
HAL Id: hal-03970237
https://hal.science/hal-03970237

Submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Linear Time Computation of Variation Degree and
Commonalities on Feature Diagrams

Mathieu Vavrille, Erwan Meunier, Charlotte Truchet, Charles Prud’Homme

To cite this version:
Mathieu Vavrille, Erwan Meunier, Charlotte Truchet, Charles Prud’Homme. Linear Time Computa-
tion of Variation Degree and Commonalities on Feature Diagrams. RR-2023-01-DAPI, Nantes Uni-
versité, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, F-44000 Nantes, France.
2023. �hal-03970237�

https://hal.science/hal-03970237
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IMT Atlantique
Département Automatique, Productique
et Informatique
Campus de Nantes
4, rue Alfred Kastler
CS 20722
44307 Nantes Cedex 3
France
T +33 (0)2 51 85 81 00
F +33 (0)2 99 12 70 08
URL : www.imt-atlantique.fr

Linear Time Computation of
Variation Degree and Commonalities
on Feature Diagrams

Mathieu Vavrille1, mathieu.vavrille@univ-nantes.fr
Erwan Meunier2, erwan.meunier@etu.univ-nantes.fr
Charlotte Truchet1, charlotte.truchet@univ-nantes.fr
Charles Prud’homme1, charles.prudhomme@imt-atlantique.fr

1 Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, F-44000
Nantes, France
2 Nantes Université, UFR Sciences et Techniques, F-44000 Nantes, France

Collection des rapports de recherche d’IMT Atlantique (En ligne)

RR-2023-01-DAPI

Linear Time Computation of Variation Degree and

Commonalities on Feature Diagrams

Mathieu Vavrille1, Erwan Meunier2, Charlotte Truchet1, and Charles
Prud’homme1

1Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR
6004, F-44000 Nantes, France

{mathieu.vavrille,charlotte.truchet}@univ-nantes.fr,
charles.prudhomme@imt-atlantique.fr

2Nantes Université, UFR Sciences et Techniques, F-44000 Nantes, France
erwan.meunier@etu.univ-nantes.fr

January 2023

Abstract

The growth in Software Product Lines (SPLs) created a need for good and fast algorithms
to analyse them. Extracting information, such as the number of products, may be crucial
to generate a good test suite. However, due to the combinatorial complexity of SPLs,
such algorithms may be intractable. Here, we focus on Feature Diagrams, and we use the
tree structure to show linear time algorithms to compute the variation degree (number of
products) and the commonalities (number of products containing each feature). We use
the variation degree to show a uniform sampling procedure of configurations allowed by a
feature diagram.

1 Introduction

Feature Models are representation of complex configuration systems. For example, an automotive
product line allows to configure the system (a car being produced) with interacting features
(such as the engine power, tyre dimensions, GPS, ...). The analysis of a feature model provides
information on how to build an efficient test suite of the product line. In the case of Software
Product Lines, a test suite is a way of finding bugs in the software. For example, the Linux
kernel can be represented as a feature model containing thousands of features (libraries, options,
hardware, ...). An important information for algorithms on feature models is the number of
products allowed, called the variation degree. A finer information, the commonality of a feature,
gives the number of products containing this specific feature.

In this report we show how to compute in linear time the variation degree and the commonali-
ties of every feature on feature diagrams. The algorithms were introduced in [von der Maßen and Lichter, 2005]
and [Fernández-Amorós et al., 2014]. This report is a synthesis of the algorithms on commonal-
ities and variation degrees from these two papers. We then show how the variation degree can
be used to design a fast uniform sampler on feature diagrams. We also provide formal proofs for
all the theorems and formulas.

1

Game

Multiplayer

OnlineLocal

Style

ShooterRacing

Cross-tree constraints:
Shooter =⇒ Online

(a) Example of Feature Model

1 2 3 4 5 6 7 8
Game ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Style ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Racing ∗ ∗ ∗ ∗
Shooter ∗ ∗ ∗ ∗

Multiplayer ∗ ∗ ∗ ∗ ∗ ∗
Local ∗ ∗ ∗ ∗
Online ∗ ∗ ∗ ∗

(b) Allowed configurations. There is one column
per configuration, and a ∗ means that the feature
is present. The configurations 7 and 8 are allowed
by the feature diagram but not the cross-tree con-
straint

Figure 1: A feature model and its set of allowed configurations.

This article is structured as follow : Section 2 defines feature models, Section 3 shows how to
compute the variation degree, Section 4 shows how to compute the commonalities, and Section 5
shows how to use the variation degree to design a uniform sampler. The proofs are given in
Appendix A.

2 Feature Models

A Feature Model is a graphical and condensed representation of the products of a Software
Product Line. Given a fixed set of features F , a feature model is a pair of, first, a feature diagram,
which gives hierarchical structure of the features organization, and second, a conjunction of
propositional formulas over F .

Example. Figure 1a shows a feature model representing games. It is mandatory that a game
has a Style (black dot over the Style node), and optionally a Multiplayer mode (empty dot
over the Multiplayer node). The Style can be either a Racing game or a Shooter game, but
not both (represented by the circle arc between the two nodes). If there is a Multiplayer mode,
it can be Local or Online, or both (represented by the black circle arc between the two nodes).
On top of that, there is a constraint stating that if a game is a Shooter game, then there should
be an Online mode.

Table 1b shows the configurations allowed by this feature model. The last two configurations
(7 and 8) are allowed by the feature diagram, but not by the cross-tree constraint.

We now give a formal definition of a feature model. Let F a set of features.

Definition 1 (Feature Diagram). A feature diagram is an n-ary labeled tree, where the nodes
can be of different types. A feature diagram D stores at its root a feature D.feature ∈ F . The
children can be from:

• a mandatory/optional group, with the sets D.mand containing the mandatory children
and D.opt containing the optional children,

• an exclusive (xor) group, with the set D.xor containing the children,

• an or group, with the set D.or containing the children.

2

In addition, every feature appearing must appear only once in a feature diagram.

This definition is a recursive definition of feature diagrams. We call D′ a sub-feature diagram
of D if D is an ancestor of D′ or D itself.

Definition 2 (Allowed Configuration). A configuration is a subset of features. Given a feature
diagram D, a configuration C ⊆ F is allowed iff:

• D.feature ∈ C

• for all D′ sub-feature diagrams of D, ∀D′′ ∈ D′.children,D′′.feature ∈ C ⇒ D′.feature ∈
C

• for all D′ sub-feature diagrams of D, if D′.feature ∈ C then:

– ∀D′′ ∈ D′.mand,D′′.feature ∈ C
– ∃D′′ ∈ D′.or,D′′.feature ∈ C
– ∃!D′′ ∈ D′.xor,D′′.feature ∈ C

We denote by Sols (D) the set of allowed configurations.

Informally, all the features in D.mand children have to be taken, at least one feature in the
D.or group has to be taken, and exactly one feature in the D.xor group has to be taken. If a
feature is taken then its parent feature is also taken.

To allow for more expressiveness when modeling feature interactions, feature diagrams are ex-
tended with propositional formulas allowing to model interactions, in particular between features
that are not in the same sub-feature diagram.

Definition 3 (Feature Model). A Feature Model FM is a pair ⟨D,ψ⟩ where D is a feature
diagram and ψ is a boolean formula where variables are features included in F . The constraints
in ψ are called cross-tree constraints. A configuration is allowed by a feature model ⟨D,ψ⟩ if it
is allowed by D and satisfies the boolean formula ψ.

The propositional formulas allow for more diverse constraints, but also make the problem
much harder, because finding one configuration satisfying the propositional formulas is NP-
complete.

In the following we forget about the cross-tree constraints and focus on the feature diagrams.
The tree structure allows for polynomial (even linear) algorithms in the number of features.
These results can then be used as approximations on the whole feature model.

3 Variation Degree

The variation degree is the number of configurations allowed by a feature model. It can be
computed recursively thanks to the following formulas.

Theorem 1. [Variation Degree of Feature Diagrams [von der Maßen and Lichter, 2005]] Let D
be a feature diagram. Then

• If D.children = ∅, then |Sols (D)| = 1

3

• If D.mand ∪D.opt ̸= ∅,

|Sols (D)| =
∏

D′∈D.mand

|Sols (D′)|

×
∏

D′∈D.opt

|Sols (D′)|+ 1

• If D.xor ̸= ∅,
|Sols (D)| =

∑
D′∈D.xor

|Sols (D′)|

• If D.or ̸= ∅,

|Sols (D)| =

(∏
D′∈D.or

|Sols (D′)|+ 1

)
− 1

From this theorem, a procedure to recursively compute the variation degree can naturally be
derived. This procedure has a complexity linear in the number of features, and also computes
the variation degree of every sub-feature diagram. All these results can be memoized for later
access in constant time.

Example. We show the computation of the variation degree on the example of Figure 1. We
note by Df the feature diagram rooted in feature f .

• The variation degree of all leaves is 1 (singleton product), so for all D in {DRacing, DShooter, DLocal, DOnline},
|Sols (D)| = 1.

• DStyle is a xor node, so the variation degrees of children are added:
∣∣Sols (DStyle

)∣∣ = 2.

• DMultiplayer is an or node, so the formula is
∣∣Sols (DMultiplayer

)∣∣ = (|Sols (DLocal)| + 1) ·
(|Sols (DOnline)|+ 1)− 1 = 3.

• The root node, DGame is a mandatory/optional node. The formula gives |Sols (DGame)| =∣∣Sols (DStyle

)∣∣ · (∣∣Sols (DMultiplayer

)∣∣+ 1) = 8

4 Commonalities

The variation degree is an important value to know before trying to enumerate all the solu-
tions. However, it does not provide informations on specific features: depending on the structure
of the feature model, some features may appear more often than others in the set of allowed
configurations. The commonalities give an insight on the presence of features in the allowed
configurations.

Definition 4 (Commonality). The commonality of a feature f in a feature diagram D, noted
φf (D), is its frequency of appearance in the set of allowed configuration, i.e.

φf (D) =
|{C ∈ Sols (D) |f ∈ C}|

|Sols (D)|

4

The commonality is heavily linked to random sampling approaches, such as uniform sampling
in [Oh et al., 2019a], or Baital [Baranov et al., 2020]. The probability that a given feature
appears in the solution returned by a uniform sampler is equal to the commonality, as stated in
the following proposition.

Proposition 1 ([Oh et al., 2019b]). Let U be a uniform sampler (i.e. ∀C ∈ Sols (D) ,P (U(D) = C) =
1/ |Sols (D)|), then

∀f ∈ F ,P (f ∈ U(D)) = φf (D) .

Proof. We use the definition of the probability of a random event (positive cases divided by total
cases), and the definition of the commonality

P (f ∈ U(D)) =
#positive cases

#total cases

=
|{C ∈ Sols (D) |f ∈ C}|

|Sols (D)|
= φf (D)

The commonalities is then equal to the probability of finding a feature in solutions found
by a sampler. If there are features with very low commonality, a sampler may never return a
solution containing it in a reasonable number of samples.

As for the variation degree, the commonality of a feature can be computed with a recursive
function thanks to the following formulas.

Theorem 2. [Commonalities on Feature Diagrams [Fernández-Amorós et al., 2014]] Let f be a
feature and D be a Feature Diagram. We note ϕf (D) = |{C ∈ Sols (D) |f ∈ C}| the number of
occurrences of a feature in the set of allowed configurations. Then

ϕf (D) =


|Sols (D)| if D.feature = f

|Sols(D)|
|Sols(D′)| · ϕf (D

′) if f ∈ D′ and D′ ∈ D.mand
|Sols(D)|

|Sols(D′)|+1 · ϕf (D
′) if f ∈ D′ and D′ ∈ D.opt or D′ ∈ D.or

ϕf (D
′) if f ∈ D′ and D′ ∈ D.xor

The commonality of f in D can then be computed with φf (D) =
ϕf (D)

|Sols(D)| .

From this theorem, we naturally derive a recursive computation method for the number of
occurrences for a single feature. The computation of the commonality of all features of D can
also be done in a single traversal of D, leading to a complexity linear in the number of features.
The algorithm for computing the commonality for every feature is given in Algorithm 1.

The commonality of every feature in the feature diagram is a rough approximation of the com-
monality in the whole feature model (including the propositional formulas). However the problem
of computing the commonality (or even the variation degree) is much harder in the general case,
and requires calls to a #-SAT solver. For example the strategy 3 of Baital [Baranov et al., 2020]
makes |F|+1 calls to a #-SAT solver to compute all the commonalities. On large feature models
this may be prohibitive.

5

1 Function Occurrences(R)
Data: A feature diagram R
Result: A mapping σ : F → N from features to their number of occurrences

2 σ ← {}
3 OccurrencesRec(R, 1, σ)
4 return σ

5 Procedure OccurrencesRec(R, κ, σ)
Data: A feature diagram R, an integer κ for the recursive factor and a mapping σ.
Result: Nothing is returned, but σ is filled with the features present in R.

6 σ[R.feature]← κ · |Sols(R)|
7 for R′ ∈ R.mand do

8 OccurrencesRec(R′, |Sols(R)|
|Sols(R′)|κ, σ)

9 for R′ ∈ R.opt ∪R.or do

10 OccurrencesRec(R′, |Sols(R)|
|Sols(R′)|+1κ, σ)

11 for R′ ∈ R.xor do
12 OccurrencesRec(R′, κ, σ)

Algorithm 1: Computation of the number of occurrences of every feature in the set of
allowed configurations.

5 Uniform Sampling on Feature Diagrams

In addition to giving information on the SPL, the variation degree can also be used to perform
uniform sampling.

Definition 5 (Uniform Sampler). Given an input feature diagram D, an algorithm U is a
uniform sampler iff

∀s ∈ Sols (D) ,P [U(D) = s] =
1

|Sols (D)|
Remark. We want to point out that in this definition, U is not a function in the mathematical
sense because it returns different outputs (random configurations) given the same input (a feature
diagram).

The tree-like structure of the feature diagrams can be used to design a recursive sampler.

Proposition 2. [Uniform Sampler of Feature Diagrams] Given a feature diagram D, the follow-
ing algorithm UFD recursively defined is a uniform sampler.

• If D.children = ∅, then UFD(D) = {D.feature}

• If D.mand ∪D.opt ̸= ∅,

UFD(D) = {D.feature} ∪
⋃

D′∈D.mand

UFD(D′)

∪
⋃

D′∈D.opt

{
∅ with probability 1

|Sols(D′)|+1

UFD(D′) otherwise

• If D′.xor ̸= ∅, choose D′ ∈ D.xor with probability
|Sols(D′)|
|Sols(D)| , then

UFD(D) = {D.feature} ∪ UFD(D′)

6

• If D.or ̸= ∅, we define

C =
⋃

D′∈D.or

{
∅ with probability 1

|Sols(D′)|+1

UFD(D′) otherwise

and

UFD(D) =

{
{D.feature} ∪ C if C ̸= ∅
UFD(D) otherwise

Remark. In the definition of the uniform sampler UFD, in the D.or ̸= ∅ case, there is a recursive
call with the same feature diagram. This is the case where C = ∅ that is forbidden (at least one
child of D.or has to be taken). In this case, we simply generate a new configuration C by calling
recursively UFD(D). The probability that C is empty (i.e. the probability to call UFD(D) again)
is 1

|Sols(D)|+1 , so it is very unlikely to happen.

Example. We apply the sampling algorithm to the same example of Figure 1a. Recall that the
algorithm does not consider the cross-tree constraint. The algorithm starts at DGame (the feature
diagram rooted in the feature Game). This node is a mandatory/optional node:

• A sub-configuration is sampled in the mandatory child (DStyle). This child is an alternative
group, hence only one child is chosen. All the children have the same variation degree (equal
to 1), they are all likely to be chosen.

– Suppose that child DRacing is chosen. This child is a leaf node, hence the returned
sub-configuration is {Racing}.

The feature Style is added, hence the returned sub-configuration is {Style, Racing}.

• With probability 3
4 = 1 − 1

|Sols(DMultiplayer)| the sub-feature diagram DMultiplayer is sampled.

Let’s suppose that this probability is met. The DMultiplayer feature diagram is an or node:

– With probability 1
2 the child DLocal is sampled. We suppose that this event does not

happen, and that DLocal is not chosen, hence the sub-configuration returned is {}.
– With probability 1

2 the child DOnline is sampled. We suppose that this event does not
happen, and that DLocal is chosen, hence the sub-configuration returned is {Online}.

We construct the sub-configuration C = {} ∪ {Online} ̸= ∅, hence the returned sub-
configuration is {Multiplayer, Online}

The final configuration returned is {Style, Racing, Multiplayer, Online, Game} (union of the
sub-configurations of the mandatory and the optional children plus the root node).

References

[Baranov et al., 2020] Baranov, E., Legay, A., and Meel, K. S. (2020). Baital: an adaptive
weighted sampling approach for improved t-wise coverage. In Devanbu, P., Cohen, M. B., and
Zimmermann, T., editors, ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, pages 1114–1126. ACM.

[Fernández-Amorós et al., 2014] Fernández-Amorós, D., Heradio, R., Cerrada, J. A., and Cer-
rada, C. (2014). A scalable approach to exact model and commonality counting for extended
feature models. IEEE Trans. Software Eng., 40(9):895–910.

7

[Oh et al., 2019a] Oh, J., Gazzillo, P., Batory, D., Heule, M., and Myers, M. (2019a). Uniform
sampling from kconfig feature models. The University of Texas at Austin, Department of
Computer Science, Tech. Rep. TR-19, 2.

[Oh et al., 2019b] Oh, J., Gazzillo, P., and Batory, D. S. (2019b). t-wise coverage by uniform
sampling. In Berger, T., Collet, P., Duchien, L., Fogdal, T., Heymans, P., Kehrer, T., Martinez,
J., Mazo, R., Montalvillo, L., Salinesi, C., Tërnava, X., Thüm, T., and Ziadi, T., editors,
Proceedings of the 23rd International Systems and Software Product Line Conference, SPLC
2019, Volume A, Paris, France, September 9-13, 2019, pages 15:1–15:4. ACM.

[von der Maßen and Lichter, 2005] von der Maßen, T. and Lichter, H. (2005). Determining the
variation degree of feature models. In Obbink, J. H. and Pohl, K., editors, Software Product
Lines, 9th International Conference, SPLC 2005, Rennes, France, September 26-29, 2005,
Proceedings, volume 3714 of Lecture Notes in Computer Science, pages 82–88. Springer.

A Proofs

A.1 Expansion Operator

To ease the proofs, we first introduce an operator called the expansion.

Definition 6 (Expansion Operator). Let E1 and E2 be two sets of configurations, we define the
expansion operator as

E1 ⋄ E2 =
⋃

C1∈E1
C2∈E2

{C1 ∪ C2}

Given E = {E1, . . . , En} n sets of configurations, we extend the expansion operator to

⋄
Ei∈E

Ei = E1 ⋄ . . . ⋄ En

Remark. As a consequence of the definition, an expansion on the empty set is:

⋄
Ei∈∅

Ei = {∅}

This definition is similar to the cartesian product but for merging sets of configurations.
Informally, if there is a set of configurations E1 on features F1, and E2 on features F2 then
E1 ⋄E2 is the allowed configurations on F1 ∪F2 (assuming there are no constraints between the
features in F1 and F2).

This operator allows us to easily recursively compute the set of allowed configurations of a
feature diagram.

Proposition 3 (Set of Configurations). Using the expansion operator, the set of allowed config-
urations of a feature diagram D can be computed recursively as:

• If D.children = ∅, then Sols (D) = {{D}}

• If D.mand ∪D.opt ̸= ∅,

Sols(D) = {{D.feature}} ⋄ ⋄
D′∈D.mand

Sols(D′)

⋄ ⋄
D′∈D.opt

Sols(D′) ∪ {∅}

8

• If D.xor ̸= ∅,
Sols(D) = {{D.feature}} ⋄

⋃
D′∈D.xor

Sols(D′)

• If D.or ̸= ∅,

Sols(D) = {{D.feature}} ⋄
((⋄

D′∈D.or
Sols(D′) ∪ {∅}

)
\{∅}

)
Proof. We recall that the expansion operator is the operator for merging sets of configurations.
The formula boils down to 5 items:

• {{D.feature}}⋄. . . is the part where the current feature is added to the set of configurations

• ⋄D′∈D.mand Sols(D
′) is the part where all the configurations of all mandatory children

are merged

• ⋄D′∈D.opt Sols(D
′) ∪ {∅} is the part for optional children. The singleton containing the

empty set is a neutral element for the expansion operator. Adding the empty set to the
set of configurations is a way to allow to either take a configuration of the children, or not,
which is exactly the definition of optional children.

•
⋃

D′∈D.xor Sols(D
′) just makes the union of the configuration of children, without the

expansion operator because a single configuration is chosen from the xor children

•
(⋄D′∈D.or Sols(D

′) ∪ {∅}
)
\{∅} is almost the same as the optional children, except that

at least one child has to be chosen, so the empty set is removed.

A.2 Variation Degree

Before proving the formula of the variation degree, we show a lemma to show that it is easy to
count with the expansion operator.

Lemma 1. Let E1 and E2 two sets of configurations on different sets of features. Then

|E1 ⋄ E2| = |E1| · |E2|

Proof. If the sets of features of E1 and E2 are disjoint, then the union in the definition of the
expansion operator is a disjoint union. Then

|E1 ⋄ E2| =

∣∣∣∣∣∣∣
⋃

C1∈E1
C2∈E2

{C1 ∪ C2}

∣∣∣∣∣∣∣
=
∑

C1∈E1
C2∈E2

|{C1 ∪ C2}|

=
∑

C1∈E1
C2∈E2

1

= |E1| · |E2|

9

Theorem 1. [Variation Degree of Feature Diagrams [von der Maßen and Lichter, 2005]] Let D
be a feature diagram. Then

• If D.children = ∅, then |Sols (D)| = 1

• If D.mand ∪D.opt ̸= ∅,

|Sols (D)| =
∏

D′∈D.mand

|Sols (D′)|

×
∏

D′∈D.opt

|Sols (D′)|+ 1

• If D.xor ̸= ∅,
|Sols (D)| =

∑
D′∈D.xor

|Sols (D′)|

• If D.or ̸= ∅,

|Sols (D)| =

(∏
D′∈D.or

|Sols (D′)|+ 1

)
− 1

Proof. The proof follows from Lemma 1 and Property 3. All the sub-feature diagrams use disjoint
sets of features.

A.3 Commonalities

Theorem 2. [Commonalities on Feature Diagrams [Fernández-Amorós et al., 2014]] Let f be a
feature and D be a Feature Diagram. We note ϕf (D) = |{C ∈ Sols (D) |f ∈ C}| the number of
occurrences of a feature in the set of allowed configurations. Then

ϕf (D) =


|Sols (D)| if D.feature = f

|Sols(D)|
|Sols(D′)| · ϕf (D

′) if f ∈ D′ and D′ ∈ D.mand
|Sols(D)|

|Sols(D′)|+1 · ϕf (D
′) if f ∈ D′ and D′ ∈ D.opt or D′ ∈ D.or

ϕf (D
′) if f ∈ D′ and D′ ∈ D.xor

The commonality of f in D can then be computed with φf (D) =
ϕf (D)

|Sols(D)| .

Proof. The idea of the proof is the same as Theorem 1, but instead of directly computing the
variation degree, we first restrict to the set of allowed configurations that contain the selected
feature.

Let D be a feature diagram and f a feature in it. We note Φf (D) the set of allowed
configurations of D including f (i.e. Φf (D) = {C ∈ Sols (D) |f ∈ C}). Then ϕf (D) = |Φf (D) |.

If f = D.feature then all the allowed combinations ofD contain f , hence ϕf (D) = |Sols (D)|.
Now suppose that f is in some D′ ∈ D.children. There are different cases depending on whether
D′ is in D.mand,D.opt,D.or or D.xor:

10

• If D′ ∈ D.mand, we split the formula of Property 3 between D′ and the other children of
D

Sols (D) ={{D.feature}} ⋄ Sols (D′) ⋄ ⋄
D′′∈D.mand\{D′}

Sols (D′′)

Φf (D) ={{D.feature}} ⋄ Φf (D
′) ⋄ ⋄

D′′∈D.mand\{D′}
Sols (D′′)

ϕf (D) =ϕf (D
′)×

∏
D′′∈D.mand\{D′}

|Sols (D′′)|

ϕf (D) =ϕf (D
′) · |Sols (D)|
|Sols (D′)|

• IfD′ ∈ D.opt the same reasoning works, just by remarking that
∏

D′′∈D.mand\{D′}
|Sols (D′′)| =

|Sols(D)|
|Sols(D′)|+1 .

• If D′ ∈ D.or, we need to remark that removing the empty set does not matter because we
are interested in the solutions that contain the feature f . The formula of Property 3 for
the D.or children becomes the same as the one for D.opt children.

• If D′ ∈ D.xor,

Sols (D) ={{D.feature}} ⋄

Sols (D′) ∪
⋃

D′′∈D.xor\{D′}

Sols (D′′)


Φf (D) ={{D.feature}} ⋄ Φf (D

′)

ϕf (D) =ϕf (D
′)

A.4 Uniform Sampling

To prove the uniformity of UFD, we first need to introduce lemmas to link the expansion operator
with sampling.

Lemma 2. Let E1 and E2 two sets of configurations on different sets of features, and U1 (resp.
U2) a uniform sampler on E1 (resp. E2). Then the sampler defined as

U(E1 ⋄ E2) = U1(E1) ∪ U2(E2)

is a uniform sampler.

Proof. Let C ∈ E1 ⋄ E2, we want to show that

P [U(E1 ⋄ E2) = C] =
1

|E1 ⋄ E2|

As E1 and E2 have different sets of features, a configuration sampled can be uniquely divided in

11

two sub-configurations C = C1 ∪ C2 such that C1 ∈ E1 and C2 ∈ E2. Then

P [U(E1 ⋄ E2) = C] = P
[
U1(E1) ∪ U2(E2) = C1 ∪ C2

]
= P

[
U1(E1) = C1 ∧ U2(E2) = C2

]
= P

[
U1(E1) = C1

]
· P
[
U2(E2) = C2

]
independency

=
1

|E1|
· 1

|E2|

=
1

|E1 ⋄ E2|
by Lemma 1

Lemma 3. Let S be a set of n elements, and c an element not in S. If U is a uniform sampler
on S, then U ′ defined as

U ′(S ∪ {c}) =
{

c with probability 1
n+1

U(S) otherwise

Proof. By definition,

P [U ′(S ∪ {c}) = c] =
1

n+ 1
and

∀s ∈ S,P [U ′(S ∪ {c}) = s] = P [U ′(S ∪ {c}) ̸= c] · P [U(S) = s]

=
n

n+ 1
· 1
n

=
1

n+ 1

Lemma 4. Let S be a set of n elements, and s ∈ S. If U is a uniform sampler on S. To define
U ′ on S\{c} we first sample s′ from S, and define U ′ as

U ′(S\{s}) =
{

s′ if s′ ̸= s
U ′(S\{s}) otherwise

Then, U is a uniform sampler in the set S\{s}.

Proof. At each step, there is a probability of 1
n of sampling s from S, which we do not want.

Otherwise there is 1
n chances to pick every other element.

∀s′ ∈ S\{s},P [U ′(S\{s}) = s′)] =
1

n
+

1

n
· 1
n
+

1

n

(
1

n

)2

+ . . .

=
1

n
·

∞∑
i=0

(
1

n

)i

=
1

n
· 1

1− 1
n

=
1

n− 1

12

From these three lemmas we can then prove that the sampler we proposed for feature diagrams
is uniform.

Proposition 2. [Uniform Sampler of Feature Diagrams] Given a feature diagram D, the follow-
ing algorithm UFD recursively defined is a uniform sampler.

• If D.children = ∅, then UFD(D) = {D.feature}

• If D.mand ∪D.opt ̸= ∅,

UFD(D) = {D.feature} ∪
⋃

D′∈D.mand

UFD(D′)

∪
⋃

D′∈D.opt

{
∅ with probability 1

|Sols(D′)|+1

UFD(D′) otherwise

• If D′.xor ̸= ∅, choose D′ ∈ D.xor with probability
|Sols(D′)|
|Sols(D)| , then

UFD(D) = {D.feature} ∪ UFD(D′)

• If D.or ̸= ∅, we define

C =
⋃

D′∈D.or

{
∅ with probability 1

|Sols(D′)|+1

UFD(D′) otherwise

and

UFD(D) =

{
{D.feature} ∪ C if C ̸= ∅
UFD(D) otherwise

Proof. We use Property 3 and the previous lemmas.

• If D.children = ∅, Sols (D) = {{D.feature}}, so there is only one solution to sample.

• If D.mand ∪ D.opt ̸= ∅, then we use Lemma 2, and for the D.opt children we also use
Lemma 3

• If D.xor ̸= ∅, first a child D′ is chosen with probability
|Sols(D′)|
|Sols(D)| , and then a solution is

chosen uniformly in D′. The probability to choose any solution is then

∀s ∈ Sols (D) ,P
[
UFD = s

]
= P [s ∈ Sols (D′) ∧ U(D′) = s]

= P [s ∈ Sols (D′)] · P [U(D′) = s]

=
|Sols (D′)|
|Sols (D)|

· 1

|Sols (D′)|

=
1

|Sols (D)|

• If D.or ̸= ∅, we apply Property 3, lemmas 2 and 4.

13

This work is licensed under a
Creative Commons Attribution 4.0 International License.

	Introduction
	Feature Models
	Variation Degree
	Commonalities
	Uniform Sampling on Feature Diagrams
	Proofs
	Expansion Operator
	Variation Degree
	Commonalities
	Uniform Sampling

