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Abstract

Purpose: Classic methods of surgery skills evaluation tend to classify
the surgeon performance in multi-categorical discrete classes. If this
classification scheme has proven to be effective, it does not provide
in-between evaluation levels. If these intermediate scoring levels were
available, they would provide more accurate evaluation of the surgeon
trainee.
Methods: We propose a novel approach to assess surgery skills on a con-
tinuous scale ranging from 1 to 5. We show that the proposed approach
is flexible enough to be used either for scores of global performance
or several sub-scores based on a surgical criteria set called Objective
Structured Assessment of Technical Skills (OSATS). We established
a combined CNN+BiLSTM architecture to take advantage of both
temporal and spatial features of kinematic data. Our experimental vali-
dation relies on real world data obtained from JIGSAWS database. The
surgeons are evaluated on three tasks: Knot-Tying, Needle-Passing and
Suturing. The proposed framework of neural networks takes as inputs a
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1 Introduction

The lack of safety during surgical operations is yielding continually to an
increasing need of important improvements in the surgery training. Indeed,
post-surgical complications may occur if a surgeon delivers poor technical skills
during an operation, including death [1, 2]. Surgical technical errors are the
most common reason for post-surgical complications including re-operation
and re-admission [3, 4]. Consequently, inventing new approaches to improve
surgeons skill can positively affect the safety of the patient. The problem of
poor or average acquired surgical skills may come from the process followed by
trainees so far to learn to operate: it consists on replicating operations done
by expert surgeons on cadavers or ex-vivo organs. The trainee first watches an
expert surgeon performing a surgical task, then she/he tries her/his best to
re-do the operation under expert supervision [5]. At the end, the expert eval-
uates the trainee based on a set of surgical criteria. Apart from the fact that
these surgical assessment methods are time and energy consuming for senior
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sequence  of  76  kinematic  variables  and  produce  an  output  float  score
ranging  from  1  to  5,  reflecting  the  quality  of  the  performed  surgical  task.
Results:  Our  proposed  model  achieves  high  quality  OSATS  scores
predictions  with  means  of  Spearman  correlation  coefficients  between
the  predicted  outputs  and  the  ground-truth  outputs  of  0.82,  0.60  and
0.65  for  Knot-Tying,  Needle-Passing  and  Suturing,  respectively.  To  our
knowledge,  we  are  the  first  to  achieve  this  regression  performance  using
the  OSATS  criteria  and  the  JIGSAWS  kinematic  data.
Conclusion:  An  effective  deep  learning  tool  was  created  for  the  purpose
of  surgical  skills  assessment.  It  was  shown  that  our  method  could  be  a
promising  surgical  skills  evaluation  tool  for  surgical  training  programs.

Keywords:  Surgical  skills  assessment,  surgical  robotics,  deep  learning,
convolutional  neural  networks,  recurrent  neural  networks,  kinematic  data
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surgeons,  they  are  also  characterized  by  subjectivity  and  a  lack  of  accuracy  [6].
To  enhance  the  surgical  training,  several  High-Tech  platforms  have  emerged
like  surgical  simulators  based  on  virtual  reality  [7,  8]  or  surgical  systems  like
the  DaVinci  robot  [9,  8].  Also,  many  assessment  methods  based  on  artificial
intelligence  and  especially  on  artificial  neural  networks  were  proposed  to  train
surgeons  and  increase  their  performance  without  any  human  intervention  [10].
These  methods  turned  out  to  be  very  effective  in  classifying  performance  levels
into  discrete  categories  (for  example:  expert,  medium  and  novice)  [11].  How-
ever,  they  do  not  deliver  a  strong  feedback  to  the  trainee  since  they  classify
performance  into  a  category  once  the  result  score  reaches  a  certain  threshold
without  taking  into  account  intermediate  scores.  Consequently,  the  feedback
suffers  from  a  lack  of  accuracy  and  the  trainee  will  not  have  enough  informa-
tion  about  her/his  expertise  level.  In  this  work,  we  propose  a  deep  learning
architecture  to  provide  an  automatic  and  objective  surgical  skill  assessment
on  a  continuous  scale  ranging  from  1  to  5  based  on  OSATS  criteria  [12,  13].
This  continuous  scale  has  been  approximated  from  the  OSATS  scale  which  is
originally  a  Likert  scale  and  thus,  composed  of  ordinal  items.  Such  approxima-
tion  is  possible  if  intervals  between  each  level  in  the  Likert  scale  item  can  be
presumed  equal  [14].  Moreover,  a  group  of  researchers  maintains  that  Likert,
or  ordinal  variables  with  five  or  more  categories  can  often  be  used  as  contin-
uous  without  any  harm  to  the  analysis  the  researcher  plans  to  use  them  in
[15,  16,  17].  Therefore,  according  to  these  researches  and  since  every  OSATS
Likert  item  is  composed  of  5  assessment  levels,  an  approximation  with  a  con-
tinuous  function  is  possible  and  it  can  be  included  in  a  regression  process.
The  main  purpose  of  proposing  a  continuous  scale  for  the  assessment  of  tech-
nical  skill  is  to  provide  a  more  precise  feedback  to  the  trainee  by  allowing
her/him  to  have  a  detailed  information  about  her/his  performance  without
restricting  it  into  a  category.  Indeed,  categorized  performance  does  not  show
the  difference  between,  for  example,  two  novices  when  one  is  necessarily  bet-
ter  than  the  other.  However,  a  continuous  scale  allows  differentiation  of  two
or  more  surgeons  with  the  same  expertise  level.  We  established  several  inde-
pendent  neural  networks  to  evaluate  surgeons  on  three  tasks  independently.
This  work  is  an  extension  to  our  previous  contributions  [18,  19,  20]  where  we
presented  approaches  that  allows  a  global  evaluation  based  on  a  single  global
performance  score  using  neural  networks.  We  present  briefly  the  contents  of
the  JIGSAWS  database  which  served  as  a  validation  ground  for  our  exper-
iments  and  also  the  general  approach  of  these  previous  works  in  a  separate
document  (Online  Resource  1,  Section  1  and  Section  2,  respectively).  Briefly,
it  is  a  surgical  database  composed  of  real  world  kinematic  and  video  data  from
the  operating  room  obtained  on  the  DaVinci  robotic  platform.  After  that,  we
present  here  the  main  contribution  of  this  work  that  relies  on  a  more  rigorous
assessment  method:  it  consists  on  assessing  automatically  and  objectively  sur-
geons  on  the  OSATS  criteria.  These  criteria  have  been  used  previously  to  assess
skills  on  many  surgical  operations  like  fetal  blood  sampling,  manual  removal
of  placenta  and  opening  and  closing  the  abdomen.A  brief  description  of  the
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Fig. 1 A drawing of the general adopted approach for automatic surgical skill evaluation
on OSATS criteria for one surgical task: each of the 6 deep learning models is responsible

for assessing the surgeon trial in one criterion

Fig. 2 Architecture of the proposed CNN+BiLSTM network: The network takes as input a
crop of a kinematic data and yield a scalar output carrying the score on one OSATS criterion
(Best view with colors).

OSATS criteria is provided in the additional document (Online Resource 1,
Section 4) as well.

2 Related work based on regression

During the last decade, machine learning has been widely employed in the
surgical skill assessment and surgical gesture recognition fields since the
arrival of powerful computers and machine learning programming libraries.
Multiple works have emerged for using various methods like Hidden Markov
Models (HMM), Support Vector Machines (SVM) and Artificial Neural Net-
works (ANN). The studies and results of several works revealed that the
ANN is the most efficient machine learning method till now. Especially Deep
Neural Networks (DNN) like Deep Feed-forward Neural Networks, Recurrent
Neural Networks (RNN), Long-Short Term Memory (LSTM) and Convolu-
tional Neural Networks (CNN). We find in the literature some works based
on skill classification into discrete categories and regression methods on soft
continuous scales. We present, in the current section, some of the previous
works done in the field of robot assisted surgery that adopted the regression
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approach  only.  Related  work  on  classification  methods  is  provided  in  the
additional  document  (Online  Resource  1,  Section  3).

  In  [21],  a  BiLSTM  autoencoder  has  been  proposed  to  assess  surgical  video
clips  by  categorizing  them  based  on  the  surgical  step  being  performed  and
the  level  of  the  surgeon’s  competence  .  The  authors  worked  on  regression
using  OSATS  scores  [13].  They  used  a  BiLSTM  with  an  attention  mechanism
relying  on  video  data.  In  this  paper,  we  propose  a  method  that  relies  only
on  kinematic  data.  In  [22]  is  presented  a  contribution  that  compares  several
machine  learning  algorithms  (decision  forest,  neural  networks,  boosted  deci-
sion  tree)  for  OSATS  scores  predictions  on  continuous  scales  to  detect  expert
level  in  laparoscopic  suturing  and  knot-tying.  While  most  of  the  prior  works
focused  on  surgical  skill  assessment  using  simulated  datasets,  this  work  [23]
proposed  to  use  a  real  clinical  dataset  which  consists  of  in-vivo  laparoscopic
surgeries.  An  objective  and  automated  framework  based  on  a  Multi  Layer
Perceptron  is  proposed  to  predict  surgical  skills  using  a  regression  method
achieving  a  Spearman’s  correlation  of  0.55  with  the  ground  truth  of  overall
technical  skill.  In  [24],  three  machine  learning  algorithms  involving  SVMs  have
been  trained  in  order  to  evaluate  surgical  performance  and  predict  clinical
outcomes  of  patients  who  have  had  a  robot-assisted  radical  prostatectomy.
Finally,  in  [25]  is  proposed  a  1D  CNN  to  assess  surgeons  directly  from  the
kinematic  data  of  the  JIGSAWS  dataset.  The  framework  is  composed  of  a
Fully  Convolutional  Network  (FCN)  and  a  Class  Activation  Map  component
that  highlights  the  fractions  of  the  surgical  kinematic  trial  that  contributed
highly  to  classify  the  surgeon  as  novice,  intermediate  or  expert.  In  addition,
the  authors  proposed  a  regression  model  to  predict  OSATS  scores  [12,  13]  on
a  continuous  scale.  The  authors  did  not  apply  a  data  augmentation  pipeline.
Thus,  their  model  is  trained  with  raw  kinematic  data  with  variable  length.  In
our  proposed  method,  we  apply  a  data  augmentation  strategy  to  overcome
the  limited  number  of  training  data  in  the  JIGSAWS  dataset  and  our  model
contains  a  2D  CNN  that  capture  spatial  features.  We  compare  the  results  of
this  paper  with  ours  in  the  results  section.
Regarding  our  previous  works  based  on  regression,  we  used  several  types  of
neural  networks  and  compared  their  results.  In  [18],  we  used  a  DNN  archi-
tecture  to  assess  all  surgeons  of  the  JIGSAWS  dataset  on  the  three  tasks
separately,  using  floating  performance  scores  as  a  ground  truth.  Despite  the
good  result  obtained  with  this  approach,  we  knew  that  it  can  be  greatly
improved  by  changing  the  type  of  the  neural  network.  Since  the  kinematic
data  that  we  are  dealing  with  represent  dynamic  sequences  of  kinematic
variables  that  depend  on  time  (time  series),  then  we  wanted  to  incorporate
the  notion  of  time  in  our  approach.  A  suitable  type  of  neural  network  that
seemed  to  be  effective  for  such  type  of  data  is  the  recurrent  neural  network
(RNN).  Therefore,  in  [20],  we  proposed  to  use  a  RNN  architecture  to  provide
a  dynamic  evaluation  of  the  performed  surgery  tasks.  RNN  are  well  known  for
their  capability  to  allow  feedback  connections  between  states  at  different  time
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steps.  Indeed,  the  results  obtained  using  the  same  amount  of  data  samples  for
the  training  and  the  test  steps  as  in  [18]  are  more  plausible  and  match  more
accurately  our  expectations.  However,  RNN  are  known  to  be  vulnerable  to
two  major  problems  possibly  encountered  during  the  training  step:  the  vanish-
ing  gradient  and  the  exploding  gradient  [26].  Long  term  dependencies  in  time
series  data  may  cause  these  problems.  Besides,  a  kinematic  data  of  a  surgical
task  is  composed  of  gestures  as  it  can  be  checked  in  [27]  and  these  gestures
are  largely  spaced  over  time  in  a  data  sample.  So,  with  the  lack  of  memory,  a
RNN  is  not  capable  to  learn  correlations  between  largely  time-spaced  events.
Consequently,  we  used  in  our  third  work  [19]  a  LSTM  Network  architecture
which  represents  an  evolution  of  a  traditional  RNN  and  it  is  suited  to  over-
come  the  problems  encountered  with  the  RNNs.  The  LSTM,  indeed,  have
feedback  connections  and  in  addition,  a  notion  of  memory  allowing  it  to
learn  long  term  dependencies.  These  backward  feedback  allow  the  LSTM  to
take  into  account  length-customizable  previous  entries.  This  specificity  gives
LSTM  advantages  over  the  RNN  and  in  the  context  of  surgery  tasks,  this
enable  us  to  take  into  account  the  evaluation  of  current  gesture  together  with
former  executed  gesture.  The  results  obtained  using  this  architecture  are  a
bit  different  from  those  obtained  with  classic  RNN  but  are  more  logical  since
the  whole  surgical  task  is  considered,  as  explained  previously.

As  an  extension  of  our  previous  works,  we  propose  in  the  present  paper,
a  CNN+BiLSTM  architecture  considering  a  set  of  criteria  and  not  just  a
unique  global  performance  score.  We  believe  that  this  approach  delivers  a
more  accurate  and  more  complete  assessment  for  the  surgery  trainees.

3  Surgical  skill  evaluation  method  using
  OSATS  criteria

3.1  Proposed  method  and  problem  formulation

We  consider  the  assessment  of  surgical  skills  as  a  supervised  regression  prob-
lem,  where  the  input  is  multivariate  time  series  (MTS)  of  motion  kinematics
measured  from  the  DaVinci  surgical  robot  end-effectors,  X,  and  the  output  is
the  predicted  OSATS  score  representing  the  quality  of  the  gestures  regarding
one  of  the  six  OSATS  criteria.  Specifically,  The  predicted  OSATS  score  is  a
scalar  between  1  and  5  reflecting  the  performance  of  a  subject  S  performing  a
surgical  task  T  on  one  OSATS  criterion  C.  The  true  OSATS  outputs  (ground-
truth)  are  acquired  from  the  metadata  files  of  each  task  in  the  JIGSAWS
dataset  folder.  These  ground-truth  scores  have  been  attributed  to  trainees  by
a  gynecologic  surgeon  with  extensive  robotic  and  laparoscopic  surgical  expe-
rience  who  watched  each  video  of  each  trainee  and  each  task.  The  objective
cost  function  for  training  the  network  is  defined  as  a  Mean  Squared  Error  loss
function.
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3.2  Architecture  of  the  proposed  model

The  proposed  model  is  composed  of  a  CNN  block  followed  by  a  BiLSTM  block.

The  CNN  block  :  The  CNN  component  architecture  is  highly  inspired  from  the
CNN  in  [28].  It  contains  three  convolution  stages  with  38,  76  and  152  filters,
respectively.  All  filters  are  size  (2,2)  and  move  across  the  input  with  a  stride  of
1.  A  2D  Max  pooling  operation  is  performed  after  each  convolution  operation
with  a  pool  size  of  (2,2)  and  a  stride  of  2.  To  enhance  the  model  generalization
over  the  input  training  data  and  to  prevent  overfitting,  we  added  Gaussian
noise  at  the  input  layer  and  after  each  convolution  operation.  A  20%  Dropout
regularization  is  also  included  after  each  max  pooling  stage.  In  addition,  we
employed  a  batch  normalization  process  that  standardizes  the  inputs  to  a
layer  for  each  mini-batch.  This  normalization  helps  stabilizing  the  learning
process  and  reducing  the  time  required  to  train  the  network  efficiently.  The
ReLu  activation  function  has  been  used  in  each  convolution  layer.  At  the  end
of  the  last  convolution  stage,  the  extracted  features  are  reshaped  in  a  way
they  can  fit  in  the  next  temporal  component,  which  is  the  BiLSTM  block.

  The  BiLSTM  block  :  The  BiLSTM  component  contains  two  LSTM  layers 
with  16  units  each:  the  first  one  reads  the  input  in  a  forward  way  regarding 
the  time  steps  of  the  kinematic  data  sample,  while  the  second  one  reads  the 
inputs  in  a  backward  way.  This  structure  allows  the  networks  to  capture  both 
past  and  future  information  about  the  sequence  at  every  time  step.  Next,  the 
outputs  of  both  LSTM  layers  are  concatenated  and  transmitted  to  a  single 
output  node  that  carries  the  predicted  OSATS  score.  The  activation  function 
of  the  bidirectional  LSTM  layer  is  a  hyperbolic  tangent  and  the  activation 
function  of  the  dense  output  node  is  a  linear  function.  Batch  normalization 
process  is  included  in  this  block  as  well.

  The  main  reason  of  choosing  a  mixed  CNN+BiLSTM  architecture  is  to
take  benefit  from  both  spatial  and  temporal  features  extracted  by  both  compo-
nents  from  the  kinematic  data.  The  CNN  component  is  able  to  capture  spatial
features  while  the  BiLSTM  can  capture  temporal  information  widely  spaced
in  time.  Moreover,  choosing  a  BiLSTM  over  a  LSTM  relies  on  the  ability  of
the  BiLSTM  in  reading  time  series  data  in  both  forward  and  backward  ways
and  thus  doubling  information  provided  to  the  network.

3.3  Data  augmentation  method

Each  time-series  has  a  typical  length  of  between  1  and  5  minutes.  With  8
surgeons  and  5  trials  per  surgeon  per  procedure,  the  JIGSAWS  dataset  con-
tains  only  40  independent  samples  for  training  each  surgical  task’s  model.  To
overcome  the  training  limitation,  we  follow  a  two-step  data  augmentation  pro-
cedure  used  in  this  paper  [28].  First,  for  each  row  sample  in  the  kinematic  data,
we  separate  the  MTM  and  PSM  channels  into  two  instances  and  cast  them
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as  distinct  samples.  Instead  of  76  sensors  per  row  sample,  for  example,  there
will  be  38  sensors  for  every  two  row  samples.  This  “splitting  and  doubling”
step  is  allowable  because  the  MTM  and  PSM  sensors  are  uncorrelated  due  to
differences  in  position  of  the  robot  control  arms.  Each  channel  of  raw  sensor
data  is  z-normalized  to  minimize  the  differences  in  scaling  ranges  of  each  sen-
sor.  Then,  to  further  boost  the  training  data,  we  withdraw  a  large  volume  of
cropped  sequences  using  a  sliding  window  algorithm.  It  works  by  capturing
observations  of  a  fixed  length  (window  size)  from  the  sensor  data  and  shifting
that  window  by  steps  (step  size)  across  the  series  to  extract  sub-sequences.  In
addition,  we  include  some  noise  layers  in  the  networks  architectures  to  prevent
overfitting.

4  Results  and  discussion

The  experimental  setup  which  provided  the  following  results  is  described  in
the  additional  file  (Online  Resource  1,  Section  5).  It  covers  descriptions  of  the
different  validation  schemes,  details  about  the  neural  networks  implementation
and  information  about  the  model  evaluation  metrics  (Spearman  correlation
coefficient,  the  median,  the  standard  deviation  and  the  mean).

4.1  Random  Split  validation  scheme

For  this  first  validation  scheme,  we  tested  and  compared  several  neural  net-
work  architectures  (see  Table  1).  All  the  models  of  each  architecture  have  the
same  purpose:  predicting  each  of  the  six  OSATS  score  for  a  surgeon  trial,  inde-
pendently.  Hence,  we  created  6  independent  models  based  on  each  architecture
and  for  each  surgical  task.  Table  1  shows  the  means  of  the  computed  Spear-
man  coefficients  (ρ)  over  the  six  OSATS  scores  for  the  three  surgical  
tasks
while  adopting  the  Random  Data  Splitting  validation  scheme.  The  high  cor-
relations  between  the  ground-truth  labels  and  the  predicted  labels  prove  the 
similarity  between  the  two  distributions  leading  to  the  conclusion  that  all  the 
networks  are  capable  of  giving  an  adequate  grade  deserved  by  tested  surgeon
in  a  2-seconds  window  (We  have  chosen  a  sliding  window  of  size  60  and  a
step  size  of  30  for  this  validation  scheme).  Specifically,  CNN,  LSTM,  BiLSTM
and  the  combined  architectures  CNN+LSTM  and  CNN+BiLSTM  delivered
the  highest  rank  correlations.  The  DNN  delivered  lower  ρ  correlations  
because  of  its  simple  architecture  and  its  weakness  in  capturing  spatial
and  tempo-ral  features  of  the  kinematic  data.  On  the  other  hand,  CNN  
has  the  ability  to  capture  spatial  features  while  the  LSTM  can  capture
temporal  information  widely  spaced  in  time  without  any  information  loss
while  processing  the  kine-matic  data  sample.  BiLSTM  benefits  from  its  
ability  to  read  time  series  data  in  a  forward  direction,  and  in  a  backwards
direction  as  well.  BiLSTMs  effec-tively  increase  the  amount  of  information  
available  to  the  network,  improving  the  context  available  to  the  algorithm.
Finally,  the  combined  architectures  take  benefits  from  the  LSTM,  BiLSTM
and  CNN  networks  by  capturing  both spatial  and  temporal  information.
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SuturingNeedle-PassingKnot-Tying

0.760.760.82DNN
0.970.970.98CNN
0.940.930.95LSTM
0.950.930.95BiLSTM
0.940.930.95CNN+LSTM
0.940.930.95CNN+BiLSTM

4.2 LOSO validation scheme

Due to GPU resource limitation, we tested only the CNN+BiLSTM architec-
ture intended for this contribution. Table 2 shows the Spearman correlation
coefficient obtained for each of the 6 models on each OSATS criterion and
for each surgical task. Table 4 shows comparison between the ρ coefficients
obtained by our model and the models of two others contributions. By adopt-
ing the same validation methodology (LOSO) proposed by [29] and [25], we
are able to compare our proposed CNN+BiLSTM regression model to their
best performing regression methods. Our regression model outperforms the
FCN regression model [25] and the ApEn [29] regression method in the three
surgical tasks. In other words, the prediction and the ground truth OSATS
scores are more correlated when using CNN+BiLSTM than the ApEn-based
and FCN-based solutions on the three surgical tasks. We point out the differ-
ences of our proposed method with [25]: The authors of this contribution did
not apply any data augmentation strategy and they have trained their Fully
Convolutional Network with raw kinematic data, while we have trained our
models with crops of kinematic data obtained after applying the data augmen-
tation method described in Sub-section 3.4. Also, they used one-dimensional
convolution layers while we used two-dimensional convolution layers in our
CNN component. the latter difference seems to explain why we have got better
results: applying 2D filters allows the CNN to capture temporal information
about the input sequence along its temporal axis but also to capture spa-
tial information along the kinematic variables axis, which enables the CNN to
choose the most significant features and capture correlation features between
physical quantities (positions, velocities and accelerations). In addition, the
BiLSTM block of our model allows the model to have a temporal understand-
ing of the extracted features and to process them in two opposite directions.
Finally, the authors designed a single FCN model to predict a vector of the
six OSATS scores while we desgined six independent CNN+BiLSTM mod-
els for each OSATS score. Concerning the work [29], the authors adopted the
approximate entropy (ApEn) algorithm to extract features from each surgi-
cal trial which are later fed to a nearest neighbor classifier. According to the
authors, the features they use try to differentiate between different skill levels

DNN  Architecture  for  Automated  Soft  Surgical  Skills  Evaluation  Using  OSATS  Criteria

Table  1  Means  of  Spearman’s  correlation  coefficients  calculated  over  the  six  OSATS
scores  between  predicted  and  real  values  obtained  with  each  network  architecture
(Random  split  validation  scheme).



SuturingNeedle-PassingKnot-Tying

0.460.490.83Respect for tissue (RFT)
0.750.790.82Suture/Needle handling (SNH)
0.680.850.87Time and motion (TM)
0.620.580.76Flow of operation (FO)
0.710.580.89Overall performance (OP)
0.670.310.75Quality of final product (QFP)
0.650.600.82Mean over the six criteria

Table 3 Mean Squared Error between predicted and actual OSATS scores obtained using
the CNN+BiLSTM architecture (LOSO validation scheme)

SuturingNeedle-PassingKnot-Tying

0.420.720.22Respect for tissue (RFT)
0.520.230.23Suture/Needle handling (SNH)
0.520.210.11Time and motion (TM)
0.420.230.31Flow of operation (FO)
0.430.470.23Overall performance (OP)
0.350.930.43Quality of final product (QFP)
0.440.470.25Mean over the six criteria
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using  data  repeatability.  To  justify  the  low  performance  on  the  Needle  Pass-
ing  task,  they  have  claimed  that  the  Needle  Passing  task  is  a  less  repetitive
task  as  compared  to  the  Knot-Tying  and  the  Suturing  tasks.  According  to  us,
their  method  that  consists  in  evaluating  holistic  features  for  predicting  skill
level  is  outdated  since  the  arrival  of  powerful  deep  learning  libraries  like  Keras
[30],  that  allows  data  scientists  to  easily  build,  train  and  test  neural  networks,
knowing  that  neural  networks  are  the  most  performing  methods  in  the  machine
learning  and  deep  learning  fields.
In  addition,  we  computed  the  mean  squared  error  (MSE)  between  true  and
predicted  OSATS  scores  for  each  criterion  and  reported  the  results  in  Table
3.  This  metric  measures  the  average  of  the  squares  of  the  errors.  What  this
means,  is  that  it  returns  the  average  of  the  sums  of  the  square  of  each  differ-
ence  between  the  estimated  value  and  the  true  value.  The  mean  squared  error
is  always  0  or  positive.  When  a  MSE  is  small,  this  is  an  indication  that  the
model  accurately  predicts  the  outputs.  An  important  piece  to  note  is  that  the
MSE  is  sensitive  to  outliers.  This  is  because  it  calculates  the  average  of  every
data  point’s  error.  Because  of  this,  a  larger  error  on  outliers  will  amplify  the
MSE.

Table  2  Individual  Spearman’s  correlation  coefficients  computed  for  each  of  the  six 
OSATS  scores  between  predicted  and  real  values  obtained  with  the  CNN+BiLSTM 
architecture  (LOSO  validation  scheme).



11

SuturingNeedle-PassingKnot-TyingCompared methods

ApEn [29] (LOSO 0.590.450.66)
FCN [25] (LOSO 0.600.570.65)
CNN+BiLSTM (proposed) (LOSO) 0.650.600.82

4.3 LOGO validation scheme

The challenge intended by this validation methodology is to check the per-
formance of our CNN+BiLSTM model on predicting the regression outputs
of unseen input kinematic data whose true outputs have been unseen,too,
during the training step. This can help to significantly increase the level of
confidence we will attribute to our network. table 5, table 6 and table 7 refer
to the results of 3 statistical parameters computed for the predicted outputs
by our proposed CNN+BiLSTM model for each OSATS criterion, for the
Knot-Tying task, the Needle Passing task and the Suturing task, respectively.
We can not compute the Spearman correlation coefficient in this case because
the real outputs vector has constant values (knowing that we leave a unique
grade for testing). Hence, there is no variation in the real outputs vector so its
standard deviation is equal to 0 which will result in zero division in the Spear-
man function, thereby being undefined. Instead, we computed the median, the
standard deviation and the mean of the predicted outputs for each OSATS
criterion. We compared the mean of predicted outputs to the real outputs for
each OSATS criterion. We consider that the result is quite good when the
difference between ground truth scores and predicted scores is not greater
than 1. We decided to take this cutoff to evaluate the network prediction
performance according to the JIGSAWS surgery skills annotation levels. In
the metadata files of the dataset, surgical performance is annotated in 1 grade
steps, i.e. surgical performance reaches a new level every 1 step. We can notice
that all the trained models for each criterion have difficulties in predicting
a score that was unseen during the training phase. One can notice that the
results are good on the Time and Motion (TM) criterion in the Knot-Tying
and in the Suturing tasks (table 7, table 6. The reason behind this might be
the fact that this criterion is more correlated with the kinematic data since
the latter is a description of the surgical robot tools motions through time
steps. However, a criterion like Respect for Tissue (RFT) seems to be more
related to forces and dynamics, which are not described in the kinematic data.

Failure case: We consider the results obtained on the Needle Passing task
(table 6) as a failure case because the network yielded constant prediction
vectors, meaning that the network did not properly learn features in this case.
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Table  4  Comparative  results  obtained  by  our  model  and  the  models  of  two  other
contributions  (Means  of  the  Spearman  coefficient  over  the  six  OSATS  scores)



QFPOPFOTMSNHRFTStatistical parameters

1.882.913.072.082.893.07Median
0.200.150.120.500.360.10Standard deviation

2.733.05Mean of the predicted outputs 3.061.98 2.91 1.90

4.004.00Real outputs 4.002.00 4.00 1.00

Table 6 Regression results with the CNN+BiLSTM architecture for the Needle Passing
task while adopting the LOGO validation scheme.

QFPOPFOTMSNHRFTStatistical parameters

2.702.102.812.302.992.47Median
0.610.190.160.760.290.32Standard deviation
2.782.162.802.662.842.45Mean of the predicted outputs

1.003.002.003.004.004.00Real outputs

Table 7 Regression results with the CNN+BiLSTM architecture for the Suturing task
while adopting the LOGO validation scheme.

QFPOPFOTMSNHRFTStatistical parameters

4.084.154.024.1272.042.15Median
0.060.070.130.080.060.25Standard deviation

2.052.24Mean of the predicted outputs 4.12 3.99 4.074.14

1.001.00Real outputs 5.00 5.00 5.005.00

Limitations

Regardless of the results we obtained through our present contribution in the
field of automated surgical skill assessment, deep learning models still turn out
to be limited with regards to online skill assessment. First, The lack of data
and variety in the JIGSAWS dataset constitutes a problem since training deep
learning models mainly rely on huge amounts of data. In addition, we think
that the OSATS labels in the JIGSAWS dataset need to be more accurate and
maybe more correlated to the surgeon expertise level. One can see that some
beginner surgeons obtained a much better global OSATS score than a expert
surgeon. Finally, we need to improve our online assessment by searching for
a better weights optimization of our proposed model. If our model excelled
in predicting scores while adopting the Random Split Validation Scheme (see
Table 1), we still notice significant drops in scores prediction performance
while adopting the LOSO and the LOGO schemes (see table 2, table 5, table
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Table  5  Regression  results  with  the  CNN+BiLSTM  architecture  for  the  Knot-Tying  task
while  adopting  the  LOGO  validation  scheme.RFT:  Respect  for  tissue.  SNH:  Suture/Needle
handling.  TM:  Time  and  motion.  FO:  Flow  of  operation.  OP:  Overall  performance.  QFP:
Quality  of  final  product.
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6  and  table  7).  We  can  not  rely  only  on  the  Random  Split  Validation  scheme
to  validate  our  model  since  the  two  others  schemes  are  way  more  robust.

5  Conclusion  and  future  work

In  this  work,  we  presented  a  novel  deep  learning  method  for  automatic  and
objective  surgical  skill  assessment  from  kinematic  data  only.  The  JIGSAWS
kinematic  data  was  acquired  from  the  DaVinci  surgical  robotic  system  in  a
training  context.  Kinematic  data  may  be  also  available  from  other  ways:  3D
localization  systems,  image  guided  surgery  tools,  analysis  of  surgical  videos,
and  virtual  reality  based  surgical  simulation  systems  for  training.  In  these
setups,  kinematic  data  can  be  made  available  either  using  active  sensors  like
external  3D  trackers  and  IMUs,  or  passive  sensors  like  a  laparoscopic  camera
using  surgical  instrument  recognition,  segmentation  and  tracking.  Our  pro-
posed  model  based  on  a  combination  between  a  CNN  and  a  BiLSTM  provided
new  state-of-the-art  predictions  results  on  the  OSATS  criteria.  For  future  work,
we  aim  to  extent  our  model  to  a  real-time  surgical  skill  assessor  since  it  is
able  to  provide  feedback  by  taking  small  crops  of  kinematic  data.  In  addi-
tion,  we  aim  to  include  it  in  a  surgical  simulation  system  to  provide  an  online
skill  assessment  feedback.  Finally,  we  have  to  find  a  solution  to  overcome  the
black-box  effect  of  the  deep  learning  models.  It  would  greatly  help  to  justify
decisions  taken  by  a  deep  learning  regression  model.

Supplementary  information.  An  additional  document  named  Online
Resource  1  is  provided  with  the  main  manuscript  containing  supplementary
information  about  the  JIGSAWS  dataset,  a  description  of  modified  OSATS  cri-
teria,  networks  implementation  details  and  validation  schemes  descriptions,  the
general  training  approach  using  soft  scores  and  two  studies  involving  training
parameters  and  a  comparison  between  regression  and  classification  problems
using  OSATS  criteria.
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