities  from  robot  kinematic  data  using  LSTM  and 
BiLSTM.  The  same  first  authors  developed  an  architecture  based  on  unsuper-
vised  learning  that  combines  an  RNN  encoder-decoder  and  mixture  density 
networks  (MDNs)  to  model  the  conditional  distribution  over  future  motion 
given  past  motion,  showing  the  possibility  to  learn  meaningful  representations 
of  surgical  skill  motion,  without  supervision,  by  learning  to  predict  the  future
[10].  In  another  work  [11],  a  comparison  is  made  between  four  RNN  archi-
tectures  (simple  RNNs,  long  short-term  memory,  gated  recurrent  units,  and 
mixed  history  RNNs)  for  the  purpose  of  recognizing  surgical  activities  from 
kinematic  data.  In  [12],  it  is  claimed  that  RNNs  and  LSTM  are  not  effective  in 
capturing  the  relationship  of  features  with  different  temporal  scales,  leading  to 
sub-optimal  recognition  performance  of  surgical  activities  containing  complex 
motions  at  multiple  time  scales.  Thus,  a  Multiscale  recurrent  neural  networks
(MS-RNN)  that  combines  the  strength  of  both  wavelet  scattering  operations 
and  LSTM  has  been  developed  for  the  purpose  of  surgical  activities  recogni-
tion.  In  [13],  a  work  that  focuses  on  manual  dexterity  by  considering  it  as  one 
of  the  most  important  surgical  skills  is  proposed.  A  system  is  designed  to  track 
surgeon’s  hand  movements  during  simulated  open  surgery  tasks.  Then,  their 
manual  expertise  is  evaluated  using  and  an  artificial  neural  network  (ANN)
classifier.  Although  the  ANN  achieved  very  good  results,  we  believe  that  the 
inclusion  of  recurrent  neural  network  or  a  CNN  would  yield  better  results 
than  a  simple  ANN.Another  work  on  surgical  gesture  recognition  applied  a 
Time  Delay  Neural  Network  (TDNN)  to  JIGSAWS  kinematic  data  to  intro-
duce  temporal  modeling  in  gesture  recognition  [14].[15]  proposed  a  multi-class 
SVM  for  surgical  gestures  dictionary  learning  and  classification  which  can  be
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used  to  effectively  analyze  complex  surgical  gestures  recorded  by  the  Da  Vinci
robotic  surgical  system.  In  [16],  the  authors  developed  and  evaluated  a  machine
learning  platform  for  the  construction  of  a  holistic  biomechanical  model  of  the
surgeon  and  of  the  instruments  used  for  minimally  invasive  surgery  that  uses
a  Markov  chain  for  gesture  analysis.  The  machine  learning  method  is  able  to
recognize  expertise  level  of  surgeons  but  only  after  setting  an  expert  surgeon
performance  as  a  reference.  Finally,  in  [17],  six  techniques  based  on  a  tempo-
ral  approach  for  segmentation  and  recognition  of  gestures  in  robotic  surgery
including  Hidden  Markov  Models  and  Semi  HHMs  have  been  presented.  All
these  works  involves  surgical  gestures  recognition  or  action  segmentation  but
do  not  propose  a  surgical  skill  assessment  method.  In  this  paper,  we  focus
only  on  the  skill  assessment  regardless  of  the  surgical  gestures  or  the  surgical
phases  the  surgeon  is  going  through.

  Surgical  skill  classification:  On  the  other  hand,  Hei  Law,  Khurshid 
Ghani  and  Jia  Deng  proposed  an  automated  method  [18]  for  surgical  skill 
evaluation  by  tracking  surgical  instruments  using  a  Hourglass  Network.  The 
evaluation  relies  on  the  five  GEARS  criterion  [19].  However,  surgeons  are  clas-
sified  by  adopting  scores  thresholds.  Thus,  performance  of  surgeons  is  not 
faithfully  assessed.  Our  proposed  model  automatically  and  objectively  eval-
uates  surgeons  on  a  continuous  scale  without  using  any  score  thresholds.  In
[20]  an  automatic  surgical  skill  assessment  approach  based  on  tool  tracking 
and  analyzing  tool  movements  in  surgical  videos  is  presented,  using  region-
based  convolutional  neural  networks.  This  method  was  the  first  to  not  only 
detect  presence  but  also  spatially  localize  surgical  tools  in  real-world  laparo-
scopic  surgical  videos.  In  [21]  is  proposed  a  3D  convolutional  neural  networks 
have  to  classify  snippets  (a  batch  of  few  consecutive  frames  extracted  from 
surgical  video)  from  the  JIGSAWS  dataset  into  three  expertise  classes  and 
without  involving  the  OSATS  scores.  Although  the  proposed  method  achieves 
high  classification  accuracy,  it  does  not  demonstrate  its  capability  of  ranking 
subjects  on  a  soft  continuous  scale.  [22]  used  a  pairwise  deep  ranking  model 
for  skill  comparison  in  video.  The  proposed  model,  which  is  a  two  stream 
CNN,  characterizes  the  relative  differences  in  performance  between  a  pair  of 
videos  containing  a  high  ranked  user  and  a  low  ranked  one.  JIGSAWS  surgi-
cal  videos  have  been  used  for  training  and  testing  the  model.  An  interesting 
work  done  by  Wang  and  Fey  involves  an  in-real-time  surgical  skill  assessment 
method  [23]  by  building  a  deep  CNN  that  can  reliably  interpret  skills  within 
1-3  seconds  window.  The  same  authors  presented  a  combined  architecture  of 
a  CNN  and  a  Gated  Recurrent  Unit  (GRU)  for  online  trainee  skill  analysis 
and  task  recognition  [24].  The  CNN  component  learns  spatial  abstract  repre-
sentations  within  the  interval  of  input  frame  while  the  GRU  component  learns 
the  temporal  dynamics  of  multiple  channels  at  each  time  step  in  raw  motion 
data.  Consequently,  the  model  can  characterize  the  nature  of  surgery  motion 
relative  to  both  the  surgeon  level  of  expertise  and  operation  task.  Although 
these  works  contribute  to  both  surgical  skill  classification  and  task  recognition
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domains,  they  still  do  not  propose  a  robust  method  to  truly  grade  a  surgi-
cal  performance  by  giving  an  exact  score,  instead  of  categorizing  it.  In  [23],
Wang  and  Fey  actually  trained  their  CNN  to  assess  surgeons  using  the  Global 
Rating  Score  (GRS)  of  the  JIGSAWS  dataset,  but  they  did  not  set  the  origi-
nal  GRS  outputs  for  a  regression  approach  and  they  opted  instead  for  a  GRS 
classfication  approach  by  establishing  scores  thresholds.  On  the  other  hand,
we  propose  not  only  to  assess  surgeons  by  using  the  raw  outputs,  thus  fol-
lowing  a  regression  approach,  but  also,  we  take  into  account  the  six  OSATS 
criteria.  In  [25],  the  authors  took  advantage  of  bidirectional  LSTM  (BiLSTM)
that  is  able  to  read  input  time  series  data  in  a  forward  direction  and  in  a 
backward  direction  as  well,  in  order  to  classify  surgeon  expertise  level  from 
the  Basic  Laparoscopic  Urologic  Skills  dataset  [26].  This  work  has  proven  the 
effectiveness  of  the  BiLSTM  in  surgeon  level  categorization.  Hence,  we  decided 
to  include  a  BiLSTM  block  in  our  model  architecture  but  for  the  purpose  of 
predicting  the  exact  surgical  performance  score.  In  [27],  a  descriptive  structure 
for  nasal  septoplasty  is  provided  by  automatically  segmenting  it  into  higher-
level  meaningful  activities  called  strokes  .  The  sequence  of  strokes  has  been 
used  to  train  a  SVM  classifier  to  distinguish  between  novice  and  expert  sur-
geons.  However,  the  best  classification  accuracy  they  obtained  is  73%,  which 
remains  pretty  low  for  a  classification  task  and  there  is  no  floating  score  for 
an  exact  performance  evaluation.  Finally,  another  work  [28]  using  SVMs  com-
bined  to  a  logistic  regression  method  for  robotic  minimally  invasive  surgery 
skill  assessment  provided  an  evaluation  method  on  six  important  movement 
features,  leading  to  a  strong  surgical  performance  evaluation  scheme.

4  The  modified  Objective  Structured
  Assessment  of  Technical  Skill  by  JIGSAWS

The  original  OSATS  method  [29]  was  established  in  1997  by  the  Surgical  Edu-
cation  Research  Group  which  belongs  to  the  University  of  Toronto,  Canada.
The  authors  claimed  that  the  surgeons  were  not  well  assessed  regarding  to  their
technical  skill.  Therefore,  they  came  up  with  an  approach  that  can  deliver  an
accurate  evaluation  of  residents  who  performed  a  variety  of  structured  oper-
ative  tasks  under  the  supervision  of  mentor  surgeons  certified  by  the  Royal
College  of  Physicians  and  Surgeons  of  Canada  .  Both  live  animals  and  bench
models  were  used  for  this.  They  developed  two  types  of  scoring  system.  A  first
one  called  operation-specific  checklist  which  consists  of  attributing  a  binary
value  (1  for  ”Done  Correctly”  and  0  for  ”Not  Done  or  Done  Incorrectly”)  for
the  performed  steps  composing  a  certain  surgical  task.  The  second  scoring  sys-
tem  consists  of  a  detailed  global  rating  scale.  This  second  scoring  system  aims
to  give  a  score  on  a  scale  of  1  to  5  on  seven  criteria:  (1)  Respect  for  Tissue,  (2)
Time  and  motion,  (3)  Instrument  handling,  (4)  Knowledge  of  instruments,  (5)
Use  of  assistants,  (6)  Flow  of  operation  and  forward  planning,  (7)  Knowledge  of
specific  procedure.  Each  score  (from  1  to  5)  describes  the  quality  of  the  skill  on



Element Rating scale
Respect for tissue 1-Frequently used unnecessary force on tissue;

3- Careful tissue handling but occasionally caused inadver-
tent damage;
5-Consistent appropriate tissue handling;

Suture/needle handling 1- Awkward and unsure with repeated entanglement and
poor knot tying;
3-Majority of knots placed correctly with appropriate ten-
sion;
5-Excellent suture control

Time and motion 1-Made unnecessary moves;
3-Efficient time/motion but some unnecessary moves;
5-Clear economy of movement and maximum efficiency

Flow of operation 1-Frequently interrupted flow to discuss the next move;
3-Demonstrated some forward planning and reasonable pro-
cedure progression;
5-Obviously planned course of operation with efficient tran-
sitions between moves;

Overall performance 1-Very poor;
3-Competent;
5-Clearly Superior;

Quality of final product 1-Very poor;
3-Competent;
5-Clearly Superior;

Table 1 OSATS surgical skills annotations provided by the JIGSAWS expert surgeons.
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the  concerned  criterion.  The  goal  of  the  whole  work  is  to  validate  the  two  scor-
ing  systems  and  compare  them.  At  the  end,  The  authors  have  strongly  proven
by  the  obtained  results  that  the  Objective  Structured  Assessment  of  Techni-
cal  Skill  can  reliably  and  validly  assess  surgical  skills.  They  demonstrated  and
concluded  that  global  ratings  are  a  better  method  of  assessment  than  task-
specific  checklists.  This  is  why  the  JIGSAWS  authors  have  chosen  to  assess
their  own  trainees  by  using  the  global  ratings  method.  Nevertheless,  they  did
not  perform  the  evaluation  on  live  animals  but  only  on  workbench  models
and  they  also  barely  modified  the  assessment  criteria  by  deleting  or  chang-
ing  some  items  according  to  their  own  working  conditions.  For  example,  there
was  not  any  assistant  for  the  subjects  and  the  subjects  performed  operations
with  the  Da  Vinci  surgical  system  using  only  a  suture  and  a  needle.  In  [1],  one
can  see  that  ”Instrument  handling”has  been  replaced  by  ”Suture/Needle  han-
dling”.  There  is  no  more  ”Knowledge  of  specific  procedure”  and  ”Knowledge
of  instruments”  but  instead,  one  can  find  ”Overall  performance”  and  ”Quality
of  final  product”.  Even  the  scores  descriptions  differ  from  the  original  OSATS
global  rating  scale.  Interpretations  of  1,  3  and  5  OSATS  scores  can  be  read
in  Table  1.  However,  JIGSAWS  surgeons  did  not  give  interpretation  for  2  and
4  scores  despite  being  accorded  to  several  trainees.  The  meta  files  contained
in  the  JIGSAWS  database  show  the  obtained  scores  by  each  subject  on  each
criterion  of  the  modified  OSATS  criteria  regarding  to  the  three  surgical  tasks:
Knot-Tying,  Needle-Passing  and  Suturing.
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5 Experimental setup

5.1 Training and testing steps

Our model has been trained and tested with different sets of the sub-sequences
obtained after executing the data augmentation process (described in the
main manuscript in Section 3.3). To get the most robust model for each
architecture, we adopted three distinct validation schemes:A random train-
ing/validation/test data splitting that we will call Random Data Splitting,
the famous Leave-One-Supertrial-Out (LOSO) cross validation scheme and a
custom scheme that we will call Leave-One-Grade-Out (LOGO).

Random Data Splitting : This first validation scheme consists in dividing
the set containing all the crops of kinematic data into three distinct subsets:
Training data, validation data and test data. The splitting is performed
randomly by choosing a certain percentage for each subset. This scheme is
performed after extracting sub-sequences from all the kinematic data with
the data augmentation process.

Leave-One-Supertrial-Out (LOSO): As described previously, the JIG-
SAWS dataset comprises 5 trials for each subject performing one of the three
surgical tasks. The LOSO scheme consists in leaving a folder containing one
supertrial ,”i”, of each subject for testing the network while the remaining
trials are used for the training step. This process is repeated five times in five
folders in order to test the robustness of the model with each trial. At the
end, the model that delivered the best performance with any of the five trials
is saved. The five folders are set before augmenting the data (entire trials).

Leave-One-Grade-Out (LOGO): This third validation scheme is a custom
scheme we came up with for this work. It consists in choosing one grade (or
score) of each OSATS criterion for each surgical task and leaving it for the test
step. The purpose of this scheme is to test the network with a grade that is
unseen during the training step. Thus, this validation method focuses on the
outputs (scores), unlike the two aforementioned validation schemes that focus
on the inputs (kinematic data). Unlike the two previously described validation
schemes, the LOGO scheme shows the network effectiveness and how it would
behave in real world when confronted to new data with previously unknown
outputs. We believe that it proves robustness of our network more efficiently.
The process is done before augmenting the data.

We have a trained and tested individual models built according to the
CNN+BiLSTM architecture, on the basis of each validation scheme, for each
surgical task and for each OSATS criterion.

Supplementary  information
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5.2 Implementation

We used Keras, a deep learning Python library to implement our network algo-
rithm and train it from scratch. The parameters of the layers of the networks
are initialized with the Glorot Uniform initialization method. We employed
the optimizer Adam for all the networks with a learning rate of 0.001 while
adopting the Random Data Split validation scheme. The learning rate has been
decreased to 0.0001 while employing the two remaining validation schemes.
The exponential decay rates of the 1st and 2nd moment estimates are set to 0.9
and 0.999, respectively. The gradient descent updates are performed with the
mini batch learning method using a mini batch size of 32. To avoid overfitting,
we added a L2 regularization with a value of 0.01 as well as input and hidden
noise layers. The goal is to minimize the loss function which is a Mean Squared
Error function between the real OSATS values and the predicted OSATS val-
ues. The size of sliding window is set to 60 with a step size of 30 when running
the Random Split Data validation scheme. We increased the sliding window
size to 120 while keeping the same step size of 30 when running the LOSO and
the LOGO validation schemes. Theses values have been chosen after several
experiments based on trial-and-error. To obtain the best model with the low-
est error possible while training each network, we included an Early Stopping
callback in the training function. This callback allows to stop the training if
an arbitrary number of epochs is exceeded without any learning improvement
(also called as patience epochs). At the end, the weights that brought the lowest
validation loss are saved and returned to build the final and the best model.

5.3 Model evaluation metrics

We compute Spearman’s rank correlation coefficients to highlight correlations
between the ground truth OSATS scores and the predicted OSATS scores.
The Spearman rank correlation coefficient (often symbolized by ρ) is a non-
parametric measure of rank correlation. It assesses how well the relationship
between two variables can be described using a monotonic function. Intuitively,
the Spearman correlation between two distributions will be high (close to 1)
when observations have a similar rank and low when having a dissimilar rank
(close to -1). In addition we compute 3 statistical parameters: median, stan-
dard deviation and mean while evaluating the model on the basis of the LOGO
scheme.

6 Training parameters study

In this section, we provide an experimental study involving a comparison
between regression results obtained using two neural network architectures
and by affecting different values to training batch size and dropout in the con-
volutional layers. The first architecture is the proposed CNN+BiLSTM and
the second one is a variation of the latter where we put a GRU recurrent net-
work instead of a LSTM (CNN+BiGRU) and we kept same number of units

Supplementary  information
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(16)  and  same  hyperparameters  described  in  the  main  manuscript,  subsection
3.2.  The  structural  difference  between  these  two  recurrent  networks  lies  on  the
number  of  gates:  LSTM  has  three  gates  named  input,  output  and  forget  gates,
whereas  GRU  has  only  two  gates  named  reset  and  update  gates.  Moreover,
GRUs  and  LSTMs  deal  differently  with  the  vanishing  gradient  problem  which
is  encountered  with  the  classic  RNN.  Here  are  the  main  points  comparing  the
two:

• The  GRU  unit  controls  the  flow  of  information  like  the  LSTM  unit,  but 
without  having  to  use  a  memory  unit.  It  just  exposes  the  full  hidden  content 
without  any  control.

• GRUs  are  computationally  more  efficient  since  they  have  a  less  complex 
structure.  Thus,  they  train  faster  but  are  as  effective  as  LSTMS  in  making 
predictions  on  sequence  data.

For  a  detailed  description,  this  paper  [30]  explains  this  efficiently.

We  trained  and  tested  models  on  the  basis  of  the  two  architectures  follow-
ing  the  same  data  augmentation  method  described  in  the  main  manuscript
(subsection  3.3)  for  all  surgical  tasks  and  all  OSATS  criteria.  Learning  rate,
weights  initialization,  L2  regularization  values  and  other  implementation
details  described  in  subsection  5.2  stayed  the  same  as  well.  LOSO  valida-
tion  scheme  has  been  adopted  while  testing  every  model.  Spearman  rank
correlation  coefficient  (ρ)  has  been  used  to  compute  correlation  between
predicted  and  target  outputs.  Regression  results  are  reported  in  2  and  3  for
the  CNN+BiLSTM  and  the  CNN+BiGRU,  respectively.  For  the  batch  size,
we  have  chosen  to  double  it  twice  starting  from  32.  Dropout  values  have  been
set  to  25%,  50%  and  75%  as  these  values  are  common  in  the  deep  learning
community.  Each  batch  size  is  tested  alongside  a  single  dropout  value.  We
could  not  perform  tests  for  all  batch  sizes  alongside  all  dropout  values  because
of  the  lack  of  computational  resources.

  As  it  can  be  seen,  both  architectures  have  shown  good  regression  correla-
tion  results  for  the  three  tasks  and  the  six  OSATS  criteria  while  affecting  32
and  25%  values  for  the  batch  size  and  the  dropout  regularization,  respectively.
Increasing  dropout  to  50%  and  and  the  batch  size  to  64  led  to  a  significant
decrease  in  the  quality  of  scores  prediction  for  the  CNN+BiLSTM  architecture
while  the  CNN+BiGRU  suffered  only  from  a  slight  decrease  in  performance
after  increasing  the  values  of  the  two  training  parameters.  Finally,  increasing
batch  size  and  dropout  to  128  and  75%  respectively  led  to  a  near  decorre-
lation  between  predicted  and  true  outputs  concerning  the  CNN+BiLSTM
while  the  CNN+BiGRU  behaves  better  but  nevertheless  showed  a  huge  drop
in  prediction  quality.

  We  conclude  that  training  both  architectures  with  the  smallest  batch  size
and  the  lowest  percentage  of  dropout  led  to  the  best  OSATS  scores  prediction



Knot-Tying Needle-Passing Suturing

Batch size 32 64 128 32 64 128 32 64 128

Dropout 25% 50% 75% 25% 50% 75% 25% 50% 75%

Respect for tissue 0.76 0.49 0.01 0.50 0.08 0.12 0.50 0.33 0.17
Suture/Needle handling 0.77 0.47 0.04 0.81 0.58 0.24 0.74 0.74 0.01

Time and motion 0.85 0.54 0.21 0.83 0.67 0.68 0.69 0.67 0.11
Flow of operation 0.76 0.42 0.13 0.55 0.22 0.01 0.64 0.58 0.40

Overall performance 0.89 0.72 0.10 0.56 0.40 0.23 0.79 0.58 0.36
Quality of final product 0.79 0.06 0.07 0.31 0.37 0.16 0.80 0.67 0.27

Mean on all criteria 0.80 0.45 0.02 0.59 0.38 0.24 0.69 0.59 0.22
Table 2 Correlation results obtained using the CNN+BiLSTM architecture by varying
training batch sizes and dropout values.

Knot-Tying Needle-Passing Suturing

Batch size 32 64 128 32 64 128 32 64 128

Dropout 25% 50% 75% 25% 50% 75% 25% 50% 75%

Respect for tissue 0.82 0.66 0.15 0.38 0.43 0.19 0.54 0.52 0.36
Suture/needle handling 0.84 0.67 0.23 0.80 0.78 0.44 0.77 0.77 0.58

Time and motion 0.85 0.76 0.33 0.86 0.85 0.44 0.70 0.49 0.42
Flow of operation 0.78 0.67 0.65 0.63 0.64 0.62 0.65 0.66 0.67

Overall performance 0.88 0.78 0.44 0.60 0.60 0.22 0.74 0.66 0.29
Quality of final product 0.62 0.64 0.12 0.23 0.25 0.05 0.71 0.68 0.55

Mean on all criteria 0.80 0.70 0.32 0.58 0.60 0.33 0.69 0.63 0.48
Table 3 Correlation results obtained using the CNN+BiGRU architecture by varying
training batch sizes and dropout values.

7 Regression versus classification

In this section, we present results obtained through a classification method
using OSATS scores. It consists in considering OSATS outputs as categorical
instead of considering it as a continuous scale. The goal of this experiment is
to determine which approach leads to the best results and thus, gives the best
and most meaningful feedback to the trainee. To compare this approach to the
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quality.  To  support  this  study,  we  cite  this  work  [31]  where  Ibrahem  Kandel 
et  al.  conducted  a  study  about  the  effect  of  batch  size  on  the  performance  of 
CNNs  in  medical  image  classification  using  a  VGG16  network  and  training 
it  with  different  batch  sizes.  Their  results  have  shown  that  the  network  that 
has  been  trained  with  the  lowest  batch  size  provided  the  best  accuracy  and 
thus  the  best  generalization.  On  the  other  hand,  dropout  regularization  has 
been  introduced  in  the  deep  learning  field  to  prevent  overfitting  and  improve 
robustness  and  generalization  of  the  neural  network  on  validation  and  test 
data.  But,  after  a  certain  threshold  percentage,  the  network  may  underfit.  This 
may  or  may  not  happen  depending  on  the  network  architecture  complexity 
and  the  training  dataset  size  and  nature.
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proposed  regression  approach  appropriately,  we  used  the  same  CNN+BiLSTM
architecture  with  the  same  hyperparameters  described  in  subsection  3.2  in
the  main  manuscript.  The  same  implementation  details  described  in  subsec-
tion  5.3  have  been  adopted  as  well.  The  difference  lies  on  the  following:  For
this  classification  approach,  we  used  the  categorical  Crossentropy  loss  function
instead  of  the  mean  squared  error  loss  function.  In  addition,  desired  outputs
have  been  one-hot  encoded  and  we  used  a  Softmax  activation  function  in  the
last  layer  of  the  network  architecture  to  compute  the  predicted  output  on  a
one-hot  encoded  6  elements  array:

• Score  0  becomes  [1,  0,  0,  0,  0,  0]
• Score  1  becomes  [0,  1,  0,  0,  0,  0]
• Score  2  becomes  [0,  0,  1,  0,  0,  0]
• Score  3  becomes  [0,  0,  0,  1,  0,  0]
• Score  4  becomes  [0,  0,  0,  0,  1,  0]
• Score  5  becomes  [0,  0,  0,  0,  0,  1]

  To  evaluate  performance  of  a  network  at  predicting  categorical  outputs,
metrics  as  accuracy,  precision  or  F1-score  are  usually  used.  In  our  case,  we 
are  interested  in  the  comparison  with  the  regression  approach.  Thus,  we  com-
puted  the  Spearman  rank  correlation  coefficient  between  predicted  and  target 
outputs.  To  do  so,  we  performed  the  reverse  of  one-hot  encoding  for  each 
predicted  outputs  and  went  back  to  original  score  by  considering  the  index  of 
the  maximum  value  in  the  one-hot  encoded  array  (For  example,  if  a  predicted 
array  is  [0.012,  0.014,  0.861,  0.001,  0.002,  0.110],  the  maximum  value  has  
the  index  2  and  the  output  would  be  then  classified  as  2.  After  that,  we  are
able  to  compute  Spearman  (ρ)  correlation  coefficients  between  predicted
and  target  outputs  for  the  classification  method.  To  provide  a  comparison
on  the  same  basis  than  the  regression  approach,  we  used  the  LOSO
validation  scheme.

  Results  are  reported  in  Table  7:  For  each  surgical  task,  the  left  column  rep-
resents  the  computed  Spearman  coefficients  for  each  OSATS  criterion  of  the
regression  approach,  while  the  right  one  represents  the  computed  ρ  
coefficients of  the  classification  approach.  Clearly,  ρ  coefficients  obtained  
through  the  pro-posed  regression  approach  are  superior  to  ρ  coefficients  
obtained  through  the classification  approach  on  the  three  surgical  tasks.  This
means  that  predicted and  target  outputs  are  more  correlated  by  adopting  
the  regression  approach than  by  adopting  the  classification  approach.  We  
can  conclude  that  the  pro-posed  regression  method  provides  a  more  
meaningful  and  meticulous  feedback to  surgical  trainees.
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SuturingNeedle-PassingKnot-Tying

Respect for tissue (RFT) 0.83 0.490.66 0.460.46 0.38
Suture/Needle handling (SNH) 0.82 0.790.62 0.750.67 0.54
Time and motion (TM) 0.87 0.850.79 0.680.71 0.54
Flow of operation (FO) 0.76 0.580.63 0.620.59 0.54
Overall performance (OP) 0.89 0.580.71 0.710.46 0.57
Quality of final product (QFP) 0.75 0.310.50 0.670.28 0.56

Table 4 Comparative table showing correlation results obtained for both classification
and regression methods. For each task, the left column shows the Spearman correlation
results obtained with the proposed regression method while the right one shows the
Spearman correlation results obtained with the classification method. (CNN+BiLSTM and
LOSO validation scheme)
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